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Abstract Recent research in scalable model-driven engi-
neering now allows very large models to be stored and
queried. Due to their size, rather than transferring such mod-
els over the network in their entirety, it is typically more
efficient to access them remotely using networked services
(e.g. model repositories, model indexes). Little attention
has been paid so far to the nature of these services, and
whether they remain responsive with an increasing number
of concurrent clients. This paper extends a previous empir-
ical study on the impact of certain key decisions on the
scalability of concurrent model queries on two domains,
using an Eclipse Connected Data Objects model reposi-
tory, four configurations of the Hawk model index and a
Neo4j-based configuration of the NeoEMF model store. The
study evaluates the impact of the network protocol, the API
design, the caching layer, the query language and the type
of database and analyses the reasons for their varying lev-
els of performance. The design of the API was shown to
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make a bigger difference compared to the network proto-
col (HTTP/TCP) used. Where available, the query-specific
indexed and derived attributes in Hawk outperformed the
comprehensive generic caching in CDO. Finally, the results
illustrate the still ongoing evolution of graph databases: two
tools using different versions of the same backend had very
different performance, with one slower than CDO and the
other faster than it.

Keywords Model persistence · Remote model querying ·
NoSQL storage · Relational databases · API design · Stress
testing · Collaborative modelling

1 Introduction

Model-driven engineering (MDE) has received consider-
able attention due to its demonstrated benefits of improving
productivity, quality and maintainability. However, indus-
trial adoption has ran into various challenges regarding the
maturity and scalability of MDE. Mohagheghi et al. [25]
interviewed participants from four companies and noted con-
cerns that the tools at the time did not scale to the large
projects that would merit the use of MDE. Several ways
in which MDE practice could learn from widely used pro-
gramming environments to handle large models better were
pointed out by Kolovos et al. [21], with a strong focus on
the need for modularity in modelling languages to improve
scalability and simplify collaboration. Three categories of
scalability issues in MDE were identified by Barmpis and
Kolovos [2]:

– Model persistence: storage of large models, ability to
access and update such models with low memory foot-
print and fast execution time.
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The simplest solution (using one file per model) has not
scaled well as models increase in size. One alternative
approach is fragmenting the models intomultiple smaller
files. Another option is writing amodel persistence layer
that stores the model in a database of a certain type (rela-
tional, graph-oriented, and so on).

– Model querying and transformation: ability to perform
intensive and complex queries and transformations on
large models with fast execution time.
Efficient queries and transformations are closely related
to the typeof persistenceused for themodels. Fragmented
models can be backed with an incrementally maintained
model index (such as Hawk)1 that can answer queries
faster than going through the fragments. For database-
backed models, the query must be transformed to an
efficient use of the database, and the database must pro-
vide a high level of performance. This is the approach
taken by Mogwaï,2 a query engine for models stored in
the NeoEMF3 layer that transforms OCL queries into
Gremlin4 API calls.

– Collaborative work: multiple developers being able to
query, modify and version control large-scale shared
models in a non-invasive manner.
With fragmented models, existing version control sys-
tems can be reused. Database-backed systems need to
implement their own version control approaches: this is
the approach taken in model repositories such as CDO.5

Regardless of how models are stored, high-performance
querying is crucial when dealing with very large models.
For instance, within the building industry it is common to
use building information models (BIM) containing millions
of elements and covering the logical and physical structure
of entire buildings. These models need to be queried, e.g.
to compute quantity takeoffs which estimate the materials
needed to complete construction [1]. Reverse engineering
source code into models [7] also produces very large mod-
els, and these need to be queried to find design flaws or
elements to be modernized, among other things. Complex
graph pattern matching may further complicate things, as
when validating railway models [32].

Sharing models by sending files manually is inefficient
(in effort and transmission time) and prone to mistakes (e.g.
having someone use an outdated version). Instead, it is con-
sidered better to use model repositories such as CDO or
file repositories such as Git, and to expose the models for

1 https://github.com/mondo-project/mondo-hawk.
2 https://github.com/atlanmod/Mogwai.
3 https://github.com/atlanmod/NeoEMF.
4 http://tinkerpop.apache.org/gremlin.html.
5 http://wiki.eclipse.org/CDO.

querying/modification through networked services. As an
example, in previous work [13], we demonstrated howHawk
enabled Constellationmodel repositories to offer dashboards
with model metrics and advanced searching from a web
interface. Within the MONDO project, one of the tools for
collaborative modelling implemented an “online” approach
where multiple concurrent users accessed the model over a
web interface [27].

Exposing models through networked services introduces
new layers of complexity, such as the design and implemen-
tation of the service, or the interactions between the layers
as more and more clients try to access a model at the same
time. Existing studies have not analysed these new factors,
considering only local querieswithin the samemachine or the
“best-case” scenario with only one remote user. It is impor-
tant to stress-test these networked services, as solutions may
exhibit various issues in high-load situations.

In this empirical study, we will evaluate the impact of
several design decisions in the remote model querying ser-
vices offered bymultiple existing solutions (CDO,Hawk and
Mogwai).While these tools have different goals inmind, they
all offer this same functionality, and they all had to choose a
particular network protocol, messaging style, caching/index-
ing style, query language and persistence mechanism. The
results of this study aim to inform developers and end users
of future remote model querying services on the trade-offs
between these choices.

This paper is an extended version of our prior conference
work [14], which discussed a smaller study with fewer tools,
queries and research questions. The new contributions of this
paper are:

– An updated and extended discussion of the state of the
art, with recent works on prefetching, partial loading and
non-relational model stores.

– A largely expanded experimental design, testing four
additional tool configurations (Hawk with Neo4j/EPL,
Hawk with OrientDB/EOL, Hawk with OrientDB/EPL
and Mogwaï), new and revised queries for the Gra-
BaTs’09 case study and a new case study based on the
queries from the Train Benchmark by Szárnyas et al.
[32]. The previous research question on the impact of the
internals of the tools (RQ3) has been refined intomultiple
research questions.

– A revamped and expanded results section, with a stronger
focus on statistical tests in order to manage the much
larger volume of data in this work. Only the results from
RQ2 have remained intact, since the APIs for CDO and
Hawk have not changed.

– A revised set of conclusions, taking into account themore
nuanced results produced by the Train Benchmark case
study.
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The rest of this work is structured as follows: Sect. 2 pro-
vides a discussion on existing work on model stores, Sect. 3
introduces the research questions and the design of the exper-
iment, Sect. 4 discusses the obtained results, and Sect. 5
presents the conclusions and future lines of work.

2 Background and related work

Persisting and managing large models has been extensively
investigated over the past decade. This section presents the
main state-of-the-art tools and technologies, with a focus on
the tools used in this empirical study.

2.1 File-based model persistence

One of the most common formats for storing models is files
containing a serialized model representation. Tools like the
Eclipse Modeling Framework (EMF) [31], ModelCVS [23],
Modelio6 and MagicDraw7 all use XML-based model seri-
alization. StarUML8 stores models in JSON. To improve
performance, many tools offer binary formats as well: this is
the case for EMF, for instance.

Files are easy to deploy and use, and many tools (e.g.
EMF) default to using a one-file-per-model approach. How-
ever, storing onemodel per file impacts scalability negatively
as shown in [2,17]. In this case, even a simple query or a small
change requires loading the entire model in memory at once:
this is impractical for largemodels. Recent work byWei et al.
[33] demonstrated a specialization of the EMF XMI parser
which can load only the subset required by the query to be
run: while this reduced loading times and memory usage,
changes in the partially loaded models cannot be saved back
without losing information.

These limitations in scalability suggest that it could be
beneficial to break up large models into smaller units (or
“fragments”) to allow for on-demand partial loading. Mode-
lio does this by default in recent versions: for instance, each
UML class is stored in a separate file, and links between
files are resolved through a purpose-built index. For EMF-
based models, the EMF-Splitter framework by Garmendia
et al. [15] can take a metamodel annotated with modular-
ity information and produce editors that produce fragmented
XMI-based models natively. Nevertheless, in a worst-case
scenario, certain types of queries (e.g. a query that looked
for all instances of a type) could still require loading the full
set of fragments.

6 https://www.modelio.org/.
7 http://www.nomagic.com/products/magicdraw.html#Collaboration.
8 http://staruml.io/.

2.2 Database-backed model persistence

In light of the scalability limitations resulting from storing
models as text files, various database-backed model per-
sistence formats have been proposed. Database persistence
allows for partial loading of models as only accessed ele-
ments have to be loaded in each case. Furthermore, such
technologies can leverage database indices and caches for
improving element lookup performance as well as query exe-
cution time.

Most of these database-backed solutions store each object
as its own database entity (e.g. row, document or graph
node). This is the case for Teneo/Hibernate,9 one of the
first object-relational mappings (ORMs) for EMF models.
More recent systems which store models in databases rely
on NoSQL technologies to take advantage of their flexi-
ble schema-free storage and/or quick reference navigation,
such as MongoEMF10 (based on the MongoDB document
store) or NeoEMF [17]. NeoEMF in particular implements
a multi-backend solution: NeoEMF/Graph uses graph-based
databases (Neo4j11 in particular), NeoEMF/Map uses file-
backed maps (as implemented by MapDB)12, and NeoEM-
F/HBase uses HBase13 distributed stores.

However, there are also approaches that operate at the
fragment level: this is the case for EMF-Fragments by Schei-
dgen [29]. In this tool, the model is broken up along the
EMF containment references that have been marked to be
“fragmenting”, and these fragments are addressable through
a key-value store. The EMF-Fragments tool supports both
MongoDB and HBase. Users can choose how to represent
each inter-object reference in the metamodel: these can be
kept as part of the source object (as usual in EMFXMI-based
persistence) or separately from it (as usual in database-
backed persistence).

For most of these database-backed solutions, querying is
an orthogonal concern: existing query languages can be used,
but the languages will not be able to leverage the underly-
ing data structures to optimize certain common cases (e.g.
OCL’s “Type.allInstances()”) or avoid constructing interme-
diate objects inmemory.Mogwaï is amodel query framework
that tackles this issue for models stored in NeoEMF/Graph,
translating OCL queries to Tinkerpop Gremlin through
ATL and reporting reductions in execution up to a factor
of 20 [11].

9 http://wiki.eclipse.org/Teneo/Hibernate.
10 https://github.com/BryanHunt/mongo-emf/wiki.
11 https://neo4j.com/.
12 http://www.mapdb.org/.
13 http://hbase.apache.org/.
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2.3 Model repositories

When collaborative modelling is involved, simply storing
models in a scalable form such as inside a database stops
being sufficient; in this case, issues such as collaborative
access and versioning need to also be considered. Exam-
ples of model repository tools are Morsa [26], ModelCVS,14

Connected Data Objects (CDO), EMFStore [20], Mode-
lio, MagicDraw and MetaEdit+.15 Model repositories allow
multiple developers to managemodels stored in a centralized
repository by ensuring that models remain in a consistent
state, while persisting them in a scalable form, such as in a
database.

CDO in particular is one of the most mature solutions,
having been developed since 2009 as an Eclipse project
and being currently maintained by Obeo.16 It implements
a pluggable storage architecture that enables it to use var-
ious solutions such as relational databases (H2, MySQL)
or document-oriented databases (MongoDB), among others.
CDO includes Net4j, a messaging library that provides bidi-
rectional communication over TCP, HTTP and in-memory
connections, and uses it to provide an API that exposes
remotemodels as EMF resources. In addition to storingmod-
els, CDO includes a CDOQuery API that makes it possible
to run queries remotely on the server, reducing the necessary
bandwidth.

2.4 Heterogeneous model indexing

An alternative to using model repositories for storing models
used in a collaborative environment is to store them as file-
based models in a classical version control system, ideally
in a fragmented form. As discussed by Barmpis et al. [4],
this approach leverages the benefits of widely used file-based
version control systems such as SVN and Git, but retains
the issues file-based models face (Sect. 2.1). To address this
issue, a model indexer can be introduced that monitors the
models and mirrors them in a scalable model index. The
model index is synchronized with the latest version of the
models in the repository and can be used to perform efficient
queries on them, without having to check them out locally or
load them into memory.

