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Abstract
In cryptography, a ring signature is anonymous as it hides the signer’s identity among other users. When generating the
signature, the users are arranged as a ring. Compared with group signatures, a ring signature scheme needs no group manager
or special setup and supports flexibility of group choice. However, the anonymity provided by ring signatures can be used
to conceal a malicious signer and put other ring members under suspicion. At the other extreme, it does not allow the actual
signer to prove their identity and gain recognition for their actions. A deniable ring signature is designed to overcome these
disadvantages. It can initially protect the signer, but if necessary, it enables other ring members to deny their involvement, and
allows the real signer to prove who made the signed action. Many real-world applications can benefit from such signatures.
Inspired by the requirement for them to remain viable in the post-quantum age, this work proposes a new non-interactive
deniable ring signature scheme based on lattice assumptions. Our scheme is proved to be anonymous, traceable and non-
frameable under quantum attacks.

Keywords Lattice-based cryptography · Ring signature · Deniability · Deniable ring signature

1 Introduction

A digital signature allows a recipient to be confident about
the source of information that they receive, but there is no
anonymity, as the sender has to be identified. To give some
degree of anonymity, a ring signature scheme [1] can be used.
To send and validate information, a signer can take a number
of people to form a ring and then generate a ring signature
which allows the recipient to confirm that the information
came from one of the ring members, but the actual individual
cannot be identified. The ring members used to generate any
given ring signature can vary.

Ring signatures have various applications which have
been suggested already in previous works [1–3]. The original
motivation was to leak secrets anonymously. For example, a
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high-ranking government officer can sign information with
respect to the ring of all similarly high-ranking officers; the
information can then be verified as coming from an important
source without exposing the actual signer.

As described providing complete anonymity in a ring sig-
nature scheme may not always be desirable. Using a ring
signature scheme can be open to abuse, where a malicious
signer can use the anonymity to supply false information and
put the other members of the ring under suspicion. On the
other hand, when providing a piece of invaluable informa-
tion, a ring signature scheme does not offer the real signer an
opportunity to claim any credit in the future.

As the signer can always be traced by the group manager,
group signatures [4–7], do not suffer from the issues outlined
above. However, group signatures require a group manager
and every signer has to join the group. Ring signatures are
more flexible, as there is no centralized group manager or
any requirement for coordination among the signers. Each
signer has their individual private and public keys, and these
are directly used for ring signatures. In addition, the recipient
of the signed document knows the identity of the members
of the ring and this can often add weight to the information
in the document.

A deniable ring signature scheme, such as the one intro-
duced by Komano et al. [8] in 2006, retains the flexibility
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of a ring signature scheme, but can still protect members of
the ring as it allows them to either confirm that they signed
and sent the information, or to prove that they did not. Once
issued the deniable ring signature can be validated and used
and, certainly initially, the non-signing ring members have
no reason to disavow their inclusion in the signature. Only
later, if necessary, is the ability of any member of the ring to
clarify their involvement in the signature used. Such deniable
signatures have many applications, for example:

– Anonymous online bidding at auction Particularly for
high value items bidders at auction often wish to remain
anonymous. This scheme allows bidders to remain
anonymous, but ensures that a successful bidder, hav-
ing second thoughts, is unable to deny that they made the
winning bid. The auction house knowswhere the bids are
coming from and can, if necessary, find out the identity
of the winning bidder.

– Online criminal detection and reward system The police
rely on information from the public and, for serious
crimes, often offer rewards for useful information. This
scheme allows an informant to initially provide informa-
tion anonymously and then, once the criminal is safely
behind bars, to claim their rewardwhile preventing some-
one else fraudulently doing so.

– Anonymousdisclosure systemManyorganizations encour-
age workers to report illegal or abusive behavior by their
colleagues. This scheme allows workers to do so anony-
mously, while guarding against malicious accusations as
if an accusation is found to be false the accuser can always
be traced.

– Non-frameable official e-signatures A group of workers
in an office can all be given the authority to sign con-
tracts and the other party to the contract knows that they
have received a valid signature. The workers in the office
know that they must take proper care when signing con-
tracts as, if necessary, the signature of the contract can be
traced back to them. Obviously, this could be achieved
using a group signature, but knowing that the signed doc-
ument came froma known set of individuals canmake the
recipient feel more trusting and help build the business
relationship.

Since Shor [9] published efficient quantum algorithms
for the solution of integer factorization and discrete log-
arithm problems, number-theoretic cryptography is under
threat. Once a large-scale quantum computer becomes a real-
ity then traditional cryptography schemes based on these
two problems will become unsafe. The first deniable ring
signature, introduced by Komano et al. [8], is based on the
decisional Diffie–Hellman (DDH) problem and is not there-
fore quantum-resistant.

Fortunately, so far, there are a number of other crypto-
graphic techniques that have not been successfully attacked
by quantum algorithms. We focus on lattice-based schemes,
as there are no known quantum algorithms for the solution of
lattice-based problems and it is assumed that these will still
be secure in the post-quantum age.

The first deniable ring signature proposed by Komano et
al. [8] is an interactive one. For the applications above,we aim
to develop a non-interactive lattice-based deniable ring sig-
nature (NDRS) scheme. Non-interactivity means that there
is no confirmation and disavowal protocol between a ring
member and the verifier. Instead the ring member provides
evidence (a signature) that the verifier uses to check confir-
mation, or disavowal.

1.1 Contributions

We propose the first lattice-based Non-interactive Deniable
Ring Signature (NDRS) scheme based on the ring signature
scheme by Aguilar-Melchor et al. [10]. The security of our
proposed scheme is based upon the SVPγ hard lattice prob-
lem, so the scheme is believed to be quantum-resistant.

In their paper, Komano et al. outlined the security prop-
erties for a deniable ring signature, these are: anonymity,
traceability and non-frameability. Our scheme also has these
properties. As our scheme is non-interactive, we modify the
security model in [8] to allow for this and provide a security
proof.

1.2 Related works

The first ring signature scheme was introduced by Rivest et
al. [11]. Komano et al. [8] introduced the concept of deni-
able ring signatures in 2006, basing their work on the ring
signature schemes of Bellare et al. [12].

The seminal work of Ajtai [13] provided the first worst-
case to average-case reduction for lattice problems, since
then researchers have begun to construct many other crypto-
graphic protocols with security based on worst-case lattice
problems.

In 2010, Brakerski and Kalai [14] defined a new notion,
a ring trapdoor function based on the Small Integer Solu-
tion (SIS) problem, and a framework for developing ring
signatures from ring trapdoor functions in the standardmodel
using thehash-and-sign approach [15,16].Almost at the same
time,Wang et al. [17] proposed a lattice-based ring signature
scheme based on the bonsai tree signature scheme in the
standard model.

In 2011, Wang and Sun [18] gave two ring signature
schemes, one under the random oracle model and the other
in the standard model.

In 2013, Aguilar-Melchor et al. [10] developed a ring
signature scheme based on the work on digital signatures
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published by Lyubachevsky [19]. This was based upon the
SVPγ hard lattice problem. Their ring signature scheme pro-
vides short secret and public keys as well as anonymity under
full key exposure and unforgeability against arbitrary chosen
sub-ring attacks or insider corruption in log-size rings.

In 2016, Libert et al. [20] proposed the first lattice-based
ring signature with logarithmic size in the cardinality of the
ring.

As far as we are aware, no one has published any work on
lattice-based deniable ring signatures. While our scheme is
based on the scheme of Aguilar-Melchor et al. [10], adding
deniability to Libert et al’s scheme [20] is the future work.

In 2017, Yoo et al. [21] proposed a general-purpose
signature scheme based on supersingular elliptic curve iso-
genies by applying a transformation technique to the zero-
knowledge proof of identity in [22]. Their scheme has small
key sizes and workable performance, but large signature
sizes.How touse their signature schemeas a buildingblock to
create a ring signature scheme and further to develop a deni-
able ring signature scheme based on supersingular elliptic
curve isogenies rather than lattices is an interesting chal-
lenge. We will also consider this in our future work.

