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Abstract
The engineering of mechatronic production systems is complex and requires various disciplines (e.g., systems, mechanical,
electrical and software engineers). Model-driven engineering (MDE) supports systems development and the exchange of
information based on models and transformations. However, the integration and adoption of different modeling approaches
are becoming challenges when it comes to cross-disciplinary work. VIATRA is a long-living enduring and mature modeling
framework that offers rich model transformation features to develop MDE applications. This study investigates the extent to
which VIATRA can be applied in the engineering of mechatronic production systems. For this purpose, two model trans-
formation case studies are presented: “SysML–AutomationML” and “SysML4Mechatronics–AutomationML.” Both case
studies are representative of structural modeling and interdisciplinary data exchange during the development of mechatronic
production systems. These case studies are derived from other researchers in the community. A VIATRA software prototype
implements these case studies as a batch-oriented transformation and serves as one basis for evaluating VIATRA. To report on
our observations and findings, we built on an evaluation framework from the MDE community. This framework considers 14
different characteristics (e.g., maturity, size, execution time, modularity, learnability), according to theGoal-Question-Metric
paradigm. To be able to evaluate our findings, we compared VIATRA to ATL. We applied all cases to a lab-size mechatronic
production system. We found that, with VIATRA, the same functions for model transformation applications can be achieved
as with ATL, which is popular for model transformations in both the MDE and the mechatronic production systems commu-
nity. VIATRA combines the relational, imperative, and graph-based paradigms and enables the development and execution
of model-to-model (M2M) and model-to-text (M2T) transformations. Furthermore, the VIATRA internal DSL is based on
Xtend and Java, making VIATRA attractive and intuitive for users with less experience in modeling than in object-oriented
programming. Thus, VIATRA leads to an interesting alternative for the model-driven engineering of mechatronic production
systems. It has the potential to reduce the complexity during the development of model transformations. To conclude, this
paper evaluates the applicability of VIATRA, its strengths and limitations. It provides lessons learned and insights that can
stimulate further research in the MDE for mechatronic production systems.
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1 Introduction

The development of mechatronic production systems is
highly complex and, therefore, requires the collaboration of
different stakeholders. To manage this complexity, Model-
Based Engineering (MBE) is an application field that com-
bines a variety of discipline-specific and interdisciplinary
models [1,12].

Model-Driven Engineering (MDE) represents a subset of
MBE [12] in which metamodels and transformation engines
are integrated to exchange information based onmodels [50].
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Transformations represent the core of MDE, which is why a
great variety of model transformation approaches (languages
and tools) has been developed (cf. [15,37]). Kahani et al.
[37] refer to an African proverb that long-living and mature
approaches will achieve higher acceptance and applicability
when they are maintained and supported over a long period
of time.

VIATRA [8] is a mature open-source software project
that has existed for more than two decades [59]. It supports
extensivemodel transformation features that allow the devel-
opment of efficient model-driven applications. Although a
variety of research in academia and industrial practice has
been conducted, to our best knowledge there is no existing
study that investigated the applicability of VIATRA in the
context of mechatronic production systems. In contrast, we
recognized that often ATL is applied. These facts motivated
the authors to conduct this study and to address the follow-
ing research questions: (1) How can VIATRA be used when
being applied to the small, representative model transfor-
mation case studies from the engineering of a mechatronic
production system? (2)What findings (e.g., compared toATL)
can be derived for practitioners?

To answer this research question, we investigated the
applicability of VIATRA in a lab-size context. This paper
provides the following contributions: (i) To be representative
for the model-driven engineering of mechatronic production
systems, we present two model transformation case stud-
ies “SysML–AutomationML” and “SysML4Mechatronics–
AutomationML” (Sect. 4). These case studies have been
widely studied [7,38,43], and we have adapted them to fit
the purpose of our study. (ii) A VIATRA software prototype
implemented the case studies as batch-oriented transforma-
tions, i.e., models are built from scratch (Sect. 5). (iii) We
propose an evaluation framework, which was inspired by
[39], to assess VIATRA. Within this evaluation framework,
14 different characteristics (e.g., maturity, size, execution
time, modularity, learnability) were considered. To provide
a reference for our findings, we related VIATRA to other
model transformation approaches.

The remainder of the paper is structured as follows: Sect. 2
presents the relevant background. Sect. 3 details the objec-
tives of the study. Section4provides anoverviewof themodel
transformation case studies, and Sect. 5 presents implemen-
tation details regarding the software prototypes. Section 6
provides the evaluation results on the applicability of VIA-
TRA, and Sect. 7 discusses threats to validity. Finally, Sect. 8
concludes this paper and presents an outlook on future work.

2 Background

In this section, we will provide a brief overview of the
cross-disciplinary engineering in mechatronic production

systems (Sect. 2.1). Based on that, we introduce heteroge-
neous model-based engineering in the field of mechatronic
production systems (Sect. 2.2). We then explore the rele-
vant literature about model transformation approaches, e.g.,
VIATRA and ATL (Sect. 2.3). For a detailed overview of
model transformation approaches and features, please refer
to [15,37,63].

2.1 Cross-disciplinary engineering of mechatronic
production systems

The engineering of mechatronic production systems requires
the strong collaboration of different disciplines, e.g., systems
engineering, mechanics, electrics/electronics and control
software. According to Berardinelli et al. [7] and Vogel-
Heuser et al. [61],mechatronic production systems are highly
complex systems that consist of different mechanical, elec-
trical hardware and automation software (see Fig. 1). To
develop those mechatronic systems, the successful integra-
tion of all technical components and disciplines involved
are critical success factors. To foster an efficient and effec-
tive engineering process of mechatronic production sys-
tems, there is a continuous demand for models, modeling
languages, methods, and tools. Their development, integra-
tion and adoption constantly bring new challenges (e.g.,
consistency, interoperability, communication, sustainability,
applicability, etc. [1]), which results from interdependen-
cies between models and the associated challenges, e.g.,
interoperability, inconsistency, reasoning, traceability, or
verification (cf. [24,25]). To overcome these challenges,
developers (hereafter referred to as the MDE community)
and practitioners (hereafter referred to as the production sys-
tems community) must understand each other to collaborate
fruitfully and develop tightly harmonized solutions of mod-
els, modeling languages, and tools. In the authors’ view, this
is a continuous process. In the following Section, we intro-
duce four application scenarios for model-based engineering
and how they help to overcome challenges mentioned in this
section.

2.2 Model-based engineering of mechatronic
production systems

Model-Based Engineering (MBE) is essential for manag-
ing complexity in the development of mechatronic systems.
Various stakeholders from different disciplines make use of
models in terms of modeling languages and tools [13,53]. In
the following, we will briefly present four main application
scenarios with respect to MBE.

Model-BasedSystemsEngineering (MBSE) is an approach
that fosters interdisciplinary collaboration during systems
development [27]. Different models are intended to address
distinct challenges, e.g., requirements specification, struc-
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Fig. 1 Simplified interdisciplinary engineering of mechatronic produc-
tion systems

tural and behavioral description of the system under inves-
tigation, simulation, and others [27]. These models must
be integrated and linked along the entire lifecycle [13,35].
MBSE is a process where models play an important role. In
Model-Driven Engineering (MDE) are models the key arti-
facts to transform model or to generate software code [12].

Model-Driven Architecture (MDA) is often referred to in
the context of MDE and is specified by the object manage-
ment group (OMG).Within MDA [47], models are instances
of metamodels. Metamodels are required to represent the
relationship between a class and its instance. A metamodel
can be seen as amodel, and it allows one to define amodeling
language. To provide an architecture in which metamod-
els are used, the OMG defines the Meta Object Facility
(MOF) [50]. When applying MOF, it is often referred to as
a four-layered metamodel architecture: M0 represents real-
world objects and corresponds to the M1 model, which is
the model for the reality. The M1 model corresponds to
a M2 model, which is a metamodel. A metamodel (M2)
corresponds to a so-calledmeta–metamodel (M3),which rep-
resents a platform-independent model. In other words, M3
provides the underlyingmodeling pillar used for definingM2
metamodels.

Domain-specific modeling languages are used for rep-
resenting particular theories and concepts developed for
a specific application domain [26]. Two well-known and
standardized domain-specific modeling languages are UML
[49], for software engineering, and SysML [51], for systems
engineering. Since these standardized modeling languages
lack acceptance and applicability in practice [1], exten-
sions of these modeling standards in terms of profiles (e.g.,
[38,46,54]) or new domain-specific modeling languages
(e.g., [6]) are evolving. Hölldobler et al. [28] summarize
these approaches as “language derivation” where abstract
and concrete syntax of the base language are reused to over-

come the challenge of applicability in practice. To conclude,
the practice of designing valuable and applicable domain-
specific modeling languages is tremendously important in
the industrial practice of MBE.