One example of such a technology is Hawk.17 Hawk can
maintain a graph database which mirrors the contents of the
models stored in one ormore version control repositories and
perform very efficient queries on them. Hawk can be used as

14 http://www.modelcvs.org/versioning/index.html.
15 http://www.metacase.com/.
16 As stated in http://projects.eclipse.org/projects/modeling.emf.cdo.
17 https://github.com/mondo-project/mondo-hawk.

a Java library, as a set of plug-ins for the Eclipse IDE or as a
network service through an Apache Thrift18-based API.

Hawk can be extended to add support for various file for-
mats, storage backends and query languages. As part of the
integration efforts with the Softeam Modelio and Constel-
lation products [13], two new components were added: a
model parser for Modelio EXML/RAMC files, and a storage
backend based on OrientDB. OrientDB is an open-source
multi-paradigm database engine which can operate as a key-
value store, as a document database or as a graph database.
While studies from 2014 showed that OrientDB had lower
performance than Neo4j for model querying [2], its relative
performance with regard to Neo4j has improved since then,
and its more permissive licence makes it more appealing to
industrial users (ASL2.0 instead of Neo4j’s GPLv3).

3 Experiment design

As mentioned in introduction, once we have scalable mod-
elling and scalable querying, the next problem to solve is how
to share those hugemodels across the organization. Exposing
them through a model querying service over the network is
convenient, as they can provide answers without waiting for
the model itself to be transferred. However, the design and
implementation of the service is not trivial, and the under-
lying implementation may not react well to serving multiple
concurrent clients.

This section presents the design of an empirical study
that evaluates the impact of several factors in the perfor-
mance of the remote model querying services of multiple
tools: a model repository (CDO), several configurations of
a model index (Hawk with Neo4j/OrientDB backends and
EOL/EPL queries) and a database-backed model storage
layer (NeoEMF). By studying the performance of these
queries, we will be evaluating the responsiveness of the
underlying tools with increasing levels of demand and how
their different layers interact with each other.

3.1 Research questions

RQ1. What is the impact of the network protocol on remote
query times and throughputs?

In order to connect to a remote server, two of the most
popular options are using raw TCP connections (for the sake
of performance and flexibility) or sending HTTP messages
(for compatibility with web browsers and interoperability
with proxies and firewalls). Both Hawk and CDO support
TCP and HTTP. Since NeoEMF did not officially have a

18 http://thrift.apache.org/.
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remote querying API at the time of writing this paper, it was
extended by the authors with TCP and HTTP-based APIs
implemented in the same way as Hawk’s.

Properly configured HTTP servers and clients can reuse
the underlying TCP connections with HTTP 1.1 pipelining
and avoid repeated handshakes, but the additional overhead
imposed by the HTTP fields may still impact the raw perfor-
mance of the tool.

RQ2. What is the impact of the design of the remote query
API on remote query times and throughputs?

Application protocols for network-based services can be
stateful or stateless. Stateful protocols require that the server
keeps track of part of the state of the client, while stateless
protocols do not have this requirement. In addition, the pro-
tocol may be used mostly for transporting opaque blocks
of bytes between server and client, or it might have a well-
defined set of operations and messages.

While a stateful protocol may be able to take advantage
of the shared state between the client and server, a state-
less protocol is generally simpler to implement and use.
Service-oriented protocols need to also take into account the
granularity of each operation: “fine” operations that do only
one thing may be easier to recombine, but they will require
more invocations than “coarse” operations that performa task
from start to finish. One example of a fine operation could be
fetching a single model element by ID. A coarse operation
would be running an entire query in the server and retrieving
the results.

CDO implements a stateful protocol on top of the Net4j
library, which essentially consists of sending and receiving
buffers of bytes across the network. On the other hand, Hawk
and our extended version of NeoEMF implement a stateless
service-oriented API on top of the Apache Thrift library,
exposing a set of specific operations (e.g. “query”, “send
object” or “register metamodel”). The Hawk API supports
both fine- and coarse-grained operations (fetching single ele-
ments or running queries), whereas the Mogwai API only
supports running entire queries. Invoking a query for Hawk
andMogwai only requires onepair ofHTTP request/response
messages.

While the stateful CDO clients and servers may cooperate
better with each other, the simpler and coarser APIs in Hawk
and Mogwaï may reduce the total network roundtrip for a
query by exchanging fewer messages.

RQ3. What is the impact of the internal caching and index-
ing mechanisms on remote query times and through-
puts?

Database-backed systems generally implement various
caching strategies to keep the most frequently accessed data

in memory, away from slow disk I/O. At the very least, the
DBMS itselfwill generally keep its own cache, but the system
might use additional memory to cache especially important
subsets or to keep them in a formcloser to how it is consumed.

Another common strategy is to prepare indices in advance,
speeding up particular types of queries. DBMSs already pro-
vide indices for common concepts such as primary keys
and unique values, but these systems may add their own
application-specific indices that precompute parts of the
queries to be run.

RQ4. What is the impact of the mapping from the queries to
the backend on remote query times?

Remote query APIs are usually bound to certain model
querying languages: CDO embeds anOCL interpreter, Hawk
has theEpsilon languages, andNeoEMF translates a subset of
OCL to Gremlin throughMogwaï. Once the query is written,
it has to be run by a query engine against the chosen backend.

The interactions between the query language, the engine
and the underlying backend need to be analysed. Declarative
query languages delegate more work into the query engine,
whereas imperative query languages rely on the user to fine-
tune accesses. Query engines have to map the query into an
efficient use of the backend. In some cases, there may be
useful features in a backend that are not made available to
users, whether due to a limitation in themapping of the query
engine, or to the lack of a matching concept in the query.

RQ5. Do graph-based tools scale better against demand
than tools that store models in relational databases?

Various authors (including the authors of this paper) have
previously reported considerable performance gains when
running single queries on graph-based solutions when com-
pared to solutions backed by databases or flat files. It may
seem that graph databases are always the better choice,
but they have been around for less time than relational
approaches and usually require more fine-tuning to achieve
the ideal performance. This question will focus on whether
this advantage is common across graph-based tools and
whether it extends to situations with very high levels of
demand.

3.2 Experiment setup

In order to provide answers for the above research ques-
tions, a networked environment was set up to emulate
increasing numbers of clients interacting with amodel repos-
itory (CDO 4.4.1.v20150914-0747), a model index (Hawk
1.0.0.201609151838) or a graph-based model persistence
layer (NeoEMF on commit 375e077 combined with Mog-
waï on commit 543fec9) and collect query response times.
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Fig. 1 Network diagram for the experimental setup

The environment is outlined in Fig. 1 and consists of the fol-
lowing:

– One “Controller” machine that supervises the other
machines through SSH connections managed with the
Fabric Python library.19 It is responsible for starting and
stopping the client and server processes, monitoring their
execution and collecting the measured values. It does not
run any queries itself, so it has no impact on the obtained
results.

– Two “Client” machines that invoke the queries on the
server, fetch the results and measure query response
times. The two client machines were running Ubuntu
Linux 14.04.3, Linux 3.19.0-47-generic and Oracle Java
8u60 on an Intel Core i5 650 CPU, 8GiB of RAM and a
500 GB SATA3 hard disk.
The client machines had three client programs installed:
one for CDO, one for Hawk and one for Mogwaï/-
NeoEMF. Only one of these programs ran at a time. Each
of these programs received the address of the server to
connect to, the size of the Java fixed thread pool to be
used, the number of queries to be distributed across these
threads and the query to be run. The clients sent their
queries to the server and simply waited to receive the
response from the server: they did not fetch model ele-
ments directly.20

– One “Server” machine that hosts the CDO model repos-
itory, the Hawk model index and the NeoEMF model
store, and provides TCP and HTTP ports exposing the
standard CDO and Hawk APIs for remote querying and
a small proof of concept API for NeoEMF/Mogwaï. The
server machine had the same configuration as the client

19 http://www.fabfile.org/.
20 Early experimentswhere theHawk clients did access themodels over
the network to run the queries showed unsatisfactory performance, with
query times an order of magnitude slower than sending the query to be
run by the server. This led us to discard this alternative.

machines. The server waits to receive a query and runs
it locally through an embedded database and then replies
back with the identifiers of thematchingmodel elements.
The server machine also had three server programs
installed: one for CDO, one for Hawk and one for Mog-
waï/NeoEMF. Again, only one of these programs ran at
a time. All server programs were Eclipse products based
on Eclipse Mars and used the same embedded HTTP
server (Eclipse Jetty 9.2.13). All systems were config-
ured to use up to 4096MB of memory (-Xmx4096m
-Xms2048m).21

In particular, the CDO server was based on the standard
CDO server product, with the addition of the experimen-
tal HTTP Net4j connector. No other changes were made
to the CDO configuration. The CDO DB Store storage
component was used in combination with the default
H2 database adapter. DB Store was the most mature and
feature-complete option at the time of writing.22

– One100Mbpsnetwork switch that connected allmachines
together in an isolated local area network.

As the study was intended to measure query performance
results with increasing numbers of concurrent users, the
client programs were designed to first warm up the servers
into a steady state. Query time was measured as the time
required to connect to the server, run the query on the server
and retrieve the model element identifiers of the results over
the network. Queries would be run 1000 times in all config-
urations, to reduce the impact of variations due to external
factors (CPU and I/O scheduling, Java just-in-time recompi-
lation, disk caches, virtual memory, and so on).

Several workloads were defined. The lightest workload
usedonly1 clientmachinewith 1 thread sending1000queries
to the server in sequence. The other workloads used 2 client
machines generating load at the same time using a produc-
er/consumer design where the producer thread would queue
500 query invocations, and t ∈ {2, 4, 8, 16, 32} consumer
threads (client threads) would execute them as quickly as
possible. For instance, with 2 client threads in a machine,
each thread would be expected to execute approximately
250 invocations: the exact number might slightly vary due
to differences in execution time across invocations. These
workloads could therefore simulate between 1 (1 machine
with 1 client thread) and 64 (2 machines at the same time,
with 32 client threads each) concurrent clients.

21 TheNeo4j performance guide suggests this amount for a systemwith
up to 100M nodes and 8GiB RAM, to allow the OS to keep the graph
database in its disk cache.
22 According to the online help in the June 2016 release: http://
download.eclipse.org/modeling/emf/cdo/drops/R20160607-1209/
help/org.eclipse.emf.cdo.doc/html/reference/StoreFeatures.html.
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Fig. 2 Relevant excerpt of the JDTAST metamodel for the GraBaTs’09 queries

3.3 Queries under study

After defining the research questions and preparing the envi-
ronment, the next step was to populate CDO, Hawk and
Mogwaï/NeoEMF with the contents to be queried, and to
write equivalent queries in their supported query languages.
Two use cases were considered, each with their own sets of
queries: one related to reverse engineering existing Java code,
and one related to pattern matching in railway models.

3.3.1 Singletons in Java models: GraBaTs’2009 queries

The first use case, SharenGo Java Legacy Reverse-
Engineering,23 was based on MoDisco and was originally
presented at the GraBaTs 2009 tool contest [18]. It has been
widely used for research in scalable modelling [2,5,8,26],
as it provides a set of models reverse-engineered from
increasingly large open-source Java codebases. The largest
codebase in the case study was selected, covering all the
org.eclipse.jdt projects and producing over 4.9 mil-
lion model elements. CDO required 1.4 GB to store the
model, Hawk required 2.0 GB with Neo4j and 3.7 GB with
OrientDB, and NeoEMF required 6.0 GB.

These model elements conformed to the Java Devel-
opment Tools AST (JDTAST) metamodel. Some of the
types within the JDTASTmetamodel include the TypeDec-
larations that represent Java classes and interfaces, the
MethodDeclarations that represent Java methods, and
the Modifiers that represent Java modifiers on the meth-
ods (such as static or public). The relevant excerpt of
the metamodel is shown in Fig. 2.

23 http://www.eclipse.org/gmt/modisco/useCases/JavaLegacyRE/.

Listing 1 GraBaTs query written in OCL (OQ) for evaluating CDO

DOM::TypeDeclaration.allInstances()→select(td |

td.bodyDeclarations→selectByKind(DOM::MethodDeclaration)

→exists(md : DOM::MethodDeclaration |

md.modifiers→selectByKind(DOM::Modifier)

→exists(mod : DOM::Modifier | mod.public)

and md.modifiers→selectByKind(DOM::Modifier)

→exists(mod : DOM::Modifier | mod._static)

and md.returnType.oclIsTypeOf(DOM::SimpleType)

and md.returnType.oclAsType(DOM::SimpleType).name.fullyQualifiedName

= td.name.fullyQualifiedName))

Based on these types, task 1 in the GraBaTs 2009 con-
test required defining a query (from now on referred to as
the GraBaTs query) that would locate all possible applica-
tions of the Singleton design pattern in Java [30]. In other
words, it would have to find all the TypeDeclarations
that had at least one MethodDeclaration with public
and staticmodifiers that returned an instance of the same
TypeDeclaration.