2 Preliminaries

2.1 Notation

Throughout this paper, we make use of the following nota-
tion.

[d] for a positive integer d, [d] is the set
{1, . . . , d}.

|S| for a given set S, |S| is the number of the
elements in S.

x
$←− S x is a uniformly random sample drawn from

S.
x ← y Assign y to x .

k the system security parameter; other param-
eters are implicitly determined by k.

n a power of two greater than k.
c a positive integer; the upper bound for the

ring size is kc.
p a prime of order �(n4+c) such that p ≡

3 mod 8 .
Zp the quotient ring Z/pZ.
D the quotient polynomial ringZp[x]/〈xn+1〉.

As n is a power of two, xn +1 is irreducible.
Elements in D are represented by polynomi-
als of degree n − 1 with integer coefficients
in {− p−1

2 , . . . ,
p−1
2 }.

L the ideal lattice (L ⊆ Z
n
p) obtained by map-

ping from ideals in the ringD. This mapping
is straightforward as the coefficients of the
polynomials in D map directly to elements
of vectors in Zn

p.
(a, . . .) the roman letters (a, b, . . .) represent poly-

nomials.
‖a‖∞ the infinity norm of polynomial a, ‖a‖∞ =

maxi (|ai |) where ai are the coefficients of
the polynomial.

(â, . . .) roman letters with a hat (â, b̂, . . .) represent
vectors of polynomials, so â = (a1, . . . , am)

is a vector of polynomials where m is some
positive integer and a1, . . . , am are polyno-
mials.

‖â‖∞ the infinity normof the vector of polynomials
â, ‖â‖∞ = maxi ‖ai‖∞.

negl(k) a function f (k)whichmeets f (k) < k−τ for
all positive τ and sufficiently large k. Such a
function is said to be negligible. A proba-
bility is overwhelming if it is 1 − negl(k).

Other notation will be introduced as necessary.

2.2 Collision-resistant hash functions

Lyubashevsky and Micciancio [23] introduced a family
of collision-resistant hash functions based on the worst-case
hardness of standard lattice problems over ideal lattices. We
recall the definitions from their work.

Definition 1 ( [23]) For any integer m and Dh ⊆ D, let

H(D, Dh,m) = {hâ : â ∈ D
m}

be the family of functions such that for any ẑ ∈ Dm
h ,

hâ(ẑ) = â · ẑ =
∑

i∈[m]
ai zi ,

where â = (a1, . . . , am) and ẑ = (z1, . . . , zm) and all the
operations ai zi are performed in the ring D.

Note that for any ŷ, ẑ ∈ Dm
h and c ∈ Dh , hash functions

in H(D, Dh,m) have the following two properties:

hâ(ŷ + ẑ) = hâ(ŷ) + hâ(ẑ),

hâ(ŷc) = hâ(ŷ)c

This function family is collision resistant when the input
domain is restricted to a suitably chosen subset ofDm . Theo-
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rem 1 below allows us to put limits on this subset. First recall
some definitions from Lyubashevsky and Micciancio [23].

Definition 2 [short vector problem (SVP)] For γ ≥ 1, a
monic polynomial f and a latticeL corresponding to an ideal
in the ring Z[x]/〈 f 〉, the SV Pγ (L) problem seeks to find an
element g ∈ L such that ‖g‖∞ ≤ γ λ∞

1 , where λ1 is the size
of the shortest nonzero vector on L.

Definition 3 (collision problem) Given an element hâ ∈
H(D, Dh,m), the collision problem Col(hâ, Dh) (where
Dh ⊂ D) asks to find distinct elements ẑ1 and ẑ2 belong-
ing to Dh such that hâ(ẑ1) = hâ(ẑ2).

It was shown in [23] that, when Dh is a set of small
norm polynomials, solvingCol(hâ, Dh) is as hard as solving
SV Pγ (L) in the worst case over lattices that corresponding
to ideals in D.

Theorem 1 (hardness of collision-resistant hash function
[23]) Let D be the ring Zp/〈xn + 1〉 for n a power of two.
Define the set Dh = {y ∈ D : ‖y‖∞ ≤ d} for some integer
d. Let H(D, Dh,m) be a hash function family as in Defini-
tion 1 such that m >

log p
log 2d and p ≥ 4dmn1.5 log n. If there

is a polynomial-time algorithm that solves Col(hâ, Dh) for
random hâ ∈ H(D, Dh,m) with some non-negligible prob-
ability, then there is a polynomial-time algorithm that can
solve SV Pγ (L) for every lattice corresponding to an ideal
in D, where γ = 16dmn log2 n.

Following Lyubachevsky’s work [19], we set d = mn1.5

log n + √
n log n. This ensures that the conditions required

by the above theorem are met and that finding collision for
H ∈ H(D, Dh,m) implies an algorithm for breaking SV P
in the worst case over ideal lattices for polynomial gaps.

2.3 Statistical distance

Statistical distance is a measure of the difference between
two probability distributions. In order to be employed in the
anonymity of our scheme, we recall it in this section.

Definition 4 (statistical distance) X and X ′ are two random
variables over a countable set S. The statistical distance
between X and X ′ is defined by

�
(
X , X ′) = 1

2

∑

x∈S

∣∣Pr [X = x] − Pr
[
X ′ = x

]∣∣ .

The following proposition shows that the statistical dis-
tance can not be increased by a randomized algorithm.

Proposition 1 (Proposition 8.10 of [24]) Assume X and X ′
are two random variables over set S,

�
(
f (X), f

(
X ′)) ≤ �

(
X , X ′)

holds for any function f with domain S.

That is to say, if the statistical distance of two families of
random variables (Xk) and (X ′

k) is negligible, an adversary
given a sample has negligible advantage over a wild guess in
distinguishing the distributions of (Xk) and (X ′

k). However,
the statistical distance may increase when we consider mul-
tiple variables. From Definition 4, if X , Y come from a dis-
tribution φ and X ′, Y ′ a distribution φ′, it can be verified that

2�
(
X , X ′) ≥ �

(
(X ,Y ) ,

(
X ′,Y ′)) ≥ �

(
X , X ′) .

Therefore, an adversary given more samples from the same
distribution may have an increased advantage in distinguish-
ing the distributions. If the families of random variables have
an upper-bound ε(k) on the statistical distance, the adversary
given s samples of the same distribution has an advantage
bounded by s ∗ ε(k).

3 Syntax and security properties of an NDRS
scheme

In this section, we introduce the syntax and security prop-
erties of a Non-interactive Deniable Ring Signature (NDRS)
scheme. The deniable ring signature scheme introduced by
Komano et al. [8] was interactive, i.e., given a ring signature,
it needs an interactive confirmation and disavowal protocol
between a prover (that is a ringmember) and a verifier. In this
work, we describe a non-interactive deniable ring signature
scheme, in which confirmation and disavowal is achieved by
using another digital signature (which we call “evidence”)
provided by the ring members associated with the given ring
signature.

3.1 Syntax

A non-interactive deniable ring signature scheme is imple-
mented using a set of six algorithms, NDRS = {ParamGen,
KeyGen, Sign, Verify, EvidenceGen, EvidenceCheck}.

– Setup(1k). This setup algorithm generates the system
parameters, and it takes as input a positive integer k that
is a security parameter, and outputs a set of public system
parameters denoted by P.

– KeyGen(P). This key generation algorithm takes as input
the system parameters P, and outputs a public/secret key
pair for each possible signer. If the index of the signer is
i , the key pair is denoted by (pki , ski ).

– Sign(P, R, sk j , μ). This signing algorithm takes as input
the system parameters P, a set of l public keys R belong-
ing to l ring members (for simplicity, let R = (pk1,
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. . . , pkl)), a secret key of a real signer ( j ∈ [l]) sk j and
a message to be signed μ, and outputs a ring signature σ .