Information exchange among disciplines and tools is
another application scenario that aims to improve the effi-
ciency and effectiveness of interdisciplinary collaboration
[7,11,43]. A variety of exchange formats exist in order
to exchange information between different disciplines and
tools. STEP [34] is one standard that specifies an application
protocol for the representation of systems engineering data.
AutomationML (AML) [31] is an emerging standard within
themechatronic production systems domain that supports the
exchange of engineering data based on the XML language.
Since engineering data relate to one another, these exchange
formatsmust provide different modeling capabilities in order
to capture semantic relationships.

2.3 Model transformations andmetamodels

The application scenarios mentioned before might be part of
a MDE environment. In MDE, metamodels and transforma-
tion engines are integrated in order to bridge domains based
onmodels [53]. Bothmodel transformations andmetamodels
have achieved high attention in the field of software engineer-
ing by theObjectManagementGroup, which is awell-known
consortium providing standards such as UML [49], SysML
[51] and MDA [47].

Model transformations are important for performing var-
ious operations on a set of models (M1), i.e., models might
be read, created, or modified [63]. The basic principle of a
model transformation is shown in Fig. 2. A transformation
engine executes a model transformation. The definition of a
model transformation is described within a transformation
specification [15]. Therein, it is referred to as the metamod-
els (M2) involved in order to provide a mapping between
the source and target of a transformation. The transforma-
tion specification must conform to the model transformation
language in a way similar to models (M1) and metamodels
(M2).

In practice, a model transformation language can only
be applied within a technical space, i.e., a model manage-
ment framework [9]. In other words, the metamodel behind
a model transformation language represents the abstract
syntax, whereas the concrete syntax of a model transfor-
mation language is specified by the technical space [37]. A
large variety of model transformation languages and tools
have been developed to provide different capabilities for
developing diverse model transformation applications. In the
following,wewill briefly introduce themodel transformation
approaches by VIATRA and ATL because they are central
elements of this article.
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Fig. 2 Basic principle of model transformations, based on [15]

2.3.1 VIsual automated model tRAnsformations (VIATRA)

VIATRA is an open-source Eclipse software project that was
developed more than two decades ago and is now in its third
generation [8,59]. In addition to the development of batch
and incremental model transformations, VIATRA supports
model querying, model obfuscating for the confidential treat-
ment of information, and design exploration capabilities for
systems engineering [22]. The VIATRA project is tightly
integrated into Eclipse IDE and theEclipseModeling Frame-
work (EMF) [55], inwhich case it can be combinedwith other
powerful MBE and MDE applications.

VIATRA batch transformations satisfy the basic transfor-
mation principle shown in Fig. 2. It enables the combination
of relational, imperative, and graph-based paradigms [37]
in order to specify the mapping between two metamod-
els of different domains. To perform various operations on
a model, VIATRA provides an Incremental Query Engine
[59] together with the VIATRA Query Language, which is
a declarative graph-based query language. A transforma-
tion specification in VIATRA can be divided into two parts
[22]: rule specifications and execution schemes. Rules refer
to model queries describing the operations that need to be
performed on a model. The execution scheme defines the
transformation behavior, which the rule engine executes. To
describe a transformation specification, VIATRA provides
an internal DSL as a model transformation language based
on Java and Xtend [23]. Exemplary VIATRA code listing
will be presented in Sect. 5. For details about VIATRA and
further model transformation features, please refer to Varró
et al. [8].

2.3.2 ATL transformation language (ATL)

ATL is a mature model transformation approach [36] and
Eclipse Project [19] is from the field of MDE. The ATL
framework provides an environment for the development of
MDE applications together with different model operations,
such as editing, compiling, executing, and debugging [36].
Given that ATL is completely compliant with OMG’s MOF

architecture and is widely accepted, it can be considered as
the de-facto standard in MDE.

ATL transformations work following the basic transfor-
mation principle shown in Fig. 2. To specify the mapping
between two metamodels of different domains, ATL allows
for combining relational and imperative paradigms [37].ATL
relies on theObject Constraint Language (OCL) [48], which
is a standardized declarative language provided by the OMG.
A transformation specification in ATL is organized using
modules, which consist of helpers and transformation rules.
Helpers factorize code, like methods in object-oriented pro-
gramming. Different types of transformation rules allow one
to specify the transformation behavior. Exemplary ATL code
listing is later presented in Sect. 5. For details about ATL,
please refer to Jouault et al. [36].

3 Related work and study objectives

The section is structured as follows: In Sect. 3.1, we first
give a brief overview of related work to explain why we are
investigatingwithVIATRAfor themodel-driven engineering
of mechatronic production systems. In Sect. 3.2, we then
formulate our two main objectives of this study.

3.1 Related work

With regard to MDE, a multitude of research work has been
conducted. In the following, we provide a brief overview
of MDE in the industrial context. Straeten et.al. [56] and
Whittle et. al. [64] provide two reviews on the industrial
applicability of MDE. Berardinelli et al. [7] provide a model
transformation between AutomationML (which is an emerg-
ing information exchange standard within the mechatronic
production systems) and SysML (which is de-facto for cross-
disciplinary engineering). Their transformation relies on
ATL. Balasubramanian et al. [4] provide graph-based model
transformations using the GReAT transformation tool. Lano
et al. [42] present an approach for model transformations
with UML-RSDS, which combines model transformations
with general software systems to design UML models and
generate code automatically. Westfechtel [62,63] provides
a bidirectional model transformation approach (rather than
two unidirectional ones) based on QVT-R. The interesting
approach has been validated on formal Petri Nets, rather
than on models for describing systems. Shah et al. [54] pro-
vide a framework to transform and exchange information
between a common SysML model and tool-specific models
from EPLAN and Modelica. Note, models such as Modelica
and Simulink models are often referred to in a context other
than model-based systems engineering. The authors identify
tool-interoperability as one major problem that requires the
definition of model transformation and intermediate models.
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Varrȯ [58] provides an overview of industrial applications
of VIATRA3, but none of these are mechatronic production
systems. His use cases are exclusively software applications,
while mechatronic production systems are characterized by
the combination of mechanical, electrical and software com-
ponents.

To conclude, applying MDE is often less a challenge of
technological possibilities thanmakingMDEunderstandable
and easily accessible for a particular practitioner commu-
nity. There is currently no study that has evaluated VIATRA
specifically for the engineering of mechatronic production
systems to the best of the authors’ knowledge. The study’s
objectives are explained in the following.

3.2 Study objectives

The research questions (cf. Sect. 1) asked by this study
whether and how VIATRA, given its extensive features, can
be useful for the model-based engineering of mechatronic
production systems. To answer these questions, we have
derived two objectives.

Objective 1: Case Study Implementation
With this objective, we aimed to implement small, represen-
tative model transformation case studies for model-driven
engineering of mechatronic production systems to derive
conclusions about the applicability of VIATRA. This objec-
tive implies identifying model transformation case stud-
ies, corresponding metamodels, and mapping specifications.
This conceptual framework serves as a basis for imple-
menting a VIATRA software prototype, while the software
prototype allows for verifying the conceptual framework.

Objective 2: Evaluation Framework
With this objective, we aimed to assess VIATRA in a struc-
tured manner, i.e., based on an established framework. This
includes both the theoretical and the practical evaluation of
VIATRA. Furthermore, we aimed to assess VIATRA in rela-
tion to other model transformation approaches in order to
provide a reference for our findings.

4 Study objects: model transformation case
studies

Surveying the applicability ofVIATRAfor engineers requires
appropriate and representative case studies. To put our results
and findings into perspective, we have decided to build on
other research results. Another benefit of this decision is
that these research results rely on instructive experiences of
academic and industrial relevance. We gathered important
information on the metamodels, the mapping specification,
and software prototype insights. We built on a variety of
research work and adapted it for this study, i.e., assessing the

applicability ofVIATRA formodel transformation inmecha-
tronic production systems.

The remainder of this section is as follows: In Sect. 4.1, we
will present the metamodels of SysML for structural mod-
eling, SysML4Mechatronics, and AutomationML (AML).
This section provides the basics of the underlying meta-
models to understand the transformations built on top of
them. In Sect. 4.2, we will present the mapping specifica-
tions that form the two model transformation case studies
of this study. The first case study, “SysML–AML” is based
on the ATL prototype from Berardinelli et al. [7,29]. We
adopted this case study for VIATRA. The second case study
“SysML4Mechatronics–AML” is an extension of the first
one and developed solely by the authors of this paper. Thus,
we apply VIATRA and ATL to the first case study and only
VIATRA to the second case study. As the second use case
was developed by the authors, we did not consider it suitable
for comparison. Therefore, we only applied and compared
VIATRA and ATL for the first case study. Both model trans-
formation case studies form the objects of this study and
serve as a basis for the implementation. This section con-
tains enough information to make the paper self-contained
and, for detailed information, we refer to the cited literature.