To evaluate CDO, the GraBaTs query was written in OCL
as shown in Listing 1. The query (named OQ after “OCL
query”) filters the TypeDeclarations by iterating through
their MethodDeclarations and their respective Modi-

fiers.
To evaluate Hawk, we used the three EOL implementa-

tions of the GraBaTs query of our previous work [3]. The
first version of the query (“Hawk query 1” or HQ1, shown
in Listing 2) is a translation of OQ to EOL and follows the
same approach.

The second version (HQ2), shown in Listing 3, makes use
of the derived attributes onMethodDeclarations: isStatic
(the method has a static modifier), isPublic (the method
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Listing 2 GraBaTs query written in EOL (HQ1) for evaluating Hawk

return TypeDeclaration.all.select(td|td.bodyDeclarations.exists(md:MethodDeclaration|

md.returnType.isTypeOf(SimpleType)

and md.returnType.name.fullyQualifiedName = td.name.fullyQualifiedName

and md.modifiers.exists(mod:Modifier | mod.public = true)

and md.modifiers.exists(mod:Modifier | mod.static = true)

));

Listing 3 GraBaTs querywritten inEOL (HQ2) using derived attributes
on the MethodDeclarations for evaluating Hawk, without indexed
lookups

return TypeDeclaration.all.select(td |

td.bodyDeclarations.exists(md:MethodDeclaration |

md.isPublic = true and md.isStatic = true and md.isSameReturnType = true));

Listing 4 GraBaTs querywritten inEOL (HQ3) using derived attributes
on the MethodDeclarations for evaluating Hawk, with indexed
lookups

return MethodDeclaration.all.select(md |

md.isPublic = true and md.isStatic = true and md.isSameReturnType = true

).collect( td | td.eContainer ).asSet;

Listing 5 GraBaTs querywritten inEOL (HQ4) using derived attributes
on the TypeDeclarations for evaluating Hawk

return TypeDeclaration.all.select(td|td.isSingleton = true);

has a publicmodifier), and isSameReturnType (themethod
returns an instance of its TypeDeclaration). A detailed
discussion about how derived attributes are declared in Hawk
and how they are incrementally re-computed upon model
changes is available in our previous works [3,4].

The third version (HQ3), shown inListing 4, uses the same
derived attributes but starts off from theMethodDeclara-

tions so Hawk can take advantage of the fact that derived
attributes can also be indexed, replacing iterations by lookups
and noticeably speeding up execution.

The fourth version (HQ4), shown in Listing 5, assumed
instead that Hawk extended TypeDeclarations with the
isSingleton derived attribute, setting it to true when the
TypeDeclaration has a static and publicMethod-

Declaration returning an instance of itself. This derived
attribute eliminates one more level of iteration, so the query
only goes through the TypeDeclarations.

The query for Mogwaï (MQ) is shown in Listing 6. Ide-
ally, we would have used the same OCL query in CDO and
in Mogwaï, but unfortunately CDO OCLQuery only accepts
raw expressions andMogwaï only accepts constraints within
packages and contexts. Additionally, there are limitations in

Listing 6 GraBaTs query written in OCL for Mogwaï (MQ)

import DOM : ’platform:/resource/jdtast.neoemf/model/JDTAST.ecore’

package DOM

context TypeDeclaration

def: singletons : Set(TypeDeclaration) =

TypeDeclaration.allInstances()→select(td |

td.bodyDeclarations→exists(md | md.oclIsTypeOf(MethodDeclaration)

and md.modifiers→exists(mod |

mod.oclIsKindOf(Modifier) and mod.oclAsType(Modifier).public = true)

and md.modifiers→exists(mod |

mod.oclIsKindOf(Modifier) and mod.oclAsType(Modifier)._static = true)

and md.oclAsType(MethodDeclaration).returnType.oclIsTypeOf(SimpleType)

and md.oclAsType(MethodDeclaration).returnType.oclAsType(SimpleType)

.name.fullyQualifiedName = td.name.fullyQualifiedName))

endpackage

Mogwaï’s implementation (particularly, the ATL transfor-
mation from OCL to the Gremlin API) that require making
small changes in the queries. For instance, the OCL trans-
lator in Mogwaï does not support the Eclipse OCL-specific
“selectByKind” operation, and additional type conversions
are needed.

The GraBaTs query has been translated to one OCL query
for CDO (OQ), 1OCL query forMogwaï (MQ) and four pos-
sible EOL queries for Hawk (HQ1 to HQ4). It must be noted
that sinceCDOandMogwaï/NeoEMFdonot support derived
attributes like Hawk, it was not possible to rewrite OQ or
MQ in the same way as HQ1. Since the same query would be
repeatedly run in the experiments, the authors inspected the
code of CDO, Mogwaï and Hawk to ensure that neither tool
cached the results of the queries themselves: this was verified
by re-running the queries while adding unique trivially true
conditions, and comparing execution times.

3.3.2 Railway model validation: Train Benchmark queries

To improve the external validity of the answers for the
research questions in Sect. 3.1, a second case study with a
wider assortment of queries was needed. For this purpose, it
was decided to use some of the queries and models from the
Train Benchmark by Szárnyas et al. [32].

The Train Benchmark (TB) was originally developed
within the MONDO EU FP7 project on scalability in
model-driven engineering, in order to compare the query-
ing performance of various technical solutions with regard to
model validation. The original benchmark divided execution
into four stages (read, check, edit and re-check), and tested
two scenarios: a batch scenario with only read and check,
and an incremental scenario with all four stages. Since the
focus of the present study is on scalability to user demand
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Fig. 3 Containment hierarchy and references of the metamodel of the Train Benchmark [32]

rather than reacting to changes, only the batch scenario will
be adopted.

The queries on the TB operate on domain-specific models
of railway systems: the containment hierarchy and references
of the underlying metamodel are shown in Fig. 3. The Rail-
wayContainer acts as the root of themodel, which contains
Routes and the Semaphores between them. A Route is
formed of two or more Sensors which monitor Switches
and Segments. The Switches have a particular SwitchPo-

sition for each Route.
Based on this metamodel, the TB includes automatic

model generators that can produce synthetic models of arbi-
trary size by producing a random number of small fragments
and reconnecting them in a random manner. After this, a
small portion of the elements (<1%) is modified to produce
the validation errors that will be detected by the later queries.
The benchmark includes generators for both the repair case
(the edit stage corrects validation errors) and the inject case
(edit introduces validation errors).

For the present study, the repair generator was used. Mul-
tiple models were generated during initial experiments (with
between 1418 and 3,355,152 elements) by varying the size
parameter of the generator between 1 and 2048. However,
some of the queries were too slow on CDO and Mogwaï
for stress testing, and a medium-sized model had to be
selected (size=32, with 49, 334 elements). In general, the
simplicity of the TB metamodel ensures that queries access
larger portions of the model than the GraBaTs queries in
Sect. 3.3.1, and some of the queries perform more complex
pattern matching as well.

The present study used theOCLversions of theTBqueries
for CDO and Mogwaï, with some adjustments in the case
of Mogwaï. For Hawk, the OCL queries were translated to

the Epsilon Object Language (EOL), optimized for Hawk
features and then further translated to the Epsilon Pattern
Language (EPL). EPL [22] is a specialization of EOL, pro-
viding a more declarative and readable syntax for graph
pattern matching in models. The queries look for violations
of various well-formedness constraints:

– ConnectedSegments (CS) each Sensor must have 5 or
fewer Segments connected to them. The queries in Fig. 4
find Sensors that aremonitoring a sequence of 6 ormore
Segments.
The Mogwaï version is similar to the original OCL one,
but it can only return the sixth TrackElement that pro-
duces the violation. The original OCL query packed all
the participants in each match into a list of tuples, but
Mogwaï queries can only return a flat list of individual
model elements. Matching a sequence of six consecutive
elements is rather awkward, requiring many nested repe-
titions of select and collect. EOL has a similar readability
issue, but EPL has a much cleaner syntax for this sort of
graph matching problem.

– PosLength (PL) Segments must have positive length.
The queries in Fig. 5 find Segments that have zero or
negative length.
In this case, Hawk can be told to index the “length”
attribute of Segment in advance to jump directly to the
relevant elements.

– RouteSensor (RS) Sensors associated with a Switch

that belongs to a Routemust also be associated with the
sameRoute. The queries on Fig. 6 find Sensors that are
connected to a Switch, but the Sensor and the Switch

are not connected to the same Route.
The EOL and EPL versions filter the Sensors by taking
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Fig. 4 Train Benchmark
ConnectedSegments query. a
Orignal OCL, b OCL query for
Mogwaï, c EOL, d EPL

(a)

(b)

(c)

(d)
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(a)

(b)

(c) (d)

Fig. 5 Train Benchmark PosLength query. a Orignal OCL, b OCL for Mogwaï, c EOL, indexed “length”, d EPL, indexed “length”

(a)

(b)

(c)

(d)

Fig. 6 Train Benchmark RouteSensor query. a Orignal OCL, b OCL for Mogwaï, c EOL, d EPL
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(a)

(b)

(c)

(d)

Fig. 7 TrainBenchmark SemaphoreNeighbor query. aOrignalOCL,bOCL forMogwaï, cEOL, uses reverse reference navigation (“revRefNav_”),
d EPL, uses reverse reference navigation (“revRefNav_”)

advantage of a derived attribute, “nMonitoredSegments”,
defined through the EOL expression “self.monitors.size”
(where “self” takes each of the Sensors as a value). This
reduces the problem to a lookup of the relevant Sensors
and a quick pattern matching to find the offending sixth
Segment.

– SemaphoreNeighbor (SN): the exit Semaphore of a
Route must be the entry Semaphore of the Route that
it connects to. The queries on Fig. 7 find Routes that

are reachable from another Route but do not have their
Semaphores as entry point.
There is an important difference between the original
OCL and the EOL/EPL versions: Hawk can traverse a
reference “x” in reverse by using “revRefNav_x”, since
Neo4j and OrientDB edges are navigable in both direc-
tions. This allows the query to bewrittenmorewithout the
inefficient nested “Route.allInstances” that was required
by the OCL version.
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(a)

(b)

(c) (d)

Fig. 8 Train Benchmark SwitchMonitored query. a Orignal OCL, b OCL for Mogwaï, c EOL, with derived “isMonitored”, d EPL, with derived
“isMonitored” reverse reference navigation (“revRefNav_”)

– SwitchMonitored (SM) every Switchmust bemonitored
by a Sensor. The queries on Fig. 8 find Switches that
are not being monitored.
The EOL/EPL variants use a derived attribute “isMoni-
tored”oneverySwitch, defined as “not self.monitoredBy.
isEmpty()”.

– SwitchSet (SS) the entry Semaphore of a Route can
only show “GO” if all Switches along the Route are in
the same position. The queries in Fig. 9 find Switches
that do not have the right position.
In this case, there is only a minor change due to the fact
that in Hawk, enumerated values are stored as simple
strings.

4 Results and discussion

The previous section described the research questions to be
answered, the environment that was set up for the experi-
ment and the queries to be run. This section will present
the obtained results, answer the research questions (with the
help of additional data in some cases) and discuss potential
threats to the validity of thework. The raw data and all related
source code supporting these results are available from the
Aston Data Explorer repository.24

4.1 Measurements obtained

The median execution times (in milliseconds) and coeffi-
cients of dispersion over 1000 executions of the GraBaTs’09

24 http://dx.doi.org/10.17036/44783FFA-DA36-424D-9B78-
5C3BBAE4AAA1.

queries from Sect. 3.3.1 are shown in Table 1. Likewise, the
results for the Train Benchmark queries from Sect. 3.3.2 are
shown in Tables 2, 3, 4. To save space, Hawk with the Neo4j
backend is abbreviated to “Hawk/N” and “H/N”. Likewise,
Hawk with the OrientDB backend is shortened to “Hawk/O”
and “H/O”. These abbreviations will be used throughout the
rest of the paper as well.

