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Abstract
A linearization technique for binary quadratic programs (BQPs) that comprise lin-
ear constraints is presented. The technique, called “inductive linearization”, extends
concepts for BQPs with particular equation constraints, that have been referred to as
“compact linearization” before, to the general case. Quadratic terms may occur in the
objective function, in the set of constraints, or in both. For several relevant applications,
the linear programming relaxations obtained from applying the technique are proven
to be at least as strong as the one obtained with a well-known classical linearization.
It is also shown how to obtain an inductive linearization automatically. This might be
used, e.g., by general-purpose mixed-integer programming solvers.

Keywords Non-linear programming · Binary quadratic programming ·
Mixed-integer programming · Linearization

Mathematics Subject Classification 68R01 · 90C05 · 90C09 · 90C10 · 90C11 ·
90C20 · 90C30

1 Introduction

In this paper, we present a linearization technique for binary quadratic programs
(BQPs) that comprise linear and possibly also quadratic constraints. A general form
of the problems addressed could be written as follows:
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min xT Q0x + cT x

s.t. xT Qk x + dT
k x ≤ βk k = 1, . . . , m Q

Ax ≤ b

x ∈ {0, 1}n

Here, x ∈ {0, 1}n are the binary variables whose index set is denoted with N :=
{1, . . . , n} in the sequel. The set of products P occurring in the BQP is established by
the matrices Qk ∈ R

n×n , k ∈ {0, . . . , m Q}, in the objective function and the m Q ∈ N0
quadratic restrictions as follows:

P := {(i, j) ⊆ N × N | ∃ k ∈ {0, . . . , m Q} : Qki j �= 0}

Despite using the term “binary quadratic program”, the case wherem Q > 0 and Q0
is all zero, i.e. the problem is rather a quadratically-constrained binary linear program,
is explicitly permitted. Moreover, since xi x j = x j xi for i, j ∈ N , i �= j , and xi = x2i
for all i ∈ N , we may assume the matrices Qk , k ∈ {0, . . . , m Q}, to be strictly upper
triangular, and thus i < j for (i, j) ∈ P .

While quadratic constraints may or may not exist, the linear constraints Ax ≤ b are
in the center of the linearization technique proposed in this paper, and their presence
is hence necessary to apply it. More precisely, we will require that each variable
xi , i ∈ N , that is a factor of a product in P (to be linearized with the technique
proposed), arises in at least one linear constraint (with a non-zero coefficient). In a
binary program, this can be assumed (or established) without of loss of generality (see
also the appendix). Moreover, if this requirement is neither fulfilled in the original
problem nor established for some factors, this does not affect a successful inductive
linearization of all the products whose factors do fulfill the requirement.

The inductive linearization technique generalizes on amethod byLiberti (2007) that
exploits the special case of equationswith right hand side and left hand side coefficients
equal to one, and on its later revision (cf. Mallach 2018). In his original article, Liberti
coined the name “compact linearization” because it typically adds fewer constraints to
such problems than the “standard linearization” (to be addressed in Sect. 2).Moreover,
a more compact linearization than the ones proposed by Frieze and Yadegar (1983)
and Adams and Johnson (1994) can be obtained for the quadratic assignment problem,
and one that is as compact as the one proposed by Billionnet and Elloumi (2001) for
the quadratic semi-assignment problem.

The generalized approach now achieves constraint-side compactness for several
differently structured BQPs as well. Some of these are addressed in Sect. 6. However,
constraint-side compactness cannot be guaranteed for any kind of BQP with linear
constraints. Moreover, depending on how the method is applied, it may also induce
more than |P| linearization variables (although this can, in principle, always be cir-
cumvented as described in the appendix). For these reasons, and since other techniques
have been called “compact linearization” in the literature as well (see e.g. Hansen and
Meyer 2009), a different naming is indicated. In particular, “inductive linearization”
appears to be a good fit, since – as we will see – the approach aims at “inducing”
the products of the set P by multiplying original constraints with original variables.
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Not only in this fashion, it relates to the reformulation-linearization technique (RLT,
cf. Adams and Sherali 1999), but has the appealing advantage that its generated con-
straints linearize implicitly.