4.1 Metamodels

4.1.1 SysML structural modeling metamodel

SysML is a standardized and graphical general-purpose lan-
guage used for systems engineering [51]. It reuses parts of
UML [49] and provides a powerful extension for modeling
various systems aspects such as requirements, structure, and
behavior.

In this study, we only considered SysML with respect
to modeling the structure of a system. Figure 3 depicts an
excerpt of the SysML metamodel. To describe the structure
of a system or its components, SysML defines Blocks. Each
block may contain properties and operations to describe the
features of a component. Since components are intercon-
nected logically or physically, SysML allows for modeling
various kinds of semantic relationships (e.g., associations,
generalizations and dependencies). At a detailed level of sys-
temsmodeling, model instances also interact with each other.
In this case, SysML allows themodeling of these interactions
in terms of InterfaceBlocks and Ports or Connections.

4.1.2 SysML4mechatronicsmetamodel

Although SysML allows one to model the structure of a
system, its application becomes inconsistent, and there-
fore difficult, in practice. Kernschmidt et al. [38] devel-
oped SysML4Mechatronics for the structural modeling of
complex mechatronic systems. As shown in Fig. 4, the
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Fig. 3 Excerpt from theSysMLmetamodel [51] for structuralmodeling
according to [7]

Fig. 4 Excerpt of the SysML4Mechatronics profile for the structural
modeling of mechatronic productions systems according to [38]

SysML4Mechatronics profile extends the core concepts of
the SysMLmetamodel for structural modeling, i.e., it refines
blocks, interfaceblocks, ports, and properties. This profile
aims to integrate engineering information from a variety
of disciplines like mechanics, electrics, and software in
order to improve interdisciplinary development processes of
mechatronic production systems. For instance, model-based
analysis techniques might be intended for approving whether
a discipline-specific component is compatible with another
one [38].

Fig. 5 Excerpt from the AutomationML metamodel [31] for hierarchi-
cal plant modeling according to [7]

4.1.3 AutomationMLmetamodel

AutomationML [31] is an emerging and standardized data
exchange format developed for the automation engineering
domain. It interconnects information among different dis-
ciplines and between heterogeneous engineering tools, e.g.,
mechanical engineering tools, electrical design tools, or PLC
programming tools [7]. AML uses other standards, such as
the CAEX standard [30], for describing hierarchical plant
structures. It uses COLLADA [5] for describing kinemat-
ics, and PLCopenXML [32] as a standardized format for
exchanging control software information.

The hierarchical modeling concept of AML is briefly
explained in the following and, with respect to AML details,
we refer to [7,17,31]. Figure 5 shows an excerpt of the
AML metamodel which incorporates four core modeling
concepts. (i) The InstanceHierarchy represents the engineer-
ing project and its components (InternalElements); (ii) the
SystemUnitClassLib defines reusable standard components
(SystemUnitClass); (iii) the InterfaceClassLib comprises
discipline-specific and interdisciplinary interfaces (Inter-
faceClass); and (iv) RoleClassLib allows one to define
semantic relationships between objects. Different kinds of
relationships and associations between these elements enable
the organization of the data for an engineering project.

4.2 Model transformation case studies

4.2.1 Case study 1: SysML – AML

The first case study, “SysML—AML,” is the main focus of
this study.We obtained this case study fromBerardinelli et al.
[7]. One ATL software prototype for this case study already
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exists [7,29]. This is beneficial with regard to objective 2
(Sect. 3) since this allows us to provide a reference point for
our VIATRA study.

According to Berardinelli et al. [7], SysML represents a
class-based modeling language using dedicated diagrams. In
contrast, AML represents a tree-based exchange format spec-
ifying real-word engineering components of mechatronic
production systems. Given that both modeling approaches
are based on the object-oriented paradigm, a mapping
between these approaches can be derived. Berardinelli et
al. [7] provide an AML4SysML profile that allows mapping
UML/SysML concepts to the AML ones. Table 1 lists the
mapping specification and indicates modifications compared
to themapping from [7]. Themodifications (lines 1,3,4) were
made to avoid ambiguities for both transformation cases, i.e.,
SysML2AML and AML2SysML. We introduced a different
terminology and refined the stereotypes and concepts. Fur-
ther elements (lines 16,17) are newly introduced to precise
the mapping specification. These modifications allowed us
to support bidirectional transformations without losing infor-
mation or manual intervention.

4.2.2 Case study 2: SysML4Mechatronics – AML

The second model transformation case study extends the
first one by considering the SysML4Mechatronics [38] pro-
file. The feasibility of the model transformation “SysML4
Mechatronics–AML” case study within an industrial tool-
chain has already been validated by the research of Li et al.
[43]. This mapping is restricted to a unidirectional transfor-
mation from SysML4Mechatronics to the AML exchange
format (i.e., the “AML2SysML4Mechatronics” direction
was not investigated). Furthermore, the mapping proposed
in [43] is not based on a profile method as demonstrated
with the AML4SysML profile in [7] and the previous sec-
tion. To overcome these two shortcomings, we extended the
“SysML–AML” mapping of the previous section and, at the
same time, made it compliant with the mapping presented in
[43]. Table 2 lists the “SysML4Mechatronics–AML” map-
ping. As shown in Table 2, the AMLmodeling concepts have
been extended by an additional attribute regarding themecha-
tronic disciplines (i.e., mechanics, electrics, and software).
This allows one to capture the discipline-specific informa-
tion in the model. All other mappings remain the same as
that specified for the “SysML–AML” case study (cf. with
Table 1).

5 Study implementation: transformation
framework

In this section, we will present details regarding both the
implementation and the software prototypes (Sect. 5.1), as
well as the test samples used (Sects. 5.2 & 5.3).

5.1 Implementation details

Weaimed to survey the applicability ofVIATRA for the engi-
neering of mechatronic production systems. For this reason,
we focused on batch and bidirectional model transforma-
tions. Since neither VIATRA nor ATL supports bidirectional
transformations (cf. [37]), the bidirectional characteristic can
be achieved by the composition of two unidirectional trans-
formations: The “SysML–AML” case study considers the
mapping specification listed in Table 1 and consists of a
“SysML2AML” and an “AML2SysML” transformation. To
obtain a bidirectional transformation, the mapping specifica-
tions in Sect. 4.2 are essential. For instance, although SysML
andSysML4Mechatronics are similar concepts, it was a chal-
lenge to define the mapping specification as a way to avoid
ambiguities. It was a challenge to define the mapping spec-
ification to avoid ambiguities. It was essential to define the
mapping specifications unambiguously and define the speci-
fication as detailed as possible to store all information within
a model during a transformation. Only in this way can a loss
of information be avoided and, for example, a transformation
back to the original model in the source language is realized.
However, bidirectional transformation success relies on the
model sample. Our study draws on the xPPU demonstrator
and model sample based on it, which will be explained later
in this section.

To implement the mapping specifications posed in the
previous section, a VIATRA software prototype was imple-
mented by using the Eclipse Oxygen IDE. The VIATRA
software prototype makes use of the following plugins:
The Eclipse Modeling Framework (EMF) [20,55] provides
a full implementation of the OMG’s Meta Object Facility
(MOF) [50] by means of the ecore metamodel. In addition,
Papyrus [21] provides a full implementation of theUML [49]
and SysML [51] modeling standards. The Eclipse VIATRA
Framework [8,22] provides the full implementation of VIA-
TRA3 [8], which requires Xtend [23] for its internal DSL.
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Table 1 Mapping specification
for the model transformation
“SysML–ML” case study (the
specification is adopted from
[7], and modified rows are
marked with an asterisk)

AML Concept AML4SysML Stereotype SysML/UML Concept

General

1* CAEX File Model Model

2 Attribute Attr Property

3* Attribute.Unit Attr Attr.Unit

4* Attribute.Value Property.Default

Libraries

5 InterfaceClassLib IClib Package “ModelLibrary”

6 RoleClassLib RClib Package “ModelLibary”

7 SystemUnitClassLib SUClib Package “ModelLibrary”

AML Classes

8 InterfaceClass IC, Block InterfaceBlock/Class

9 RoleClass RC, Block Block/Class

10 SystemUnitClass SUC, Block Block/Class

AML Objects

11 InstanceHierarchy IH, Block Block/Class

12 InternalElement IE, Block Block/Class

13 ExternalInterface ExtI Port

Inheritance Relationship

14 BaseClass BaseClass Generalization

Object-Object Relationship

15 InternalLink IL Connector

16* IL.getPartnerSideA ConnectorEnd.partwithPort

17* IL.getPartnerSideB ConnectorEnd.partwithPort

Object-Class Relationship

18 RoleRequirement RR Dependency

19 SupportedRoleClass SRC Dependency

20 BaseSystemUnit Prototype Dependency

To provide a reference for the VIATRA software proto-
type, we additionally drew on the ATL software prototype
[29] from the research of Berardinelli et al. [7]. We deployed
the ATL prototype within the Eclipse Mars IDE and the
following plugins: Eclipse Modeling Framework (EMF)
[20,55], Papyrus for UML/SysML [21] and the ATL tool kit
[19], which provide a full implementation of the ATL [36].
Note that the ATL prototype was not used for the second
case study (“AML–SysML4Mechatronics”), as this was not
within the scope of this study.

