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Abstract

There has been a recent surge of interest in incorporating fairness aspects into clas-
sical clustering problems. Two recently introduced variants of the k-Center problem
in this spirit are Colorful k-Center, introduced by Bandyapadhyay, Inamdar, Pai, and
Varadarajan, and lottery models, such as the Fair Robust k-Center problem introduced
by Harris, Pensyl, Srinivasan, and Trinh. To address fairness aspects, these mod-
els, compared to traditional k-Center, include additional covering constraints. Prior
approximation results for these models require to relax some of the normally hard con-
straints, like the number of centers to be opened or the involved covering constraints,
and therefore, only obtain constant-factor pseudo-approximations. In this paper, we
introduce a new approach to deal with such covering constraints that leads to (true)
approximations, including a 4-approximation for Colorful k-Center with constantly
many colors—settling an open question raised by Bandyapadhyay, Inamdar, Pai, and
Varadarajan—and a 4-approximation for Fair Robust k-Center, for which the existence
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of a (true) constant-factor approximation was also open. We complement our results
by showing that if one allows an unbounded number of colors, then Colorful k-Center
admits no approximation algorithm with finite approximation guarantee, assuming
that P # NP. Moreover, under the Exponential Time Hypothesis, the problem is inap-
proximable if the number of colors grows faster than logarithmic in the size of the
ground set.

Keywords Approximation algorithms - k-Center - Clustering - Polyhedral techniques
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1 Introduction

Along with k-Median and k-Means, k-Center is one of the most fundamental and
heavily studied clustering problems. In k-Center, we are given a finite metric space
(X, d) and an integer k € [|X]|] := {1, ...,]|X]|}, and the task is to find a set C € X
with |C| < k minimizing the maximum distance of any point in X to its closest
point in C. Equivalently, the problem can be phrased as covering X with k balls
of radius as small as possible, i.e., finding the smallest radius r € R together
with a set C € X with |C| < k such that X = B(C,r) := |J.cc B(c,r), where
B(c,r) :={u € X :d(c,u) < r}is the ball of radius r around c.

k-Center, like most clustering problems, is computationally hard; actually it is
NP-hard to approximate to within any constant below 2 [21]. On the positive side,
various 2-approximations [15,19] have been found, and thus, its approximability is
settled. Many variations of k-Center have been studied, most of which are based on
generalizations along one of the following two main axes:

(i) which sets of centers can be selected, and
(i1) which sets of points of X need to be covered.

The most prominent variations along (i) are variations where the set of centers is
required to be in some down-closed family F € 2X. For example, if centers have
non-negative opening costs and there is a global budget for opening centers, Knapsack
Center is obtained. If F is the set of independent sets of a matroid, the problem is known
as Matroid Center. The best-known problem type linked to (ii) is Robust k-Center. Here,
an integer m € [|X|] is given, and one only needs to cover any m points of X with k
balls of radius as small as possible. Research on k-Center variants along one or both of
these axes has been very active and fruitful, see, e.g., [8,10,11,20]. In particular, recent
work of Chakrabarty and Negahbani [9] presents an elegant and unifying framework
for designing best possible approximation algorithms for all above-mentioned variants.

All the above variants have in common that there is a single covering requirement;
either all of X needs to be covered or a subset of it. Moreover, they come with different
kinds of packing constraints on the centers to be opened as in Knapsack or Matroid
Center. However, the desire to address fairness in clustering, which has received signif-
icant attention recently, naturally leads to multiple covering constraints. Here, existing
techniques only lead to constant-factor pseudo-approximations that violate at least one
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k-Center with covering constraints 5

constraint, like the number of centers to be opened. In this work, we present techniques
for obtaining (true) approximations for two recent fairness-inspired generalizations of
k-Center along axis (ii), namely

(i) y-Colorful k-Center, as introduced by Bandyapadhyay et al. [3], and
(i1) Fair Robust k-Center, a lottery model introduced by Harris et al. [18].

y-Colorful k-Center (Y CkC) is a fairness-inspired k-Center model imposing cov-
ering constraints on subgroups. It is formally defined as follows.

Definition 1 (y-Colorful k-Center (Y CkC) [3]) Let y,k € Z>1, (X,d) be a finite
metric space, X; € X and my € Zx>q for £ € [y]. The y-Colorful k-Center problem
(Y CkC) asks to find the smallest radius r € R together with centers C C X, |C| < k,
such that

|[B(C,r)N Xyl =mp VL e€][y].
Such a set of centers C is called a Y CkC solution of radius r.!
We clarify that, unless explicitly stated otherwise, the number y in the above definition
is assumed to be part of the input.

The choice of name for the problem stems from interpreting each set X, for £ € [y]
as a color assigned to the elements of X,. In particular, an element can have multiple
colors or no color. In words, the task is to open k balls of smallest possible radius
such that, for each color ¢ € [y], at least m, points of color £ are covered. Hence, for
y = 1, we recover the Robust k-Center problem.

We briefly contrast Y CkC with related fairness models. A related class of models
that has received significant attention also assumes that the ground set is colored,
but requires that the ratio between colors within each cluster is approximately the
same as the global ratio between colors. Such variants have been considered for k-
Median, k-Means, and k-Center, e.g., see [2,4,5,12,28] and references therein. Y CkC
differentiates itself from the above notion of fairness by not requiring a per-cluster
guarantee, but a global fairness guarantee. More precisely, each color can be thought
of as representing a certain group of people (demographic), and a global covering
requirement is given per demographic. Also notice the difference with the well-known
Robust k-Center problem, where a feasible solution might, potentially, completely
ignore a certain subgroup, resulting in a heavily unfair treatment. Y CkC addresses
this issue.

The presence of multiple covering constraints in Y CkC, imposed by the colors,
hinders the use of classical k-Center clustering techniques, which, as mentioned above,
have mostly been developed for packing constraints on the centers to be opened. An
elegant first step was done by Bandyapadhyay et al. [3]. They exploit sparsity of a well-
chosen LP (in a similar spirit as in [18]) to obtain the following pseudo-approximation
for Y CKC: they efficiently compute a solution of twice the optimal radius by opening
at most kK + y — 1 centers. Hence, up to y — 1 more centers than allowed may have

' The version introduced in [3] requires X1, ..., Xy to partition X. However, this additional condition on
the input does not simplify the problem. Indeed, ¥ CkC readily reduces to the model in [3] by introducing
anew color Xy, 1 = X \ Uie[y] X; withm), 1| = 0 and replacing each element that has g > 1 colors by
¢ elements on the same location with each having a single color.
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to be opened. Moreover, [3] shows that in the Euclidean plane, a significantly more
involved extension of this technique allows for obtaining a true (174-¢)-approximation
for y = O(1). Unfortunately, this approach is heavily problem-tailored and does not
even extend to 3-dimensional Euclidean spaces. This naturally leads to the main open
question raised in [3]:

Does Y CKkC with y = O (1) admit an O (1)-approximation, for any finite metric?

Here, we introduce a new approach that answers this question affirmatively.

Together with additional ingredients, our approach also applies to Fair Robust k-
Center, which is a natural lottery model introduced by Harris et al. [18]. We introduce
the following generalization thereof that can be handled with our techniques, which
we name Fair y-Colorful k-Center problem (Fair Y CkC). (The Fair Robust k-Center
problem, as introduced in [18], corresponds to y = 1.)

Definition 2 (Fair y-Colorful k-Center problem (Fair Y CkC)) Given is a Y CkC
instance on a finite metric space (X, d) together with a vector p € [0, 11X. The
goal is to find the smallest radius r € Rxq, for which there exists a distribution H over
feasible Y CkC solutions of radius » such that

Pr [u e B(C,r)] > p(u) YueX.