Medians were picked as a measure of centrality due to
their robustness against the occasional outliers that a heav-
ily stressed system can produce. Coefficients of dispersion
are dimensionless measures of dispersion that can be used to
compare data sets with different means: they are defined as
τ/η, where τ is the mean absolute deviation from the median
η. Coefficients of dispersion are robust to non-normal distri-
butions, unlike the better known coefficients of variation [6].
The tables allow for quick comparison of performance levels
across tools, queries and number of client threads. Neverthe-
less, more specific visualizations and statistical analyses will
be derived for some of the following research questions.

One important detail is that SemaphoreNeighbor was not
fully run through CDO and Mogwaï, as it runs too slowly to
allow for stress testing. More specifically, with only 1 client
thread over TCP, the median time for the first 10 runs of SN
was 88.44 seconds for CDO and 305.19 seconds forMogwaï.
For this reason, onlyHawkwas fully evaluated regarding SN.

The next step was to check whether the execution times
belonged to a normal distribution for the sake of analysis.
Shapiro–Wilk tests25 rejected the null hypothesis (“the sam-
ple comes from a normal distribution”) with p values< 0.01

25 Monte Carlo simulations have shown that Shapiro–Wilk tests have
better statistical power than other normality tests [28].
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(a)

(b)

(c)

(d)

Fig. 9 Train Benchmark SwitchSet query. a Orignal OCL, b OCL for Mogwaï, c EOL, d EPL

for almost all of the combinations of query, tool, language,
protocol and thread count: only 11 out of 516 tested com-
binations reported p values ≥ 0.01. In order to visualize
how they deviated from a normal distribution, further man-
ual inspections with quartile–quartile plots were conducted.
These confirmed that most distributions tended to be either
heavy-tailed, bimodal, multimodal, or curved.

This is somewhat surprising, as the natural intuition is
that execution times should follow a normal distribution:
90% of the Java benchmarks conducted by Georges et al.
[16] with single-core processors did follow a Gaussian dis-
tribution according to Kolmogorov–Smirnov tests. At the
same time, 10% of those benchmarks were not normally dis-
tributed (being reportedly skewed or bimodal), and modern
machines with multi-core processors have only grown more
non-deterministic since then. More recently, Chen et al. [9]
concluded that execution times for multithreaded loads in
modern multi-core machines do not follow neither normal
nor log-normal distributions and that more robust nonpara-

metric methods are needed for performance comparison.
Our study in particular involves 3 machines communicat-
ing over Ethernet and doing heavy disk-based I/O: even with
1 thread per client machine, the server will experience a non-
deterministic multithreaded load as the one studied by Chen
at al. For these reasons, the rest of this paper will assume that
the query execution times are not normally distributed and
will use nonparametric tests.

Some of the configurations had intermittent issues when
running queries. This was another goal of our stress testing:
finding if the different toolswould failwith increased demand
and if they could recover from these errors (which they did
by themselves). Table 5 shows the configurations that pro-
duced server errors, andTable 6 shows the configurations that
reported the wrong number of results. The “correct” number
of results is computed by running each query across all tools
in local installations, without the risk of the network or the
stress test influencing the result, and ensuring they all report
equivalent results. In our previous conference paper [14],
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Table 1 Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the GraBaTs’09 queries, by tool, language,
protocol and client threads

Query Tool/Lang Proto 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

M CD M CD M CD M CD M CD M CD M CD

HQ1 Hawk/N HTTP 2025 0.01 2121 0.06 3154 0.01 6347 0.02 12,818 0.01 26,052 0.02 53,753 0.03

TCP 1631 0.01 1712 0.08 2598 0.00 5327 0.03 10,882 0.02 22,092 0.02 45,646 0.04

Hawk/O HTTP 3979 0.01 4432 0.05 9369 0.09 20,257 0.12 40,626 0.20 79,638 0.26 159,645 0.33

TCP 3491 0.01 3991 0.06 8623 0.09 17692 0.16 34296 0.30 66,547 0.39 136,348 0.42

HQ2 Hawk/N HTTP 549 0.01 601 0.08 919 0.01 1890 0.06 3915 0.03 8046 0.04 16,265 0.06

TCP 582 0.01 631 0.08 964 0.02 1931 0.06 3902 0.03 8075 0.04 16,331 0.05

Hawk/O HTTP 1804 0.02 2210 0.07 4973 0.20 11,078 0.13 21,184 0.24 41,923 0.31 84,298 0.39

TCP 1715 0.01 2102 0.07 4745 0.17 10,253 0.19 19,103 0.28 37,723 0.35 74,815 0.39

HQ3 Hawk/N HTTP 223 0.40 485 0.19 976 0.16 2409 0.10 5003 0.17 11,258 0.18 26,243 0.20

TCP 215 0.40 485 0.19 955 0.16 2440 0.12 5033 0.14 11,204 0.18 26,041 0.22

Hawk/O HTTP 186 0.48 402 0.25 735 0.30 1624 0.45 3963 0.24 8681 0.20 18,096 0.22

TCP 181 0.54 400 0.28 710 0.31 1664 0.41 3838 0.27 8454 0.19 17,640 0.21

HQ4 Hawk/N HTTP 16 0.16 17 0.13 20 0.15 32 0.35 61 0.44 130 0.48 259 0.49

TCP 14 0.17 15 0.12 19 0.10 32 0.33 65 0.36 132 0.38 273 0.42

Hawk/O HTTP 25 0.11 26 0.14 57 0.70 65 0.58 139 0.37 276 0.46 544 0.53

TCP 24 0.06 25 0.14 56 0.86 67 0.40 140 0.34 267 0.49 523 0.55

OQ CDO HTTP 8004 0.01 8004 0.01 8010 0.07 8207 0.06 13,115 0.14 21,229 0.07 39,328 0.17

TCP 1088 0.07 1328 0.10 2233 0.03 5364 0.05 10,670 0.06 21,066 0.06 38,522 0.14

MQ Mogwaï HTTP 5500 0.01 5998 0.05 8756 0.01 21,494 0.03 64,340 0.02 108,768 0.03 215,731 0.05

TCP 5673 0.01 6248 0.05 9014 0.01 26, 762 0.03 67, 540 0.03 110, 789 0.02 219, 019 0.05

incorrect executions only happened for the CDOHTTP API,
but a similar issue exists even in the TCP API for some of
the Train Benchmark queries. Hawk over Neo4j andMogwaï
were the only combinations of tool and backend that did not
report failed or incorrect executions.

Regarding the failed and incorrect executions of CDO, at
this early stage of the study we could only treat it as a black
box, as we were merely users of this tool and not their devel-
opers. However, our analysis of RQ2 in Sect. 4.3 suggests
that this is due to the stateful buffer-based design of the CDO
API. As for the failed executions of Hawk with OrientDB,
we attribute these problems to concurrency issues in the Ori-
entDB backend, since Hawk with Neo4j does not report any
issues and has otherwise the exact same code.

4.2 RQ1: impact of protocol

A quick glance at the results on Tables 1, 2, 3, 4 shows that
there are notable differences in some cases between HTTP
and TCP, but not always: in fact, sometimes HTTP appears
to be faster.

To clarify these differences, pairwise Mann–Whitney U
tests [24]were conducted between theHTTP andTCP results
of every configuration. p values < 0.01 were required to
reject the null hypothesis that there was the same chance of

HTTP and TCP being slower than the other for that partic-
ular configuration. Where the null hypothesis was rejected,
Cliff deltas were computed to measure effect size [19]. Cliff
delta values range between +1 (for all pairs of execution
times, HTTP was always slower) and−1 (HTTP was always
faster). Cohen d effect sizes [10] were not considered since
execution timeswere not normally distributed.The results are
summarized in Tables 7 and 8. 99% confidence intervals of
the difference between HTTP and TCP execution times were
also computed during the Mann–Whitney U tests, but due
to space constraints they were not included in those tables.
Some of those confidence intervals will be mentioned in the
following paragraphs.

CDO is the simplest case here: all tested configurations
have significant differences and report positive effect sizes,
meaning that HTTP was consistently slower than TCP. Cliff
deltas become much weaker (closer to 0) with increasing
number of threads, except for the SM and SS queries. This is
also confirmed through the confidence intervals: for OQwith
1 thread, it is [+6929ms,+6944ms], while with 64 threads
it is only [+78ms,+1406ms]. By comparing the medians, it
can be seen that HTTP can be over 3000% slower than TCP
in extreme cases, such as SS with 4 client threads.

Mogwaï has conflicting results across the two case studies.
For the OQ GraBaTs’09 query, HTTP is quite often faster,
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Table 2 Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the Train Benchmark queries Connected-
Segments and PosLength, by tool, language, protocol and client threads

Query Tool/Lang Proto 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

M CD M CD M CD M CD M CD M CD M CD

CS CDO HTTP 8009 0.01 8011 0.01 8010 0.05 8122 0.06 8630 0.08 17,196 0.16 29,094 0.15

TCP 1076 0.04 1197 0.07 1801 0.02 3608 0.03 7169 0.04 14,408 0.05 27,837 0.12

H/N/EOL HTTP 206 0.04 221 0.12 336 0.04 669 0.11 1378 0.06 2837 0.06 5697 0.09

TCP 209 0.02 223 0.12 337 0.02 669 0.11 1335 0.06 2737 0.05 5647 0.08

H/N/EPL HTTP 246 0.02 257 0.09 389 0.02 780 0.10 1570 0.05 3187 0.04 6480 0.07

TCP 246 0.02 257 0.08 385 0.02 761 0.10 1533 0.05 3098 0.05 6328 0.07

H/O/EOL HTTP 435 0.02 494 0.09 780 0.03 1614 0.10 3036 0.20 6120 0.27 11807 0.36

TCP 420 0.02 466 0.10 761 0.03 1619 0.09 3167 0.18 6098 0.27 12,000 0.33

H/O/EPL HTTP 486 0.02 517 0.11 828 0.03 1687 0.10 3264 0.17 6563 0.22 13,305 0.27

TCP 490 0.02 553 0.14 902 0.03 1806 0.10 3440 0.16 6627 0.24 13,276 0.26

Mogwaï HTTP 8133 0.00 8794 0.04 12,767 0.00 33,478 0.03 94,119 0.03 160,948 0.02 319,803 0.04

TCP 7896 0.01 8844 0.04 12,803 0.00 30,694 0.02 85,720 0.02 157,047 0.02 319,346 0.03

PL CDO HTTP 2129 0.42 2900 0.49 3392 0.74 2878 0.43 3376 0.34 8114 0.27 13,058 0.17

TCP 224 0.03 383 0.03 585 0.08 1186 0.10 2419 0.11 5024 0.12 9987 0.12

H/N/EOL HTTP 106 0.04 111 0.11 151 0.06 297 0.18 603 0.13 3062 0.31 7905 0.17

TCP 110 0.04 119 0.08 157 0.06 295 0.16 602 0.12 3451 0.16 7821 0.24

H/N/EPL HTTP 157 0.03 166 0.09 236 0.04 478 0.15 982 0.09 4621 0.24 11,081 0.19

TCP 168 0.03 178 0.08 236 0.05 453 0.13 932 0.08 4761 0.16 10,851 0.17

H/O/EOL HTTP 197 0.03 213 0.12 336 0.24 794 0.34 1363 0.18 3764 0.25 9126 0.29

TCP 218 0.02 242 0.11 389 0.29 822 0.30 1437 0.16 3905 0.24 9250 0.28

H/O/EPL HTTP 286 0.03 303 0.10 570 0.30 1213 0.28 1989 0.15 6428 0.19 14,191 0.22

TCP 311 0.02 336 0.11 548 0.24 1221 0.25 2084 0.13 6709 0.19 14,378 0.22

Mogwaï HTTP 285 0.03 305 0.08 449 0.04 990 0.09 2611 0.16 5128 0.17 10,336 0.20

TCP 265 0.02 286 0.07 427 0.04 949 0.09 2262 0.11 4449 0.12 8852 0.13

though HTTP and TCP become rather similar for 32 and 64
threadswith absolute values below0.35. For theTrainBench-
mark queries, TCP is more often faster than HTTP, though
this difference again drops off as the number of client threads
increases. For SM and SS, the two faster running queries for
Mogwaï in the TB case study, the difference is again very
small. This suggests that for Mogwaï, in addition to the pro-
tocol used, the way concurrency is handled by the server and
how it interacts with the query might have an impact as well.
In particular, the Jetty HTTP server and the TCP server use
different types of network I/O: non-blocking for Jetty (which
decouples network I/O from request processing) and block-
ing for Thrift (which simplifies the Thrift message format).