Theoutline of this paper is as follows: InSect. 2,webriefly review related techniques
to linearize BQPs. The generalized inductive linearization technique is presented in
Sect. 3, and it is shown in Sect. 4 how it can be applied automatically, e.g., as part of a
general-purpose mixed-integer programming solver. In Sect. 5, it is thoroughly inves-
tigated under which circumstances the linear programming relaxation of the obtained
formulation is provably strong. Prominent combinatorial optimization problemswhere
previously proposed mixed-integer programming formulations now appear as particu-
lar inductive linearizations are highlighted in Sect. 6. Finally, a conclusion and outlook
is given in Sect. 7.

2 Linearizationmethods for BQPs

As linearizations of quadratic and, more generally, polynomial programming prob-
lems, enable the application of well-studied mixed-integer linear programming
techniques, they have been an active field of research since the 1960s.

The seminal idea to model binary conjunctions xi · x j using additional (binary)
variables yi j and the two inequalities xi + x j − 2yi j ≥ 0 and xi + x j − yi j ≤ 1
is attributed to Fortet (1959, 1960), and discussed in several succeeding books and
papers, e.g. by Balas (1964), Zangwill (1965), Watters (1967), Hammer and Rudeanu
(1968), andGlover andWoolsey (1973). Shortly thereafter,Glover andWoolsey (1974)
found that an integrality requirement on yi j becomes obsolete when replacing the first
inequality by the pair yi j − xi ≤ 0 and yi j − x j ≤ 0. The resulting system of
inequalities, usually written down as

yi j ≤ xi (1)

yi j ≤ x j (2)

yi j ≥ xi + x j − 1

yi j ≥ 0, (3)

and that also appears as a special case of the convex envelopes for general nonlinear
programming problems as proposed by McCormick (1976), is until today regarded as
“the standard linearization”, especially as it is always applicable. Moreover, Padberg
(1989) proved the four inequalities to be facet-defining for the polytope associated to
unconstrained binary quadratic optimization problems:

BQPn = conv{(x, y) ∈ R
n × R

(n
2) | x ∈ {0, 1}n, yi j = xi x j for all 1 ≤ i < j ≤ n}

Since, nevertheless, the “standard linearization” often provides rather weak linear
relaxations in practice while it considerably increases their size, refined techniques
that exploit additional structure of a particular problem, smartly couple product vari-
ables, or construct linear over- or underestimators for certain expressions are of high
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demand. However, such refinements are often tailored to (the objective functions of)
BQPs, i.e., consider only linear constraints or none at all. Examples are the posiform-
based techniques by Hansen and Meyer (2009), the “Clique-Edge Linearization” by
Gueye and Michelon (2009), as well as earlier ones by Oral and Kettani (1992a, b).
The “Extended Linear Formulation” by Furini and Traversi (2013) could be applied
to arbitrary products but counteracts compactness compared to a “standard lineariza-
tion” in general. Another exception is the well-known transformation between binary
quadratic optimization and the maximum cut problem (cf. Hammer 1965; Barahona
et al. 1989; De Simone 1990). It allows for a direct translation of a (possibly quadratic)
constraint set, but it necessitates a sophisticated branch-and-cut implementation to be
solved. More involved are as well the linearizations by Chaovalitwongse et al. (2004)
and Sherali and Smith (2007), especially in the presence of quadratic constraints.
There is also no emphasis on the possibly sparse set of truly appearing products P .
The RLT can as well be applied to BQPs even if these involve quadratic constraints.
However, in general, it rather counteracts compactness, and it is not a linearization
technique as such but rather requires a linearization technique to be employed for
its second step. As an exception, an implicit linearization takes place in the case of
products of variables from a set N ′ ⊆ N if there are constraints that imply 0 ≤ xi ≤ 1
for all i ∈ N ′ (cf. Adams and Sherali 1986). Even in this case, however, the set of
products induced still need not have any relation to the set P . In contrast to that, the
technique proposed in this paper can be interpreted as a usually incomplete or “sparse”
first level application of the RLT’s reformulation phase that is tailored to induce only
(a minimum cardinality superset of) the set of products P that is implicitly linearized
employing as few constraints as possible.

