
Vol:.(1234567890)

Journal of Digital Imaging (2023) 36:2648–2661
https://doi.org/10.1007/s10278-023-00883-0

1 3

Subject‑Specific Automatic Reconstruction of White Matter Tracts

Stephan Meesters1,2 · Maud Landers2 · Geert‑Jan Rutten2   · Luc Florack1

Received: 1 March 2023 / Revised: 5 July 2023 / Accepted: 5 July 2023 / Published online: 3 August 2023 
© The Author(s) 2023

Abstract
MRI-based tractography is still underexploited and unsuited for routine use in brain tumor surgery due to heterogeneity of 
methods and functional–anatomical definitions and above all, the lack of a turn-key system. Standardization of methods is 
therefore desirable, whereby an objective and reliable approach is a prerequisite before the results of any automated procedure 
can subsequently be validated and used in neurosurgical practice. In this work, we evaluated these preliminary but neces-
sary steps in healthy volunteers. Specifically, we evaluated the robustness and reliability (i.e., test–retest reproducibility) of 
tractography results of six clinically relevant white matter tracts by using healthy volunteer data (N = 136) from the Human 
Connectome Project consortium. A deep learning convolutional network-based approach was used for individualized seg-
mentation of regions of interest, combined with an evidence-based tractography protocol and appropriate post-tractography 
filtering. Robustness was evaluated by estimating the consistency of tractography probability maps, i.e., averaged tractograms 
in normalized space, through the use of a hold-out cross-validation approach. No major outliers were found, indicating a 
high robustness of the tractography results. Reliability was evaluated at the individual level. First by examining the overlap 
of tractograms that resulted from repeatedly processed identical MRI scans (N = 10, 10 iterations) to establish an upper limit 
of reliability of the pipeline. Second, by examining the overlap for subjects that were scanned twice at different time points 
(N = 40). Both analyses indicated high reliability, with the second analysis showing a reliability near the upper limit. The 
robust and reliable subject-specific generation of white matter tracts in healthy subjects holds promise for future validation 
of our pipeline in a clinical population and subsequent implementation in brain tumor surgery.
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Introduction

Knowledge of patient-specific white matter tracts is impera-
tive for brain surgical procedures to minimize the loss of 
sensorimotor, language, or cognitive functions. Diffusion-
weighted tractography methods have enabled in vivo recon-
struction of white matter structures and already yield valuable 
clinical information regarding the relationship of peritumoral 
tracts to glioma [1]. However, tractography is still underex-
ploited and not very well suited for use in routine clinical 
practice. Data analysis is complex and requires dedicated 

software as well as a skilled and informed user. Besides a 
variety of conceptual possibilities and technical parameters 
to choose from, there is also no definite clinical consensus 
on the functional–anatomical definitions of the various white 
matter tracts [2, 3]. Schilling et al. recently performed a study 
whereby 42 independent teams were given similar sets of 
whole-brain streamlines [4]. The authors observed a very 
large variability in the segmentation of tracts between teams 
and concluded that this is to a large extent caused by user-
variability and the lack of a consistent framework for defining 
tracts. This stresses the need for standardized methods and 
the use of automated pipelines in clinical practice.

Semi-automatic procedures have initially been devel-
oped to reduce this variability [5, 6]. Over the past 
decade, several studies have gone one step further and 
focused on automating the entire process, including data 
acquisition, detection, and correction of abnormalities in 
the diffusion data, reconstruction of white matter tracts, 
and visualization of results [7–12]. Most of these studies 
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generate streamlines via anatomically defined regions of 
interest (ROIs). A common approach is to use a brain 
atlas that is defined in a normalized space (such as the 
MNI-152 template), whereby the standardized brain has 
predefined (sub)cortical brain regions [13]. While this 
approach has the advantage of speed, involving usually a 
linear or non-linear transformation from atlas to patient 
space, its ability to account for anatomical inter-subject 
variability is limited [14]. This shortfall becomes espe-
cially prominent in patients with brain tumors, such as 
low- or high-grade gliomas, where local deformation and/
or infiltration of the brain due to tumor growth can lead 
to significant errors in the co-registration process or to 
tissue misclassification [15–17].

With the introduction of processing toolboxes for neu-
roimaging, more accurate subject-specific segmentations 
were made. Examples are FreeSurfer and MAPER, which 
use extensive image techniques from the computer vision 
field such as the Bayesian approach with anatomical priors, 
or the Markov Random Field approach [18, 19]. However, 
these approaches are computationally very demanding, and 
its runtime would likely become a limiting factor for a pro-
cessing pipeline deployed for clinical use, where a timely 
processing is important. In recent years, there has been a 
rise of neural network-based segmentations of brain struc-
tures using deep convolutional neural networks (DCNN). 
These DCNNs have shown to outperform classical regis-
tration-based approaches in both segmentation accuracy 
and computation time (excluding any one-time network 
training steps) [20]. Examples of DCNN-based frameworks 
capable of segmenting over 100 cortical and subcortical 
structures are BrainSegNet [21], DeepNAT [22], SLANT 
[23], QuickNAT [24], PSACNN [25], Assemblynet [26], 
FastSurfer [27], and ACEnet [28].