The results from Hawk are the most complex to anal-
yse. Regarding the GraBaTs’09 queries, HQ1 is consistently
slower on HTTP for Neo4j and OrientDB, with strong effect
sizes for all numbers of client threads. HQ2 is only slower on
HTTP for OrientDB, especially with few client threads: with
Neo4j, HTTP is faster for 1–8 threads. HQ3 and HQ4 some-
times run slower on HTTP, but effect sizes are weaker overall
and in most cases there is not a significant difference. It

appears that once queries are optimized through derived and
indexed attributes, there is not that much difference between
HTTP and TCP.

As for the Train Benchmark queries under Hawk, a first
step is studying the Cliff deltas for each query:

– CS does not show a consistent pattern neither by backend
nor by query language: effect sizes are only moderate
with Neo4j (with absolute values below 0.30), and with
OrientDB effect sizes are positive when using EOL and
negative when using EPL.

– PL and RS are usually faster on HTTP, especially with
OrientDB.

– SM on the other hand is consistently slower on HTTP.
This time, the strongest effect sizes are produced when
using Neo4j.

– SN is consistently slower on HTTP with Neo4j, and con-
sistently faster on HTTP with OrientDB.

– SS effect sizes are usually positive with Neo4j and neg-
ative with OrientDB, but they are weak, with absolute
values below 0.22.
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Table 3 Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the Train Benchmark queries RouteSet and
SwitchMonitored, by tool, language, protocol and client threads

Query Tool/Lang Proto 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

M CD M CD M CD M CD M CD M CD M CD

RS CDO HTTP 2893 0.17 2899 0.17 2695 0.28 2599 0.27 2652 0.12 2668 0.14 3940 0.40

TCP 177 0.03 184 0.11 237 0.07 471 0.08 938 0.10 1872 0.12 3667 0.14

H/N/EOL HTTP 208 0.02 203 0.13 325 0.03 654 0.11 1321 0.06 2671 0.05 5454 0.08

TCP 208 0.03 216 0.07 344 0.02 685 0.11 1370 0.06 2788 0.05 5697 0.08

H/N/EPL HTTP 235 0.02 250 0.12 382 0.02 765 0.10 1550 0.05 3121 0.05 6286 0.07

TCP 240 0.02 251 0.08 386 0.02 760 0.10 1523 0.05 3091 0.05 6308 0.07

H/O/EOL HTTP 633 0.02 688 0.11 1139 0.03 2351 0.11 4618 0.17 9170 0.21 19,280 0.25

TCP 707 0.01 779 0.11 1310 0.03 2703 0.11 5328 0.15 10,829 0.20 21,925 0.25

H/O/EPL HTTP 676 0.02 744 0.11 1238 0.04 2596 0.12 5092 0.17 10,494 0.21 21,289 0.25

TCP 767 0.01 859 0.10 1424 0.04 2833 0.11 5727 0.17 11,191 0.20 23,283 0.25

Mogwaï HTTP 338 0.03 371 0.10 579 0.03 1209 0.09 2575 0.05 5112 0.05 10,324 0.07

TCP 308 0.01 346 0.13 536 0.02 1114 0.08 2456 0.06 4858 0.08 9744 0.08

SM CDO HTTP 2103 0.20 1908 0.22 2493 0.21 2435 0.14 2443 0.10 2557 0.07 2961 0.15

TCP 83 0.02 86 0.03 81 0.26 153 0.21 320 0.20 655 0.21 1269 0.20

H/N/EOL HTTP 8 0.14 8 0.16 8 0.26 10 0.36 18 0.55 31 0.80 49 0.76

TCP 5 0.07 6 0.17 6 0.21 8 0.33 15 0.61 31 0.76 46 0.83

H/N/EPL HTTP 10 0.20 9 0.18 9 0.28 15 0.45 23 0.49 48 0.58 90 0.74

TCP 7 0.25 7 0.16 8 0.35 13 0.47 19 0.71 41 0.78 74 0.85

H/O/EOL HTTP 11 0.18 11 0.15 15 0.51 24 0.65 44 0.46 78 0.68 143 0.88

TCP 9 0.08 9 0.14 12 0.53 23 0.63 46 0.45 86 0.62 148 0.85

H/O/EPL HTTP 13 0.19 13 0.16 19 0.56 33 0.59 54 0.42 111 0.62 213 0.74

TCP 9 0.12 11 0.17 18 0.65 29 0.63 59 0.41 118 0.56 168 0.86

Mogwaï HTTP 33 0.09 34 0.10 48 0.08 117 0.25 259 0.19 480 0.15 947 0.17

TCP 33 0.05 35 0.11 47 0.06 106 0.26 240 0.27 468 0.27 939 0.53

From these results, it appears that the largest factor on
HTTP slowdown patterns for Hawk is the chosen backend,
suggesting that the interaction between the concurrency and
I/O patterns of the Jetty HTTP server, the Thrift TCP server
and the Hawk backend may be relevant. While the Hawk
Neo4j backend took advantage of the thread safety built into
Neo4j, theOrientDB backend has only recently implemented
its own thread pooling to preserve database caches across
queries. The query language was only important for CS,
showing there may be an interaction but it could be relevant
only for certain queries.

As for the coefficients of dispersion, the general trend is
that they increase as more client threads are used. This is to
be expected from the increasingly non-deterministic multi-
threaded load, but the exact pattern changes depending on
the tool and the protocol. For most configurations, Hawk
shows very similar CDs with HTTP and TCP, and so does
Mogwaï (except for some rare cases such as SM and SS
over 32 threads): this is likely due to the fact that the mes-
sage exchanges are the same across both solutions (a single

request/response pair). However, CDO shows consistently
different CDs over HTTP and over TCP, suggesting that they
may be fundamentally different in design from each other.
This will be the focus of the next section.

4.3 RQ2: impact of API design

One striking observation from RQ1 was that CDO over
HTTP had much higher overhead than Hawk and Mog-
waï over HTTP. Comparing the medians of OQ and HQ1
with 1 client thread, CDO+HTTP took 635.66% longer than
CDO+TCP, while Hawk+HTTP only took 24.16% longer
thanHawk+TCP. This contrast showed that CDOusedHTTP
to implement their APIs very differently from the other tools.

To clarify this issue, theWireshark packet sniffer was used
to capture the communications between the server and the
client for one invocation of OQ and HQ1 (with Hawk over
Neo4j). These captures showed quite different approaches
for an HTTP-based API:
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Table 4 Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the Train Benchmark queries
SemaphoreNeighbor, and SwitchSet, by tool, language, protocol and client threads

Query Tool/Lang Proto 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

M CD M CD M CD M CD M CD M CD M CD

SN H/N/EOL HTTP 365 0.01 359 0.11 553 0.02 1135 0.08 2413 0.04 5810 0.10 13419 0.10

TCP 352 0.01 370 0.07 552 0.02 1119 0.09 2285 0.05 5564 0.09 12546 0.09

H/N/EPL HTTP 871 0.01 917 0.10 1370 0.01 2755 0.04 5561 0.02 11,216 0.03 22,746 0.04

TCP 839 0.01 878 0.11 1303 0.01 2634 0.04 5284 0.02 10,619 0.03 22,152 0.05

H/O/EOL HTTP 1054 0.01 1177 0.10 1999 0.04 3970 0.13 7990 0.22 15,993 0.30 28,698 0.42

TCP 1203 0.01 1321 0.07 2128 0.04 4137 0.12 7996 0.22 16,009 0.31 33,188 0.39

H/O/EPL HTTP 2582 0.02 2834 0.06 4424 0.02 8233 0.11 17,094 0.20 33,895 0.29 65,888 0.39

TCP 2784 0.01 2958 0.09 4701 0.03 8747 0.12 18,124 0.19 35,411 0.28 67,154 0.41

SS CDO HTTP 2103 0.21 1901 0.18 2618 0.22 2378 0.16 2243 0.11 2252 0.10 2178 0.13

TCP 69 0.04 69 0.04 67 0.57 77 0.27 162 0.22 314 0.24 619 0.23

H/N/EOL HTTP 28 0.11 27 0.14 35 0.11 58 0.28 125 0.30 249 0.26 503 0.20

TCP 28 0.08 27 0.10 34 0.07 56 0.24 116 0.23 234 0.18 463 0.20

H/N/EPL HTTP 36 0.06 36 0.11 48 0.06 83 0.26 176 0.26 355 0.18 718 0.17

TCP 36 0.06 36 0.09 46 0.05 83 0.23 170 0.18 341 0.14 673 0.19

H/O/EOL HTTP 53 0.06 54 0.11 78 0.20 162 0.31 320 0.32 579 0.46 1173 0.53

TCP 53 0.04 55 0.10 80 0.16 165 0.27 324 0.29 579 0.47 1149 0.55

H/O/EPL HTTP 72 0.04 74 0.11 106 0.09 218 0.24 423 0.27 809 0.42 1559 0.47

TCP 71 0.05 76 0.07 106 0.07 223 0.21 429 0.25 828 0.41 1559 0.54

Mogwaï HTTP 55 0.08 57 0.13 85 0.15 195 0.28 464 0.16 854 0.15 1729 0.15

TCP 53 0.04 56 0.14 81 0.06 182 0.22 436 0.21 816 0.30 1764 0.32

Table 5 Failed executions (timeout / server error), by query, tool, pro-
tocol and client threads (“1t”: 1 thread). Only combinations with failed
executions are shown

Query Tool Proto 1t 2t 4t 8t 16t 32t 64t

OQ CDO HTTP 1 1

CS CDO/H2 HTTP 1

CS Hawk/O/EOL HTTP 1

CS Hawk/O/EPL HTTP 2

PL CDO/H2 HTTP 1

RS Hawk/O/EOL HTTP 1

RS CDO/H2 TCP 1

SN Hawk/O/EPL HTTP 1

SS Hawk/O/EPL HTTP 1

SS CDO/H2 TCP 1

SS Hawk/O/EPL TCP 2 1

– CDO involved exchanging 58 packets (10203 bytes),
performing 11 different HTTP requests. Many of these
requests were very small and consisted of exchanges of
byte buffers between the server and the client, opaque to
the HTTP servlet itself.
Most of these requests were either within the first second
of the query execution time or within the last second.

Table 6 Executions with incorrect number of results, by query, tool,
protocol and client threads (“1t”: 1 thread). Only combinations with
incorrect executions are shown

Query Tool Proto 1t 2t 4t 8t 16t 32t 64t

OQ CDO HTTP 3 8 22 17 1

CS CDO HTTP 2 2 1 2 3 4

CS CDO TCP 1 3 3 6

RS CDO HTTP 2 3 2 6 11 12 9

RS CDO TCP 6 3 3 10 15 28 32

SS CDO TCP 1

There was a gap of approximately 6 seconds between the
first group of requests and the last group. Interestingly,
the last request before the gap contained the OCL query
and the response was an acknowledgement from CDO.
On the first request after the gap, the client sent its session
ID and received back the results from the query.