An algorithm for this problem should return a radius r along with an efficient procedure
for sampling a random feasible Y CkC solution of radius r.

We note that if there exists a distribution H with the desired properties for some radius
r, then there exists a distribution of polynomial support with the desired properties (due
to sparsity of the natural LP corresponding to the distribution, described in Sect. 3).
This, in particular, implies that the corresponding decision problem is in NP.

Fair Y CKkC is a generalization of Y CkC, where each element u € X needs to
be covered with a prescribed probability p(u). The Fair Robust k-Center problem,
i.e., Fair Y CkC with y = 1, is indeed a fairness-inspired generalization of Robust
k-Center, since Robust k-Center is obtained by setting p(u) = O for all u € X.
One example setting where the additional fairness aspect of Fair Y CkC compared to
Y CkC is nicely illustrated, is when k-Center problems have to be solved repeatedly
on the same metric space. The introduction of the probability requirements p allows
for obtaining a distribution to draw from that needs to consider all elements of X (as
prescribed by p), whereas classical Robust k-Center likely ignores a group of badly-
placed elements. We refer to Harris et al. [18] for further motivation of the problem
setting. They also discuss the Knapsack and Matroid Center problem under the same
notion of fairness.

For Fair Robust k-Center, [18] presents a 2-pseudo-approximation that slightly
violates both the number of points to be covered and the probability of covering each
point. More precisely, for any constant ¢ > 0, only a (1 — ¢)-fraction of the required
number of elements are covered, and element # € X is covered only with probability
(1 — &)p(u) instead of p(u). It was left open in [18] whether a true approximation
may exist for Fair Robust k-Center.
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k-Center with covering constraints 7

1.1 Our results

Our main contribution is a method to obtain 4-approximations for variants of k-Center
with unary encoded covering constraints on the points to be covered. We illustrate
our technique in the context of Y CkC, affirmatively resolving the open question of
Bandyapadhyay et al. [3] about the existence of an O (1)-approximation for constantly
many colors (without restrictions on the underlying metric space).

Theorem 1 There is a 4-approximation algorithm for Y CKC running in time | X |2,

In a second step we extend and generalize our technique to Fair Y CkC, which, as
mentioned, is a generalization of ¥ CkC. We show that Fair Y CkC admits an O(1)-
approximation, which neither violates covering nor probabilistic constraints.

Theorem 2 There is a 4-approximation algorithm for Fair Y CKC running in time
poly(L) - | X |90, where L is the encoding length of the input.

We recall that in our definition of Y CkC, the number of colors y is part of the input.
In the following, we complete our results above—which lead to efficient algorithms
only for constant y—by showing inapproximability of ¥ CkC when y is not bounded.
This holds even on the real line (1-dimensional Euclidean space).

Theorem 3 It is NP-hard to decide whether Y CKC on the real line admits a solution
of radius 0. Moreover, unless the Exponential Time Hypothesis fails, for any function
[ 1 Zso — Zsowith f(n) = w(logn), no polynomial-time algorithm can distinguish
whether Y CKC on the real line with y < f(|X|) admits a solution of radius 0.

Hence, assuming the Exponential Time Hypothesis, there is no polynomial-time
approximation algorithm for Y CkC if the number of colors grows faster than log-
arithmic in the size of the ground set. Notice that, for a logarithmic number of colors,
our procedures run in quasi-polynomial time.

Finally, we extend the hardness implied by Theorem 3 to bi-criteria algorithms that
are allowed to open more than k centers. An («, 8) bi-criteria algorithm for Y CkC,
for o, B > 1, is an algorithm that returns a solution that picks at most ek centers and
its radius is at most Br, where r is the radius of an optimal solution with k centers.
More precisely, we prove the following theorem.

Theorem 4 There exists a constant ¢ > 0, such that it is NP-hard to decide whether
Y CkC on the real line admits a solution of radius 0, even if we are allowed to violate
the number of open centers by a factor of clog | X|.

Notice that, unless P = NP, the above theorem rules out the existence of a
(clog|X]|, B) bi-criteria algorithm for Y CkC for any value of S.

Note: In an independent work, Jia, Sheth, and Svensson [23], also made advances
on Y CkC. We briefly highlight some main differences. In particular, they gave a 3-
approximation algorithm for Y CkC running in time | X |0(V2). Hence, this algorithm
provides a better approximation guarantee than our 4-approximation for Y CkC, though
with a slower running time. Moreover, contrary to [23], we also show that our tech-
niques extend to Fair Y CkC (Theorem 2) and obtain the hardness results highlighted
in Theorems 3 and 4.
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8 G. Anegg et al.

1.2 Outline of main technical contributions and paper organization

We introduce two main technical ingredients. The first is a method to deal with addi-
tional covering constraints in k-Center problems. We showcase this method in the
context of Y CkC, which leads to Theorem 1. For this, we combine polyhedral sparsity-
based arguments as used by Bandyapadhyay et al. [3], which by themselves only
lead to pseudo-approximations, with dynamic programming to design a round-or-cut
approach. Round-or-cut approaches, first used by Carr et al. [7], leverage the ellipsoid
method in a clever way. In each ellipsoid iteration they either separate the current point
from a well-defined polyhedron P, or round the current point to a good solution. The
rounding step may happen even if the current point is not in P. Round-or-cut meth-
ods have found applications in numerous problem settings (see, e.g., [1,9,16,24-27]).
The way we employ round-or-cut is inspired by a powerful round-or-cut approach of
Chakrabarty and Negahbani [9] also developed in the context of k-Center. However,
their approach is not applicable to k-Center problems as soon as multiple covering
constraints exist, like in Y CkC; see Appendix B for more details.

Our second technical contribution first employs LP duality to transform lottery-type
models, like Fair Y CkC, into an auxiliary problem that corresponds to a weighted
version of k-Center with covering constraints. We then show how a certain type of
approximate separation over the dual is possible, by leveraging the techniques we
introduced in the context of Y CkC, leading to a 4-approximation.

Even though Theorem 2 is a strictly stronger statement than Theorem 1, we first
prove Theorem 1 in Sect. 2, because it allows us to give a significantly cleaner pre-
sentation of some of our main technical contributions. In Sect. 3, we then focus on
the additional techniques needed to deal with Fair ¥ CkC, by reducing it to a problem
that can be tackled with the techniques introduced in Sect. 2. Finally, in Sect. 4, we
discuss the hardness results stated in Theorems 3 and 4.

2 A 4-approximation for Y CkCB with running time | X |9

In this section, we prove Theorem 1, which implies a polynomial-time 4-approximation
algorithm for Y CkC with constantly many colors. We assume y > 2; notice that y = 1
corresponds to Robust k-Center, for which a (tight) polynomial-time 2-approximation
is known [8,18]. Moreover, we assume that y < k, since otherwise, we can simply
enumerate over all subsets of X of size k, which leads to an exact algorithm with
running time | X|2® < |X|9%), Thus, from now on, we have that 2 < y < k — 1.
We present a procedure that for any r € R returns a solution of radius 4r if a
solution of radius r exists, and runs in time | X |9®). This implies Theorem 1 because
the optimal radius is a distance between two points. Hence, we can run the procedure
for all possible pairwise distances r between points in X (or, alternatively, do binary
search on the set of pairwise distances in order to speed up the algorithm) and return
the best solution found. Thus, we fix r € R in what follows. We denote by P the
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k-Center with covering constraints 9
compute I sol. C of violated inequality
(x, y)-good radius 2r with NO |y(B(S,7)) <k—7y+1
partition (S, D) [C\ S| <y—27 separates (z,y)
(Theorem 1) (Lemma 3) from Py (Lemma 2)
YES ellipsoid
step
solution of .
i solution of
(Theorem 5) radius 2r
NO
separate
(z,v)
from P
Fig.1 An iteration of the ellipsoid method
following canonical relaxation of ¥ CkC with radius r:
E y(v) <k
veX
X X (w) >x(u) YueX
P =1y el0, 11X x[0,1] > v )
veB(u,r)
E x(u) =mg  VEE[y]
ueXy

Integral points (x,y) € P correspond to solutions of radius r, where x and
y are characteristic vectors indicating the points that are covered and the cen-
ters that are opened, respectively. We denote the integer hull of P by P; :=
conv (P N ({0, 1}* x {0, 1}%)) .