5.2 Mechatronic production systemmodel sample

The model test sample that we used for both prototypes was
retrieved from [7,29].

It represents the extended Pick and Place Unit (xPPU),
which is a lab-size mechatronic production system demon-
strator set up in our laboratory and used in both academic
research and teaching [60]. A lab-size demonstrator is a small
but representative system [or product] used as a running

example to verify and validate the research approach. The
xPPU demonstrator consists of various mechanical, electri-
cal, and software components (e.g., conveyor, motor, sensor,
and programmable logic controller) that form an overall
production system for handling and manipulating different
work pieces. Thus, this model sample was suitable for both
model transformation case studies. Figure 6 shows an excerpt
from the xPPU demonstrator as an AML model and as a
SysML4Mechatronics model.

5.3 Further model samples of industrial applications

To investigate the generalizability of our approach, we intro-
duce further model samples based on the AutomationML
metamodel (cf. 4.1.3). These model samples were retrieved
from the AutomationML Association [3] which is sup-
ported by many industrial partners and academic institutions
from the Mechatronic Production Systems and Automotive
Industry. The AutomationML Association [3,16] “provides
a comprehensive in-depth look into the practical application
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Table 2 Mapping specification for the model transformation “SysML4Mechatronics–AML” case study (the specification is based on Table 1, and
only adopted rows are listed)

AML Concept AML4SysML Stereotype SysML/UML Concept SysML4Mechatronics Concept

Libraries

5 InterfaceClassLib SUClib Package SysML4MechatronicsPkg

7 SystemUnitClassLib IClib Package SysML4MechatronicsPkg

AML Classes

8 InterfaceClass

- Mechanical IC InterfaceBlock MechanicalInterfaceBlock

- EE IC InterfaceBlock EEInterfaceBlock

- Software IC InterfaceBlock SoftwareInterfaceBlock

10 SystemUnitClass SUC Block/Class Module

- Mechanical SUC Block/Class MechanicalBlock

- EE SUC Block/Class EEBlock

- Software SUC Block/Class SoftwareBlock

AML Objects

11 InstanceHierarchy IH Package SysML4MechatronicsPkg

12 InternalElement IE Block/Class Module

- Mechanical IE Block/Class MechanicalBlock

- EE IE Block/Class EEBlock

- Software IE Block/Class SoftwareBlock

13 ExternalInterface

- Mechanical ExtI Port MechanicalPort

- EE ExtI Port EEPort

- Software ExtI Port SoftwarePort

Fig. 6 Model sample of the xPPU demonstrator [60] as an AMLmodel
(left) and as a SysML4Mechatronics model (right)

of AutomationML Edition 2 from an industrial perspective.
It is a cookbook for advanced users and describes re-usable
pattern solutions for a variety of industrial applications and
how to implement it in software.”

The AutomationML Association [3] provides 16 domain
model samples for different use case scenarios, which we
briefly introduce in the following: (1) a model sample with
information for the exchange between process and automa-
tion engineering, (2) a model sample for the exchange
between different computer-aided engineering (CAE) sys-

tems, (3) a model based on the Module Type Package
specification, (4) a model with system control diagrams
(SCDs) for the Gas Industry, (5) a model with project con-
figurations between ECAD and PLC systems for the Factory
Automation, (6) a model with mechanical drive configura-
tions, (7) a model with Material Handling information, (8)
a general AutomationML model for component-based pro-
duction system engineering, (9) amodel describing electrical
interfaces, (10) anAutomationMLComponent Checker, (11)
a communication network model, (12) a model describ-
ing OPC-UA servers, (13) a model describing the Assets
Administration Shell specification, (14) a semantic integra-
tion model, (15) an extended role class library model, and
(16) amodel containing enterprise control system integration
information. For further details on these models, we refer to
the AutomationML Association [3].

In this study, we apply VIATRA and the model transfor-
mation case studies (cf. Sect. 4) to these 16 model samples in
order to assess the reliability and generalizability (described
later in Sect. 6.4).
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6 Study evaluation and results

In this section, we will evaluate VIATRA and report our
observations. There are many ways of identifying and defin-
ing metrics used for evaluating model transformations (cf.
[14,39,40,45]). Rahimi [39] provides a comprehensive eval-
uation framework that is specially designed for assessing
model transformation approaches. It integrates the Goal-
Question-Metric (GQM) paradigm [57] with selected char-
acteristics for the evaluation of software products according
to the ISO 9126 standard [33]. Our evaluation builds on the
frameworkofRahimi [39] because it is a holistic and compre-
hensive evaluation framework specially developed for model
transformations. The structure and adaptations of the frame-
work for our study are briefly explained below.

The goal is defined from a specific point of view to address
a certain question. The question clarifies what we aim to
evaluate. The corresponding metric defines the answers to
the question and how to measure it. For the purpose of this
study, we obtained the goals from Rahimi [39], and the ques-
tions were defined according to the scope and objects of this
study. Significant changes were made to the metrics since
we aimed to investigate the applicability of VIATRA for the
development ofmechatronic production systems.Weomitted
ranking points because we were not conducting an in-depth
study. Instead, the metrics were used to reflect our observa-
tions as objectively as possible and to then derive the findings.
Whenever possible, we focused on assessing VIATRA in
comparison to other model transformation approaches, so
we divided our evaluation into three parts. Table 3 provides
an overview of the evaluation conducted and of the remainder
of this section.

6.1 Theoretical evaluation

In this section, we will evaluate VIATRA from a theoretical
perspective by comparing VIATRA with other model trans-
formation approaches. We considered publications from the
MDE community for this purpose.

Goal: abstraction level

Question:HowcanVIATRAand othermodel transformation
approaches be categorized?

Metric: According to Kahani et al. [37], model transfor-
mation approaches can be categorized as being model-to-
model (M2M) ormodel-to-text (M2T).M2Mapproaches can
be further differentiated: relational/declarative approaches
focus onwhat needs to be transformed, but not on how to real-
ize the transformation; imperative/operational approaches
focus on how to transformwithout considering structural and
semantic relationships; graph-based approaches are based
on formal algebraic algorithms; and hybrid approaches com-

Table 3 Overview of the evaluation conducted

Evaluation Goals VIATRA ATL

Theoretical Evaluation (Section 6.1)

Abstraction Level ✓ ✓

Maturity ✓ ✓

Closeness ✓ ✓

Prototype Evaluation (Section 6.2)

Error Handling and Support ✓ ✓

Size ✓ ✓

Structural Complexity ✓ ✓

Execution Time ✓ ✓

Completeness and Correctness ✓

Tool-Interoperability ✓ ✓

Modularity ✓ ✓

Development Effort ✓

Survey Evaluation (Section 6.3)

Understandability ✓

Learnability ✓

Attractiveness ✓

Generalizability Evaluation (Section 6.4)

Reliability & Generalizability ✓

bine the paradigms mentioned earlier. M2T approaches can
also be differentiated: visitor-based approaches traverse a
model according to predefined rules and generated text or
code; template-based approaches prescribe static text or
code, which is filled with information from the input model
during a transformation; hybrid approaches combine both
paradigms.

Observations: VIATRA and ATL are both hybrid M2M
transformation approaches: VIATRA allows one to combine
relational, imperative, and graph-based paradigms, whereas
ATL combines the relational and the imperative paradigm. In
addition, VIATRA allows for realizing template-based M2T
transformations. Table 4 categorizes further model trans-
formation approaches in order to provide a reference for
VIATRA and ATL.

Goal: maturity

Question: Over what period are VIATRA and other model
transformation approaches successfully supported andmain-
tained?