The capture indicates that these CDO queries are asyn-
chronous in nature: the client sends the query and
eventually gets back the results. While the default Net4j
TCP connector allows the CDO server to talk back to the
client directly through the connection, the experimen-

123



Stress-testing remote model querying APIs 1065

Table 7 Cliff deltas for
GraBaTs’09 query execution
(−1: HTTP is faster for all pairs,
1: HTTP is slower for all pairs),
for configurations where
Mann–Whitney U test reports
significance (p value < 0.01),
by tool, query and number of
client threads (“1t”: 1 thread)

Tool Query 1t 2t 4t 8t 16t 32t 64t

CDO OQ 1.00 1.00 1.00 0.98 0.39 0.12 0.07

Mogwaï MQ −0.98 −0.51 −0.96 −0.99 −0.80 −0.31 −0.20

Hawk/N HQ1 1.00 0.83 1.00 0.99 0.98 0.98 0.92

HQ2 −0.96 −0.45 −0.91 −0.18

HQ3 0.25

HQ4 0.55 0.54 0.32

Hawk/O HQ1 1.00 0.73 0.40 0.51 0.34 0.26 0.19

HQ2 0.96 0.40 0.14 0.26 0.23 0.13 0.12

HQ3 0.09 0.08

HQ4 0.22 0.13

Table 8 Cliff deltas for Train
Benchmark query execution
(−1: HTTP is faster for all pairs,
1: HTTP is slower for all pairs),
for configurations where
Mann–Whitney U test reports
significance (p value < 0.01),
by tool, query and number of
client threads (“1t”: 1 thread)

Tool Query 1t 2t 4t 8t 16t 32t 64t

CDO CS 1.00 1.00 1.00 1.00 0.98 0.42 0.25

PL 1.00 1.00 1.00 1.00 0.81 0.38 0.51

RS 1.00 1.00 1.00 1.00 1.00 0.94 0.17

SM 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SS 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mogwaï CS 0.76 0.12 −0.39 0.95 0.95 0.52 0.07

PL 0.93 0.61 0.57 0.23 0.41 0.34 0.30

RS 0.98 0.42 0.91 0.42 0.42 0.41 0.42

SM −0.13 0.16 0.17

SS 0.37 0.12 0.29 0.14 0.14 0.12

H/N/EOL CS −0.30 −0.22 −0.09 0.23 0.29

PL −0.58 −0.40 −0.44 −0.30

RS −0.50 −0.78 −0.19 −0.33 −0.36 −0.27

SM 0.96 0.85 0.72 0.37 0.16 0.11

SN 0.89 −0.36 0.52 0.21 0.31

SS 0.14 0.14 0.07 0.13 0.17

H/N/EPL CS 0.22 0.09 0.24 0.28 0.15

PL −0.83 −0.42 0.16 0.27 −0.12

RS −0.48 −0.09 −0.29 0.16 0.09

SM 0.65 0.66 0.33 0.19 0.16 0.09

SN 0.97 0.47 0.99 0.44 0.86 0.78 0.36

SS 0.08 0.07 0.21 0.12 0.18

H/O/EOL CS 0.74 0.48 0.41 −0.07

PL −0.94 −0.56 −0.53 −0.07 −0.14

RS −0.98 −0.55 −0.98 −0.55 −0.37 −0.34 −0.22

SM 0.80 0.58 0.20

SN −1.00 −0.51 −0.71 −0.16 −0.15

SS −0.08 −0.13

H/O/EPL CS −0.24 −0.58 −0.91 −0.34 −0.10

PL −0.94 −0.49 −0.11 −0.15 −0.08

RS −1.00 −0.58 −0.94 −0.36 −0.31 −0.16 −0.17

SM 0.77 0.55 0.10 0.10 −0.07 0.12

SN −1.00 −0.51 −0.86 −0.25 −0.11

SS 0.10 −0.22
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tal HTTP connector relies on polling for this task. This
has introduced unwanted delays in the execution of the
queries. The result suggests that an alternative solution
for this bidirectional communication would be advisable,
such as WebSockets.

– Hawk involved exchanging 14 packets (2804 bytes), per-
forming 1 HTTP request and receiving the results of the
query in the same response. Since its API is stateless,
there was no need to establish a session or keep a bidi-
rectional server–client channel: the results were available
as soon as possible.
While this synchronous and stateless approach is much
simpler to implement and use, it does have the disad-
vantage of making the client block until all the results
have been produced. Future versions of Hawk could
also implement asynchronous querying as suggested for
CDO.
One side note is that Hawk required using much less
bandwidth than CDO: this was due to a combination
of using fewer requests, using gzip compression on
the responses and taking advantage of the most efficient
binary encoding available in Apache Thrift (Tuple).

In summary, CDO and Hawk use HTTP in very different
ways. The CDO API is stateful and consists of exchang-
ing pending buffers between server and client: queries are
asynchronous. This is not a problem when using TCP, since
messages can be exchanged both ways. However, HTTP
by itself does not allow the server to initiate a connection
to the client to send back the results when they are avail-
able: to emulate this, polling is used. This could be solvable
with technologies such as WebSockets, which is essentially
a negotiation process to upgrade an HTTP connection to a
full-duplex connection.

This stateful and buffer-based communication explains
some of the intermittent communication issues that were
shown for CDO in Tables 5 and Tables 6. In a heavily con-
gested multithreaded environment, concurrency issues (race
conditions or thread-unsafe code) may result in buffers being
sent out of order or mangled together. If the state of the con-
nection becomes inconsistent, it may either fail to produce
a result or may miss to collect some of the results that were
sent across the connection.

In comparison, the Hawk API is stateless and syn-
chronous: query results are sent back in a single message.
Since there are no multiple messages that need to be corre-
lated to each other, this problem is avoided entirely.

These results suggest that while systemsmay benefit from
supporting both synchronous querying (for small or time-
sensitive queries) and asynchronous querying (for large or
long-running queries), asynchronous querying can be com-
plex to implement in a robust manner. Proper full-duplex

channels are required to avoid delays (either raw TCP or
WebSockets over HTTP), and adequate care must be given
to thread safety and message ordering.

4.4 RQ3: impact of caching and indexing

This section will focus on the results from the TCP variants,
since they were faster or equivalent to the HTTP variants in
the previous tests. It will also focus on the times in the ideal
situation where there is only 1 client thread: later questions
will focus on the scenarios with higher numbers of client
threads.

4.4.1 GraBaTs’09 queries

A Kruskal–Wallis test reported there were significant differ-
ences inTCPexecution times across tool/query combinations
with 1 client thread (p value below 0.01). A post hoc Dunn
test [12]was then used to compute p values for pairwise com-
parisons, using the Bonferroni correction. There was only
one pairwise comparison with p value higher than 0.01: HQ3
with Hawk/Neo4j against HQ3 with Hawk/Orient (p value
= 0.054). These two configurations will be considered to be
similar in performance. All other comparisons will be based
on the medians shown in Table 1.

Looking at the OQ and HQ1 times for CDO, Hawk and
Mogwaï, CDO is the fastest, with a median of 1088ms com-
pared to 5673ms from Mogwaï, 1631ms from Hawk/Neo4j
and 3491ms from Hawk/OrientDB. This is interesting, as
normally one would assume that the join-free adjacency of
the graph databases used in Hawk and Mogwaï would give
them an edge over the default H2 relational backend in CDO.

Enabling the SQL trace log in CDO showed that after the
first execution of OQ, later executions only performed one
SQL query to verify whether there were any new instances of
TypeDeclaration. Previous tests had already rejected the
possibility that CDO was caching the query results. Instead,
an inspection of the CDO code revealed a collection of
generic caches. Among others, CDO keeps a CDOExtent-
Map from EClasses to all their EObject instances, and also
keeps a CDORevisionCache with the various versions of
each EObject. CDO keeps a cache of prepared SQL queries
as well.

In comparison, Hawk andMogwaï do not use object-level
caching by default, relying mostly on the graph database
caches instead. Neo4j caches are shared across all threads,
whereas in OrientDB they are specific to each thread, requir-
ing more memory. OrientDB caches can be configured to
free up memory as soon as possible (weak Java references)
or use up as much memory as possible (soft Java references):
for this study, the second mode was used, but the authors
identified issues with this particular mode. The issues were
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Fig. 10 Radar plot for median Train Benchmark TCP query execution times in milliseconds over 1000 executions, with 1 client thread

initially notified and resolved,26 but the lack of an LRU pol-
icy in the OrientDB in-house cache prompted the authors to
have Hawk replace it with a standard Guava cache.

Beyond object-level caching,Hawk caches type nodes and
Mogwaï caches the compiled version of the ATL script that
transforms OCL to Gremlin. The ATL caching in Mogwaï
was in fact added during this study, as a result of commu-
nication with the Mogwaï developers that produced several
iterations tackling limitations in the OCL transformer, reduc-
ing query latency and resolving concurrency issues.

The above results indicate that a strong caching layer
can have an impact large enough to trump a more efficient
persistent representation in some situations. Nevertheless,
the results of HQ2, HQ3 and HQ4 confirm the findings
of our previous work in scalable querying [3,4]: adding
derived attributes to reduce the levels of iteration required
in a query speeds up running times by orders of magnitude,
while addingminimal overhead due to the use of incremental
updating. These derived attributes can be seen as application-
specific caches that precompute parts of a query, unlike the
application-agnostic caches present in CDO:

– HQ2 replaces the innermost loop in HQ1 with the use
of precomputed derived attributes (isStatic, isPublic and
isSameReturnType) of a generic nature. These derived
attributes produce a 2.80x speedup on Hawk/Neo4j and
2.04x speedup on Hawk/OrientDB. OrientDB receives
less of a boost as following edges in general appears to
be less efficient than in Neo4j.

– HQ3 uses the same attributes but rearranges the query to
have them appear in the outermost “select”, so Hawk can

26 https://github.com/orientechnologies/orientdb/issues/6686.

transform the iteration transparently into a lookup. Com-
pared to HQ2, HQ3 is 2.71x faster on Neo4j and 9.47x
faster on OrientDB. From the previous Dunn post hoc
test, it appears that indexing in the Hawk and OrientDB
backends is similarly performant in this case.

– HQ4 uses a much more specific derived attribute (isSin-
gleton) that eliminates onemore level of iteration, turning
the query into a simple lookup. HQ4 is one order of mag-
nitude faster than HQ3 both on Neo4j and OrientDB, but
here Hawk/Neo4j is somewhat faster. This suggests that
a single index lookup is faster on Neo4j, whereas multi-
ple index lookups are faster on OrientDB. This may be
due to the way OrientDB caches index pages internally,
compared to Neo4j.

4.4.2 Train Benchmark

The Train Benchmark results span over 6 queries of very
different nature: some are very lightweight, while others
require a more intensive traversal of the underlying graph.
For each query, a Kruskal–Wallis test confirmed that there
were significant differences in TCP execution times across
configurations (p value < 0.01). A post hoc Dunn test
confirmed that most pairwise combinations of configura-
tions had significant differences as well (p value < 0.01
with Bonferroni correction), except for SwitchSet between
Hawk/Orient/EOL and Mogwaï. Having established most
differences in times are significant, this section will use the
medians in Tables 2 and 4 to compare the tools.

To simplify the comparison, rather than using the tables
directly, this section will use the more intuitive radar plots
in Fig. 10 to guide the discussion. Comparing the relative
area of each different tool gives a general impression of their
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standing: tools with smaller areas are faster in general. The
Hawk side and the CDO/Mogwaï side use the same scales,
to allow for comparisons across plots. CDO and Mogwaï do
not have any data points for SN, since they were too slow for
a full run (Sect. 4.1).

The Hawk side compares the relative performance of the
four tested configurations (two backends, two query lan-
guages). It can be seen that the OrientDB backend is close to
the Neo4j backend in some queries (CS and SM), twice as
slow inmost queries, andnoticeably slower inRS.Examining
these results suggests that while derived/indexed attributes
are effective on both backends, range queries in OrientDB
do not deal well with high-cardinality attributes:

– The two queries that ran in similar times (CS and SM)
use customHawk indices: CS performs an indexed range
query on a derived attribute (nMonitoredSegments > 5),
and SM performs an indexed lookup (isMonitored =
false).

– However, PL is still slow even though it uses an indexed
range query (length ≤ 0), which apparently contradicts
the results obtained with CS. One important difference
between the queries is that there are many more distinct
values of length (978) than of nMonitoredSegments (2):
the indexed range query in PL will need to read many
more SB-Tree nodes than in CS.

Looking at the CDO/Mogwaï side, it appears that the
generic caching in CDO helped obtain good performance
in PL, RS (where it slightly outperformed even Hawk with
Neo4j) andCS, but it was not that useful for SM. In SM,Mog-
waï can follow the monitoredBy reference faster than CDO,
and Hawk can use an indexed lookup to fetch directly the 35
unmonitored Switches instead of going through all 1501 of
them. In general, it appears that CDO deals quite well with
queries that involve few types, in addition to queries with few
nested reference traversals.

While Mogwaï does not support indexed attributes, its
use of Neo4j through NeoEMF should have given it sim-
ilar performance to that of Hawk with Neo4j through the
default Neo4j caching. Instead, it is always slower thanHawk
with Neo4j and EOL, and it is only faster than Hawk with
OrientDB and EOL on RS. After a discussion with the Mog-
waï/NeoEMF developers, it seems that this difference may
be due to the use of Neo4j 1.9.6 in NeoEMF (Hawk uses
2.0.5, after testing various 2.x releases), and to inefficiencies
in the bundled implementation of Gremlin.