– Verify(P, R, μ, σ ). This verification algorithm takes as
input the system parameters P, the set of ring member
public keys R, the message to be signed μ and the ring
signature σ , and outputs “accept” or “reject”.

– EvidenceGen(P, R, ski , μ, σ ). This evidence generation
algorithm takes as input the system parameters P, the
set of 
 ring member public keys R, a secret key of the
evidence generator (i ∈ [
]) ski , themessage to be signed
μ and the ring signatureσ , andoutputs a piece of evidence
ξi .

– EvidenceCheck(P, R, i, ξi , μ, σ ). This evidence check-
ing algorithm takes as input the system parameters P, the
set of ring member public keys R, the index of the ring
member, the evidence ξi , the message that was signed
μ and the signature σ , and outputs “confirmation”, “dis-
avowal” or “failed”.

3.2 Security properties

The deniable ring signature scheme described by Komano et
al. [8] had the following properties:

– Correctness The scheme is correct provided that any
ring signature generated by the signing algorithm prop-
erly is accepted by the verification algorithm and the
signer of the ring signature is identified by the confir-
mation/disavowal protocol.

– AnonymityThis property is preserved provided that a ring
signature hides the identity of the real signerwithin all the
ring members. This condition will, of course, be negated
if the ring members are required to confirm or disavow
their part in any signature.

– Traceability This property is preserved provided that any
adversary cannot produce a ring signature that can pass
the verification algorithm, but with this signature, no
entity is detected as the real signer by the confirma-
tion/disavowal protocol.

– Non-frameability This property is preserved provided
that any adversary cannot produce a ring signature that
can pass the verification algorithm, but with this signa-
ture, an entity, whose signing key is not known by the
adversary, is detected as the real signer by the confirma-
tion/disavowal protocol.

We will show that the non-interactive deniable ring signa-
ture scheme, denoted by NDRS and proposed in this paper,
also holds these properties. The major difference is that the
confirmation/disavowal protocol is replacedwith an evidence
generation and verification process. To define the security
properties for such a scheme, we first describe the oracles

that are used to address the capabilities of an adversary in a
game-based security model.

Suppose that each potential ring member has a public key
infrastructure (PKI) supported public/private key pair. Let
List be a list issued by the PKI, andMList be a list ofmalicious
signers who are corrupted or registered by an adversary. A
signer included in List but not in MList is expected to be an
honest signer. Let GSet be a list of message-signature pairs
generated by a challenge oracle query Chb(·). The adversary
is allowed to make queries to the following oracles:

– Add(i) : The adding user oraclewith the input i is invoked
to add an honest signer with identity i to List. If a signer
with identity i already exists, then the oracle returns ε that
indicates the query is invalid. Otherwise, the oracle runs
the key generation algorithm to create a public/secret key
pair (pki , ski ) for the signer, adds the signer along with
the key to List, and then returns pki .

– Reg(i, pki ) : Using the signer register oracle with the
input of the identity i and the corresponding public key
pki , an adversary can register a new signer i with the
public key pki in List. The oracle also adds the signer to
MList.

– Crpt(i) : The corrupting oracle with the input i is utilized
to corrupt the signer whose identity is i . An adversary can
draw the secret key ski of the signer from the oracle. If
the signer i does not exist yet, the oracle can first call the
adding oracle internally and then respond to the corrupt-
ing oracle. The oracle also adds the signer to MList.

– DRSig(ik; M, i1, . . . , ik−1, ik+1, . . . , il) : The deniable
ring signing oracle is given the identity of a real signer
with index ik , a messageM , and identities of a set of enti-
ties i1, . . . , ik−1, ik+1, . . . , il , who with ik form a ring,
and outputs a deniable ring signature σ associated with
the ring.

– Chb(i0, i1, M) : The challenge oracle is utilized in the
definition of the anonymity. Given two indexes (i0, i1),
a message M and a challenge bit b ∈ {0, 1}, the oracle
returns a target non-interactive deniable ring signature
Sign(P, {pki0 , pki1}, skib , M)on themessageM with the
signer ring members of i0 and i1. The challenge oracle
adds the target signature to GSet. Note that an adversary
cannot corrupt either of the signers i0 and i1; moreover,
the adversary cannot access the EGen query for a target
signature within GSet.

– EGen(i, M, σ ) : The evidence generation oracle, given
the identity i and message-signature pair (M, σ ), where
σ is a deniable ring signature and i is one of the associated
ring members, returns a piece of evidence demonstrating
whether the entity i is the real signer of the signature σ

or not. This oracle will reject the query if the signature
being input is an output from the challenge oracle in the
experiment of anonymity.
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Fig. 1 Experiments of correctness, anonymity, traceability and non-
frameability

– Hash(m) : If security of an NDRS scheme is based on
a random oracle model, this oracle, given a input data
string with an arbitrary length, outputs a random number
with a fixed length.

Nowwe are ready to define the security properties, each of
which is formalized using an experiment as shown in Fig. 1.
The access to the Hash(·) oracle is the scheme specific, so
we do not list it in this figure.

3.2.1 Correctness

An NDRS scheme is correct if:

– the signature σ generated by the Sign algorithm properly
is accepted by the Verify algorithm;

– the real signer of the signatureσ is identified by the output
of the EvidenceGen algorithm;

– the non-real signer of the signature σ is cleared by the
output of the EvidenceGen algorithm.

For an NDRS scheme, an adversary A, and a security
parameter k, the correctness is formalized by an experiment
ExpcorrNDRS,A(k) in Fig. 1. The advantage of A is defined by

AdvcorrNDRS,A(k) = Pr
[
ExpcorrNDRS,A(k) = 1

]
.

The NDRS is correct if AdvcorrNDRS,A(k) is negligible for
any probabilistic polynomial-time adversary A and security
parameter k.

3.2.2 Anonymity

A deniable ring signature does not reveal who from the set
of the ring members is the real signer. For an NDRS scheme,
a security parameter k, a positive integer l indicating the
number of potential ring members, and a PPT adversary A,
the property of anonymity is formalized using the experi-
ment Expanon−b

NDRS,A(k) as described in Fig. 1. The advantage
AdvanonNDRS,A(k) is defined as

AdvanonNDRS,A(k) =
∣∣∣Pr

[
Expanon−1

NDRS,A(k) = 1
]∣∣∣

−
∣∣∣Pr

[
Expanon−0

NDRS,A(k) = 1
]∣∣∣

=
∣∣∣2 Pr

[
Expanon−b

NDRS,A(k) = b
]

− 1
∣∣∣ .

More specifically, a non-interactive deniable ring signature
scheme is said to be anonymous in (τ, qCh, qH , qS, qE , qC , ε)

if the advantage is less than ε for anyA,with the timebound τ ,
and querying the challenge oracle, hash oracle, signing ora-
cle, evidence generation oracle up to qCh, qH , qS, qE times,
respectively. Note that if the system includes l signers,A can
query the signer register oracle and corrupt oracle at most
l − 2 times in total; this value is the upper bound of the sum
of the times of these two queries qC .

Note that in the literature, there are many different def-
initions of anonymity, for example k-anonymity [25] and
l-diversity [26]. Both of these techniques are designed to
measure the data privacy level in databases. A database table
T satisfies k-anonymity if for every item t ∈ T there exist
at least k − 1 other items in T which share the same set
of attributes with t . A ring signature with 
 ring members
achieves 
-anonymity. For a deniable ring signature with 


ring members, before any member provides evidence by fol-
lowing the EvidenceGen algorithm, the signature achieves

-anonymity; after n < (
 − 1) non-real signers provide
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their evidence, the signature achieves (
 − n)-anonymity;
after 
 − 1 non-real signers or the real signer provide their
evidence, the signature is reduced to anordinary digital signa-
ture without anonymity. As discussed in [26], k-anonymity
is a weak measurement of data privacy, and l-diversity is
suggested to increase the privacy level by reducing the gran-
ularity of data representation. If we replace ring signatures
with group signatures [4,5,12], we can reduce granularity,
since a group signature does not reveal the details of the
group. However, this change is not cost free, as we lose the
flexibility provided by ring signatures.

