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Abstract
To determine whether we could train convolutional neural network (CNN) models de novo with a small dataset, a total of 596
normal and abnormal ankle cases were collected and processed. Single- and multiview models were created to determine the
effect of multiple views. Data augmentation was performed during training. The Inception V3, Resnet, and Xception
convolutional neural networks were constructed utilizing the Python programming language with Tensorflow as the framework.
Training was performed using single radiographic views. Measured output metrics were accuracy, positive predictive value
(PPV), negative predictive value (NPV), sensitivity, and specificity. Model outputs were evaluated using both one and three
radiographic views. Ensembles were created from a combination of CNNs after training. A voting method was implemented to
consolidate the output from the three views and model ensemble. For single radiographic views, the ensemble of all 5 models
produced the best accuracy at 76%.When all three views for a single case were utilized, the ensemble of all models resulted in the
best output metrics with an accuracy of 81%. Despite our small dataset size, by utilizing an ensemble of models and 3 views for
each case, we achieved an accuracy of 81%, which was in line with the accuracy of other models using a much higher number of
cases with pre-trained models and models which implemented manual feature extraction.
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Introduction

Several recent studies have demonstrated the utility of ma-
chine learning for fracture detection in musculoskeletal im-
ages. One study performed manual feature extraction on
145 radiographs, utilized a random forest machine learning
algorithm, and achieved a fracture detection accuracy of
81% [1]. Rather than requiring manual feature engineering
of the images, convolution neural networks (CNNs) allow
for image evaluation with native image inputs [2]. By using
a large dataset of ~ 53,000 studies and training the novel

DenseNet CNN de novo, one study achieved a 97% fracture
detection accuracy for the femoral neck on pelvic radio-
graphs [3, 4].

An alternative to training a CNN de novo is to use pre-
trained CNN models. There are currently many readily
available open-source implementations of CNNs through
frameworks such as Caffe [5]. Many of these models are
pre-trained on the dataset from the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) containing mil-
lions of non-medical images [6]. When using pre-trained
models, only the last layer or two of the CNN are re-
trained on the dataset of interest, but the rest of the model
is kept unchanged. These pre-trained networks have been
shown to be good feature extractors, and one study
achieved a fracture detection accuracy of 83% utilizing
them with ~ 256,000 wrist, hand, and ankle radiographs
[7]. However, pre-trained models are not always available
for the newest architectures. In addition, the input channel
for the pre-trained models are set at 3, so each grayscale
image with 1 channel needs to be triplicated before being
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fed into the network. Finally, any modifications to the pre-
trained network necessitate that the models be re-trained
from that layer on. Therefore, as deep learning models
become more specialized to medical images, the need for
de novo training to incorporate more flexibility may be-
come necessary.

All the aforementioned studies showed promising re-
sults, but required either large datasets, pre-trained models,
or manual feature engineering. The purpose of our study
was to determine whether we could achieve comparable
accuracy with models utilizing a significantly smaller
dataset and with de novo training. For our CNN architec-
tures, 3 relatively modern models were selected: Inception
V3, Resnet, and Xception. The Inception V3 Network is
based on the principles of the generous use of dimension-
ality reduction, which resulted in a substantial decrease in
computational load while increasing model performance
[8]. The Resnet architecture was designed to construct
deep networks that were easy to optimize and enjoyed ac-
curacy gains with increasing depth [9]. Finally, the
Xception network incorporated both concepts from the
Inception and Resnet architectures for improved perfor-
mance [10].

In addition, we know empirically that having more views
available for a case increases the accuracy of a clinicians’
rendered diagnosis. However, most, if not all, machine learn-
ing algorithms evaluating fractures assessed only a single

radiographic image. Therefore, we also wanted to provide
objective evidence that deep learning models can increase
their accuracy by having more radiographic views available
for each case.

Materials and Methods

An institutional IRB approval was obtained prior to research
initialization. A total of 298 normal and 298 fractured ankle
studies were identified by parsing Radiology reports. The im-
aging was reviewed by a board-certified radiologist and a
fourth-year Radiology resident to make sure the imaging
was concordant with the report. Once a case was verified, they
were not excluded even if they only had one or two views. An
ankle fracture was defined as a fracture of any bone visible on
the study, including the proximal forefoot, midfoot, hindfoot,
distal tibia, and distal fibula. No other inclusion or exclusion
criteria were implemented. The images were then de-
ident i f ied for Heal th Insurance Por tab i l i ty and
Accountability Act of 1996 (HIPAA) compliance.