Metric: Many model transformation approaches have
been developed in recent decades. However, it is only high
maturity that leads to high reliability. According to Rahimi
[39], maturity is high for an approach that has been supported
for more than 8 years and low for one supported by fewer
than 4 years.
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Table 4 Abstraction level and maturity of VIATRA compared to other model transformation approaches based on [37]

Transformation approach tool Abstraction level classification Longevity Maturity

VIATRA [8,59] M2M (hybrid) 2000 - 2020 high

M2T (template)

ATL [36] M2M (hybrid) 2005 - 2020 high

Agile UML [41,42] (UML-RSDS) M2M (relational) 2005 - 2020 high

Kermeta2 [18] M2M (imperative) 2005 - 2012 medium

M2T (visitor)

GReAT [4] M2M (graph-based) 2004 - 2014 medium

eMoflon [2] M2M (graph-based) 2006 - 2017 high

M2M (template)

Xtend [23] M2M (imperative) 2013 - 2017 medium- high

M2T (hybrid)

Observations: The 2018 research work of Kahani et
al. [37] surveyed a large number of model transformation
approaches and tools. We assumed that their maturity results
were still up to date and built upon them. Table 4 lists
the maturity of VIATRA and ATL in comparison to other
model transformation approaches. VIATRA has a high level
of maturity because it is already in the third generation, and
the VIATRA family has been continuously developed since
2000. Nowadays, VIATRA is an open-source project and a
part of various industrial and academic tools [58].

Goal: closeness

Question:Howclose are the transformations to awell-known
notation?

Metric: According to Rahimi [39], closeness addresses
how familiar one is with the model transformation language.
The more familiar the language, the greater the closeness. In
mechatronic production systems, the stakeholders are various
engineers, e.g., systems, mechanical, electrical, and software
engineers.

Observations:
VIATRA uses an internal DSL that is built on Xtend

and Java. This makes VIATRA attractive for practition-
ers with experience in object-oriented programming but
less familiar with MDE. Furthermore, VIATRA provides a
declarative graph-basedquery language,VIATRAQueryLan-
guage (VQL), for defining patterns. The use of this query
language requires a basic knowledge of graph-theory and
expertise with theEclipseModeling Framework (EMF) [55].

The ATL concept relies on the Object Constraint Lan-
guage (OCL) [48], which is a standardized declarative
language provided by the OMG. It is well-known in MDE
domains and is flexibly applicable for various purposes:
(i) OCL enables MOF-compliant metamodels and model
instances to be provided with additional formal constraints

and (ii) can be used as a declarative query language for trans-
formations.

We assume that VIATRA can achieve a higher degree
of closeness outside the MDE community, whereas ATL is
well-known and therefore the de-facto standard in the MDE
community.

6.2 Prototype evaluation

In this section, we will evaluate VIATRA as compared to
ATL, the software prototypes at hand, and the model sample
mentioned in Sect. 5. Of course, the following observations
depend on both the transformation and the mapping speci-
fications of the model transformation case studies (Sect. 4).
The result is a potential threat to the validity, which we will
discuss later in Sect. 7.

Goal: error handling and support

Question:Can the model transformation tools provide useful
error messages and appropriate support?

Metric:Error handling and support have an impact on fault
tolerance and the robustness of transformations. This metric
is highwhen themodel transformation approach offers useful
features, e.g., syntax checking and run-time checks. If no
mechanisms can be identified, the metric is low.

Observations: During the development phase, VIATRA
and ATL provide adequate syntax checking, with the result
that faulty implemented transformations cannot be executed.
During the runtime phase, VIATRA and ATL provide inten-
sive debuggers that allow the transformations to be checked
step-by-step [19,22]. In addition, the VIATRA Transforma-
tion Debugger consists of a UI component that visualizes
transformation-specific information, i.e., model elements
related to a rule. Apart from the option for verification,
VIATRA and ATL provide validation support. VIATRA

123



1654 G. Koltun et al.

Table 5 Comparison of the non-commented lines of code (size) of
VIATRA and ATL

VIATRA ATL

Pattern LOC 113 42

Transformation LOC 367 227

Total LOC 480 269

provides a Validation Framework. Validation rules and con-
straints must be implemented in VQL and, during runtime,
are approved by a validation engine. In ATL, the language
itself provides the validation support since ATL is based on
OCL.

To conclude, both VIATRA and ATL rely upon advanced
tools, extensive documentation, and broad community sup-
port. This might be why both indicated a high level of error
handling and support.

Goal: size

Question: What is the size of a transformation?
Metric: The size of the transformation is measured by the

non-commented lines of code (LOC) [10,39]. The size can
also be measured in kilobytes, but is directly proportional to
the LOC and has less informative value or can be misinter-
preted. For the size can be argued: The smaller the size, the
better that transformation projects can be managed and error
susceptibility reduced.

Observations: First of all, we assumed that the trans-
formations were implemented according to the respective
rules and guidelines of VIATRA and ATL. That means a lin-
ter (source code analyzer) would detect stylistic errors. As
a consequence, code lines have not been compressed and
human readability preserved. Under these conditions, non-
commented LOC is an appropriate metric to assess the size
in the scope of this paper. From the size, we can infer the
complexity, the development effort and also the maintain-
ability effort. Table 5 shows the size of VIATRA and ATL
for the transformation case of “AML2SysML.”VIATRApat-
terns are similar to ATL helpers since they make it possible
to factorize code, so they also support reusability. VIATRA
patterns are significantly larger than ATL helpers. The trans-
formation itself in VIATRA is also larger than that in ATL.
We identified two reasons for this: (i) our VIATRA batch
transformation was based on a trace model which represents
the mapping between the metamodels involved. This addi-
tional trace model might require additional coding effort. (ii)
Specifying conditions and implementing imports/extensions
in VIATRA were more code-intensive than in ATL.

Goal: structural complexity

Question: How complex is a transformation specification?
Metric: The structural complexity is measured by the

number of calls and recursive calls [39]. Low complexity
may form the basis for better maintainability and expand-
ability.

Observations: Since the prototypes used were imple-
mented and evolved by different people, comparing the
structural complexity of VIATRA and ATL is only possible
to a limited extent. The VIATRA transformation consists of
22 patterns, whereas the ATL transformation consists of 20
helpers. Patterns and rules both cause calls during a transfor-
mation. In VIATRA, we implemented the pattern rules so as
to avoid additional recursive calls. Doing somakes it possible
to keep the transformation simple, thus fostering transforma-
tion comprehensibility and maintainability. ATL is based on
the declarative rule concept, and ATL rules are often referred
to as lazy and unique [19,36]. As a result, recursive calls
are inevitable in ATL. In the end, structural complexity is
determined by the programming style of the developers, but
structural complexity might also have an impact on other
objectives like execution time and correctness, which will be
discussed later.

Goal: execution time

Question:What is the execution time of the transformations?
Metric: The execution time indicates the duration of the

transformations. The shorter the time, the more efficient the
transformation. Within industrial projects, long transforma-
tions can lead to project delays, which may cause costs and
reduce user acceptance.

Observations: We measured the execution time for the
“AML2SysML” transformation case with respect to VIA-
TRA and the ATL software prototype. The transformations
were conducted on aWindows 10 Pro computer with an Intel
c© Core™ i7-4600U processor and 8 GB RAM. The execu-
tion time was determined for 12 model samples, which we
retrieved together with the ATL prototype [7,29]. Although
13 of the model samples were simply for testing purposes,
the twelfth model sample represented the xPPU lab-size
demonstrator (cf. Section 5). Table 6 indicates the measured
execution time.

We observed that transformations in VIATRA were faster
for models having a low number of model elements (model
samples 1 to 5). In contrast, ATL transformations were faster
for larger models (model samples 6 to 12). We analyzed
the individual transformations in more detail, i.e., we stud-
ied the number of different model types and the number of
hierarchies (lines 2,3 in Table 6). We found that imperative
rule-calling in VIATRA has a significant impact on the exe-
cution time. It slows down the execution time compared to
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Table 6 Comparison of the execution time between VIATRA and ATL using the example of the “AML2SysML” transformation case (execution
time was measured for different model instances)

Model samples #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 xPPU

Number of model elements 2 5 10 15 19 40 50 77 67 70 71 305

Number of model types 2 3 3 4 5 6 7 11 11 13 13 16

Number of model hierarchies 2 3 5 6 6 6 6 6 6 6 6 7

VIATRA execution time [ms] 62 95 146 171 165 312 376 506 512 491 569 1232

ATL execution time [ms] 176 216 224 209 225 252 250 331 286 278 334 1481

declarative rule firing in ATL. We also found transformation
rules which are more time-consuming than others (cf. model
samples 8, 9 and xPPU). This is caused by both the mapping
specification and its implementation.