3.2.3 Traceability

For a non-interactive deniable ring signature scheme NDRS,
any adversary A and security parameter k, the property of
traceability is formalizedusing the experimentExptraceN DRS,A(k)
as shown in Fig. 1. The advantage of the adversary is defined
as:

AdvtraceNDRS,A(k) = Pr
[
ExptraceNDRS,A(k) = 1

]
.

More specifically, the NDRS scheme is said to hold trace-
ability in (τ , qH , qS , qE , ε) if the advantage is less than ε for
any adversary A, with time bound τ , and querying the hash
oracle, signing oracle, and evidence generation oracle qH , qS
and qE times, respectively. If the system includes l signers,
A can query the signer register oracle and corrupt oracle at
most l − 1 times in total.

3.2.4 Non-frameability

For anNDRSscheme, any adversaryA and security parameter
k, the property of non-frameability is formalized using the
experiment Expn fN DRS,A

(k) as shown in Fig. 1. The advantage
of the adversary is defined as:

Advn fNDRS,A(k) = Pr
[
Expn fNDRS,A(k) = 1

]
.

More specifically, the NDRS scheme is said to hold non-
frameability in (τ , qH , qS , qE , ε) if the advantage is less than
ε for any adversary A, with time bound τ , and querying the
hash oracle, signing oracle, and evidence generation oracle
qH , qS and qE times, respectively. If the system includes l
signers, A can query the signer register oracle and corrupt
oracle at most l − 1 times in total.

4 Construction of NDRS

In this section, we present our construction of NDRS
from lattices. Our scheme is an extension of the ring sig-

Fig. 2 Our construction of NDRS

nature scheme of Aguilar-Melchor et al. [10] (referred to as
AM in what follows) designed to achieve the property of
non-interactive deniability. As it is shown in Fig. 2, our con-
struction ofNDRS consists of six algorithms,Setup,KeyGen,
Sign, Verify, EvidenceGen and EvidenceCheck, which are
now described and, where appropriate, compared with those
in AM.

4.1 Setup(1k)

This algorithm takes as input an integer k that is a security
parameter, and outputs the system parameters P = (k, n, p,
m,D, Dh , Dy , Dz , Ds, S,H, H1, H2, H3), as listed in
Table 1. Apart from the three hash functions, all of the param-
eters are taken fromAM.Attack is easier as the ring size (i.e.,
the number of public keys used in a ring signature) grows
(also true for other schemes) and so, as in AM, we use a
constant c such that acceptable ring sizes are bounded from
above by kc. c is used to increase some of the parameters
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Table 1 The system parameters

k integer security parameter

n integer: power of 2 greater than k

p prime: order of �(n4+c) such that p ≡ 3 mod 8

m integer: (3 + 2c/3) log n

D quotient ring of polynomials: Zp[x]/〈xn + 1〉
Dh {g ∈ D : ‖g‖∞ ≤ mn1.5 log n + √

n log n}
Dy {g ∈ D : ‖g‖∞ ≤ mn1.5 log n}
Dz {g ∈ D : ‖g‖∞ ≤ mn1.5 log n − √

n log n}
Ds {g ∈ D : ‖g‖∞ ≤ 1}
S an element of D: S ← D and S �= 0

H a family of hash functions: Dm
h → D

H1 a hash function: {0, 1}∗ → Ds

H2 a hash function: {0, 1}∗ → Ds

H3 a hash function: {0, 1}∗ → Ds

compared to those given in [27] because the use of the ring
makes the system more vulnerable to attack. AM states that
a c value of 1 or 2 is sufficient to cover any reasonable use
of these signatures.

4.2 KeyGen(P)

Let N be the total number of possible signers. For simplicity,
let the index of each signer be i ∈ {1, 2, . . . , N } and let
(pki , ski ) be i’s public and secret key pair. Let Kp be the set
of public keys for all of the possible signers, Kp = (pk1, . . . ,

pkN ). This set is accessible to any signer.
Each possible signer uses this algorithm to generate their

public and secret keys and adds their public key to Kp. To
generate the public and secret keys for signer i this algorithm
takes as input the system parameters P, and performs the
following steps:

1. Set ŝi = (s1, s2, . . . , sm)
$←− Dm

s . For t ∈ [m], if none
of the values st is invertible, reset ŝi ; otherwise, let t0 ∈
{1, . . . ,m} such that st0 is invertible.

2. Set âi = (a1, . . . , am), such that (a1,a2, . . .,at0−1,at0+1,

. . . , am)
$←− D

m−1 and at0 = s−1
t0 (S − ∑

t �=t0 at st ) ∈ D.
3. Let hâi (.) ∈ H defined by âi ; e.g., hâi (ŝi ) = ∑

t at · st =
S, where at · st is polynomial multiplication in D.

4. Output (pki , ski ) = (âi , ŝi ).

This algorithm is the same as that in AM.

4.3 Sign(P, R, skj,�)

Assume that a real signer j ∈ [N ] chooses l−1 other possible
signers to form a signer ring and creates a ring signature; we
refer this ring asU ⊂ [N ]with lmembers, and for simplicity,

we denote each ring member by i ∈ [l] taken in the order of
index value. Let R be the public keys of the ring members,
R = (â1, . . . , âl) and R̃ = â1|| · · · ||âl , the concatenation
of these public keys. The algorithm Sign takes as input the
system parameters P, the set of public keys R, the secret key
of the real signer, sk j = ŝ j for j ∈ [l], and a message to be
signed μ, and outputs a ring signature σ or an error message
“failed” by performing the following steps:

1. Check if each parameter in P satisfies the definition
described in Table 1, sk j is in Dm

s , the size of signer
ring l is bounded by kc, and each public key âi in R is in
D
m . Output “failed” if any the above check is not passed.

2. Set b̂
$←− D

m and let b̂ determine a hash function hb̂(·) ∈
H.

3. Compute σ j = hb̂(ŝ j ). If σ j = 0 mod S, return to step 2

to reset b̂; otherwise compute A = σ j−H1( j ||â j )·S ∈ D.

4. For j , generate ŷ j
$←− Dm

y , and then compute α j =
hâ j (ŷ j ) and β j = hb̂(ŷ j ).

5. ∀i(i �= j) ∈ [l], generate ẑi
$←− Dm

z and vi
$←− Ds ,

and then compute σi = H1(i ||âi ) · S + A ∈ D, αi =
hâi (ẑi ) − S · vi ∈ D and βi = hb̂(ẑi ) − σi · vi ∈ D.

6. Compute v = H2(
∑

i∈[l] αi , β̃, A, R̃, μ) ∈ Ds , where

β̃ = β̂1|| · · · ||β̂l and R̃ = â1|| · · · ||âl .
7. Compute v j = v − ∑

i �= j,i∈[l] vi and ẑ j = ŷ j + ŝ j · v j .
If ẑ j ∈ Dm

z or v j ∈ Ds does not hold, then go back to
re-select any ẑi �= j or vi �= j or ŷ j .

8. Output σ = (b̂, A, z̃U , ṽU ) as the ring signature on
μ under R, where z̃U = (ẑ1, . . . , ẑl) and ṽU =
(v1, . . . , vl).

Figure 3 shows a comparison between this algorithm and the
signing algorithm from AM.

4.4 Verify(P, R,�,�)

Take as input the system parameters P, the set of public keys
R whose ring member indexes in U , a message μ and a
ring signature σ , the verifier operates as follows to check the
signature.

1. Parse σ as b̂, A, z̃U = (ẑ1, . . . , ẑl) and ṽU = (v1, . . .,
vl). Check that,

– all of the inputs are in their correct places.
– A �= 0 mod S.
– for ∀i , check ẑi ∈ Dm

z .