Pixel value extraction from the Digital Imaging and
Communications in Medicine (DICOM) data was performed
using Pydicom [11]. Each image was resized to a 300-by-300-
px image with 1 grayscale channel (300 × 300 × 1) and appro-
priate intensity re-scaling was performed based on bits allo-
cated using SciPy [12]. The 300-by-300 size chosen was

Fig. 1 Example cases of ankle
fractures. Each row represents a
different patient, and the images
are ordered as frontal, oblique,
and lateral views from the left to
the right. The first row
demonstrates a minimally
displaced lateral malleolar
fracture with an incidental non-
ossifying fibroma. The middle
and last rows demonstrate
trimalleolar fractures with a
widened medial tibiotalar joint
space
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somewhat arbitrary, but many studies on modern neural net-
works have chosen similar sizes [8, 10], and nearly all neural
networks use a square input shape [2]. Forty normal and 40
abnormal cases with three available views for each case were
extracted as the validation and test sets for a total of 240 total
views. The remaining cases were utilized as the training
dataset. The model was trained utilizing single radiographic
views, so a total of 689 abnormal and 752 normal views for
total of 1441 views were utilized for training. The uneven size
of the abnormal and normal views resulted from the abnormal
cases having a higher proportion of single-view and two-view
imaging compared with the normal cases. Sample fracture
cases are shown in Fig. 1. During the training process, data
augmentation was performed to increase generalization
through perturbation via random image rotation, flipping,
brightness variation, and contrast alteration. Each image was
standardized to a mean of 0 and standard deviation of 1, which
is a common pre-processing method for deep learning models
[2]. Convergence of model training was monitored using the
softmax cross-entropy loss, which is a common loss function
utilized for neural networks evaluating binary classifications,

which in our case was normal vs fracture [2]. Models were
considered converged once the loss values plateaued and no
longer decreased.

A total of five different convolutional neural network ar-
chitectures were constructed: Inception V3 [8], Resnet, Resnet
with dropout and auxiliary tower (drop/aux) [9], Xception,
and Xception with dropout and auxiliary tower (drop/aux)
[10]. The Inception V3 [8] and Xception [10] networks were
constructed as outlined by the original papers. For the Resnet,
the 101-layer architecture was utilized, and the updated skip
connection encompassing the full pre-activation identity map-
ping was implemented [13]. In addition, as suggested in the
original paper, both a dropout layer and auxiliary tower were
added to create the Resnet with drop/aux architecture to in-
crease regularization strength. The auxiliary tower was added
between the conv3 and conv4 multi-layer residual unit as de-
scribed in the original paper [9]. Similar to our Resnet archi-
tecture, we also created an Xception network with both the
dropout layer and auxiliary tower (drop/aux), which were sug-
gested but only partly implemented in the original paper. The
auxiliary tower was placed in the third-loop iteration of the

Table 1 The architecture of the
Inception V3 model. Each row
represents a layer of the network,
and the input of a particular layer
is the output of the previous layer.
For the inception layers, each row
represents parallel sub-layers that
were concatenated prior to being
passed to the subsequent layer.
The list of parameters in each row
represents serial processes within
the sub-layer. With the Inception
6 layer, the parameters within the
parentheses represent additional
parallel sub-layers within the
serial processes. The number of
times each Inception layer is
repeated is prepended to each
layer name