Our algorithm is based on the round-or-cut framework, first used in [7]. The main
building block is a procedure that rounds a point (x, y) € P to a radius 4r solution
under certain conditions. It will turn out that these conditions are always satisfied if
(x, y) € Py.If they are not satisfied, then we can prove that (x, y) ¢ P; and generate
in time | X|?®) a hyperplane separating (x, y) from P;. This separation step now
becomes an iteration of the ellipsoid method, employed to find a point in Py, and
we continue with a new candidate point (x, y). Schematically, the whole process is
described in Fig. 1.

On a high level, we realize our round-or-cut procedure as follows. First, we check
whether (x, y) € P andreturn a violated constraint if this is not the case. If (x, y) € P,
we partition the metric space, based on a natural greedy heuristic introduced by Harris
etal. [18]. This gives asetof centers § = {s1, ..., s;} € X withcorresponding clusters
D={Dy,...,D4} C 2% We now exploit a technique by Bandyapadhyay et al. [3],
which implies thatif y(B(S, r)) < k—y +1, then one can leverage sparsity arguments
in a simplified LP to obtain a radius 4r solution that picks centers only within S. (For
brevity, we use the shorthand y(W) := )", _y, y(w) for any finite set W and vector
y € R in particular, y(B(S,r)) = > ven(s.r) Y(v).) We then turn to the case where
y(B(S,r)) > k—y + 1. At this point, we show that one can efficiently check whether
there exists a solution of radius 2r that opens at most k — (k — y +2) = y — 2 centers
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10 G. Anegg et al.

outside of S. This is achieved by guessing the centers outside of S (of which there are
at most y — 2 many, as noted) and using dynamic programming to find the remaining
centers in S. If no such radius 2r solution exists, we argue that any solution of radius
r has at most k — y + 1 centers in B(S, r), proving that y(B(S,r)) <k—y + lisan
inequality separating (x, y) from P;j.

We now give a formal treatment of each step of this algorithm, which is schemat-
ically described in Fig. 1. Given a point (x, y) € RX x RX, we first check whether
(x, y) € P, and, if not, return a violated constraint of P. Such a constraint separates
(x, y) from Py because P; < P. Hence, we may assume that (x, y) € P.

We now use a partitioning technique by Harris et al. [18] that, given (x, y) € P,
allows for obtaining what we call an (x, y)-good partition (S, D), defined as follows.

Definition 3 ((x, y)-good partition) Let (x, y) € P. A tuple (S, D), where the family
D ={Dy,..., Dy} partitions X and S = {s1,...,5,} € X withs; € D; fori € [q],
is an (x, y)-good partition if:

(i) d(si,s;) > 4rforalli, j €lql,i #j,
(i) D; € B(s;,4r) foralli € [¢], and
(iii) y(B(s;,r)) > x(u) foralli € [g] and for all u € D;.

The partitioning procedure of [18] was originally introduced for Robust k-Center
and naturally extends to Y CkC (see [3]). For completeness, we describe it in Algo-
rithm 1. Contrary to prior procedures, we compute an (x, y)-good partition whose
centers have pairwise distances of strictly more than 4r (instead of 2r as in prior
work). This large separation avoids overlap of radius 2r balls around centers in S,
and allows us to use dynamic programming (DP) to build a radius 2 solution with
centers in S under certain conditions. However, it is also the reason why we get a
4-approximation if the DP approach cannot be applied.

Algorithm 1: Compute (x, y)-good partition, given (x, y) € P

U<«~X,i<0, S0 D<@
while U # ¢ do
i <—i+1;
si < argmaxy ey (x(u)):
D; < B(s;,4r)NU;
S <~ SU{si};
D <~ DU{D;};
U < U\ B(sj,4r);
end
return (S, D)

Lemma1 ([3,18]) For (x,y) € P, Algorithm 1 computes an (x, y)-good partition
(S, D) in polynomial time.

For completeness, we present the proof of the above lemma.
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k-Center with covering constraints il

Proof of Lemma 1 By construction, the first two properties of the definition of an (x, y)-
good partition are trivially satisfied by the generated partition (S, D). We now turn to
the third property. For each pointu € D;, by the greedy criterion we have x (1) < x(s;).
Since (x, y) € P, we also have x(s;) < y(B(s;, r)), implying the statement. O

The following theorem follows from the results in [3].

Theorem5 ([3]) Let (x,y) € P and (S, D) be an (x, y)-good partition. Then, if
y(B(S,r)) <k —y + 1, a solution of radius 4r can be found in polynomial time.

For completeness, we provide in Appendix A a proof of a slightly stronger version
of Theorem 5, namely Theorem 8, which we reuse later in a more general context.
Theorem 8 easily follows by the same sparsity argument used in [3].

We are left with the case y(B(S, r)) > k—y + 1. In this case we present a procedure
that either returns a solution of radius 2r or, if it fails to do so, we show that every
point (x,y) € Py must fulfill y(B(S,r)) < k — y + 1; hence, this is an inequality
separating (x, y) from P;.

To show the above, we assume that (x, y) € P; holds and provide a procedure
obtaining a solution of radius 2r. (Notice that we cannot check whether (x, y) € Py,
and even if we knew that (x, y) € Py, we still need a procedure transforming the
possibly fractional point (x, y) to an actual (integral) solution.) Note that if (x, y) €
‘P, then there must exist a solution C1 € X ofradius r with |C1NB(S, r)| > k—y +1.
In particular, we must have |C1 \ B(S, r)| < y — 2. We observe that if such a solution
C exists, then there must be a solution C; of radius 2 which has at most y —2 centers
outside of S. This is formalized in the following lemma.

Lemma2 Let S € X with d(s,s’) > 4r forall s,s' € S withs # s', and t €
{0, ...,k — 1}. If there is a radius r solution C1 with |C1 N B(S, r)| > t, then there
is a radius 2r solution Co with |Co\ S| <k —7 — 1.

Proof Assume there is a solution C; of radius r with |C; N B(S,r)| > t.Let A =
C1 N B(S,r). For each p € A, let ¢(p) € S be the unique point in S such that
p € B(@(p),r); ¢(p) is well defined because d(s,s’) > 4r for every s # s’ € S.
Thus, |¢(A)| < |A], where ¢ (A) := {¢p(p) : p € A}

Let C; = ¢(A)U(C1\ A). Wehave |C2| = |¢(A)|+|Ci\A| < |[A[+|C1\ Al < k.
Moreover, as d(p, ¢(p)) < r for every p € A, we have that B(Cy,r) € B(C», 2r).
Thus, C; is a feasible solution of radius 2r. Finally, by construction, |Cy \ S| =
ICI\ B(S,r)| <k—71—1 O

So, we have now proved that if y(B(S,r)) > k—y +1and (x, y) € Py, then there
is a solution C, of radius 2r with |[C> \ S| < y — 2. The motivation for considering
solutions of radius 2r with all centers in S except for constantly many (if y = O(1))
is that such solutions can be found efficiently via dynamic programming. This is
possible because the centers in § are separated by distances strictly larger than 4r,
which implies that radius 2r balls centered at points in S do not overlap. Hence, there
are no interactions between such balls. This is formalized below.