Furthermore, we leveraged batch transformations within
our VIATRA software prototype, but we are aware of further
VIATRAmodel transformation features, e.g., reactive event-
driven transformations [8]. Although we did not consider
these features because we aimed to investigate the appli-
cability of VIATRA for the model-driven engineering of
mechatronic production systems, further studies should con-
sider those features to make transformations more efficient.

Goal: completeness and correctness

Question:Do the transformations produce complete and cor-
rect results?

Metric: The issue of completeness questions whether all
functionalities of the transformation were used to process
input models correctly, whereas that of correctness questions
whether we were able to generate target models conforming
with their metamodels [39]. Of course, high degrees of com-
pleteness and correctness are desirable. In the following, we
will assess completeness and correctness based on the VIA-
TRA software prototype.

Observations: Concerning completeness, we were able
to implement all transformations in a programmatically cor-
rect manner according to the mapping specifications posed
in Section 4. In the model transformation “SysML–AML”
case study, however, we determined model elements (e.g.,
external reference and version in the AML) within the xPPU
model sample which had not been processed during the
transformation. Similarly, this was determined for the model
transformation “SysML4Mechatronics–AML” case study
since theAMLInterfaceClasses (ICs) andExternalInterfaces
(ExtIs) had not been processed. After analyzing the VIATRA
transformations, we noticed incomplete mapping specifica-
tions.

Concerning the level of correctness, we were able to
instantiate all target model elements according to the map-
ping specifications posed in Sect. 4. However, after evalu-
ating the target model instances, we identified a few model

elements that missed a parent-child relationship (composi-
tion). The reason for this was found in the way that the
transformation was implemented: As mentioned with regard
to the evaluation of structural complexity, we preferred a less
complex transformation and avoided recursive calls. These
calls were necessary in order to create the missing relation-
ships. Manual manipulations were conducted to obtain the
desired correctness.

To conclude, complete and correct transformation can
indeed be achieved using VIATRA. Nevertheless, opti-
mal transformation results will depend on both the model
transformation language and the quality of themapping spec-
ification, as well as the programming approach.

Goal: tool-interoperability

Question: Do the model transformation approaches support
standalone applications for transfer to other tool-chains?

Metric: Regarding this goal, we questioned how flexible
and adaptable the model transformation approaches to dif-
ferent tools are as established tool-chains exist in industrial
practice. In order to successfully transfer model transforma-
tion approaches into industrial practice, integration into other
tool-chains outside the Eclipse IDE should be possible.

Observations:VIATRA andATL have been evolving over
the long term. As a result, they are part of various industrial
and academic tools. Concerning standalone transformation
applications, the VIATRA framework provides an API [22]
that allows the integration of VIATRA features into any
Java application. On this basis, we were able to develop a
small standalone Java application and execute transforma-
tions outside the Eclipse IDE. We were successful in using
the ATLauncher project for executing ATL transformations
programmatically [44].

Both VIATRA and ATL transformations can be executed
outside the Eclipse tool landscape, but they are limited to
Java applications.

Goal: modularity

Question: To what extent is modularity supported?
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Metric: According to Rahimi [39], modularity addresses
the degree of factorization, i.e., the degree of unique expres-
sions. A high degree of modularity is desirable because this
is an essential basis for reusability and extensibility.

Observations: VIATRA by nature provides a modular
structure. Graph-based query patterns are thus used during
the transformation. During the transformation development
for all case studies, we were able to save effort and time by
reusing patterns. Applying preconditions and find constraints
to these patterns was particularly valuable for developing
robust and reusable transformations.

The nature of ATL also provides a modular structure.
Organizing rules into different modules makes it possible to
obtain a high level of factorization. ATL helpers are similar
to the methods used in object-oriented programming. They
allow for reusing modules and rules from different points
of a transformation. Furthermore, ATL allows one to define
declarative rules for processing the source model correctly,
which is similar to preconditions in VIATRA.

In conclusion, both VIATRA and ATL provide a wide
range of capabilities for achieving a high level of modularity.

Goal: development effort

Question: How long does it take to develop the transforma-
tions?

Metric: Development effort is generally measured in a
quantitative time phase. The shorter the development time,
the more likely the application is in practice.

Observations: Reliable measuring of the development
effort becomes challenging because the development effort
relies on developer expertise regarding the model trans-
formation language and the complexity of case studies.
As a consequence, we reported on our observations dur-
ing the development process and tried to estimate the
development effort. At the beginning of our research, we
understood themetamodels and developed themapping spec-
ifications, but we had less practical expertise in VIATRA
and ATL. As a consequence, we spent approximately 14
full-time working days learning these model transforma-
tion languages and applying them correctly within Eclipse
IDE. Developing and implementing the model transforma-
tion case study “SysML–AML” took about 16 full-time
working days, and the required extensions for the second
“SysML4Mechatronics–AML” case study required another
four working days.

In a nutshell, the development effort for transformations
in VIATRA is manageable. We hypothesize that a similar
assumption can be made for ATL. We see the reasons for the
manageable development effort in the context of wide com-
munity support. Furthermore, practitioners with experience
in object-oriented programming have significant advantages
in applying both VIATRA and ATL.

6.3 Survey evaluation

An experiment with students was carried out to gather feed-
back about VIATRA. The aim was to provide information
on the understandability, learnability, and attractiveness of
VIATRA. A sample group of mechatronic engineering and
computer science students frombachelor studyprogramswas
recruited to participate in the experiment (n = 6, all male).
The students were not chosen but rather participated on a
volunteering basis. The students had a variety of experi-
ence levels in object-oriented programming, but they had
experience in neither model transformations nor the model
transformation case studies proposed in this paper. The sam-
ple size considered was sufficient since our aim was only an
initial evaluation of VIATRA.

The experiment was conducted as a tutorial, with a dura-
tion of 150 minutes. The experiment consisted of three parts.
(i) In the beginning, the purpose of the experiment was
explained and the demographic data of the students were col-
lected. (ii) Subsequently, a short introduction to the model
transformation approaches with VIATRA was provided in
order to provide a general understanding. (iii) In the main
part of the tutorial, the students had to complete a VIATRA
transformation case study according to step-by-step instruc-
tions and execute the transformation correctly. Throughout
the entire tutorial, feedback was gathered through a survey
and interviews with the supervisor. This provided us with
information regarding levels of understandability, learnabil-
ity, and attractiveness. Please note that, due to the time limit
of 150minutes, the participants did not applyATL inpractice.
As a result, we are not able to report on ATL in this section,
and this issue should be investigated in further research.

Please note that, due to the time limit of 150 minutes,
the participants did not apply ATL in practice. We unfortu-
nately did not have more students to conduct a second survey
with ATL. As a result, we are not able to report on ATL in
this section, and this issue should be investigated in further
research.

Goal: learnability, understandability, attractiveness

Question: How much effort is required to apply VIATRA?
How understandable is the written code for prospective engi-
neers? How attractive is VIATRA?

Metric: In accordance with the work of Rahimi [39], lev-
els of learnability, understandability, and attractiveness were
measured by means of a survey. During the main part of
the experiment, we asked eleven questions regarding learn-
ability, eight questions regarding understandability, and nine
questions regarding attractiveness (see Table 7). The assign-
ment of the questions to the categorieswas not communicated
to the students. We used a 7-point Likert scale for each ques-
tion since our sample set consisted of only six students andwe
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Table 7 Results of the
questionnaire (n = 6; 1 =
strongly disagree, 7 = strongly
agree)

Mean Median SD

Learnability of the VIATRA Query Language 4.67

It requires less time to learn. 4.83 5 1.47

It encourages me to try out new features. 4.67 4.83 1.21

It does not require remembering many details. 4.83 5.5 1.6

It is easy to remember. 5 5 0.89

It is easy to learn without help or manuals. 2.83 2.5 1.47

The pattern structure facilitates learning. 5.83 6 0.98

Learnability of Transformation Rules 4.33

It requires less time to learn. 4.33 4.5 1.75

It encourages me to try out new features. 4.67 5 2.07

It does not requires remembering many details. 4.5 4 0.83

It is easy to remember. 5.33 5.5 1.21

It is easy to learn without help or manuals. 3.33 3 1.86

Overall Understandability 5.17

It is easy to understand. 5.33 5.5 1.21

It uses understandable terms/concepts. 4.83 3 1.86

It is efficient to apply. 6.17 6 1.51

It is well structured and easy to follow. 5.5 5 1.22

It requires less time to learn. 4 4 1.79

It is easy to remember. 4.67 5.5 1.75

It easy to represent relationships/associations. 5.5 6 1.22

The “Trace Model” supports the understandability. 5.5 6 0.83

Overall Attractiveness 4.63

I would use it myself. 5 5.5 1.79

It is suitable for use in (industrial) practice. 5.67 6 1.37

It motivates me to use model transformations. 5.17 5.5 1.72

It is easy to understand for practitioners. 4.83 5.5 1.94

The “Transform Handler” is easy to use. 4.5 4.5 1.38

A specific GUI would facilitate its use. 5.33 5 1.51

It is suitable for beginners in MDE. 3.5 4 2.17

It is easy for the user to operate in the application. 4.67 5 1.37

It can be used without previous knowledge. 3 3 1.90

aimed to increase the degree of variance in our measurement.
The better the survey results, the more likely it is that VIA-
TRA is suitable for MDE environments using mechatronic
production systems.