If anyof the above checks donot pass, reject the signature.
2. For ∀i ∈ [l], compute σ ′

i = H1(i ||âi ) · S + A ∈ D,
α′
i = hâi (ẑi ) − S · vi ∈ D and β ′

i = hb̂(ẑi ) − σ ′
i · vi ∈ D.
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Fig. 3 The signing algorithm from AM compared to ours

Fig. 4 The verification algorithm from AM compared to ours

3. Compute v′ = H2(
∑

i∈[i] α′
i , β̃

′, A, R̃, μ) ∈ Ds , where

β̃ ′ = β̂ ′
1|| · · · ||β̂ ′

l and R̃ = â1|| · · · ||âl .
4. If v′ = ∑

i∈[l] vi , accept the signature, otherwise reject
it.

Figure 4 shows a comparison between this algorithm and the
corresponding verification algorithm from AM.

4.5 EvidenceGen(P, R, ski,�,�)

Assume that (μ, σ ) is a valid message-signature pair under
the public keys of the ring members R. Any involved signer
i ∈ U can generate a piece of evidence, ξi , which shows
whether i is a real signer or not. This algorithm takes as input
the systemparametersP, the set of ringmember’s public keys

R, i’s secret key ski , and amessage and signature pair (μ, σ ),
outputs the evidence by performing the following steps:

1. run Verify(P, R, μ, σ ): if the result is “reject”, abort and
output an error message “failed”; otherwise, carry on.

2. compute σi = hb̂(ŝi ).

3. set ŷi
$←− Dm

y , and compute αi = hâi (ŷi ) and βi =
hb̂(ŷi ).

4. compute ei = H3(αi , βi , A, R̃, μ) ∈ Ds and ẑi = ŷi +
ŝi · ei .

5. output ξi = (σi , αi , βi , ẑi , ei ).

4.6 EvidenceCheck(P, R, i, �i,�,�)

This algorithm takes as input the system parameters P, the
set of ring member’s public keys R, an index i , an evidence
ξi , a message μ and a ring signature σ , and performs the
following steps:

1. run Verify(P, R, μ, σ ); if the result is “reject”, abort and
output an error message “failed”; otherwise, carry on.

2. parse ξi as (σi , αi , βi , ẑi , ei ).
3. compute α′

i = hâi (ẑi )−S ·ei ∈ D, β ′
i = hb̂(ẑi )−σi ·ei ∈

D, and e′
i = H3(α

′
i , β

′
i , A, R̃, μ) ∈ Ds .

4. check whether ei = e′
i . If not, abort and return “failed”.

5. check whether σi = H1(i ||âi ) · S + A. If it holds, output
“confirmation” indicating that i associatedwith pki = âi
is the real signer for σ , otherwise output “disavowal”
indicating that i is not the real signer for σ .

Note that given a set of evidence (∀i ∈ U , ξi ), a verifier
can find who is the real signer and who is not. The verifier
initiates two empty lists C and D, and repeats the above
EvidenceCheck algorithm for each i . When the algorithm
outputs “confirmation” the verifier adds i into List C , and
when the algorithm outputs “disavowal” adds i into List D.
In the end, the verifier outputs the final value of C and D.
We will prove later that |C | ≤ 1 always holds.

Remark 1 Just as in AM, the signature length in the NDRS
scheme is linear with the number of ring members used. To
maintain anonymity, the signer should choose as many ring
members as possible (subject to the upper bound kc). There
is clearly a trade-off between anonymity, and both the com-
putation cost and the signature length.

Remark 2 Using the same ŝi for a number of calculations of
σi = hb̂(si ) with different b̂ values may leak information
about ŝi . How often the same ŝi can be used and what con-
straints need to be put on the system parameters to ensure
that this does not happen is a topic for further work.
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5 Security analysis

The required properties of the proposed scheme are analyzed
in this section. As described in Sect. 3.2, these properties are
correctness, anonymity, traceability and non-frameability.
We first justify why the scheme is correct and then provide
proofs of the other properties (Theorems 2, 3 and 4).

By following the description of the proposed scheme, it
is easy to see that the scheme is correct. An honestly created
NDRS signature under properly created keyswill always pass
the Verify algorithm. With this signature and following the
EvidenceGen algorithm, the real signer is able to create a
piece of evidence, which leads the EvidenceCheck algorithm
to output “confirmation”. In addition, a non-real signer is able
to create a piece of evidence that leads the EvidenceCheck
algorithm to output “disavowal”.

Theorem 2 (anonymity) For b ∈ {0, 1}, let Xb,P,R,skib ,μ

be the output of Sign(P, R, skib , μ) (responding to the Chb
query) with P, R, skib and μ as a set of arbitrary inputs to
the algorithm. From the point of view of any probabilistic
polynomial-time turning machine without the knowledge of
ski0 or ski1 , the following condition holds

�
(
X0,P,R,ski0 ,μ, X1,P,R,ski1 ,μ

)
≤ ε.

Therefore, the proposed NDRS scheme is computationally
anonymous in (τ, qCh, qH , qS, qE , qC , ε) under the random
oracle model.

Proof In the anonymity experiment in Fig. 1, the adversary
A is a probabilistic polynomial-time turing machine, which
is allowed to make queries to the following oracles:

– Add(i): adding a user;
– Reg(i, pki ): registering a signer;
– Crpt(i): corrupting a signer;
– DRSig(ik, M, i1, . . . , ik−1, ik+1, . . . , il): generating a sig-

nature;
– Chb(i0, i1, M): getting a challenging signature σb;
– EGen(i, M, σ ): generating an evidence;
– Hash(m): getting a hash value.

This anonymity experiment starts with List ← ∅, MList
← ∅, GSet ← ∅ and HList ← ∅. The time bound τ , the
query numbers of qCh , qH , qS , qE and qC and the ε value are
associated with the security parameter k. Finally, A returns
a guess of bit b (which is denoted as d in Fig. 1) according
to the signature σb from Chb(i0, i1, M).

The oracles handle the queries as follows:

– Add(i): If i ∈ List, return ⊥; otherwise generate hâi for
ŝi ←R Dm

s , add (i, ŝi , hâi ) into List, and returns hâi .
– Reg(i, hâi): If i ∈ List, return ⊥; otherwise set hâi as a
public key of the signer with index i , add (i, ·, hâi ) into
List and i intoMList.

– Crpt(i): If i /∈ List \ MList, return ⊥; otherwise add i
intoMList and return ŝi .

– Hash(xα, xβ, A, R̃, μ; 2/3): If (xα, xβ, A, R̃, μ; v) ∈
HList, return v. If not, choose v ← Ds and program
H(xα, xβ, A, R̃, μ) = v for H = {H2, H3}, add
(xα, xβ, A, R̃, μ; v) into HList, and return v.

– DRSign( j, μ,U ): ∀i ∈ U including j , if i /∈ List \
MList, return ⊥. Otherwise there are two cases:

(i) If sk j ∈ List, following the Sign algorithm create and
return a signature σ ;

(ii) If sk j /∈ List, choose b̂ at random, set σ j = hb̂(ŝ j ) at
random (note that this is handled as a random oracle
without the knowledge of ŝ j ). Compute A = σ j −
H1( j ||â j ) · S, choose zi and vi at random and set
v = ∑

i vi as H(
∑

i αi ,
∑

i βi , A, R̃, μ) (again this
is handled as a random oracle without the knowledge
of αi and βi ), then compute αi = hâi (ẑi )− S · vi and
βi = hb̂(ẑi ) − (H1(i ||âi ) · S + A) · vi , and return the
signature σ = (b̂, A, z̃U , z̃U ).