As with any technique, baseline performance and charac-
teristics should preferably be tested in healthy subjects and 
be of sufficient quality before, in our case, pipeline results 
can be used in patients with brain tumors and subsequent 
validated against clinical expert opinion [29]. In this study, 
we focus on this first step and investigate whether an auto-
mated pipeline (i.e., without any user intervention) can pro-
vide robust and reliable tractography results in healthy sub-
jects. Note that in this study, we are not validating pipeline 
results in patients (for example, against intraoperative sub-
cortical electrical stimulation mapping). We define robust-
ness as the ability of the pipeline to produce tracts in every 
subject (i.e., there should be no false-negatives in healthy 
subjects) and to do so with a minimal number of obvious 
outliers as judged against generally accepted anatomical 
knowledge (i.e., we aim for a low number of false-positives). 
We define reliability as test–retest reproducibility of pipeline 
results at the level of a single subject.

Four different experiments are performed with data of 
136 healthy subjects that were randomly selected from the 
Human Connectome Project. We have opted for the SLANT 
(Spatially Localized Atlas Network Tiles) algorithm, which 
has an excellent segmentation performance and allows for 
implementation inside a Docker container for fast pipeline 
integration [23]. Over the past years, we have regularly pro-
cessed brain tumor patients with our pipeline and compared 
results against clinical techniques and expertise, among oth-
ers intraoperative electrical stimulation mapping and results 
from commercially available software (Medtronic Stealth 
Viz) [30]. After a period of feedback and optimization in 
approximately fifty cases, we became convinced that our 
automatically generated pipeline results had significant 
clinical relevance and decided (in retrospect) to describe its 
characteristics in terms of performance in a healthy popula-
tion. As such, in anticipation of further future validation 
and use of the pipeline in brain tumor patients, six clinically 
relevant white matter tracts were tested in the current study 
[1, 31, 32]. In the first experiment, tractography results of 
all healthy subjects are combined into tractogram probability 
maps to capture the variability that results from various sub-
ject-specific and pipeline-specific sources along the pipe-
line, such as anatomical differences and the variability that is 
inherent to probabilistic tractography. In the second experi-
ment, a hold-out cross validation is performed to quantify 
the consistency of individual results. Such a procedure can 
signal whether substantial deviations from the mean are 
present, whereby we assume that in a population of healthy 
subjects, these outliers represent false-positives. To assess 
reliability, two additional experiments were performed. In 
a third experiment, diffusion-weighted scans from 10 ran-
domly picked healthy subjects were processed 10 times to 
quantify the influence of non-deterministic elements in the 
pipeline (namely the probabilistic tractography algorithm) 
and to establish an overall upper limit of reliability. To assess 
the effect of physiological and non-physiological sources of 
noise on tractograms, we analyzed data from 40 subjects that 
were scanned twice at different occasions (experiment 4).

Material and Methods

The automated pipeline is schematically outlined in Fig. 1. 
Details on tractography of the six white matter tracts are 
given in the “Anatomical Definitions of ROIs” section. 
A distinction is made using color-coding regarding the 
processing steps used for healthy volunteer data, which 
will be the data considered in this study, and the additional 
processing steps that are required for clinical data (to be 
formally evaluated in future studies).
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Imaging Data and Preprocessing

Magnetic resonance imaging (MRI) data from the Human 
Connectome Project (HCP) were used [33]. The WU-Minn 
HCP Data S1200 release contains structural and functional 
MRI data that was acquired on a 3 T Connectom Skyra 
(Siemens, Erlangen) MRI scanner equipped with custom-
ized hardware, namely a gradient coil and gradient power 
amplifiers that allow for a maximum gradient strength of 
100 mT/m that especially benefits the quality of the diffu-
sion MRI (dMRI) scans. The current study made use of the 
T1 anatomical scan and the dMRI scans.

The dMRI scans were acquired with an isotropic spa-
tial resolution of 1.25 mm, three diffusion weighting values 
(b = 1000, 2000, 3000 s/mm2) and 90 diffusion directions. 
The structural T1 scan was acquired at 0.7 mm isotropic. 
The HCP provides for each subject a preprocessed T1 ana-
tomical scan that was corrected for readout distortions and 
a preprocessed DWI image, for which motion correction, 
susceptibility distortion and eddy-current correction have 
been applied [34].

For the current study, we selected 136 unrelated subjects 
from the S1200 release and used the preprocessed scans 
[33]. Steps were taken to make the high-quality HCP data-
set more akin to a dataset acquired from a clinical protocol, 
which typically involves a shorter acquisition time and con-
sequently has a lower number of diffusion directions, only 
a single shell, and/or a lower resolution. To this end, the T1 

anatomical scan was resampled to 1 mm isotropic, and the 
dMRI scans were resampled to 2 mm isotropic and reduced 
to a single shell with a diffusion weighting of b = 2000. In 
addition to the scans used from the S1200 release, 40 of 
the included subjects were scanned on a separate occasion 
(range 1–11 months; average 4.7 ± 2 months) with the exact 
same scanning protocol, hardware, and preprocessing scripts 
as part of the S1200 test–retest interval update dataset. The 
dMRI was processed using MRTrix3 to create a fiber orien-
tation density function (fODF), which is a modelling tech-
nique to represent the arrangement of white matter fibers 
and has the ability to resolve regions of crossing fiber con-
figurations [35, 36]. To this end, the dwi2response routine 
was used, with the Tournier iterative algorithm selected, to 
estimate a response function [37]. Finally, the dwi2fod rou-
tine was used to generate the fODF, using the constrained-
spherical deconvolution (CSD) method [38].