Observations: Although a step-by-step guide was pro-
vided, and a supervisor was available for questions, the
learning effort was perceived as being slightly high. The
main reasons for this were three-fold: (i) limited knowledge
about the model transformation case studies andmetamodels
involved; (ii) no experience with the VIATRA framework;
and (iii) little experience with the Eclipse IDE. However,
even during the experiment we were able to observe that
the participants worked faster and more independently as
time progressed. In the interviews, it was reported that the
transformation specification using theVIATRA internalDSL

was harder to learn than the pattern definition using VIA-
TRA Query Languages. The reason for this was that the
various rules for specifying transformations require more
background knowledge.

VIATRA shows strength in its understandability for both
query patterns and transformation specifications. Query pat-
terns explicitly refer to the metamodels. This might be
beneficial for domain experts of certain modeling languages
who are also the developers of model transformation appli-
cations. Further strength in this context was identified when
making use of a trace model, which is an EMF-based model
that refers to query patterns and thus realizes the map-
ping specification between two metamodels of different
domains. Since this trace model can be inspected graphi-
cally either in VIATRA or EMF, the mapping can be more
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effectively tracked and understood. Participants asked for
additional interactive graphical functionalities that support
the development and application of model transformations.
Understandability was also perceived when using the VIA-
TRA internal DSL for specifying transformation. The reason
for this was the reliance on the internal DSL, which is based
on Xtend and Java. As a result, closeness (cf. Section 6.1)
to an object-oriented programming language has a positive
influence on its understandability.

Finally, we asked about the overall attractiveness of VIA-
TRA. It was reported that VIATRA is less suitable for
practitioners having little experience in MDE. In contrast,
this fact was partly compensated for by the closeness to
object-oriented programming. This closeness makes VIA-
TRA attractive for programmers having object-oriented
experience to learn and to step into MDE. Another weak
point addresses the platform-dependency with respect to the
Eclipse IDE, which makes VIATRA less attractive. The per-
ception is that this requires further knowledge. On the other
hand, the modularity and the frequent reuse of query patterns
make VIATRA attractive. It allows one to develop model
transformation efficiently.

In conclusion, VIATRA showed promising strengths and
weaknesses that indicate opportunities for improvement.
However, we are also aware of factors (e.g., less MDE expe-
rience, tool troubles) affecting our findings from this survey.
To overcome these factors, our recommendation would be to
further validate these findings by conducting in-depth user
experience studies.

6.4 Evaluation for reliability and generalizability

Question: How reliable and generalizable is VIATRA and
model transformation case studies to other mechatronic pro-
duction system model samples?

Metric: When validating reliability and generalizability
on other mechatronic production system model samples, the
following applies: The less change effort and adjustments are
required when executing the model transformation, the more
reliable and robust are the specified model transformation
case studies and the VIATRA solution implemented.

Observations: In Section 6.3, we introduce 16 model
samples of industrial applications from the Automation ML
Association [3,16]. Most of the model samples were cor-
rectly transformed according to the mapping specification
of our model transformation case studies. In the following,
we discuss and highlight four relevant findings. (i) When
importing the model samples into the Eclipse IDE, manual
adaptions of the XML file were needed. This step can theo-
retically be automated, to save costs and time for engineers
and model transformation experts. (ii) Few model exam-
ples contained RoleRequirement elements with an additional
attribute. Model elements with those additional attributes

(so-called boundary cases) were not considered during the
transformation; hence, it implies a loss of information during
transformation. The reason for this is not the VIATRA trans-
formation itself, but the non-unique mapping specification
combined with our individual implementation of manag-
ing boundary cases. When transferring such a solution to
industrial practice, such boundary cases must be resolved by
defining handling rules in the mapping specification and its
correct implementation in VIATRA. (iii) To assess whether
a model transformation has generated correct target models,
the generated models were inspected manually within the
VIATRA-based Eclipse IDE. To simplify and save time for
such an inspection process, both VIATRA and Eclipse fea-
tures might be leveraged, i.e. by developing a customized
editor with error messages and visualized traceable model
elements. (iv) Due to VIATRA’s tool-interoperability, there
is a low effort to built-in this implementation into other engi-
neering applications. In conclusion, VIATRA demonstrated
their reliable and robust transformation capabilities when
applying it to other mechatronic production system model
samples.Aprerequisite for reliable and robust transformation
is an underlying mapping specification that is unambiguous
and specifies the handling of boundary cases.

6.5 Synopsis

In this section, we will recapitulate our evaluation and sum-
marize our observations. We assessed VIATRA according
to the evaluation framework of Rahimi [39], which makes
use of the Goal-Question-Metric paradigm [57]. We slightly
adapted and applied the evaluation framework for the pur-
poses of our study. Table 8 is a concise summary of our
observations regarding the characteristics considered.

Whereas ATL combines the relational and imperative
paradigm, VIATRA additionally integrates the graph-based
paradigms. Furthermore, VIATRA allows us to develop
and execute both model-to-model (M2M) and model-to-
text (M2T) transformations. ATL and VIATRA are tightly
integrated into the Eclipse IDE and the Eclipse Modeling
Framework, which allows the development of extensive and
industrial transformation applications. At the same time,
available interfacesmake it possible to couple the application
with other external applications. This is especially interest-
ing for the model-based development of production systems.
The applications can be developed in the Eclipse IDE but can
then be integrated and used in other tool-chains.Which of the
two transformation approaches is applied depends not only
on the respective capabilities but also on the users’ experi-
ence. Here we have found that ATL is based on OCL and is
closely related to OMG’s MDA, increasing the chances to
be the favorite of modeling experts. VIATRA, on the other
hand, is based on a graph-based query language and an inter-
nal DSL based on Xtend and Java, which makes VIATRA
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Table 8 Summary of the evaluation results

Evaluation Goals VIATRA ATL

Theoretical Evaluation (Sec. 6.1)

Abstraction Level M2M (imperative, declarative,
graph-based)
M2T (template-based)

M2M (imperative, declarative)

Maturity high (2000-2020) high (2005-2020)

Closeness required knowledge in
graph-theory, EMF, Xtend/Java,
Eclipse IDE

required knowledge in OMG’s
OCL and MOF, Eclipse IDE

Prototype Evaluation (Sec. 6.2)

Error Handling and Support advanced tool-support, extensive
documentation and broad
community support

advanced tool-support, extensive
documentation and broad
community support

Size code-intensive, more difficult to
maintain

less code-intensive, clearly
represented

Structural Complexity easy and flexible management of
structural complexity

limited management of structural
complexity (due to declarative
ATL concepts)

Execution Time faster/slower for small/high
number of model elements

faster/slower for high/small
number of model elements

Completeness and Correctness correct programmatical behavior correct programmatical behavior

Tool-Interoperability available via VIATRA API available via additional
“ATLauncher project”

Modularity various concepts available to
achieve high modularity, e.g.,
graph-based patterns,
preconditions and constraints

various concepts available to
achieve high modularity, e.g.,
modules, helpers, lazy and
unique rules

Development Effort learn VIATRA ≈ 14 full-time
working days
case study 1 ≈ 16 full-time
working days
case study 2 ≈ 4 full-time
working days

learn ATL ≈ 14 full-time working
days
case study 1 ≈ already available
from other research
case study 2 ≈ not investigated

Survey Evaluation (Sect. 6.3)

Learnability VIATRA query languages (VQL)
is easier to learn than VIATRA
internal DSL for specifying
transformations

not investigated

Understandability graph-based paradigm and
closeness to object-oriented
programming facilitate
understandability

not investigated

Attractiveness platform-dependency to Eclipse
and learning effort are perceived
as weak points; modularity and
closeness to programming are
perceived as strengths

not investigated

Generalizability Eva. (Sect. 6.4)

Reliability & Generalizability Applicable to a wide range of
model samples; structural
transformations are correct and
robust; (manual) adaptions for
semantic correctness might be
needed

not investigated
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interesting for users with less experience in modeling but in
object-oriented programming. Teaching takes an important
role for both transformation approaches to ensure its effec-
tive and efficient use for the model-driven engineering of
mechatronic production systems. However, since the xPPU
represents a lab-size demonstrator and the case studies are
specific, generalized conclusions about the scalability are
possible to a limited extend. To overcome this threat, we
applied VIATRA and the model transformation case studies
(cf. Sect. 4) to further 16model samples from theAutomation
ML Association [3,16]. We found out that the transforma-
tions are structurally correct and robust. However, we foresee
adaptions might be needed to ensure semantic correctness.
This can be achieved by manual adaptions of the generated
(target) models or by adapting the mapping specifications.
We discuss this in the threats to internal and external validity
(Sect. 7).