4.5 RQ4: impact of mapping from query to backend

In a database-backedmodel querying solution, the query lan-
guage is the interface shown to the user for accessing the
stored models, and a query engine is the component that

maps the query into an efficient use of the backend. Good
solutions are those whose queries are easy to read and write
and are mapped to the best possible use of the backend.

Since the query language, the query engine and the back-
end are all interrelated, it is hard to separate their individual
contributions. CDO and Mogwaï use the same query lan-
guage, but run it in very different ways. Likewise, Mogwaï
andHawk share a backend (Neo4j), but they storemodels dif-
ferently and use different APIs to access it. For this reason, it
is not possible to talk about what is the “best” query language
in isolation of the other factors, or make other similar gen-
eral statements. Instead, the answer to RQ4 will start from
each source language and draw comparisons on how their
queries were mapped to the capabilities of the backends, for
the different tools that supported them:

– OCL is reasonably straightforward to use for queries
with simple pattern matching, like OQ/MQ from Gra-
BaTs’09 or the Train Benchmark PL and SM queries.
However, it quickly becomes unwieldy with queries that
have more complex pattern matching, requiring many
nested select/collect invocations in cases such as SN
(Fig. 4 on page 17).
CDO and Mogwaï map OCL in very different ways.
CDO parses the OCL query into a standard Eclipse OCL
abstract syntax tree of Java objects and evaluates the tree,
providing a CDO environment that integrates caching
and reads from the database as needed with multiple
SQL queries. This allows it to start running the query
very quickly, but it also implies that OCL queries need to
switch back and forth between the H2 database layer and
the model query layer, reducing performance. This may
have been one of the main reasons for CDO’s inclusion
of an object-level cache.
Mogwaï, on the other hand, parses the OCL query as a
model, transforms it into Gremlin, compiles the Gremlin
script into bytecode, executes the query entirely within
Gremlin and deserializes the results back into EMF
objects. This process increases query latency over an
interpreted approach, but queries could potentially run
faster thanks to less back and forth between layers. How-
ever, as mentioned for RQ3, the use of an old release of
Neo4j (1.9.6) in the current version of Mogwaï has made
it run quite slow, negating this advantage over CDO and
Hawk.

– EOL is inspired by OCL, and while the examples show
that it is slightly more concise, it still suffers from the
same nested collect/select problem when performing
complexgraphpatternmatching.The execution approach
is also similar: the EOL query is turned into an abstract
syntax tree, which is visited in a post-order manner to
produce the final value.
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However, the EOL-Hawk bridge [4] takes advantage of
several features in the underlying graph database: custom
indices (already discussed for RQ3) and the bidirectional
navigability of the edges. It also allows for following
references in reverse (from target to source), and cer-
tain queries can be written much more efficiently. This
was the reason why the median time for SN was 352ms
with Hawk/Neo4j/EOL and over 300s with Mogwaï. It
is a missed opportunity for Mogwaï, which could have
exposed this capability as well through OCL.

– EPL is a refined version of EOL which is specialized
towards pattern matching. Looking at SN again, the EPL
version is much easier to understand, with no explicit
nesting: these nested loops are implicit in EPL’s exe-
cution. Like EOL, EPL is also interpreted instead of
compiled, reducing latency for some queries.
As shown in Tables 3 and Fig. 10, EPL appears to be
consistently slower than EOL, even though queries are
very similar. The overhead is especially notable for SN,
where EPL is twice as slow as EOL. To clarify this issue,
a profiler was used to follow 5 executions of the EOL
and EPL versions of SN. It revealed that the additional
type checking done implicitly by EPL on every match
candidate was the main reason for the heavy slowdown.
While this check is painless on traditional in-memory
models, on the graph databases built by Hawk this check
requires following one more edge and potentially per-
forming disk I/O. Disabling this type check by referring
to the “Any” root supertype in Epsilon instead returned
execution times to values similar to those of EOL.

In closing, these experiences show that while query com-
pilation may have a higher potential for performance, it may
be more important to focus on selecting a stronger database
technology and fully expose the strengths of this technology
through the query language and the query engine. Developers
wishing to repurpose existing “declarative” query languages
need to test whether any language features interact negatively
with the chosen technology, as the cost of certain common
operations may have changed dramatically.

4.6 RQ5: scalability with demand

The next question was concerned about how well relational
and graph-based approaches scale as demand increases: one
approach could do well with few clients, but then quickly
drop in performance with more clients. Ideally, we would
simply swap relational backends with graph-based backends
in each tool and do separate comparisons. Unfortunately,
CDO does not include a graph-based backend, andHawk and
Mogwaï do not support relational backends. Instead, we will

make the comparison across tools, assuming that each tool
was specially tailored to their backend and that therefore they
are good representatives for their type of approach. These
results could be revisited if new backends were developed,
but they should serve as a good snapshot of their standing at
the time of writing this paper.

In this section, the relational approaches will be repre-
sented by CDO (based on the embedded H2 database), and
the graph-based approaches will be represented by Hawk
(combined with Neo4j 2.0.5 or OrientDB 2.2.8) and Mog-
waï (backed by NeoEMF, which uses Neo4j 1.9.6). CDO is
one of themost mature model persistence layers and has con-
siderable industrial adoption, so it can be considered a good
representative for the relational approaches.

First, Kruskal–Wallis tests confirmed (with p values <

0.01) that for each combination of query and client threads,
TCP execution times had significant differences across the
tested combinations of tool, backend and query language.
Post hocDunn tests were used to evaluate the null hypotheses
that CDO execution times were similar to each of the non-
CDOconfigurations (p values< 0.01). Inmost cases, the null
hypothesis was rejected, but there were some exceptions (2
out of 63 for the GraBaTs’09 queries, and 4 out of 175 for
the Train Benchmark queries).

After confirming significant differences for most CDO
vs. non-CDO pairs, the next step was quantifying how those
pairs scaled relative to each other. Cliff deltas would have
been able to express if a certain configuration started being
faster more often than the other at a certain point, but they
could not show whether the gap between CDO and the non-
CDO configuration increased, stayed the same or decreased
together with the client threads. Instead, it was decided to use
the median of the tc/to ratios between random pairings of the
tc CDO TCP execution times and the to non-CDO TCP exe-
cution times: values larger than 1 would imply that CDOwas
slower, and values smaller than 1 would mean that CDO was
faster. To increase the level of confidence of the results, boot-
strapping over 10, 000 rounds was used to estimate a 99%
confidence interval of this “median of ratios” metric. The
confidence intervals produced for the GraBaTs’09 and Train
Benchmark queries are shown in Tables 9 and 10, respec-
tively. Cells with “1.0–1.0” represent cases where CDO and
the tool did not report significantly different times according
to the Dunn tests.

In absolute terms, in most cases if a query runs faster or
slower on a certain tool than on CDO, it will remain that way
for all client threads. However, there are some exceptions:

– Mogwaï becomes slightly faster than CDO for the PL
query with 2 or more threads, and slower than CDO
for SS with 4+ threads. In fact, all non-CDO solutions
experience a noticeable drop in performance for SS with
4 threads: it is just that Mogwaï did not have enough
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Table 9 Bounds of the 99% confidence interval for median execution time ratios between CDO and other tools (GraBaTs’09). Values greater than
1 indicate that CDO is slower, while values less than 1 indicate that the other tool is slower

Tool Query 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

Hawk/N HQ1 0.66 0.67 0.70 0.73 0.86 0.86 0.20 0.20 0.16 0.16 0.95 0.96 0.84 0.86

HQ2 1.85 1.87 1.91 2.00 2.31 2.33 2.76 2.80 2.71 2.75 2.60 2.63 2.36 2.42

HQ3 4.72 4.81 2.70 2.81 2.29 2.36 2.19 2.24 2.11 2.16 1.84 1.90 1.49 1.57

HQ4 76.79 77.45 83.21 84.94 115.63 117.08 163.65 172.77 156.89 167.44 152.44 162.54 138.61 151.56

Hawk/O HQ1 0.31 0.31 0.32 0.33 0.25 0.26 0.30 0.31 0.30 0.32 0.30 0.33 0.29 0.32

HQ2 0.63 0.63 0.60 0.62 0.46 0.48 0.51 0.53 0.54 0.57 0.54 0.57 0.52 0.56

HQ3 5.64 5.83 3.25 3.39 3.07 3.22 3.14 3.26 2.72 2.82 2.42 2.52 2.20 2.31

HQ4 45.51 45.92 48.58 49.78 36.84 41.67 78.10 82.31 72.66 77.72 73.43 81.44 71.80 80.36

Mogwaï MQ 0.19 0.19 0.20 0.21 0.25 0.25 0.20 0.20 0.16 0.16 0.19 0.19 0.18 0.18

Table 10 Bounds of the 99% confidence interval for median execution time ratios between CDO and other tools (Train Benchmark)

Tool Query 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

H/N/EOL CS 5.08 5.13 5.23 5.30 5.32 5.35 5.32 5.45 5.33 5.40 5.23 5.29 4.90 5.02

PL 2.04 2.05 3.18 3.21 3.65 3.72 3.91 4.07 3.91 4.03 1.44 1.50 1.24 1.30

RS 0.85 0.85 0.84 0.85 0.69 0.70 0.68 0.70 0.68 0.69 0.66 0.68 0.64 0.66

SM 16.60 16.60 14.50 15.00 12.00 12.80 17.50 18.82 19.48 21.49 19.51 23.03 24.31 29.08

SS 2.46 2.52 2.54 2.58 1.29 1.97 1.30 1.39 1.33 1.42 1.31 1.39 1.29 1.37

H/N/EPL CS 4.33 4.37 4.55 4.60 4.66 4.69 4.68 4.78 4.65 4.71 4.62 4.68 4.36 4.46

PL 1.33 1.34 2.11 2.14 2.42 2.46 2.57 2.65 2.57 2.64 1.04 1.08 0.91 0.94

RS 0.74 0.74 0.73 0.73 0.61 0.62 0.61 0.63 0.61 0.62 0.60 0.61 0.58 0.59

SM 11.71 11.71 11.71 11.86 8.50 9.20 11.24 12.36 15.30 17.50 14.37 16.70 14.84 17.59

SS 1.92 1.95 1.92 1.94 0.95 1.47 1.0 1.0 1.0 1.0 0.90 0.95 0.90 0.95

H/O/EOL CS 2.53 2.55 2.52 2.55 2.36 2.37 2.20 2.24 2.22 2.30 2.27 2.40 2.25 2.42

PL 1.02 1.03 1.54 1.56 1.39 1.45 1.37 1.44 1.64 1.71 1.24 1.31 1.04 1.10

RS 0.25 0.25 0.23 0.24 0.18 0.18 0.17 0.18 0.17 0.18 0.17 0.18 0.16 0.17

SM 9.56 9.56 9.11 9.22 5.00 5.51 5.95 6.76 6.69 7.37 7.01 7.89 7.59 9.08

SS 1.29 1.30 1.24 1.26 0.54 0.69 0.44 0.47 0.48 0.51 0.51 0.56 0.50 0.56

H/O/EPL CS 2.17 2.19 2.09 2.12 1.99 2.01 1.97 2.00 2.05 2.12 2.11 2.21 2.05 2.17

PL 0.72 0.72 1.11 1.13 1.0 1.0 1.0 1.0 1.14 1.17 0.72 0.76 0.67 0.70

RS 0.23 0.23 0.21 0.22 0.17 0.17 0.16 0.17 0.16 0.16 0.16 0.17 0.15 0.16

SM 9.11 9.22 7.64 7.91 3.67 4.08 4.90 5.57 5.24 5.76 5.09 5.71 6.64 7.90

SS 0.97 0.97 0.91 0.92 0.41 0.63 0.33 0.35 0.36 0.38 0.36 0.39 0.38 0.42

Mogwaï CS 0.13 0.14 0.13 0.14 0.14 0.14 0.12 0.12 0.08 0.08 0.09 0.09 0.09 0.09

PL 0.84 0.84 1.32 1.33 1.35 1.37 1.23 1.26 1.06 1.09 1.10 1.13 1.11 1.15

RS 0.57 0.57 0.53 0.53 0.44 0.45 0.42 0.43 0.38 0.39 0.38 0.39 0.37 0.38

SM 2.52 2.53 2.41 2.44 1.56 1.68 1.40 1.49 1.30 1.38 1.36 1.44 1.29 1.39

SS 1.30 1.31 1.20 1.22 0.53 0.83 0.41 0.44 0.36 0.38 0.38 0.40 0.34 0.36

Values greater than 1 indicate that CDO is slower, while values less than 1 indicate that the other tool is slower

leeway to stay ahead of CDO. It appears that when run-
ning queries with no specific optimizations (e.g. indexed
attributes), there may be less thread contention on CDO
than on the other tools, closing the gap that originally
existed in some cases.