Automatic Segmentations of Regions of Interest

Estimation of regions of interests (ROIs) to seed and restrict 
the tractography algorithm was done by parcellation of the 
brain in cortical and sub-cortical areas. These areas were 
used to define the estimated regions of interest for seed-
ing and restriction of the tractography algorithm. Spatially 
Localized Atlas Network Tiles (SLANT) uses deep learning 
to compute a subject-optimized whole brain segmentation 
of 133 anatomical regions (63 per hemisphere, 7 containing 

Fig. 1   Overview of the automatic pipeline, showing the steps from 
processing the initial input data (the “Imaging Data and Preproc-
essing” section), automatic segmentation of regions of interest (the 
“Automatic segmentations of regions of interest” section), tractog-
raphy of six white matter tracts (the “Tractography Algorithm and 
Parameters” and “Anatomical Definitions of ROIs” sections), tractog-

raphy filtering (the “Post-tractography Filtering” section) and crea-
tion of respectively tractograms and tractogram probability maps (the 
“Experiments” section). Steps that were included in the pipeline for 
healthy subjects are color-coded in blue, and additional steps required 
for patient data are shown in green. The input image data and the out-
put tractograms and associated maps are colored in yellow



2651Journal of Digital Imaging (2023) 36:2648–2661	

1 3

part of both hemispheres) [23]. Further refinement was 
achieved by the use of a thalamus segmentation algorithm 
available as a package in FreeSurfer, which uses a proba-
bilistic atlas of the thalamus together with Bayesian infer-
ence to tailor the atlas to the individual subject [18, 39]. 
The thalamus segmentation algorithm was adapted to use, 
as an input, the segmentation results of SLANT in stead of 
the FreeSurfer results, so that it was not necessary to run the 
computationally heavy FreeSurfer segmentation algorithm. 
This led to a hybrid segmentation approach incorporating 
both DCNN and classical segmentation algorithms.

Tractography Algorithm and Parameters

Tractography was performed using a probabilistic tracking 
algorithm available in MRTrix3. Specifically, the iFOD2 
method was used, which is based on the fODF computed 
during preprocessing (c.f. the “Imaging Data and Preproc-
essing” section) and was chosen for its ability to resolve 
intra-voxel crossing fibers [40]. For each tractogram, stream-
lines originate from randomly placed voxels within the seed 
region and were generated, unidirectionally (i.e., growing 
only from one side), until a voxel of the target region was 
reached. When using multiple target regions, the algorithm 
was set to stop growing until any of these target regions 
had been reached. For further optimization, the protocol 
makes use of exclusion regions for four of the six tracts. Any 
streamlines entering an exclusion region were discarded.

Both the anatomical definitions of the ROIs that were 
used, as well as tractography parameters, were optimized for 
each tract separately. This was done on a (patient) case-by-
case basis in close collaboration with clinical experts (among 
others authors GR and ML) and technicians (author SM). 
Important parameters that required tuning were the number 
of streamlines and the fODF amplitude cut-off value. The 
latter value determines the localized minimal signal-to-noise 
ratio that is sufficient for propagating streamlines.

Anatomical Definitions of ROIs

The six tracts that we have chosen for this pipeline are all func-
tionally important tracts as seen from a clinical-neurological 
perspective and have shown reasonable to good correspondence 
to results from intraoperative electrical stimulation mapping 
[32, 41]. ROIs were carefully selected on the basis of clinical 
expert knowledge and review of the literature. Before we con-
ducted the actual experiments that are described in this paper, 
there was a developmental phase of approximately 2 years 
where we iteratively optimized the include and exclude regions 
of interest and several parameters. We did so by testing the 
pipeline in brain tumor patients and discussing results with a 
group of clinical experts, including neurosurgeons that perform 
awake tumor surgery in our hospital. We have ample experience 

in our center with the use of preoperative and (navigated) intra-
operative tractography. In 2014, we published a protocol for 
four clinically relevant tracts (corticospinal tract, arcuate fas-
ciculus, inferior fronto-occipital fasciculus, optic radiation) 
based on 100 brain tumor cases [31]. Over the years, this pro-
tocol was refined and expanded by us, based on state-of-the-art 
knowledge in the literature and clinical feedback from (awake) 
brain tumor cases, and was subsequently implemented in our 
automated pipeline [30, 32, 42]. Of note, results of our current 
experimental prototype pipeline are still regularly asked for by 
neurosurgeons from our hospital and considered a valuable 
adjunct to our existing clinical workflow for tractography [31].

Corticospinal Tract (CST)

The ipsilateral anterior part of the midbrain was used as a 
seed region to include the cerebral peduncle that contains 
the corticospinal tract. Since this anatomical region was not 
available in the SLANT atlas, it was created by (1) slicing 
the brain stem along its anterior–posterior axis, and select-
ing the anterior part, and (2) selecting an axial slice of 4 mm 
at the anatomical midpoint of the fourth ventricle. Target 
region is the precentral gyrus, including the more lateral 
parts (that are generally the most difficult part to reconstruct 
due to the high number of crossing fiber projections in that 
region). Additional refinements were made using the con-
tralateral brainstem as exclude region, to reduce the number 
of false-positive streamlines that cross the midline of the 
brainstem, and the thalamus as exclude region (to discard 
false-positive streamlines within the thalamus). An anatomi-
cal feature of the corticospinal tract is that it contains fibers 
running from medial to lateral along the convexity of the 
precentral gyrus (primary motor cortex) all going down-
wards aligning in the anterior part of the brain stem.