Lemma3 Let S C X withd(s,s') > 4r forall s, s’ € Swiths # s, and B € Z>y. If
a radius 2r solution C C X with |C \ S| < B exists, then we can find such a solution
in time | X |9 B+7).
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12 G. Anegg et al.

Proof Suppose there is a solution C C X of radius 2r with |C \ S| < B. The algorithm
has two components. We first guess the set Q := C \ S. Because |Q| < B, there
are | X|2® choices. Given Q, it remains to select at most k — |Q| centers W C §
to fulfill the color requirements. Note that for any W C §, the number of points of
color £ € [y] that B(W, 2r) covers on top of those already covered by B(Q, 2r)
is [(B(W,2r)\ B(Q,2r)) N X¢| = Y, ew (B(w,2r)\ B(Q,2r)) N X¢|, where
equality holds because centers in W are separated by distances strictly larger than
4r, and thus B(W, 2r) is the disjoint union of the sets B(w, 2r) for w € W. Hence,
the task of finding a set W € S with |W| < k — | Q] such that Q U W is a solution of
radius 2r can be phrased as finding a feasible solution to the following binary program:

ZZ(S) |(B(s,2r) \ B(Q,2r)) N X¢| = me — |B(Q,2r) N X¢| VE € [y]

ses
Y <k—10| &)

seS

z€{0,1}5 .

The above binary program can be easily solved through standard dynamic program-
ming techniques in | X |2 time, because the coefficients are small. For completeness,
we show in Appendix A how this can be done for a slightly more general problem (see
Theorem 9), which we will reuse later on.> As the dynamic program is run for | X|?#)
many guesses of O, we obtain an overall running time of |X|?#+7) as claimed. O

This completes the last ingredient for an iteration of our round-or-cut approach
as shown in Fig. 1. In summary, assuming y(B(S,r)) > k — y + 1 (for otherwise
Theorem 5 leads to a solution of radius 4r) we use Lemma 3 (with 8 = y — 2) to
check whether there is a radius 2r solution Cp with |C> \ S| < y — 2. This requires
| X| O) time. If this is the case, we are done. If not, the contrapositive of Lemma 2 (with
T = k—y+1)implies that every radius r solution C| fulfills |[C{NB(S, r)| < k—y+1.
Hence, every point (x,y) € Py satisfies y(B(S,r)) < k — y + 1. However, this
constraint is violated by (x, y), and so it separates (x, y) from P;. Thus, we proved

that the process described in Fig. 1 is a valid round-or-cut procedure that runs in time
|X] o).

Corollary 1 There is an algorithm that, given a point (x, y) € RX x RX, either returns
a Y CkC solution of radius 4r or an inequality separating (x, y) from P;. The running
time of the algorithm is | X|°).

We can now prove the main theorem.

Proof of Theorem 1 We run the ellipsoid method on P; for each of the O (| X |2) can-
didate radii r. For each r, the number of ellipsoid iterations is polynomially bounded
as the separating hyperplanes that are produced by the algorithm have encoding
length at most O (]X|) (see Theorem 6.4.9 of [17]). To see this, note that all gen-
erated hyperplanes are either inequalities defining P or inequalities of the form

2 Program (2) reduces to the one of Theorem 9 by removing any redundant constraint of the first type that
has negative right-hand side.
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k-Center with covering constraints 13

y(B(S,r)) < k—y+ 1.For the correct guess of r, P is non-empty and the algorithm
terminates by returning a radius 4r solution. Hence, if we return the best solution
among those computed for all guesses of r, we have a 4-approximation, and the total
running time is poly(| X|]) - | X|9®) = | x |9, O

3 The lottery model of Harris et al. [18]

Our main tool to solve the lottery model of Harris et al. [18] is a reduction to a certain
type of weighted k-center problem. A key step of this reduction is to transform the
problem through the use of linear duality. In Subsect. 3.1, we first present this reduction
before proving in Subsect. 3.2 our algorithmic result for the above-referred version of
a weighted k-center problem.

3.1 Reduction to weighted version of k-center

Let (X, d) be a Fair Y CkC instance, and let F(r) be the family of sets of centers
satisfying the covering requirements with radius r, i.e.,

F@r) = {C cX | |IC| <kand |B(C,r)NXy| >my VL € [y]} .
Note that a radius r solution for Fair Y CkC defines a distribution over the sets in F(r).

Given r, such a distribution exists if and only if the following (exponential-size) linear
program PLP(r) is feasible (with DLP(r) being its dual):

PLP(r) : min O DLP(r) : max Z pwa(u) — pn
ueX
> MO = pw)  VueX Y aw) < YC € F(r)
CeF(r): ueB(C,r)
ueB(C,r)
Y oao) =1 o e RY,
CeF(r)
»eRLD nelk.

The dual problem DLP(r) can naturally be interpreted as a packing problem with
packing constraints imposed by Y CkC-solutions. However, we will mostly be inter-
ested in approximately separating over DLP(r). This will turn out to reduce to a
weighted version of ¥ CkC as we highlight later.

Clearly, if PLP(r) is feasible, then its optimal value is 0. As mentioned in the
introduction, itis also easy to see that if PLP(r) is feasible, then it has a feasible solution
with polynomial support (since the number of non-trivial constraints is | X| + 1).

We will again assume that y < k. If y > k, then for each fixed radius r, we solve
PLP(r) intime poly(L)-|X| 0k < poly(L)-|X]| O0%) where L is the encoding length of
the input. If PLP(r) is infeasible, then the radius r is too small. Otherwise, we compute
a feasible extreme point solution to PLP(r) which corresponds to a distribution with
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14 G. Anegg et al.

support size poly(|X|). Hence, by applying binary search over all candidate radii,
which are the O(|X|?) pairwise distances between points in X, we can compute an
optimal distribution for the smallest possible radius in poly(L) - |X|??) time. Thus,
from now on, we assume that 1 <y < k.

Observe that, for any r > 0, DLP(r) always has a feasible solution (the zero vector)
of value 0. Thus, by strong duality, PLP(r) is feasible if and only if the optimal value
of DLP(r) is 0. Note that DLP(r) is scale-invariant, meaning that if («, ) is feasible
for DLP(r) then so is (¢, tj) for t € R>¢. This implies that DLP(r) has a solution
of strictly positive objective value if and only if DLP(r) is unbounded. We thus define
the following polyhedron Q(r), which contains all solutions of DLP(r) of value at
least 1:

Z pa() > u+1

ueX

> aw <p VC € F(r)
ueB(C,r)

Q(r) =4 (@,pw) e R¥ xR

As discussed, the following statement is a direct consequence of strong duality of
linear programming.

Lemma4 Q(r) is empty if and only if PLP(r) is feasible.

The main lemma that allows us to obtain our result is the following. It guarantees the
existence of an algorithm approximately solving a certain weighted k-center problem,
where clients are weighted by o € Qfo. Before proving the lemma in Subsect. 3.2,
we show that it implies Theorem 2.

Lemma5 There is an algorithm that, given a point (o, L) € (@)2(0 x Q satisfying
ZueX pw)a(u) > u+ 1 and a radius r > 0, either certifies that (o, u) € Q(r),
or outputs a set C € F(4r) with ZueB(CAr) a(u) > w. The running time of the

algorithm is poly(L) - | X|°"), where L is the encoding length of the input.

In words, Lemma 5 either certifies (o, ) € Q(r) or returns a hyperplane separating
(o, ) from Q(4r). Its proof leverages techniques introduced in Sect. 2, and we present
it in Subsect. 3.2. Using Lemma 5, we can now prove Theorem 2.