– EGen(i, μ, σ ): If i /∈ List \MList, return ⊥. Otherwise,
there are two cases:

(i) If ski ∈ List, following the EvidenceGen algorithm
create and return the evidence σe;

(ii) If ski /∈ List, forge the signature σe by controlling the
random oracle hash function H ′ and return the value
σe.

– Chb(i0, i1, μ∗, R∗): If i0 or i1 /∈ List \ MList return ⊥.
Otherwise, choose b̂0, b̂1 at random, and compute σi0 and
σi0 with ŝi0 and ŝi1 , respectively, by following the Sign
algorithm. Choose b ∈ {0, 1} at random and return σib .

Recall that our proposed scheme is an extension of the
ring signature scheme by Aguilar-Melchor [10]. Our scheme
can be seen as a combination of two ring signatures σ =
(σα, σβ): σα = (z̃U , v = ∑

i∈U vi ) associated with the αi

values; σβ = (b̂, A, z̃U , ṽU ) associated with the βi values.
It is easy to see that σα is the Aguilar-Melchor et al.

ring signature scheme. Regarding anonymity, this signature
is unconditional anonymous and holds the following theo-
rem (Theorem 2 of [10]): For b ∈ {0, 1}, let Xα

b,P,skib ,μ,R be

the random variable describing the output of the ring sign-
ing algorithm (in the Chb query), and the following equation
holds:

�
(
Xα
0,P,R,ski0 ,μ, Xα

1,P,R,ski1 ,μ

)
= n−ω(1) ≤ εα.
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σβ involves the extra values b̂, A and vi for i ∈ [l]
(instead of a singlev value). This extra informationmakes our
scheme is not unconditional anonymous, since, obviously,
anyone with the knowledge of ski0 or ski1 can distinguish
Xβ

0,P,R,ski0 ,μ
from Xβ

1,P,R,ski1 ,μ
. This is designed in the pur-

pose of supporting deniability. Now we argue that σβ holds
computational anonymity. This means that for a probabilistic
polynomial-time turning machine adversary A, we have

�
(
Xβ

0,P,R,ski0 ,μ
, Xβ

1,P,R,ski1 ,μ

)
≤ εβ.

In σβ , a fresh public key σib is created for the real signer
ib, corresponding to the private signing key skib and using a
new randomhash function hb̂(). In order tomake σβ be a ring
signature, a dummy public key σib̄ is created for a non-real
signer ib̄. The value A represents the entire set of these fresh
public keys, A = σib + H1(ib||âib ) · S = σib̄ + H1(ib̄||âib̄ )·S.

Let us now discuss the statistical distance between two
σβ signatures under two secret keys ski0 and ski1 . For sim-
plifying the notation, we add subscripts i0 and i1 for the
components of signatures σ

β
i0
and σ

β
i1
under private keys ŝi0

and ŝi1 . As b̂i0 and b̂i1 are created at random by the chal-
lenger and âi0 and âi1 are created consistently and randomly,
we know that these values are independent of bit b, and the
statistical distance between b̂i0 and b̂i1 is 0.Without accessing
to the corresponding private keys ŝi0 and ŝi1 , the adversary
A can not distinguish σi0 = hb̂i0

(ŝi0) and σi1 = hb̂i1
(ŝi1)

from pki0 = âi0 and pki1 = âi1 with probability more than
ε, because the hash functions hb̂i0

(ŝi0) and hb̂i1
(ŝi1) are han-

dled by the randomoracle in the anonymity experiment. From
proposition 8.10 in [24] (Let X , Y be two random variables
over a common set A. For any function f with domain A,
the statistical distance between f (X) and f (Y ) is at most
�( f (X), f (Y )) ≤ �(X ,Y )), we can obtain the conclusion
that the statistical distance between Ai0 and Ai1 is also no
more than ε from Ai0 = hb̂i0

(ŝi0) − H1(i0||âi0) · S and

Ai1 = hb̂i1
(ŝi1) − H1(i1||âi1) · S.

Based on the above analysis of σα and σβ , we have

�
(
X0,P,R,ski0 ,μ, X1,P,R,ski1 ,μ

)
≤ ε = εα + εβ.

This completes the proof. ��
Theorem 3 (traceability) Under the assumptions that the
ring signature schemeof [10]and theLyubashevsky signature
scheme [19] are unforgeable, our proposed NDRS scheme in
Sect. 4 is traceable under the random oracle model.

Proof We prove this theorem with the following steps of dis-
cussion:

– An NDRS signature is based on Aguilar-Melchor et al’s
ring signature [10] that is associated with the l-ring long-
term public keys R. Via Lemma 1, we show that due
to the Aguilar-Melchor et al. ring signature is unforge-
able, if a given ring signature from our NDRS scheme
can be accepted by running the Verify algorithm, it must
be created by a “real-signer” under its private key corre-
sponding to its public key that must be one from R.

– A signature from the proposed NDRS scheme includes
another ring signature that is associatedwith the ephemeral
l-ring public keys σi for i = {1, . . . , l}. Via Lemma 2, we
show that due to the Lyubashevsky signature scheme [19]
is unforgeable, if a given ring signature from our NDRS
scheme can be accepted by running the Verify algorithm,
it must be created by a “real-signer” under its private key
corresponding to its ephemeral public key that must be
one from the l-ring public keys σi for i ∈ {1, . . . , l}.

– A Schnorr-type of signature-based knowledge proof is
used in our NDRS scheme as a connection between these
two ring signatures. We show that due to the unforge-
ability of these two ring signatures and the nature of the
Schnorr signature-based proof, this connection indicates
that these two ring signatures must share the same real-
signer, say i . This means that one of the σi value is a real
public key corresponding to the real private key ski = ŝi .
The difference is that the long-term public key pki is
associated with the long-term base âi , (i.e., S = hâi (ŝi ))
and the ephemeral public key is associated with the ran-
dom base b̂ (i.e., σi = hb̂(ŝi )).

– The evidence in the proposed NDRS scheme is based on
the Lyubashevsky lattice-based signature scheme [19],
and it includes two Lyubashevsky signatures, both in the
Schnorr-type of signature-based knowledge proof for-
mat. Using Lemma 3, we show that the evidence is also
unforgeable assume that the Lyubashevsky signature is
unforgeable. Following the same observation discussed
before, these two signatures in the same evidence share
the same private key.

Finally, we conclude that the ring signature and the evi-
dence from the real signer i must share the same σi value.
Therefore, the ring signature with the associated evidence is
traceable.

Next, let us describe and prove these three lemmas.

Lemma 1 If there is a polynomial-time algorithm that can
forge a ring signature from the NDRS scheme, there is
another polynomial-time algorithm that can forge a ring sig-
nature from the Aguilar-Melchor et al. ring signature scheme
in [10].

Proof Recall our ring signature scheme is an extension of the
ring signature scheme in [10] by adding b̂, σi , A and βi for
i ∈ {1, . . . , l}. If there is an adversary A who is able to forge
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a ring signature from our construction, there exists another
adversary B who can play the role as A’s challenger and use
A’s response to forge a ring signature of [10], provided that
B is able to control the random oracle H used by A.

The Aguilar-Melchor et al. ring signature scheme has
the same public and private key setting as our NDRS
scheme. Let σB = (z̃U , e) be a ring signature from [10],
where e = H(

∑
i∈[l] hâi (ẑi ) − S · e, R, μ)) and let σA =

(b̂, z̃U , A, ṽU ) be a ring signature fromour construction,with
v = ∑

i∈[l] vi = H(
∑

i∈[l] hâi (ẑi ) − S · v, β̃, A, R̃, μ).
After receiving a l-ring public keys R associated with σB,

B forwards them to A as the public key for σA. When A asks
queries of Add, Reg, and Crpt,B simply passes these queries
to its own challenger, and returns the received answers to A.
WhenA asks theDRSig query or the EGen query,B handles it
by controlling the randomoracle H andwhenA asks the hash
H query with the entry (x1, x2, x3, x4, x5), B asks its own
hash oraclewith the entry (x1, x4, x2||x3|| x5), and returns the
answer to A. B maintains the consistence of the H outputs.
If an answer from its own hash oracle happens to be the same
as the one B has already used to answer A’s DRSig or EGen
query before, B aborts. We can argue that since the size of
the hash function H is reasonably large and B chooses every
hash output randomly, so the probability of two hash queries
hitting to the same output is negligible.