Type Patch size/strides Input size

Conv 1 3 × 3/2 300 × 300 × 1

Conv 2 3 × 3/1 149 × 149 × 32

Conv 3 3 × 3/1 147 × 147 × 32

Max pool 1 3 × 3/2 147 × 147 × 64

Conv 4 1 × 1/1 73 × 73 × 64

Conv 5 3 × 3/1 73 × 73 × 80

Max pool 2 3 × 3/2 71 × 71 × 192

3× Inception 1 1 × 1/1 35 × 35 × 192
1 × 1/1, 3 × 3/1

1 × 1/1, 3 × 3/1, 3 × 3/1

Avg pool 3 × 3/1, 1 × 1/1

Inception 2 3 × 3/2 35 × 35 × 288
Max pool 3 × 3/2

1 × 1/1, 3 × 3/1, 3 × 3/2

4× Inception 3 1 × 1/1 17 × 17 × 768
1 × 1/1, 1 × 7/1, 7 × 1/1

1 × 1/1, 1 × 7/1, 7 × 1/1, 1 × 7/1, 7 × 1/1

Avg pool 3 × 3/1, 1 × 1/1

Auxiliary Avg pool 5 × 5/3, 1 × 1/1, linear, softmax 17 × 17 × 768

Inception 5 1 × 1/1, 3 × 3/2 17 × 17 × 768
1 × 1/1, 1 × 7/1, 7 × 1/1, 3 × 3/2

Max pool 3 × 3/2

2× Inception 6 1 × 1/1 8 × 8 × 1280
1 × 1/1, (1 × 3/1, 3 × 1/1)

1 × 1/1, 3 × 3/1, (1 × 3/1, 3 × 1/1)

Avg pool 3 × 3/1, 1 × 1/1

Avg pool 8 × 8/1 8 × 8 × 2048

Output Dropout, linear, softmax 1 × 1 × 2048
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middle flow as described in the original paper [10]. The spe-
cific layer architecture of the models is shown in Tables 1, 2,
and 3.

Once all the models were trained, an ensemble of models
was created utilizing all possible combinations resulting in an
odd number of total models. An odd number of models was
necessary to prevent ties during the voting process.
Specifically, 3 models were chosen from the 5 that were
trained (Inception V3, Resnet, Resnet with drop/aux,

Xception, and Xception with drop/aux), and the validation-
test set output metrics were calculated for each model and
the score was averaged. This process was performed for every
possible combination of models. Ensembling was performed
since previous studies have shown it to increase the perfor-
mance of deep learning networks [14]. In addition, since the
models were constructed to evaluate a single radiographic
view, a voting method was implemented to evaluate 3 views
as a single output from each model. Code is available on
GitHub of the corresponding author.

The models were built utilizing the Python programming
language using the Scikit-learn [15] and Tensorflow libraries
[16]. Output measures included positive predictive value
(PPV), negative predictive value (NPV), sensitivity, specific-
ity, and accuracy. The models were trained on a GeForce 1080
GTX graphical processing unit (GPU) on Pitt’s Center for
Researching Computing GPU cluster.

Results

Model convergence was achieved by 2000 epochs or itera-
tions of training taking approximately 1 day of computation
per model. Training CNN models require the selection of
multiple hyperparameters, which are tunable parametersin
the model and are often kept close to the values determined
by the original implementation. In our case, the learning rate
was between 4e-6 and 6e-6, L2 decay rate was between 0.4
and 1.0, and auxiliary decay was between 0.4 and 0.9. The
dropout rate was kept at 0.5.

For single radiographic views, the ensemble consisting of
all five models produced the best fracture detection accuracy
of 76% for the validation-test set. As expected, in essentially
all cases, the output metrics demonstrated better values when
all three views were utilized when compared with only a sin-
gle view being evaluated (Table 4). The ensemble consisting
of all five models utilizing all 3 views produced the best over-
all results, with output metrics greater than or equal to 80% for
all parameters including accuracy, PPV, NPV, sensitivity, and
specificity for the validation-test set (Table 4).

Discussion

The purpose of our study was threefold: to determine whether
we could use relatively small datasets and approach the accu-
racy of models using large datasets, to determine whether our
models trained de novo approached the accuracy of pre-
trained models and models requiring manual feature engineer-
ing, and to see whether we could increase the accuracy of
models by using multiple views for each case. The smaller
dataset issue is relevant for any researcher interested in the
implementation of machine learning algorithms in the field

Table 2 The architecture of the Resnet model. Each row represents a
layer of the network, and the input of a particular layer is the output of the
previous layer. Serial processes are represented as comma-separated
parameters in each row. The number of times each Conv layer is
repeated is prepended to each layer name. The feature map sizes are
downsampled by a factor for 2 during the first iteration of Conv 3 to
Conv 5. Resnet models with and without inclusion of the Auxiliary and
dropout were constructed