Proof of Theorem 2 As noted, there are polynomially many choices for the radius r,
for each of which we run the ellipsoid method to check emptiness of Q(4r) as follows.
Whenever there is a call to the separation oracle for a point (o, 1) € QX x Q, we
first check whether o > O and ), .y p(u)a(u) > p + 1. If one of these constraints
is violated, we return it as separating hyperplane. Otherwise, we invoke the algorithm
of Lemma 5. The algorithm either returns a constraint in the inequality description of
Q(4r) violated by («, 1), which solves the separation problem, or certifies («, 1) €
Q(r). If, at any iteration of the ellipsoid method, the separation oracle is called for
a point (o, u) for which Lemma 5 certifies (o, ) € Q(r), then Lemma 4 implies
PLP(r) is infeasible. Thus, there is no solution to the considered Fair Y CkC instance
of radius r. Hence, consider from now on that the separation oracle always returns a
separating hyperplane, in which case the ellipsoid method certifies that Q(4r) = @ as
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k-Center with covering constraints 15

follows. Let H € F(4r) be the family of all sets C € F(4r) returned by Lemma 5
through calls to the separation oracle. Then, the following polyhedron:

> pe) = p+1

ueX

> aw) <p YC e H
ueB(C,4r)

On@r) = { (e, ) e R xR

which clearly contains Q(4r), is empty. As the encoding length of any constraint in
the inequality description of Q(4r) is polynomially bounded in the input, the ellipsoid
method runs in polynomial time (see Theorem 6.4.9 of [17]). In particular, the number
of calls to the separation oracle, and thus ||, is polynomially bounded.

As Q(4r) € Qn(4r) = (, Lemma 4 implies that PLP(4r) is feasible. More pre-
cisely, because Q7 (4r) = ¥, the linear program obtained from DLP(4r) by replacing
F(4r), which parameterizes the constraints in DLP(4r), by H, has optimal value
equal to 0. Hence, its dual, which corresponds to PLP(4r) where we replace JF (4r)
by H, is feasible. As this feasible linear program has polynomial size, because |H|
is polynomially bounded, we can solve it efficiently to obtain a distribution with the
desired properties. Moreover, the total running time is poly(L) - |X|°(), where L is
the encoding length of the input. O

3.2 Proof of Lemma 5

The desired separation algorithm requires us to find a solution for a ¥ CkC instance
with an extra covering constraint; the procedure of Sect. 2 generalizes to handle this
extra constraint. We follow similar steps as in Fig. 1.

Let (o, ) € Qfo x Q be a point satisfying ),y p(w)a(u) > p+1,letr > 0,

and, moreover, let

FOrery={CeFer)| > aw>pn
ueB(C,r)

Hence, to prove Lemma 5, we need to find a procedure that either certifies 7% (r) = @
orreturnsaset C € F%*(4r). To avoid technical complications later on due to the strict
inequality in the definition of F%*(r), we observe, using standard techniques, that
one can efficiently compute a polynomially encoded ¢ > O to replace the inequality

D uenc.ry @) > uby > cpicyou) > pute

Lemma6 Let (o, u) € Q§0 X Q. Then one can efficiently compute an ¢ > 0 with
encoding length O (L), where L is the encoding length of («, i), such that the fol-
lowing holds: For any C € F(r), we have ZueB(C’r)a(u) > u if and only if
2uenc.n @) =z pte

Proof The tuple («, ) consists of | X| + 1 rationals {Pi/a}ierny, with p; € Z and g; €
Zso. Let T = [[;¢n) gi- Note that if > pc o) > p, then Y pc yo(u) —
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16 G. Anegg et al.

w > ﬁ Thus, we set ¢ = !/n. Moreover log [T = Zie[m log g;, and so the encoding
length of ¢ is O (L). O

Let P** be the following modified relaxation of Y CkC, defined for given (o, ) €
)2(0 x @, and a corresponding ¢ > 0 as per Lemma 6, where the polytope P is defined
for a fixed radius r, as in Sect. 2 (see (1)):

D alx@) = p+e

ueX

POH = {(x, y)EP

Let P;"" := conv (P“# N ({0, 1}¥ x {0, 1}*)) be the integer hull of P**. We now
state the following straightforward observation, whose proof is an immediate conse-
quence of the definitions of the corresponding polytopes and Lemma 6.

Observation 1 Let (o, ) € Q)ﬁo x Q be such that ), .y p(w)a(u) > p + 1 and

POH = . Then (a, 1) € Q(r).
The following lemma is a slightly modified version of Theorem 5, which is also a
direct consequence of Theorem 8 given in Appendix A.

Lemma7 Let (o, u) € on x Q, let (x,y) € PY*, and let (S, D) be an (x, y)-good

partition. If y(B(S,r)) < k—y, aset C € F*"(4r) can be found in polynomial time.

If y(B(S,r)) < k — y, then Lemma 7 leads to a set C € F(4r) that satisfies
Y oue B(C.4r) () > 3 this gives a constraint separating (¢, i) from Q(4r).

Itremains to consider the case y(B(S, r)) > k—y.Asin Sect. 2, we can either find a
set Co € F*"(2r) or certify thatevery C; € F* " (r) satisfies |[C1 N B(S,r)| <k—vy.

Lemma8 Lef (o, ) € Q)z(o xQ, S C Xwithd(s,s") > 4r forall s,s’ € S with

s#s andt €{0,...,k—1}. Ifthereis aset C; € F**(r) with|CiNB(S, r)| > 1,
then there is a set Co € FOH*Q2r) with |Co \ S| <k —7 — 1.

The proof of the above lemma is identical to the proof of Lemma 2, and thus is
omitted.

Lemma9 Ler (a, 1) € ng xQ, S C Xwithd(s,s") > 4r forall s,s’ € S with

s # s, and B € Zso. If there exists a set C € F*H*(2r) with |C \ S| < B, then we
can find such a set in time | X |9 P+,

Proof As in the proof of Lemma 3, we first guess up to 8 centers @ € X \ S. For
each of those guesses, we consider the binary program (2) with objective function
Y ses2(s) - a(B(s,2r) \ B(Q,2r)) to be maximized. Again, this is a special case of
the binary program presented in Theorem 9, given in Appendix A, and thus can be
solved in time |X|?). For the guess Q = C \ S, the characteristic vector x ™ is
feasible for this binary program, implying that the optimal centers Z C S chosen by
the binary program fulfill Z U Q € F*“*(2r). O

Corollary 2 Let (x, ) € Q)Z(O x Q. There is an algorithm that, given (x, y) € R¥ xR¥X,
either returns aset C € F*"(4r) or returns a hyperplane separating (x, y) from 737’“.
The running time of the algorithm is poly(L) - | X |°"), where L is the encoding length
of the input.
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k-Center with covering constraints 17

Proof If (x, y) ¢ P%", we return a violated constraint separating (x, y) from P*#* >
77;1’“. Hence we assume (x, y) € P%H, Since P** C P, we can use Theorem 1
to get an (x, y)-good partition (S, D). If y(B(S,r)) < k — y, Lemma 7 gives a set
C € F*"(4r). So, assuming y(B(S,r)) > k—y,weuse Lemma 9 (withg =y — 1)
to check whether there is Cy € F*#*(2r) with |Cy \ S| < y — 1. If this is the case, we
are done because F**(2r) € F*H"(4r). If not, the contrapositive of Lemma 8 (with
T = k — y) implies that every C| € F*H(r) fulfills |C; N B(S, r)| < k — y. Hence,
every point (¥,y) € P;"" satisfies y(B(S,r)) < k — y. However, this constraint is
violated by (x, y), and it thus separates (x, y) from P?’“. O

Proof of Lemma 5 We use the ellipsoid method to check emptiness of P;"". Whenever
the separation oracle gets called for a point (x, y) € R¥ x RX, we invoke the algorithm
of Corollary 2. If the algorithm returns at any point a set C € F*#(4r), then C
corresponds to a constraint in the inequality description of Q(4r) violated by («, ().
Otherwise, the ellipsoid method certifies that P‘Ix’“ = (), which implies (o, u) €
Q(r) by Observation 1. Note that the number of iterations of the ellipsoid method is
polynomial as the separating hyperplanes used by the procedure above have encoding
length poly (L), where L is the encoding length of the input (see Theorem 6.4.9 of [17]).
Thus, the total running time is poly(L) - | X|°®). O

4 Hardness results for Colorful k-Center

We now prove our hardness results. We start in Subsect. 4.1 by showing Theorem 3, i.e.,
that Y CkC becomes hard to approximate when the number of colors is unbounded.
Then, in Subsect. 4.2, we prove Theorem 4, which shows our bi-criteria inapprox-
imability result, i.e., there is an approximation hardness even when one is allowed to
exceed the number of centers to be opened by up to a factor ¢ log | X| for some constant
c.