When A comes up with a forged signature σA = (b̂,
z̃U , A, ṽU ) with v = ∑

i∈[l] vi = H(
∑

i∈[l] hâi (ẑi ) −
S · v, β̃, A, R̃, μ), B submits its own forged signature as
σB = (z̃U , v) together with the signed message β̃||A||μ.

The unforgeability of the Aguilar-Melchor et al. ring sig-
nature scheme in [10] has been proved under the random
oraclemodel and their proof shows that the capability of forg-
ing a ring signature from their scheme can be used to solve
SV Pγ (L) forγ = Õ(n2.5+2c) for every latticeL correspond-
ing to an ideal D, which is believed to be a computationally
hard problem. Following the above discussion, we can claim
that forging a ring signature from our scheme is also compu-
tationally infeasible. ��
Lemma 2 If there is a polynomial-time algorithm that can
forge a ring signature from the NDRS scheme, there is
another polynomial-time algorithm that can forge a signa-
ture from the Lyubashevsky signature scheme in [19].

Proof Our NDRS scheme involves two connected ring sig-
natures: one is based on the ring signature scheme in [10]
as discussed in the previous lemma; and the other is based
on the Lyubashevsky signature scheme in [19]. Recall that
the Lyubashevsky signature scheme has the same public and
private key setting as our NDRS scheme. Part of our NDRS
scheme can be seen as the Lyubashevsky signature scheme.
Suppose that the real signer of our NDRS scheme is i , its
private is ŝi and the corresponding ephemeral public key is

(σi , b̂) for σi = hb̂(ŝi ). If there is an adversaryAwho is able
to forge a ring signature from our construction, there exists
another adversary B who can play the role as A’s challenger
and use A’s response to forge a signature of [19], provided
that B is able to control the random oracle H used by A.

Let σB = (z̃, e) be a signature from [19], where e =
H( hb̂(ẑ) − S∗ · e, μ). Let σA = (b̂, z̃U , A, ṽU ) be a ring
signature from our construction, where v = ∑

i∈[l] vi =
H(α, β1, . . . , βi−1, hb̂(ẑi ) − S∗ · v, βi+1, . . . , βl , A, R̃, μ).
In this discussion, S∗ = σi .

In the process of forging a Lyubashevsky signature, we
allow B to update a signer’s public key by using a fresh hash
function hb̂(). It is easy to see that this extra power does not
change the nature of the Lyubashevsky signature scheme.

After receiving a public keys pk = â associated with σB,
B sets âi = â as the i-th public key and selects other l − 1
public keys in the NDRS scheme at random, and forwards
them together toA as the public key for σA. WhenA asks the
queries of Add, Reg, and Crpt,B simply passes these queries
to its own challenger, and returns the received answers to A,
but if A asks the Crpt query with the entry i , B has to abort.
With the probability of 1/N , i is used as the real signer and
in this case A will not ask the Crpt query for i . When A

asks the DRSig query or the EGen query, B handles it by
controlling the random oracle H . When A asks the hash H
query with the entry (x1, x21, . . . , x2i , . . . , x2l , x3, x4, x5),
B asks its own hash oracle with the entry (x2i , x1||x21|| · · ·
x2(i−1)||x2(i+1)|| · · · x2l ||x3||x4||x5), and returns the answer
to A. B maintains the consistence of the H outputs. If an
answer from its own hash oracle happens to be the same as
the one B has already used to answer A’s DRSig or EGen
query before, B aborts. We can argue that since the size of
the hash function H is reasonably large and B chooses every
hash output randomly, so the probability of two hash queries
hitting to the same output is negligible.

When A comes up with a forged signature σA = (b̂, z̃U ,

A, ṽU ) with v = ∑
i∈[l] vi = H(

∑
i∈[l] hâi (ẑi ) − S ·

v, β̃, A, R̃, μ), B first asks its own challenger to update the
i-th public key by replacing âi with b̂, and then submits its
own forged signature as σB = (z̃ = βi , v) together with the
signed message α||β1|| · · · ||βi−1||βi+1|| · · · ||βl ||A||R̃||μ.

The unforgeability of Lyubashevsky’s signature scheme
in [19] has been proved under the random oracle model and
their proof shows that the capability of forging a ring signa-
ture from their scheme can be used to solve SV Pγ (L) for
γ = Õ(n2.5) for every lattice L corresponding to an ideal
D, which is believed to be a computationally hard problem.
Following the above discussion, we can claim that forging
a ring signature from our scheme is also computationally
infeasible. ��
Lemma 3 If there is a polynomial-time algorithm that can
forge a piece of evidence from the NDRS scheme, there is
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another polynomial-timealgorithm that can forgea signature
from the Lyubashevsky signature scheme in [19].

Proof A piece of evidence in our NDRS scheme can be seen
as two signatures from the Lyubashevsky signature scheme
in [19]. Suppose that the real signer of our NDRS scheme
is i , its private key is ŝi and the corresponding long-term
public key is (âi , S = hâi (ŝi )) and ephemeral public key is
(b̂, σi = hb̂(ŝi )). If there is an adversary A who is able to
forge evidence of i fromour construction, there exists another
adversary B who can play the role as A’s challenger and use
A’s response to forge a signature of [19], provided that B is
able to control the random oracle H used by A.

Following the same approach used in the proof of the
previous lemma, in the process of forging a Lyubashevsky
signature, we allowB to update a signer’s public key by using
a fresh hash function hb̂(). As a result, each signer i will have
two public keys corresponding to a single secret key.

Let σB = (z̃, e) be a signature from [19], where e = H(

hb̂(ẑ) − S∗ · e, μ). Let σA = (σi , αi , βi , ẑi , ei ) be a piece of

evidence of the NDRS scheme, where ei = H(αi , βi , A, R̃,

μ) with αi = hâi (ẑi ) − S · ei and βi = hb̂(ẑi ) − σi · ei .
After receiving a public keys pk = â associated with σB,

B sets âi = â as the i-th public key and asks its own chal-
lenger to update the i-th public key by replacing âi with b̂. B
forwards âi and b̂ toA.WhenA asks the queries ofAdd, Reg,
andCrpt,B simply passes these queries to its own challenger,
and returns the received answers toA.WhenA asks theDRSig
query or the EGen query, B handles it by controlling the ran-
dom oracle H . WhenA asks the hash H query with the entry
(x1, x2, x3, x4, x5), B asks its own hash oracle with the entry
(x1, x2||x3||x4||x5) if it wants to forge a Lyubashevsky signa-
ture under pki orwith the entry (x2, x1||x3||x4||x5) if it wants
to forge a Lyubashevsky signature under σi , and returns the
answer to A. B maintains the consistence of the H outputs.
If an answer from its own hash oracle happens to be the same
as the one B has already used to answer A’s DRSig or EGen
query before, B aborts. We can argue that since the size of
the hash function H is reasonably large and B chooses every
hash output randomly, so the probability of two hash queries
hitting to the same output is negligible.

When A comes up with a piece of forged evidence σA
= (σi , αi , βi , ẑi , ei ) with αi = hâi (ẑi ) − S · ei and βi =
hb̂(ẑi ) − σi · ei , B submits its own forged signature as σB =
(z̃, ei ) together with the signedmessage βi ||A||R̃||μ if (â, S)

was the target public key and ei = H(αi , βi ||A||R||μ), or
together with the signed message α||A||R̃||μ if (b̂, σi ) was
the target public key and ei = H(βi , α||A||R̃||μ).