– Hawk with Neo4j/EPL and Hawk with OrientDB/EOL
start with better performance than CDO for SS, but
quickly drop to similar or slightly inferior performance
when using 4 or more client threads. In the first case, the
additional type checks performed by EPL are weighing
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Hawkdown. In the second case, the lower performance of
the OrientDB backend gives Hawk less margin to handle
the CPU saturation at 4 threads—with OrientDB/EPL,
Hawk is already slightly slower than CDO with 1 thread.

One interesting observation is that depending on the
combination between the query and the tool, some queries
maintain a consistent ratio with CDO (e.g. OQ on Mogwaï),
others raise then fall (PL for Mogwaï and Hawk), and others
simply fall (RS and SS on all tools). This further supports
the idea that thread contention profiles among the different
tools vary notably for the same query. While further studies
would be necessary to find out the specific reasons for most
of these cases, there are some configurations for which it is
easier to explain. The reason behindHQ4 having consistently
increasing ratios forHawk/Neo4j andHawk/OrientDB is that
it reduces multiply nested loops with a single lookup, chang-
ing the underlying order of the computation: the heavier the
load, the larger the contrast created by this change.

As a general conclusion, graph databases by themselves
are not a silver bullet — Mogwaï, for instance, did not out-
speed CDO in many queries. It is important to use recent
releases and take advantage of every feature at their disposal
in order to achieve a solid advantage over mature relational
technologies.

4.7 Threats to validity

This section discusses the threats to the internal and external
validity of the results, as well as the steps we have taken
to mitigate them. Starting with the internal validity of the
results, these are the threats we have identified:

– There is a possibility that CDO, Hawk or Mogwaï could
have been configured or used in a more optimal way.
Since the authors developedHawk, thismayhave allowed
them to fine-tune Hawk better than CDO or Mogwaï.
However, the servers did not show any undesirable virtual
memory usage, excessive garbage collection or unex-
pected disk I/O. The H2 backend was chosen for CDO
due to itsmaturity in comparisonwith the other backends,
and theNeo4j backend has consistently produced the best
results for Hawk according to previous work. Mogwaï
is only available for the Neo4j backend of NeoEMF, so
using an alternative configuration was out of the ques-
tion.
The authors contacted the CDO developers regarding
how to compress responses and limit results by resource,
to make it more comparable with Hawk, and were
informed that thesewere not supported yet.27 The authors

27 https://www.eclipse.org/forums/index.php?t=rview&goto=
1722258 https://www.eclipse.org/forums/index.php?t=rview&goto=
1722096.

also collaboratedwith theMogwaï developers to improve
performance as much as possible during the writing of
the paper, contributing bugfixes and suggesting various
improvements that reduced query latency.

– The queries for CDO/Mogwaï and Hawk were written
in different languages, so part of the differences in their
performance may be due to the languages and not the
systems themselves. The aim in this study was to use the
most optimized language for each system, since Hawk
does not support OCL and Mogwaï and CDO do not
support EOL.
Analytically, we do not anticipate that this is likely to
have a strong impact on the obtained results for CDO and
Hawk as both languages are very similar in nature and
are executed via mature Java-based interpreters. It may
only be an issue with Mogwaï, whose OCL-to-Gremlin
transformation is still a work in progress andmay change
when Mogwaï transitions to Neo4j 2.x.

As for whether the results can be generalized beyond this
study, there are a few threats that must be acknowledged:

– This study has not considered running several differ-
ent queries concurrently. While multiple configurations
for Hawk have been considered (all 4 combinations of
Neo4j/Orient and EOL/EPL), only one configurationwas
studied for CDO and for Mogwaï. The tested configura-
tions would be quite typical in most organizations, but
it would be interesting to perform studies that mix dif-
ferent queries running in different models concurrently
and configure Hawk and CDO with different backends,
memory limits and model sizes.

– The experiment has compared a specific set of tools:
one for model repositories (CDO), one for graph-based
model indexing (Hawk) and one for queryingmodels per-
sisted as graphs (Mogwaï on top of NeoEMF/Graph).
This raises the question of whether the results could be
extended to other tools of the same types.
The first part of our answer is that this categorization
was not relevant for this study: any tool could have been
used as long as it provided a high-level remote querying
API and relied on a database for persisting the models.
CDO, Mogwaï (in combination with NeoEMF/Graph)
andHawk are three instances of these same requirements,
and therefore, any generalizations are backed by not one,
but the three tools.
The next part is that while some of the detailed results are
specific to certain tools (e.g. comparisons between Neo4j
releases), there are higher-level results which reaffirm
knowledge from other areas in software engineering. For
instance,RQ1 showed thatHTTP’s overheadwas roughly
constant if the message patterns were similar, and RQ2
confirmed just how much of an impact a different mes-
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sage pattern could have. RQ3 compared generic against
application-specific caching, RQ4 discussed readability
and query implementation quality, and RQ5 confirmed
using a graph backend may not always bring better per-
formance by itself. The high-level observations collected
during these studies can be extended to any database-
backed remote model querying solution in the future:
indeed, part of our intention with this paper was to make
future developers aware of these aspects.

– The results are based on two specific case studies: it could
be argued that different case studies could have yielded
different results. To avoid introducing bias, the authors
refrained from defining custom benchmarks and instead
adopted benchmarks from the existing literature. These
benchmarks were picked as they covered different appli-
cation areas (software engineering versus critical systems
modelling), different metamodels (highly hierarchical
software metamodels versus “flat” railway metamodels),
and different workloads (localized pattern matching in
GraBaTs’09 versus a combination of complex pattern
matching and simple “all X with attribute Y meeting Z”
queries in TB).
For these reasons, we argue that the 7 queries across
the 2 case studies are representative of pattern match-
ing queries on models, where we want to find elements
whose state and relationships meet certain conditions.
We do not expect other model querying case studies to
change the results significantly. However, our case stud-
ies do not cover other model management tasks, such as
code generation or model transformation: those would
require their own case studies. Incidentally, Hawk did
significantly speed up code generation in our previous
work [13].

5 Conclusions and further work

This studywas a largely extended version of our prior confer-
ence paper, going from 2 configurations to 6 (CDO,Mogwaï,
and all 4 combinations of Hawk with Neo4j/Orient and with
EOL/EPL), and adding 6 new queries written in 3 languages
(OCL, EOL and EPL). This wider study confirmed some
prior results, while giving a more nuanced outlook on others.

It was confirmed oncemore that the network protocol used
had very different impact depending on how it was used:
CDO once more had dramatic overheads of 600%, while
Hawk and our simple HTTP server for Mogwaï had at most
a 20% overhead. In fact, statistical tests showed that for the
more efficient GraBats’09 queries, there was no significant
difference beyond a certain number of client threads. For the
Train Benchmark queries, some queries even ran faster on
HTTP thanks to the more fine-tuned default thread manage-
ment on the Jetty HTTP server. One worrying result is that

for some Train Benchmark queries, CDO showed incorrect
and failed queries even over TCP—this could point to under-
lying thread safety or race condition issues in the framework
or the networking library.

Comparing CDO/Hawk packet captures confirmed that
the problem with CDO over HTTP was the naïve way
in which server-to-client communications had been imple-
mented, which used simple polling instead of state-of-the-art
approaches such as WebSockets.

Regarding caching and indexing, CDO’s application-
agnostic caching performed quite well in both the Gra-
BaTs’09 and Train Benchmark queries. However, Hawk was
able to outspeed CDO easily when derived and indexed
attributes (a form of application-specific caching) were used,
as it happened for theHQ3,HQ4,CS,PLandSMqueries. The
HawkOrientDB backend did show some performance degra-
dation when performing ranged queries on attributes with
high cardinalities, however. The current version of Mogwaï
did not perform as well in this regard, as it had no support for
indexed attributes and does not implement a caching layer of
its own: the only caching is for the compiled ATL script that
transforms OCL queries into Gremlin programs. We suggest
that Mogwaï should adopt one in the future.

As for the impact of the query language, it was found that
Mogwaï’s full recompilation of OCL into native Gremlin
queries did not give it a definitive advantage over CDO’s on-
the-fly SQL query generation: in fact, it seemed to perform
the worst among all tools, though this may have been due
to the use of an older Neo4j release. The interpreted nature
of EOL and EPL did not result in performance issues, but it
was found that without taking the appropriate precautions,
EPL would perform additional work that would result in a
severe drop of performance for queries with many nested
loops. Beyond the implementation approach of the language,
we found that Mogwaï missed the opportunity to integrate
Neo4j’s ability to traverse edges in both directions into its
OCL dialect: if it had done so, it would have readily outsped
CDO on the SN query, as Hawk did (median was 300ms for
Hawk/Neo4j/EOL compared to 100s for CDO).

Finally, 99% confidence intervals for the execution time
ratios of CDO against the other configurations were com-
puted. For the most part, tools retained their relative per-
formance as the number of client threads increased. There
were some exceptions, however: some configurations that
started faster than CDO using the Mogwaï tool, the Hawk
OrientDBbackend or the EPL query languagewould become
slower than CDO as the number of threads increased—the
only configuration that did not show this was Hawk with
Neo4j and EOL. However, even this optimal configuration
could somewhat lose its performance edge against CDO in
some queries: a future study comparing levels of thread con-
tention across tools could be useful to shed light on the
reasons.
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In closing, this study showed that achieving high-
performance and scalable remote model querying is not only
amatter of choosing the right backend and using it efficiently:
every other part of the system must be carefully engineered.
Our ideal system would meet these requirements:

– The API should support both synchronous and asyn-
chronous querying. Synchronous querying ismore robust
against high loads (as seen with Hawk and Mogwaï),
since it does not require maintaining a correlation
between multiple responses. Asynchronous querying,
where the results are trickled back to the client, can han-
dle larger result sets but is hard to protect against stressful
situations (as seen with CDO).

– Any server-to-client communication needed for asyn-
chronous querying should be conducted over a real
full-duplex channel rather than through polling, to avoid
introducing unnecessary delays.

– To reduce roundtrip times, APIs should support running
entire queries in the server rather than simply fetching
individual elements to be filtered on the client. In other
words, the API should include two levels of granularity:
one at the query level, and one at themodel element level.

– The query engine must include a caching layer and ide-
ally should be able to precompute the results of common
subqueries.

– The query language must allow users to take advantage
of important features on the backend, while not imposing
unexpected work on it.

– Using a graph database can noticeably improve perfor-
mance in queries that require following many references,
but it is not a silver bullet: graph databases are young in
comparison with relational databases, and presently their
use requires more fine-tuning and benchmarking.

For future work, we would like to examine scalability
within a real collaborative modelling environment instead
of producing synthetic loads, where a mix of queries is run
concurrently according to the needs of the users over time.
Another direction for future work is analysing the queries to
split the work in a query efficiently between the client and
the server, using the server for model retrieval and the client
to transform the retrieved values. This will require balanc-
ing the reduced workload on the server with the increased
network latency and transmission costs.

One more possible line of work is studying how to scale
systems such as Hawk and CDO horizontally over multiple
servers, either by sharding or splitting the data according a
domain-specific criteria (e.g. Java projects in theGraBaTs’09
data set, or subsets of the rail network in the TrainBenchmark
data set), or by replicating all the data. Sharding could be less
expensive per server, but it would require breaking down
queries into smaller parts and integrating the results: this

could be done in the client, or in an intermediate “broker”
node. Effectively, this would increase the number of requests
done through the network, and it may not be worth it except
for very large queries. Querying with replication would be
simpler, only requiring the addition of a load balancer in
front of the servers. In fact, this particular approach would
be easier to study in the short term, as Hawk already has an
experimental integration with the multi-master replication
mode of OrientDB. So far it has only been used for increased
availability, but increased performance could be achieved as
well by developing a load balancer node that exposed the
same API as current Hawk servers.
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