We note that all of our hardness results apply even to real-line metrics. These are
Y CkC instances where the underlying metric is given by a set of real numbers X C R,
and the distance function d is defined as d (x, y) = |x —y| forevery x, y € X. The task
that we prove to be hard is distinguishing whether such an instance admits a solution
of radius O or not.

We start by discussing a reduction from the well-known Set Cover problem to Y CkC
on the real line. More precisely, we will show that deciding whether a given Set Cover
instance has a solution of size at most k is equivalent to deciding whether a certain
real-line Y CkC instance admits a solution of radius 0. We note that the reduction is
a straightforward adaptation of the reduction appearing in [22] in the context of the
Partial Set Cover problem in geometric settings. For completeness, we first define the
(decision version of the) Set Cover problem.

Definition 4 Let U be a finite set, let S € 2V be a family of subsets of U, and let
k € Z=¢. The (decision) Set Cover problem, denoted as SC(U, S, k), asks to decide
whether there exists a subset " € S such that |S'| < k and  Jg.5 S =U.

The following lemma, mimicking the ideas in [22], shows a simple yet very useful
reduction from Set Cover to Y CkC.
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Lemma 10 Let SC(U, S, k) be a Set Cover instance. Then, in time polynomial in
|U| and |S|, we can construct a real-line Y CKC instance with |X| = |S| points and
y = |U| colors such that SC(U, S, k) is a “yes” instance if and only if the Y CkC
instance admits a solution of radius 0. Moreover, any Y CKC solution of radius 0 can
be mapped efficiently to a SC(U, S, k) solution.

This reduction is independent of the parameter k, in the sense that for different
values of k, the same Y CKC instance is obtained with the only difference that the
number k of centers one can open is different.

Proof We construct a Y CkC instance as follows. Let y = |U| and s = |S]. Let
U={uy,...,uy}and S = {8, ..., Ss}. Weset X = {1, ..., s} € R. Each element
uy € U corresponds to a distinct color X, = {i € [s] : uy € S;}. We also set
the covering requirement for each color ¢ € [y] to be m; = 1. Note that none of
X, y, X¢, mg depend on k. Clearly, the construction can be done in time polynomial
in |U] and |S]|.

We now observe that the given SC(U, S, k) is a “yes” instance if and only if the
constructed Y CkC instance admits a solution of radius 0. Indeed, if C € X isa’y CkC
solution of radius 0, then the set S’ = {S; : i € C} is a feasible solution of the Set

Cover instance of size |S’| = |C| < k. Conversely, if S’ C S is a Set Cover solution
of size |S’| < k,then C = {i € X: S§; € 8’} is a Y CkC solution of radius 0 with
|C| = |S’| <k many centers. O

4.1 Hardness of approximation for y CkC.

In this section, we prove our main hardness result, Theorem 3. For that, we reduce
from the well-known Vertex Cover problem on graphs of maximum degree 3 and cast
it as a Y CkC problem. We first formally define the problem.

Definition5 Let G = (V, E) be a graph of maximum degree 3 and let k € Z>(. The
Vertex Cover problem on such a graph, denoted as VC3(G, k), asks to decide whether
there exists a set S € V of size at most k such that SN e # ¢ forevery e € E.

Notice that Vertex Cover is a special case of Set Cover; hence, we can employ
the reduction highlighted in Lemma 10 to obtain a Y CkC problem. Reducing from a
Vertex Cover problem of bounded degree, instead of starting from a general Set Cover
problem, has the advantage that the cardinality of a minimum Vertex Cover in bounded
degree graphs has, up to constant factors, the same size as the underlying ground set,
which is the edge set in case of Vertex Cover. This relation is relevant in our reduction
to derive a contradiction with the Exponential Time Hypothesis.

In order to prove Theorem 3, we will use the following hardness results for
VC3(G, k).

Theorem 6 ([6,14])

(1) There is no algorithm for VC3(G, k) that runs in polynomial time, assuming that
P # NP.

(ii) Thereisno algorithm for VC3(G, k) that runs in time 2°® poly(|V (G)|), assuming
the Exponential Time Hypothesis.
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In our proof of Theorem 3, we reduce VC3 to ¥ CkC using Lemma 10 and then
derive hardness of Y CKkC by the hardness given by Theorem 6. Whereas this approach
proves the first part of Theorem 3 in a straightforward way, it faces a technical hurdle for
the second part. More precisely, note that the second part can be rephrased as follows.
The existence of a function f : Z>o — Zs>o with f(n) = w(logn) together with a
polynomial-time algorithm .4 for Y CkC on the real line with y < f(]X]) violates
the Exponential Time Hypothesis. However, by reducing a general VC3 instance to
Y CkC through Lemma 10, we may obtain a Y CkC instance that does not fulfill y <
f(X]), which is required to apply algorithm .A, as algorithm A only needs to work
on instances in this regime. Indeed, the reduction of Lemma 10 would only allow us
to use algorithm A to obtain a polynomial-time algorithm A’ for Set Cover instances
SC(U, S, k) with |U| < f(|S]); in particular, we would only be able to solve VC3
instances whose underlying graph G = (V, E) satisfies |E| < f(|V|). However, A’
can easily be transformed into an algorithm working for VC3 instance by artificially
inflating the vertex set V to make sure that | E| is small compared to | V'|. The following
lemma formalizes this quite straightforward, though slightly technical, step.

Lemma 11 Let f : Z>o — Zx>o be a function satisfying f(n) = w(logn). Suppose
that there exists an algorithm A’ that solves in polynomial time any VC3(G’, k')
instances with |E(G")| < f(|V(G")|). Then there is an algorithm A that solves any
VC3(G, k) instance in time 2°1E(@OD poly(|V (G))).

Proof LetZ = VC3(G, k) be a Vertex Cover instance on a graph of maximum degree
3. To be able to apply A’ to Z we would need |E(G)| < f(|V(G)|). If this is satisfied,
we simply apply A’. Hence, assume from now on |E(G)| > f(|V(G)|). In this case
we create amodified VC3 instance T = VC3(G, k) obtained by inflating Z through the
addition of singleton vertices as discussed in the following. Because f(n) = w(logn),
there is a constant ng € Z-¢ and a non-decreasing function % : Z>o — Z-.o with

(1) lim,_, o h(n) = 0o, and

(ii)) f(n) > h(n)-logn Vn € Zxp,.

Without loss of generality, we assume that |V (G)| > ng; for otherwise, the instance
7 has constant size and can therefore be solved in constant time. We add

|E(G)]

N := max {O, 2“”‘/(5)” - |V(G)|}

new singleton vertices to the VC3 instance Z to obtain a new blown-up VC3 instance
T = VC3(G, k) that is equivalent to Z because the introduced singleton vertices are
not incident with any edges.