Inferior Fronto‑occipital Fasciculus (IFOF)

We chose as seed region the pars triangularis, pars opercula-
ris and pars orbitalis of the inferior frontal gyrus, the anterior 
and posterior orbital gyrus, and the frontal pole (frontopolar 
cortex). The target regions selected in the current study were 
the inferior, medial, and superior occipital gyri. An anatomi-
cal feature of the inferior fronto-occipital fasciculus is that 
the fibers all traverse through the capsula externa. Therefore, 
this region was provided as an additional include region to 
the algorithm. The capsula externa was approximated by 
selecting a spherical region of 24 mm3 inside the white mat-
ter between the posterior insular cortex and the putamen.

Optic Radiation (OR)

As a seed region, the lateral geniculate nucleus (LGN) was 
used, with an additional constraint of the seeding direction 
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laterally towards the temporal and frontal lobes in order 
to reduce the number of false-positive streamlines. In the 
MRTrix3 tractography algorithm, this was achieved by enforc-
ing the initial seed direction within a 90°-cone centered in a 
specified direction. Furthermore, the LGN region was enlarged 
using a dilation operation with a Gaussian kernel (1.5 mm iso-
tropic) to increase the likelihood of segmenting the LGN given 
anatomical variations in this area. The target region is the cal-
carine cortex (i.e., primary visual cortex). For refinement, we 
used the following additional exclude regions: the precuneus, 
basal forebrain, and the lingual gyrus. An anatomical feature 
of the optic radiation is Meyer’s loop, which has a high fiber 
curvature and often has an underestimated anterior extent due 
to interference from crossing fibers [43].

Arcuate Fasciculus (AF)

The terminology of the arcuate fasciculus (AF), especially 
in relation to the superior longitudinal system, is still under 
debate [44, 45]. An anatomical feature of the arcuate fas-
ciculus is that arches around the insular cortex on a sagittal 
plane, distinct from the SLF III that has a more horizon-
tal course and terminates in the supramarginal gyrus [45]. 
The seed regions consist of the pars triangularis and pars 
opercularis of the inferior frontal gyrus, and the ventral and 
inferior part of the precentral gyrus. The target regions are 
the middle and posterior part of the superior and medial tem-
poral gyrus. For additional refinement, the putamen, anterior 
insula, and the thalamus were used as exclude regions.

Frontal Aslant Tract (FAT)

As seed regions, the supplementary motor area (SMA) and pre-
supplementary motor area were used. As there are no anatomi-
cal landmarks that define the pre SMA, a vertical virtual plane 
passing through the genu of the corpus callosum was used to 
determine the anterior boundary of the pre SMA. The target 
regions are the pars opercularis and pars triangularis of the 
inferior frontal gyrus [46]. An anatomical feature of the frontal 
aslant tract is its oblique (aslant) course within the frontal lobe.

Superior Longitudinal Fasciculus (Third Component) (SLF)

The superior longitudinal fasciculus (SLF) is commonly 
divided into three distinct bundles based on their cortical 
seed and target regions [42]. In the current study, we inves-
tigated the ventral component, referred to as the SLF III. 
For this component, the seed regions are the pars triangu-
laris and pars opercularis of the inferior frontal gyrus and 
the ventral precentral gyrus. The target region is the supra-
marginal gyrus. Additional exclude regions were placed at 
the angular gyrus, the thalamus and the superior temporal 
gyrus. The superior temporal gyrus was slightly enlarged 

using a dilation operation with a Gaussian kernel (3.0 mm 
isotropic) within the grey matter in order to reduce the num-
ber of false-positive streamlines. An anatomical feature of 
the SLF III is its horizontal course connecting frontal with 
parietal regions. It is located laterally to the superior limit-
ing sulcus, whereas the AF arches around the insula and is 
located medially to it.

Post‑tractography Filtering

A downside of probabilistic tractography is that the resulting 
tractograms may contain spurious, or deviating, streamlines. 
These are noisy streamlines that are not well-aligned with their 
neighboring streamlines and likely have little anatomical sig-
nificance. To produce white matter tracks that are more robust 
under the stochastic realizations of probabilistic tractography, 
we opted for a filtering based on the Fiber-To-Bundle Coher-
ence (FBC) measures that are publicly available in the Diffu-
sion Imaging in Python (DIPY) package [47, 48]. For an expla-
nation of how to use the FBC measures, the reader is referred 
to https://​tinyu​rl.​com/​Fiber​ToBun​dle. The FBC measures com-
pute a kernel density estimation for all the streamlines, in the 
space of both positions and orientations, and subsequently filter 
the fibers that have a particularly low density.

The main parameter of the FBC measures that requires 
careful tuning is the cut-off density (denoted by RFBC) of 
removing spurious fibers. We tuned this parameter for each 
tract individually, based on a visual inspection by medical 
experts, whether or not the filtering removed any anatomi-
cally plausible fibers, and always opting for a conservative 
setting. For visual inspection, both a cross-section of single 
subjects was investigated, as well as the results of a group-
averaged tractogram map.