Type Patch size/strides Input size

Conv 1 7 × 7/2 300 × 300 × 1

Max pool 1 3 × 3/2 147 × 147 × 64

3× Conv 2 1 × 1/1, 3 × 3/1, 1 × 1/1 74 × 74 × 64

4× Conv 3 1 × 1/1, 3 × 3/1, 1 × 1/1 74 × 74 × 256

23× Conv 4 1 × 1/1, 3 × 3/1, 1 × 1/1 37 × 37 × 512

Auxiliary Avg pool 5 × 5/3, 1 × 1/1, linear, softmax 19 × 19 × 1024

3× Conv 5 1 × 1/1, 3 × 3/1, 1 × 1/1 19 × 19 × 1024

Avg pool 10 × 10/1 10 × 10 × 2048

Output Dropout, linear, softmax 1 × 1 × 2048

Table 3 The architecture of the Xception network. The Conv 6 layer is
repeated eight times. Each row represents a layer of the network. Serial
processes are designated by comma-separated parameters. Xception
models with and without Auxiliary and dropout were constructed

Type Patch size/strides Input size

Conv 1 3 × 3/2 300 × 300 × 1

Conv 2 3 × 3/1 150 × 150 × 32

Conv 3 3 × 3/1, 3 × 3/1 150 × 150 × 64

Max pool 1 3 × 3/2 150 × 150 × 128

Conv 4 3 × 3/1, 3 × 3/1 75 × 75 × 128

Max pool 2 3 × 3/2 75 × 75 × 256

Conv 5 3 × 3/1, 3 × 3/1 38 × 38 × 256

Max pool 3 3 × 3/2 38 × 38 × 728

8× Conv 6 3 × 3/1, 3 × 3/1, 3 × 3/1 19 × 19 × 728

Auxiliary Avg pool 5 × 5/3, 1 × 1/1, linear, softmax 19 × 19 × 728

Conv 7 3 × 3/1, 3 × 3/1 19 × 19 × 728

Max pool 4 3 × 3/2 19 × 19 × 1024

Conv 8 3 × 3/1 10 × 10 × 1024

Conv 9 3 × 3/1 10 × 10 × 1536

Avg pool 10 × 10/1 10 × 10 × 2048

Output Dropout, linear, softmax 1 × 1 × 2048
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of medical imaging. At the time of this manuscript write-up,
manual data parsing, image labeling, and study de-
identification take a non-trivial amount of resources in our
practice setting. Furthermore, finding a clean dataset of med-
ical images is difficult in the open-source community outside
of chest radiographs [17], so we wanted to explore the lower
limit of cases necessary to approach the accuracy of studies
utilizing a much higher number of cases. Unfortunately, our
model ensemble achieved a single radiographic view accuracy
of only 76%, which was likely the result of our small sample
size.

Subsequently, we implemented a voting method to consol-
idate the output of three separate views for a single patient into
single binary output, which increased fracture detection accu-
racy from 76 to 81%. By using an ensemble of models and
three views for each case, we were able to approach the frac-
ture detection accuracy of pre-trained models using a large
dataset of ~ 256,000 cases (83%) [7] and the model using
manual feature extraction (81%) [1]. Our models were not
directly trained on 3 views due to computational limitations,
as the amount of data that can be loaded at once onto the GPU
is limited. So, using 3 views instead of 1 view would result in
significantly increased file sizes, leading to lower batch sizes
and suboptimal training. In addition, training on single images
retained the flexibility of evaluating a single radiographic
view and potential for utilizing these trained models to evalu-
ate other body parts, such as the pelvis.

The limitations of our study included evaluating only ankle
radiographs. The body part choice was arbitrary, but we wanted
to keep the study scope narrow by only focusing on one body
part. Regarding accuracy, even with our three-view, ensembled
model, we did not approach the 97% accuracy claimed by the
study utilizing a large dataset of ~ 53,000 cases and de novo
training of a DenseNet CNN [3]. As an aside, the DenseNet is

an example of a novel CNN architecture for which pre-trained
models were not available at the time of this study and would
have necessitated de novo training [4]. Finally, the number of
cases we collected ended up being suboptimal for our study; if
we had instead amassed 5000–10,000 cases, our accuracy like-
ly would have been higher.

Conclusion

Despite our small dataset size, by utilizing an ensemble of
models and 3 views for each case, we achieved an accuracy
of 81%, which was in line with the accuracy of other models
using a much higher number of cases with pre-trained models
and models which implemented manual feature extraction.
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