Hence, the new Vertex Cover instance Z fulfills

|V(G)| = max {|V(G)|,2“<fv‘<6c)>ﬂ} ' 3)

Notice that

h(V(G))

FAV(G)D) = h(IV(G)) 1og [V (G)| = |E(G)] - VG = |EG)] .
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where the above inequalities follow by the properties of the function %, including that
h is non-decreasing, and (3). Hence, algorithm A’ is applicable to Z and, because 7
and 7 are equivalent instances, A’ solves the original instance Z. Finally, the running
time to construct and solve Z through A’ is upper bounded by

|E(G)]|
poly (W(G» |V<G)|) = 2°UEDpoly(1V(G)))

where we used the fact that 2(n) = w(1).

We highlight that the function /(n) does not need to be known or computed explic-
itly to perform the reduction. By our choice of N, the number of vertices |V (G)| in
the blown-up VC3 instance 7 is either |V (G)| or a power of two between |V (G)| and
2/EG)l Hence, one can simply run A’ in parallel for each of the polynomially many
options of the size of the blown-up instance and terminate as soon as the first one of
these parallel computations terminates. O

We are now ready to prove Theorem 3.

Proof of Theorem 3 The first part of the theorem is an immediate consequence of part 6
of Theorem 6 and Lemma 10.

For the second part, let f : Z>o — Zx>¢ be a function that satisfies f(n) = w(logn)
and assume for the sake of contradiction that there is a polynomial-time algorithm
A’ for Y CKC on the real line with y < f(|X|[). Then, by Lemma 10, there exists
a polynomial-time algorithm A’ for Vertex Cover instances VC3(G, k) satisfying
|E(G)| < f(IV(G)|). By Lemma 11, this implies the existence of an algorithm A for
solving (arbitrary) VC3(G, k) instances in time 2°(/E(@D poly(|V (G)]).

To obtain a contradiction with Theorem 6 (assuming the Exponential Time Hypoth-
esis), it remains to show that this implies the existence of an algorithm for VC3(G, k)
running in time 2°® poly(|V (G)|). Given a VC3(G, k) instance, we proceed as fol-
lows. Because G has no vertex of degree larger than 3, any vertex cover in G must
have cardinality at least I£(@I/3. Hence, if k < I£@IA; we know that VC3(G, k)
is a “no” instance. Otherwise, if k > £@IlA, the running time of algorithm A is
20(EG)) poly(|V(G)|) = 20k) poly(|V(G)|), thus leading to the desired contradic-
tion under the Exponential Time Hypothesis.

4.2 Hardness for bi-criteria algorithms

In this section, we extend the hardness result stated in Theorem 3 to bi-criteria algo-
rithms. For this, we reduce from the optimization version of the Set Cover problem,
which we refer to as the Minimum Cardinality Set Cover problem to distinguish it
from the decision version used earlier. For completeness, we define it formally below.

Definition 6 (Minimum Cardinality Set Cover (MCSC)) Let U be a finite set and
S < 2Y be a family of subsets of U. The Minimum Cardinality Set Cover problem
MCSC(U, S) asks to compute the smallest subset S’ C S such that  Jg o S = U.
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MCSC is a well-understood NP-hard problem. We are interested in its approxima-
tion hardness, which, after along series of works, was settled by Dinur and Steurer [13];
we state their result as Theorem 7. We note that since we are not interested in opti-
mizing the constant that appears in the main theorem of this section, any known
2 (log n)-hardness result for MCSC suffices to derive Theorem 4, proved below.

Theorem 7 [[13]] For every ¢ > 0, it is NP-hard to approximate MCSC for instances
with universe size n and m < poly(n) sets to within a factor of (1 — ¢) Inn.

Combining Theorem 7 with Lemma 10 leads to the desired result.

Proof of Theorem 4 Suppose that, for some constant ¢ > 0 to be determined later,
there exists an algorithm A for Y CkC on the real line that, if there exists a solution of
radius 0, it finds a solution of radius 0 by opening at most k - ¢ - log | X| many centers,
where X are the points on which ¥ CkC is defined. We now translate this algorithm
to MCSC using Lemma 10. To this end, consider an instance Z = MCSC(U, §) with
|S| < poly(JU|), where the polynomial poly(|U|) is the one from Theorem 7. Let k*
be the optimal value of Z.

For every k € {0, ..., min{|U]|, |S|}}, we use the reduction of Lemma 10 to get a
real-line Y CkC instance and run A on it. For k = k*, the resulting Y CkC instance, by
Lemma 10, has a feasible solution of size at most k*, and thus, for this instance our
algorithm will return a solution of size at most k* - ¢ -log |S|. Because |S| < poly(|U|),
this means that the returned Set Cover has size at most k*-¢’-log |U |, for some constant
¢’ > 0 that depends on ¢ and the hidden universal constants in the |S| < poly(|U|)
assumption. Thus, by considering all constructed Y CkC instances—which only differ
by their value of k—for which a solution was returned and picking the smallest such
solution, we obtain a set cover of size at most k* - ¢’ - log |U|. By setting the constant
c appropriately (it is easy to see that this can always be done for sufficiently small ¢),
this now contradicts Theorem 7. We conclude that it is NP-hard to decide whether a
Y CkC instance has a solution of radius 0, even if we allow solutions that open up to
k - c-log|X| centers.

5 Conclusion

In this work, we presented a technique for obtaining true constant-factor approximation
algorithms for k-center problems with multiple covering constraints on the points to be
covered. This leads to a polynomial-time 4-approximation algorithm for y-Colorful
k-Center, where y, the number of colors, is assumed to be constant, as well as a
polynomial-time 4-approximation algorithm for the more general Fair y-Colorful k-
Center problem.

We note here that our results extend to the supplier setting, where there are distinct
sets of facilities and clients, and one is allowed to open k facilities in order to cover
clients. For such settings, we obtain a polynomial-time 5-approximation algorithm
for the Fair y-Colorful k-Supplier problem. The extension of our arguments to this
setting is done by using a standard technique: we first find clients C that constitute a
4-approximate solution to the corresponding Center problem and then pick a facility
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fe € B(c,r) for each ¢ € C. Using the notation introduced in the description of
Algorithm 1, we note that terminating Algorithm 1 once max,cy x (1) = 0 does not
affect the remaining steps in our approximation algorithms. Hence we may assume
that x(s) > O for all s € S, which guarantees the existence of a facility in B(s, r).
We also clarify that the “guessing a few centers” part of our algorithm performed in
Lemma 9 can be applied directly to facilities with no issues arising.

On the negative side, we show that Colorful k-Center is inapproximable when the
number of colors is assumed to be part of the input.

There are still some open questions remaining; we highlight two of them, which
we find particularly natural and interesting:

(i) The currently known hardness of y-Colorful k-Center is 2 — ¢, inherited from
the standard k-Center problem, while (for constant y) we give a polynomial-time
4-approximation, and, as already mentioned, in an independent work, Jia, Sheth,
and Svensson [23] give a polynomial-time 3-approximation with a worse running
time. It would be interesting to close this gap.

(i) y-Colorful k-Center naturally generalizes to the knapsack and matroid versions
of it, where the set of centers that are opened must satisfy a knapsack or a matroid
constraint. Currently, our technique does not easily generalize to such settings, so
new ideas might be needed to handle these problems.
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A Technical theorems

Theorem 8 ([3]) Let (X, d) be a finite metric space, and suppose that the following
polytope

Doy <k

veX
veB(u,r)
Y acx@) = by Veelr]
ueX
is not empty, where k € {1,...,|X|}, t € Z>o, ag € R}fo and by € Rxq for every

e (tl,andr > 0. Let (x, y) € T, and let (S, D) be a partition obtained by running
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Algorithm I withinput (x, y). Then, if y(B(S, r)) < k—t+1, we can find in polynomial
time a set C C X with |C| < k satisfying a¢(B(C, 4r)) > by for all £ € [t].