Technical Specifications and Integration Into the Clinic

The pipeline was implemented in Python 3 and was segre-
gated into a presentation layer, using Flask to serve a web-
page for user management, and a data access layer, using 
the Flask REST-API together with a SQLite3 database. For 
optimal performance, the GPU-accelerated version of FSL 
Eddy, included in the dwipreproc script in MRTrix3, was 
used. ITK was used to generate a DICOM containing the 
tractography results in a color-coded voxelized image for 
export into a PACS system.

The pipeline was installed on a Debian 10.8 server 
equipped with an Intel Xeon Gold 6244 CPU with 32 
threads, 251 GB of RAM, and two NVIDIA Quadro RTX 
6000 videocards. The averaged processing time for all 
subjects was 2.2 ± 0.3 h. Note that since the preprocessed 
DWI images available in the HCP repository were used 
for all healthy volunteers, the FSL Eddy processing step 
was skipped.

https://tinyurl.com/FiberToBundle
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Experiments

Experiment 1: Tractogram Probability Maps

Tractogram probability maps make it possible to measure 
the variability of the tractography method and represent the 
probability of finding a streamline in a voxel. These group 
maps reflect variability from multiple sources, such as ana-
tomical inter-subject variability (for instance reflected in sig-
nificant differences in volumes of ROI) or non-deterministic 
noise factors from the probabilistic tractography algorithm. 
For each bundle of each subject, a tract density image was 
created using the tckmap function in MRTrix3, which counts 
the number of streamlines that traverses a voxel [49, 50]. 
Subsequently, this tract density image was transformed to 
the MNI-152 template by non-linear transformation using 
NiftyReg, using the DWI b = 0 image as a reference for com-
puting the warp-field necessary for the transformation [51]. 
Each normalized tract density image was binarized by apply-
ing a threshold on the number of streamlines K such that 
voxels that satisfy K ≥ 1 become one and otherwise become 
zero. Finally, a tractogram probability map was computed 
by combining the normalized and binarized tract density 
images and averaging the result for each voxel.

To assess inter-subject anatomical variability, mean vol-
umes and standard deviation of seed and target ROIs speci-
fied in the tractography protocol (see the “Anatomical Defi-
nitions of ROIs” section) were calculated, averaged for the 
left and right hemispheres individually.

Experiment 2: Hold‑out Cross Validation

To quantify the robustness of the tractogram probability maps, 
a hold-out cross validation evaluation is applied. For this pur-
pose, subjects are split into randomized testing and training 
groups, and the averaged similarity of both groups is repeat-
edly compared to each other. This is a model validation tech-
nique that is commonly used to evaluate how the results of an 
analysis will generalize to an independent data set. A low cross 
validation error indicates that a robust tractogram probability 
map can be created from a small subset of the data. While 
a priori variation is expected within the tractography results 
(as this is the rationale to perform subject-specific tractogra-
phy in the first place), this procedure can nevertheless signal 
whether substantial deviations from the mean are present and 
thus identify potential false-positive outliers. The hold-out pro-
cedure in general involves the following steps: (1) creation of 
arbitrarily labelled training and testing groups of subjects, the 
relative group sizes of which are defined as the so-called hold-
out ratio; (2) creation of tractogram probability maps for both 
groups according to the “Imaging Data and Preprocessing” 
section; (3) calculation of the overlap between the tractogram 
probability maps of both groups. Steps 1–3 are repeated N 

times, and the resulting overlap values are averaged. To com-
pute the overlap, the Dice coefficient was used and calculated 
according to ODice = 2N(A ∩ B) / (N(A) + N(B)) where A and 
B are binarized tract density maps and N is the number of 
nonzero voxels in the map. In the current study the hold-out 
validation procedure was performed using a hold-out ratio of 
10% and with 300 randomized subsets. Based on these param-
eters, random subsets of training (N = 13) and testing (N = 129) 
datasets were selected, after which binarized probability maps 
were generated using a 5% minimal confidence level.

Experiment 3: Repeated Processing of Identical DMRI Scans

To investigate the influence of the probabilistic tractography 
algorithm on single-subject tractograms, we randomly 
selected 10 subjects from the HCP dataset and applied the 
automatic tractography pipeline with identical settings 10 
times for each subject. For each tract and each iteration indi-
vidually, a binarized tract density map was created according 
to the procedure as described in Experiment 1: Tractogram 
Probability Maps. Finally, as a measure of reliability, the 
average Dice coefficient overlap was computed for each tract 
by taking all possible combinations (without repetition) 

between the iterations, i.e., 
(

10

2

)

 combinations per tract.

Experiment 4: Repeated Scanning of Subjects At Different 
Time Points

Repeated processing of identical scans is useful to establish 
an upper limit regarding the reproducibility of the pipeline. It 
does, however, not take into account the noise that results from 
changes in the hardware and physiology of the subject over 
time. To this end, we evaluate data of 40 subjects available 
in the HCP that were scanned twice at different time points. 
A pair-wise comparison of tractogram probability maps was 
performed by first normalizing the maps using a non-linear 
coregistration in subject-specific space, and subsequently cal-
culating the overlap using the Dice coefficient. The distribu-
tion of overlap values for all 40 pair-wise processed subjects is 
then plotted. To investigate the effect of repeated scanning on 
segmentation of the ROIs, the Dice coefficient was calculated 
between pairs of seed or target regions.