In summary, with VIATRA, the same functions for model
transformation applications can be achieved as with ATL.
Compared to ATL, VIATRA allows the development of
both M2M and M2T transformations and this is especially
important for the model-driven engineering of mechatronic
production systems. VIATRA is characterized by a higher
level of closeness due to the graph-based paradigm and its
similarity to object-oriented programming. Despite all that
VIATRA features, the essential criterion for applicability
remains two factors: (i) the previous experience of the user
with modeling/programming and (ii) the industrial-specific
requirements for a transformation framework. Even though
we have identified some interesting findings regarding the
applicability of VIATRA, there are also threats to the level
of validity that have to be considered when analyzing the
evaluation results. These threats will be discussed in the next
section.

7 Threats to validity

In the following, we will discuss threats to the validity of
this study. We differentiated between the various threat types
according toWohlin et al. [65], i.e., conclusion, internal, con-
struct, and external validity.

7.1 Conclusion validity

Conclusion validity concerns the reliability of the conclu-
sion that is drawn. Our evaluation framework (Section 6)
relies on predefined metrics for each goal. However, some
metrics might have weaknesses, so the evaluation could lead
to either subjective or inaccurate findings. That is why we
first reported our observations objectively and then presented
our findings. Furthermore, if possible, we assessed VIATRA
with respect to other model transformation approaches. Con-

cerning the experiments with prospective engineers (Section
6.3), two retrospective meetings allowed us to prepare the
findings. Despite our mitigation strategy, threats to reliabil-
ity might still remain.

7.2 Internal validity

The degree of internal validity reflects whether the results
of a study are trustworthy and meaningful. In other words, it
refers to the accuracy of this study. In this study, we identified
three factors that might influence the findings thereof. (i) The
xPPUas lab-size demonstrator, further 16model samples and
the two model transformation case studies were representa-
tive of mechatronic production systems, but there are other
demonstrators and transformation case studies between fur-
ther modeling languages that might lead to deviant findings.
To mitigate this issue, our evaluation framework focused on
assessing VIATRA. If an impact existed, the affected objec-
tives (e.g., correctness and completeness) are mentioned in
Sect. 6.2. (ii) The results of the survey relied on a small
sample of prospective engineers, which we classified as
representative. Although we conducted short interviews in
addition to the survey, there remains the risk that subjective
and social factors had an influence on the results. Especially
the threat of validity due to the experience level of OO mod-
eling needs to be highlighted. We did not separate between
students with limited OO modeling skills and students with
high experience in OO modeling which might be leading to
subjective and biased results. (iii) VIATRA provides a rich
portfolio of model transformation features. Not all of these
were included in this study (e.g., event-driven, reactivemodel
transformation), and theymay also distort the findings of this
study. However, rather than assessing all VIATRA features,
this study concentrates on the initial evaluation of VIATRA
for the model-driven engineering of mechatronic production
systems.

7.3 Construct validity

Construct validity concerns the relationship between the
results and the underlying concept. As a result, construct
validity considers threats to social factors and the research
design [65]. A threat may arise from the motivation of the
authors in conducting this study. This social factor is known
as hypothesis guessing [65], i.e., that the behavior of the
authors during this study might be affected (either posi-
tively or negatively), depending on their expectations of the
results. Another threat arises from the research design of this
study. To minimize this threat, our study was based on sev-
eral research studies. The method we used for conducting
the study on model transformations was inspired by [52,63].
The evaluation framework was derived and adapted from
[39]. To be representative of the model-driven engineering
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of mechatronic production systems, our model transforma-
tion case studies were retrieved and adapted from [7,38,43].
By drawing on this research work, we were able to explore
the applicability of VIATRA to mechatronic production sys-
tems.

7.4 External validity

External validity concerns the ability to generalize the results
beyond this scope. The results might be influenced since we
restricted ourselves to the two transformation case studies
regarding VIATRA batch transformation and a small model
sample size. Themitigation strategy in this case was to derive
the “SysML–,AML” case study, which is representative of
model-driven engineering for mechatronic production sys-
tems. To support reliability and generalizability, we extended
the case study by considering the SysML4Mechatronics
profile and by applying VIATRA and the model transfor-
mation case studies to further 16 model samples from the
AutomationMLAssociation [3,16]. Consequently, this study
provides a solid basis for furtherwork.Of course, further case
studies are recommended for consideration, in which context
the further capabilities of VIATRA can be examined more
closely. Another threat arose from the sample of prospective
engineers during the survey evaluation (Section 6.3), which
might not be representative enough. Our mitigation strategy
thereby was to select students having different kinds of pro-
gramming experience but little to no experience in modeling.
This strategy was beneficial for us due to the following two
reasons: (i) Many engineers have little experience in mod-
eling (cf. [1]), and (ii) we received valuable feedback on
the VIATRA framework together with the Eclipse IDE. Of
course, the experience with Eclipse might have biased the
results. Our mitigation strategy was here: (1) we held a tuto-
rial with an introduction to Eclipse. (2) Before the survey, we
pointed out that tool and transformation language should be
evaluated as separately as possible.

8 Conclusion and outlook

This paper presents an applicability study of VIATRA for
the interdisciplinary model-driven engineering of mecha-
tronic production systems. Drawing on other research, two
representative model transformation case studies, “SysML–
AutomationML” and “SysML4Mechatronics–Automation
ML,” are presented and implemented as batch transforma-
tions within a VIATRA software prototype. The prototype
was evaluated against various criteria and compared with
other model transformation approaches, e.g., ATL, which is
the de-facto standard formodel transformations inMDE. The
important findings will be concluded in the following.

Whereas ATL combines the relational and imperative
paradigm, VIATRA additionally integrates the graph-based
paradigms, whichmakes VIATRA attractive and intuitive for
userswith less experience inmodeling than in object-oriented
programming. Furthermore, VIATRA allowed us to develop
and execute both model-to-model (M2M) and model-to-
text (M2T) transformations which is extremely important
in the engineering of mechatronic production systems. ATL
and VIATRA are tightly integrated into the Eclipse IDE
and the Eclipse Modeling Framework (EMF), which enable
the development of extensive and industrial transformation
applications. At the same time, the available interfaces make
it possible to couple the application with other external appli-
cations. This is especially interesting for the model-based
development of production systems, since the applications
can be developed in the Eclipse IDE, but can then be inte-
grated into and used in other tool-chains. Which of the two
transformation approaches is applied depends on both the
respective capabilities and user experience. In this case, we
found that ATL is based on OCL and is closely related
to OMG’s MDA, thus increasing the chances of being the
favorite of modeling experts. VIATRA, on the other hand, is
based on a graph-based query language and an internal DSL
based on Xtend and Java, which makes VIATRA interesting
for users having less experience in modeling than in object-
oriented programming. In both transformation approaches,
teaching takes an important role in ensuring effective and
efficient use for model-driven engineering of mechatronic
production systems.

In a nutshell, with VIATRA, the same functions for model
transformation applications can be achieved as with ATL.
Additional promising capabilities make VIATRA attractive
for the model-driven engineering of mechatronic produc-
tion systems. Of course, many research efforts still remain,
including among them the derivation of complete application
caseswithmodel samples representing engineering data from
a real-world production system.Corresponding requirements
for the transformation framework can be derived and bound-
ary conditions on the company side might be identified. The
VIATRA framework is able to make use of different (e.g.,
reactive and event-driven) model transformation features in
order to develop a flexible, adaptable transformation frame-
work that meets industrial requirements. Furthermore, the
framework can be integrated into an already existing tool-
chain to improve development process efficiency. Finally, a
comparative study with this baseline provides information
on whether VIATRA in industrial practice is beneficial.
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