Proof Let S = {s1,...,5,} and D = {Dy,..., D,} be the partition obtained by
running Algorithm 1 with input (x, y). It is easy to see that (S, D) satisfies all three
properties of an (x, y)-good partition, and so, by slightly abusing terminology, we will
call it an (x, y)-good partition.3 We now assume that ¢ > k + 1, since otherwise, the
set of centers S is already a feasible solution, as B(S, 4r) = X. We claim that the
simplified LP given below is feasible and has optimal value at most y(B(S, r)).

q
min E Zi
i=1

q
Y aDi)-zi = b VELEr]

i=1

“

zi € [0,1]1Vi € [q] .

This is indeed the case because we can construct a feasible point to the above LP with
objective value at most y(B(S, r)) as follows. Let z; = min{l, y(B(s;, r))} for all
i € [gq]. Because (D, §) is a (x, y)-good partition, property 3 of Definition 3 implies
that

D@Dz = Y Y arwxw) =Y ac@xw) = by VL],

i€lq] ielqglueD; ueX

(here we also use the fact that x(u) < 1 forallu € X, as (x,y) € 7),ie.,zisa
feasible solution of the above LP, and its objective value is Zi elg1%i = y(B(S,r)).

Suppose now that the hypothesis holds, i.e., y(B(S,r)) < k —t + 1. In particular,
this means that r < k + 1 < g. Note that if r = k + 1, then y(B(S, r)) = 0, which,
by the greediness of Algorithm 1, further implies that by = 0 for every £ € [¢]. Such
a case is trivial, as we can simply set C := (J. Thus, from now on, we assume that
t < k < g. By the above discussion, the optimal value of the above simplified LP
is at most k — ¢ + 1. We consider an optimal extreme point solution z* of LP (4). A
standard sparsity argument implies that z* has at most ¢ fractional variables. Indeed,
z* is defined by ¢ linearly independent and tight constraints of (4), among which at
most ¢ many are not of type z; > 0 or z; < 1. Hence, this implies that there are at least
q — t z*-tight constraints of (4) of type z7 = 0 or z7 = 1. This in turn implies that z*
has at most ¢ fractional components.

Furthermore, the number of strictly positive components of z* is at most k. To see
this, note that if k — r 4+ 1 components of z* are equal to 1, all other entries must
be 0 because z* is an optimal solution to (4), which has objective value no more
than k — # + 1. Otherwise, there are at most k — ¢ variables that are equal to 1 and,

3 Note that the only reason why this is a slight abuse of terminology is because we defined (x, y)-good
partitions only for points in 2. Moreover, contrary to 7, the decription of the polytope P contains specific
constraints for the covering requirements of the colors. However, these constraints did not play any role in
showing that Algorithm 1 returns an (x, y)-good partition (see proof of Lemma 1).
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together with at most ¢ fractional variables, there are at most k strictly positive entries.
Therefore, the set of centers C = {s; € X | zJ > 0} € § has size at most k and
satisfies a¢(B(C, 4r)) > by for all £ € [t], because | J .. B(c, 4r) 2 U;..+-¢ Di, as
D; € B(s;, 4r) forall i € [q]. ' 0

For completeness, we now discuss how the dynamic programming problems appear-
ing in our approaches can be solved in the claimed running time.

Theorem 9 Consider the following binary program:

q
max Y " w(i) - z(i)
iq:1
D acli) - z() = my Ve ely]

i=1
q

Zz(i) <k

i=1
z€ {0, 1}9,

where y € Z>1, w € Rgo, ag€{0,..., M} and my € {0, ..., M} forall ¢ € [y],
where M is some positive integer number, and « € [q]. Then, the above program can
be solved in time O (yq>M?).

Proof The above binary program can be solved using standard dynamic programming
techniques. More precisely, we define the following DP table. Foreveryi € {0, ..., g},
My € {0, ...my} forevery £ € [y],and j € {0, ..., «},let A[i, My,..., M,, j]be
the maximum objective value of any vector z € {0, 1}9 that satisfies
@ {relgql: z() =1} < [i],

(i) Y7, z(t) < j,and

(iii) Z?:] ae(t) - z(t) > My for every £ € [y].

Initialization is easy to define. For all non-trivial tuples [i, M1, ..., M,, j], by setting
by := max{M; — a; (i), 0} for every £ € [y], we have

Ali, My, ..., M, jl=max{w(i) + Ali —1,b1,...,b,, j — 1],
Ali —1,My,.... My, jl} .

By observing the range of each parameter of the above table, we get that there
are O (qk M7) table entries in total. Moreover, for each entry we need to compute y

auxiliary quantities by, ..., b,, and so we conclude that each entry can be computed
in time O (y). Thus, the DP can be solved in time O (y¢2M? ), where we used the fact
that « < gq. O

We remark that the O(y) update time per table entry in the above proof can be
reduced to O (1) amortized update time per table entry through a more careful analysis.
However, the resulting slight reduction in running time from O (yg>M?) to O (¢g*>M?")
is irrelevant for our purposes.
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Fig.2 A limiting example for the Chakrabarty-Negahbani framework [9]

B A limiting example for the framework of Chakrabarty and
Negahbani [9]

A natural way to extend the approach of [9] is the following procedure. Given a point
(x,y) € R x RX, we first run Algorithm 1 (with balls of radius 2 at each step) to
get a partition of X, and then we use dynamic programming to decide whether it is
possible to select at most k clusters of this partition so that the covering requirements
for all colors are satisfied. Such a selection, if it exists, gives a 2-approximation. If
there is no such selection, we want to return a hyperplane separating (x, y) from Py,
as in [9].

However, there is an instance and a point (x, y), given below, such that neither the
partition will lead to a solution nor is it possible to separate (x, y) from P;. Thus any
such procedure needs to deal with this limitation.

In Fig. 2, we present an instance of y-Colorful k-Center with y = k = 2 in the
one-dimensional Euclidean space; hence X C R. There are two colors, red and blue;
the red points are represented as red circles and the blue points as blue squares. The
color covering requirements are m| = my = 3. It is easy to see that there are no
integral solutions of radius 0, hence any solution with radius 1 is optimal. We consider
two different optimal solutions:

e C| = {1, M + 1} with corresponding clustering C; = {{1, 2}, {M + 1, M + 2}},
e Cy = {4, M + 4} with corresponding clustering C, = {{3, 4}, {M + 3, M + 4}}.

We clarify that in the above, we slightly abuse notation; if there are multiple points in
alocation, we only pick one of them as a center, while in the corresponding clustering,
all points in a covered location participate in the clustering. It is easy to verify that the
above clusterings are indeed feasible solutions of radius 1, and thus, they are optimal
solutions.

We now define the fractional solution (x, y) € RX xR, where x = % ( XC1 + XC2)
and y = % (XC‘ + XCZ). Observe that we have x (1) = % forallu € X.

In the above example, given the defined point (x, y) as input, Algorithm 1 may
return the indicated partitioning {D1, D>, D3, D4}. We stress here that there are ties,
and in order to get this partitioning we resolve them adversarially. Note that there is
no specified way to resolve such ties in [9] and it seems highly unclear how to design
a procedure that always break ties in a good way even if there is a good way to break
them. Observe now that no combination of two of these resulting clusters satisfies the
covering requirement, so the partitioning does not lead to a solution. However, we
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cannot possibly find an appropriate separating hyperplane because (x, y) € Py by
construction.
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