Results

Tractography Algorithm and Parameters (End 
Results of Optimization Process)

The number of streamlines was set at 5000 streamlines for 
the FAT, 15,000 streamlines for the IFOF, 7000 streamlines 
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for the SLF, and 7500 streamlines for the AF, CST, and OR. 
The fODF amplitude cutoff was set at 10% of the maximum 

amplitude for the OR, 7% for the IFOF and CST, 7.5% for 
the AF, 8% for the SLF, and 9% for the FAT. For all tracts, a 
step size of 0.2 mm and a radius of curvature of 1 mm were 
used, and the fODF was fitted with 8 spherical harmonic 
coefficients. The maximum number of times that the track-
ing algorithm was run to find an appropriate tracking direc-
tion was set at 10,000 attempts per seed voxel.

Anatomical Definitions of ROIs

Approximately 50 patients with low-grade and high-grade 
gliomas were analyzed, whereby ROIs were iteratively opti-
mized based on feedback of neurosurgeons who specialize in 
(awake) brain tumor surgery and functional neuroanatomy. 
Resulting seed, target and exclude regions of interest were 
used for the current study in healthy subjects. Figure 2 shows 
some illustrative patient examples.

Experiment 1: Tractogram Probability Maps

Tractogram probability maps were generated for the six 
tracks of interest and are illustrated in Fig. 3 (see for further 
details of the optic radiation also Fig. 7 in Appendix).The 
tractogram probability maps are shown for varying mini-
mal confidence levels (5%, 50%, 90%), indicating, for each 
voxel, the percentage of test subjects whose tract density 

Fig. 2   Results of the automated pipeline shown in three patients with 
gliomas, illustrating that in some patients tracts are displaced (e.g., 
the corticospinal tract (green) in patient A with a low-grade glioma, 
and the optic radiation (red) in patient B with a high-grade glioma), 
whereas in other patients tracts have infiltrated parts of the tumor 
(e.g., the frontal aslant tract (blue) in patient C with a low-grade gli-
oma). For these patients, MR-based tracts were in accordance with 
clinical findings and results of intraoperative electrical stimulation 
mapping

Fig. 3   The tractogram prob-
ability map shown for six white 
matter tracts as visualized on 
the MNI-152 anatomical tem-
plate; A corticospinal tract, B 
inferior frontal occipital fascicu-
lus, C optic radiation, D arcuate 
fasciculus, E frontal aslant 
tract, F superior longitudi-
nal fasciculus, third branch. For 
each panel, the top row depicts 
maps with a varying minimal 
confidence level, showing all 
the voxels where at least in 5% 
(respectively 50% and 95%) of 
cases a streamline appeared in 
each voxel. For each panel, the 
bottom row depicts brain slices 
showing the tractogram prob-
ability map at a 50% confidence 
level. Each map is color-coded 
and scaled by brightness from 
minimal to maximal confidence. 
See also Fig. 7 in Appendix 
for more details on the optic 
radiation
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image contained at least one streamline. The maps have been 
made publicly available in NIftI-1 format at the following 
URL: https://​tinyu​rl.​com/ TractographyPipelineMaps.

The average standard deviation for the seed and target 
ROIs amounts to 26% and 23%, respectively. This indicates 
that there is considerable anatomical variation in the size 
of the ROIs.

Experiment 2: Hold‑out Cross Validation

The results of the hold-out validation procedure are shown in 
Fig. 4, indicating for each tract the average Dice coefficient 
between randomized testing and training maps in the form of 
a box and whisker plot. The lower extremes of the box and 
whisker plots show for all tracks a Dice coefficient at or above 
0.7, which is traditionally considered a good overlap value, 
indicating that there are no substantial deviations in overlap 
from the mean [52]. The average Dice coefficient is near 0.8 
for all tracts considered, indicating a moderately high degree 
of overlap between randomized testing and training maps.

Experiment 3: Repeated Processing of Identical DMRI Scans

In Fig. 5, the results of repeated processing of identical 
dMRI scans are shown. For each tract, the reliability after 
the application of FBC filtering (see “Post-tractography 
Filtering” section) is indicated using either none, medium 
(RFBC = 10−3), or high (RFBC = 10−1) filtering settings. 

The filtering setting used in the tractography protocol is 
indicated for each tract by M (medium) or H (high). It can be 
observed that, for each tract, the Dice coefficient increased 
as the post-tractography filter was applied with a stronger 
filter setting. Using the strongest filter setting, the Dice coef-
ficient was near or above 0.9 in all cases.

Experiment 4: Repeated Scanning of Subjects At Different 
Time Points

The results of the test–retest variability assessment are 
shown in Fig. 6. The Dice coefficients indicate a good aver-
age coherence (above 0.75), indicating that the tractography 
results have a high reliability when considering variations 
in input data between two time points that cannot be con-
trolled for. For each tract, baseline reliability as estimated 
from the processing of identical dMRI scans (see Experi-
ment 3: Repeated Processing of Identical DMRI Scans) is 
plotted as a red line, which corresponds to the average Dice 
coefficient for the FBC filtering strength selected as part of 
the tractography protocol. The variability from the repeated 
scanning experiment is understandably lower, but close to, 
the reported upper limit.