Following the above discussion, we can claim that forging
a piece of evidence from our scheme is also computationally
infeasible. ��

The theorem follows from the combination of these lem-
mas with the above discussion.

Theorem 4 (non-frameability) Assume that the Aguilar-
Melchor et al. ring signature scheme [10] and the Lyuba-
shevsky signature scheme [19] are unforgeable and that
finding a pre-image for the hash function hb̂() is compu-
tationally infeasible, the proposed NDRS scheme described
in Sect. 4 holds the property of non-frameability under the
random oracle model.

Proof Recall that a signature from the NDRS scheme
includes two connected ring signatures, the first one is under
the long-term public keys and the second one is under the
ephemeral public keys. For the purpose of this proof, we call
these two ring signatures the first and second partial ring sig-
natures. As we have given a proof in Theorem 3, the first
partial ring signature is unforgeable due to the unforgeabil-
ity of the Aguilar-Melchor et al ring signature scheme (see
Lemma 1), and the second partial ring signature is unforge-
able due to the unforgeability of the Lyubashevsky signature
scheme (see Lemma 2). Thismeans the signermust make use
of at least one private key corresponding with a public key
that is included in the l-ring public keys R = {pk1, . . . , pkl}
and at least one private key corresponding with an ephemeral
public key in the l-ring public keys σi for i ∈ {1, . . . , l}.

We have also given a proof that a piece of evidence from
the NDRS scheme is unforgeable due to the unforgeability
of the Lyubashevsky signature scheme (see Lemma 3), that
means the signer must make use of the private key corre-
sponding with a public key, again, which must be included
in the l-ring public keys R = {pk1, . . . , pkl}.

To prove the non-frameability,we have to answer the ques-
tion whether it is possible that a ring signature created under
the key j but is able to be linked with the evidence indicating
the key i? Alternatively the question is whether it is possi-
ble, the first partial ring signature has the real signer j but
the second partial ring signature has the real signer i , where
j �= i . Furthermore the adversary does not know the secret
key of i , ŝi . If the answers to these two questions are positive,
the adversary wins the game of the non-frameability.

Because the evidence is unforgeable, in order to make
the EvidenceCheck algorithm output “confirmation” for the
signer i , the adversary knowing the private key sk j = ŝ j but
not ski = ŝi must successfully create a ring signature σ of
the NDRS scheme (including both of these two partial ring
signatures) with the values A and b̂, satisfying the following
equation:

H1
(
i ||âi

) · S + A = hb̂
(
ŝi

) = σi (1)

Obviously the adversary can find such A and b̂ values if
they are available from the existing ring signatures created
by the signer i . However, without the knowledge of ŝi , since
the adversary is not allowed to ask the Reg or Crpt query
with the entry i , can the adversary insert such A and b̂ values
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Table 2 Comparison of security
and functionality

Scheme Quantum-resistance Non-interactivity Deniability

KM [8] No No Yes

WS [18] Yes Yes No

AM [10] Yes Yes No

This work Yes Yes Yes

Table 3 Comparison of key and
signature sizes (in bits)

Scheme Public key Private key Signature

WS [18] mn log q 2m2 log(nB) 2lm log r

AM [10] nm log p 2mn 2lnm log ρ + 2n

This work nm log p 2mn 2lnm log ρ + 2ln +(m + 1)n log p

into a ring signature created by itself? Following the security
definitionof the non-frameability property, this ring signature
must not be a result of the DRSig query.

To useEq. (1) to create a valid ring signature, the adversary
must make use of ∀ j �= i, σ j = H1( j ||â j ) · S + A. Can the
adversary find a pre-image x̂ satisfying σ j = hb̂(x̂)? The
answer is NO, since we assume that finding a pre-image for
this hash function is computationally infeasible.

To summarize this discussion, we can argue that the adver-
sary cannot create a valid ring signature satisfying Eq. (1)
since otherwise, the adversary can either forge the second
partial ring signature in the ring signature from the NDRS
scheme which contradicts Lemma 2 or, they must be able
to find a pre-image x̂ of hb̂(x̂) which contradicts the hash
function assumption.

Without satisfying the condition in Eq. (1), the ring signa-
ture cannot be traced to i since the evidence is unforgeable.
The theorem follows with this reasoning. ��

6 Comparison with previous work

In this section, we compare our work on non-deniable ring
signatures with the ring signature schemes from Komano
et al. [8], Wang and Sun [18] and Aguilar-Melchor et al.
[10] (these will be referred to as KM, WS and AM in what
follows). Table 2 shows the comparison of this work with the
other three works in terms of their security and functionality.

For the key and signature sizes we compare this work with
the other two lattice-based schemes. First we provide a brief
summary of the elements of each scheme. Here, l denotes
the number of ring members used in the signature.

6.1 Wang and Sun [18]

Parameters m, n, q are positive integers with q ≥ 2 and
m ≥ 5n log q. Parameter r is a Gaussian parameter used to

generate the secret basis and short vectors, which is defined
by r ≥ L̃ · ω(

√
log n) and r ≥ O(

√
n log q).

– Public key A matrix A ∈ Z
n×m
q defines a lattice, �⊥(A)

= {e ∈ Z
m : Ae = 0 mod q}.

– Secret keyAmatrixB ∈ Z
m×m , a short basis for the lattice

�⊥(A) with ||B|| ≤ O(n log q). For this comparison
we take ||B|| ≤ Cn log q, for some constant C and set
nB = Cn log q/

√
m.

– Signature The ring of public keys, AR = {A1, . . . ,Al}
with Ai ∈ Z

n×m
q and a vector e ∈ Z

Nm with ||e|| ≤
r
√
lm.

6.2 Aguilar-Melchor et al. [10]

Parameters n, p,m in [10] are shown in Table 1. For sim-
plicity, we write ρ = mn1.5 log n − √

n log n.

– Public key A vector of polynomials, â ∈ D
m .

– Secret key A vector of polynomials, ŝ ∈ D
m
s .

– Signature The ring of public keys, {â1, . . . , âl} with âi ∈
D
m , a vector z̃U = (ẑ1, . . . , ẑl) with ẑi ∈ D

m
z and a

polynomial, v ∈ Ds .

6.3 Our scheme

The keys in our scheme are the same as in AM, but the addi-
tion of deniability results in larger signature sizes.

– Signature The ring of public keys, {â1, . . . , âl} with âi ∈
D
m , a vector of polynomials, b̂ ∈ D

m , a polynomial,
A ∈ D, a vector z̃U = (ẑ1, . . . , ẑl) with ẑi ∈ D

m
z and a

vector of polynomials, ṽU = (v1, . . . , vl) with vi ∈ Ds .

Table 3 shows the comparison of our work with other
related work in terms of the sizes of their public keys, private
keys and signatures.
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As might be expected, this summary shows that our work
has similar key sizes to theAMscheme so it is equally reason-
able and feasible. In addition, our scheme is not only secure
from quantum attack, but also with some cost in signature
size to be non-interactive and deniable.

7 Conclusion and future work

In this paper, we proposed a lattice-based non interactive
deniable ring signature scheme. A number of real-world sce-
narios were suggested to demonstrate possible applications
of such a scheme. In order to cover the property of non-
interaction, we employed the security model modified from
the interactive deniable ring signature scheme introduced
by Komano et al. [8]. We then proved the security of our
proposed scheme under the modified security model. In our
construction, the interactive confirmation/disavowal protocol
in [8] was replaced by signature-based evidence generation
and check algorithms, which can tell whether the evidence
producer is the real signer or not. The security of our pro-
posed scheme is based on the SV Pγ hard lattice problem, so
the scheme is believed to be quantum-resistent.

Our signature size grows linearly with the number of the
ring members, a property which it inherits from the scheme
of Aguilar-Melchor et al. [10]. Libert et al. [20] proposed
a lattice-based ring signature scheme with a signature size
that is logarithmic in the cardinality of the ring. We leave the
construction of a shorter deniable ring signature scheme for
future exploration.
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