Test–retest results for the automated segmentation of 
ROIs is listed in Table 1. For each subject, the Dice coef-
ficients of the left and right hemispheres were averaged. 
All coefficients were above 0.8, indicating a moderately 
high overlap.

Fig. 4   Estimation of the robust-
ness of the pipeline via tracto-
gram probability maps using 
holdout cross validation, shown 
as box-and-whisker plots. Of 
the available datasets (N = 136), 
randomized testing and train-
ing sets were created (300 
iterations) using a 10% hold-out 
rate. Most tractograms indicate 
a moderately good average over-
lap of testing and training maps, 
at a Dice coefficient over 0.7

https://tinyurl.com/
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Fig. 5   Estimation of the reli-
ability of repeated processing 
of dMRI scans. Shown for 
different stages of filtering from 
left to right: none, medium 
(RFBC = 10 − 3) and high 
(RFBC = 10 − 1) using box-and-
whisker plots. In most cases, 
the use of medium filtering 
led to an increase in the Dice 
coefficient, and thus the inferred 
stability of the tracts. The high 
filtering further increased the 
Dice coefficient further for all 
tracts. Statistical differences are 
indicated with an asterisk

Fig. 6   Demonstration of the 
reliability of the tractogram 
probability maps in a pair-wise 
evaluation of the test–retest data 
of 40 healthy subjects, shown 
as box-and-whisker plots. Each 
tract is color-coded as khaki 
(left hemisphere) and blue (right 
hemisphere). For each tract, 
the reliability as determined 
from the processing of identical 
dMRI scans (see Fig. 4) is plot-
ted as a red line
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Discussion

Clinicians today lack a standardized method for acquiring 
and reconstructing MRI-based white matter tracts due to 
various methodological, physiological and pathological 
sources of variability, leading to a large inter-user variabil-
ity in the interpretation of results [1]. This raises a chicken-
and-egg problem because as long as there is no consensus 
on methodology and definition of tracts among different 
users and centers, results will a priori differ, complicating 
clinical validation. Even among knowledgeable and expe-
rienced users, there is concern about intra- and interuser 
reproducibility with manual placement of ROIs [53]. We 
developed a modular data-processing pipeline that allows for 
the fully automatic reconstruction of white matter tracts to 
address this problem. ROIs were carefully selected and itera-
tively optimized on the basis of clinical expert knowledge 
and review of the literature. We subsequently investigated 
robustness and reliability (i.e., test–retest reproducibility) 
of the pipeline in healthy subjects for six clinically relevant 
tracts. We see our preliminary work as a first and necessary 
step toward validation and subsequent clinical use of trac-
tography in brain tumor patients.

Robustness of tractograms was evaluated using a holdout 
cross validation approach, and indicated that there were no 
substantial deviations from the mean in terms of overlap. 
Group maps of each tract yielded a consistent anatomical 
course, suggesting a low rate of false-positives and indi-
cating a high robustness of tractography results. Although 
there is obviously some inter-subject variability due to dif-
ferences in anatomy, as demonstrated also by the variability 
in sizes of the individual ROIs, there were no major outli-
ers [54]. Reliability was evaluated in two ways: by repeated 
processing of identical MRI data sets along the pipeline 
(which estimated test–retest properties of the probabilistic 
algorithm), and by test–retest evaluation of subjects at dif-
ferent points in time (this further added variability due to 
differences in noise due to hardware and subject-specific 
physiology). Repeated processing of identical MRI scans 
showed a high overlap (average Dice coefficient of 0.9 for 
all tracts) without any post-tractography filtering. When 
post-tractography filtering is applied, reliability increases 

significantly when the strength of the filter is increased. The 
amount of filtering chosen, which was either of the medium 
or high variant, was based on visual inspection regarding the 
presence of streamlines that were deemed false-positives. 
In these cases, streamlines would for example enter ana-
tomically implausible regions. In the current study, we have 
opted for medium and high filtering variants to find a bal-
ance between removing spurious streamlines and retaining 
true positive streamlines.

Test–retest characteristics of methods to derive white 
matter tracts have received significantly less attention 
than for other neuroimaging techniques [55]. We know 
of no studies that analyzed robustness and test–retest 
reproducibility of fully automatized subject-specific trac-
tography in healthy subjects. Kristo et al. performed a 
test–retest study in eleven healthy subjects with manually- 
selected ROIs. These authors found a mean overlap 
between sessions (as calculated with a Dice score) of 0.63  
for the corticospinal tract and 0.58 for the arcuate fas-
ciculus. These numbers are somewhat lower than ours 
(> 0.75 for all tracts), perhaps reflecting additional uncer-
tainty due to manual segmentation. Boukadi et al. used a 
“nearly automatic way” to extract white matter bundles 
of the language network in eighteen healthy subjects, and 
describe a variable, but overall good overlap between two 
time points, with (weighted) Dice coefficient over 0.70 
for all studied language tracts [55]. Tracts were recon-
structed using White Matter Query Language, a method 
developed by Wassermann et al. that uses a dictionary of 
definitions including gray and white matter regions and 
rules for spatial relations [56].

A major factor in the reliability of tractography results 
is the segmentation quality of the anatomical regions used 
[53]. A novelty of our approach is that we incorporated 
a deep convolutional neural network in our automated 
pipeline (DCNN). This method makes it possible to 
delineate (sub)cortical structures and ROIs at the level 
of the individual subject, as opposed to the traditional 
atlas-transformation-based approaches that are based on 
group averages. This method potentially better addresses 
the significant variability in sulcal and gyral anatomy 
that is present in normal subjects [57]. Size of the ROIs 

Table 1   Dice coefficient 
calculated between pairs of seed 
or target regions of interest from 
the test–retest dataset

ROI CST IFOF OR AF FAT SLF III

Seed left 0.93 ± 0.02 0.84 ± 0.02 0.77 ± 0.02 0.84 ± 0.02 0.86 ± 0.02 0.84 ± 0.02
Target left 0.83 ± 0.02 0.86 ± 0.02 0.87 ± 0.03 0.89 ± 0.02 0.84 ± 0.03 0.85 ± 0.03
Seed right 0.93 ± 0.02 0.84 ± 0.03 0.76 ± 0.08 0.84 ± 0.02 0.85 ± 0.03 0.84 ± 0.03
Target right 0.83 ± 0.03 0.87 ± 0.02 0.87 ± 0.03 0.89 ± 0.02 0.85 ± 0.03 0.84 ± 0.03
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in our study indeed varied considerably between sub-
jects whereas intrasubject variability was low, stressing 
the importance of a subject-specific approach and argu-
ing against the use of standardized atlases. Notably, in 
patients with brain tumors, this variability will increase 
dramatically due to mass effect or infiltative growth of 
the tumor, underlining the need for an individualized 
approach for ROI identification in patients.

In the current study, the SLANT algorithm, which is a 
DCNN-based brain segmentation algorithm, was used to 
segment the ROIs used in the tractography protocol. SLANT 
was one of the first algorithms to provide a whole-brain seg-
mentation with over 100 labels, which was a technical chal-
lenge due to restrictions in graphics processing unit (GPU) 
memory, and provided superior results to other U-net-based 
DCNN algorithms at the time [23]. Assemblynet provides 
an extension to the SLANT algorithm by using a larger 
number of more compact 3D U-Nets and yielded improved 
results in segmentation consistency and accuracy; however, 
its implementation is not publicly available [26]. PSACNN 
and FastSurfer have possibly improved segmentation per-
formance but offer substantially fewer segmentation labels 
[25, 27]. ACEnet is a recently released DCNN segmentation 
algorithm that offers as many labels as SLANT and indicates 
a higher segmentation performance than both SLANT and 
AssemblyNet [28]. Additionally, ACEnet offers an open-
source implementation, which makes it a very promising 
replacement candidate for the SLANT algorithm used in 
the current work.

Limitations and Future Research

The post-tractography filtering with the FBC filtering algo-
rithm required tuning of the cut-off density, or RFBC param-
eter, for removing spurious fibers. The optimization of this 
filtering parameter remains an unresolved issue due to the 
absence of a ground truth in tractography results. An indirect 
approach for optimizing the filtering parameter was explored 
in the specific case of temporal lobe epilepsy surgery in a 
previous study from our group, where pre- and post-operative  
comparisons of tractography results could be related to 
the extent of resection [47]. An approach that has emerged 
in recent years, and potentially could be useful for tuning 
tractography results in patients, is comparing the results of 
tractography to intraoperative electrical stimulation mapping 
[58–60]. This method is considered the clinical gold stand-
ard for the identification of functional white matter tracts. 

Although it certainly also has its flaws, in general, good cor-
respondence has been noted for selected motor and language 
tracts between both methods [61].

Creating reliable tractography results becomes sig-
nificantly more difficult when considering patients with 
neurological diseases, as opposed to healthy volunteers. 
Patients with a malignant brain tumor, for example, have 
altered brain physiology and anatomy due to mass effects 
and infiltrative growth within healthy brain structures. 
As a result, white matter tracts can be considerably 
deformed due to mass effects, which can make the task 
harder for a tractography algorithm due to for example 
increased curvature or fanning of axons, or due to edema. 
Perhaps even more significant is the deformation of cor-
tical and subcortical structures. Our preliminary experi-
ence of the current pipeline in approximately 50 glioma 
patients indicated that the protocol based on DCNN per-
formed very well in the presence of tumorous masses 
(qualitative judgement made by clinicians, data not pub-
lished in this paper). We therefore expect a significant 
gain when compared to more standard anatomical atlas-
based approaches that assume an underlying healthy 
brain, but this needs to be formally tested and is still a 
potential limitation of our current pipeline. Future work 
has to focus on the evaluation of the whole automatic 
tractography pipeline in a clinical setting, evaluating its 
performance on patients with brain tumors. We also hope 
that different neurosurgical centers are able to use the 
pipeline, so tractography results can be validated and 
further optimized in a multi-center setting, speeding up 
the process of broad clinical use and acceptance.

Conclusion

The current study presents an automatic tractography pipe-
line that is able to generate robust and reliable and subject-
specific white-matter reconstructions in healthy subjects. 
This was accomplished using the DCNN approach for 
detailed subject-specific cortical and subcortical seg-
mentations, and post-tractography filtering to reduce the 
number of false-positive streamlines. As a next step, we 
are planning to validate our reliable and timely subject-
specific pipeline in a systematic manner in a cohort of 
brain tumor patients, whereby we also aim to introduce the 
pipeline in other centers to initiate further optimization in 
a multi-center setting.
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