3 Inductive linearization

Consider a given problem in the form denoted in the introduction, and with the asso-
ciated set P of products. Let us assume w.l.o.g. that the linear constraints Ax ≤ b
are given as equations and less-or-equal inequalities. Suppose further that we identify
a working (sub-)set of these that we denote with KE and K I , respectively. Let these
constraints be

∑

i∈Ik

ai
k xi = bk for all k ∈ KE (4)

∑

i∈Ik

ai
k xi ≤ bk for all k ∈ K I (5)

where Ik := {i ∈ N | ai
k �= 0} denotes the support index set of the respective constraint

with index k ∈ KE or k ∈ K I .
As already indicated in the introduction, we require w.l.o.g. a choice of K :=

KE ∪K I such that there exist indices k, � ∈ K with i ∈ Ik and j ∈ I� for all (i, j) ∈ P .
If there are factors lacking such a constraint in the original problem formulation, in
principle any equation or less-or-equal inequality may be employed that is valid for
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its feasible set. Alternatively, the corresponding products may be linearized by other
means without affecting the validity of the inductive approach for all other products
that fulfill the requirement.We thus assume from now on that P only contains products
that do so.

As also mentioned already in the introduction, Liberti (2007) initially covered the
case of equations KE with bk = 1 and ai

k = 1 for all k ∈ KE and i ∈ Ik . A revised
description of the technique tailored to this special case is described inMallach (2018).

In the first step of the generalized approach, each equation k ∈ KE is associated
another index set M E

k ⊆ N that is supposed to specify original variables used as
multipliers. To each inequality k ∈ K I , two such index sets M+

k , M−
k ⊆ N are

associated. The corresponding interpretation is as follows: If j ∈ M E
k ( j ∈ M+

k )
the equation k ∈ KE (inequality k ∈ K I ) is multiplied by x j , and if j ∈ M−

k , the
inequality k ∈ K I is multiplied by (1 − x j ).

This leads to the following subset of the first level RLT constraints:

∑

i∈Ik

ai
k xi x j = bk x j for all j ∈ M E

k , k ∈ KE (6)

∑

i∈Ik

ai
k xi x j ≤ bk x j for all j ∈ M+

k , k ∈ K I (7)

∑

i∈Ik

ai
k xi (1 − x j ) ≤ bk(1 − x j ) for all j ∈ M−

k , k ∈ K I (8)

Let Mk := M E
k if k ∈ KE , and Mk := M+

k ∪ M−
k if k ∈ K I . Then

Q = {(i, j) | i ≤ j and ∃k ∈ K : i ∈ Ik and j ∈ Mk or j ∈ Ik and i ∈ Mk}

is the index set of the products induced by (6)–(8).
If we now rewrite (6)–(8) by substituting for each (i, j) ∈ Q the product xi x j

by a continuous linearization variable that has explicit lower and upper bounds, i.e.,
0 ≤ yi j ≤ 1, we obtain the linearization constraints:

∑

i∈Ik ,(i, j)∈Q

ai
k yi j +

∑

i∈Ik ,( j,i)∈Q

ai
k y ji = bk x j for all j ∈ M E

k , k ∈ KE (9)

∑

i∈Ik ,(i, j)∈Q

ai
k yi j +

∑

i∈Ik ,( j,i)∈Q

ai
k y ji ≤ bk x j for all j ∈ M+

k , k ∈ K I (10)

∑

i∈Ik ,(i, j)∈Q

ai
k(xi − yi j ) +

∑

i∈Ik ,( j,i)∈Q

ai
k(xi − y ji ) ≤ bk(1 − x j )

for all j ∈ M−
k , k ∈ K I (11)

The constraints (6)–(8) are valid for the original problem and so are the constraints
(9)–(11) whenever yi j = xi x j holds for all (i, j) ∈ Q. We will show in the following
that this is “automatically” the case for binary xi , x j if three handy consistency con-
ditions are satisfied. Since this facilitates the readability of the proofs considerably,
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let us assume for the moment that we have ak ≥ 0 and bk ≥ 0 for all k ∈ K . As
expounded in the appendix, the general case can be handled without loss of generality
either by establishing these properties explicitly or by imposing the implications of
the three consistency conditions in an adapted fashion.

As a consequence, ifwe choose the sets Mk consistently and such that Q is a superset
of P , we obtain a linearization for our original problem. In fact, at the potential expense
of losing some relaxation strength, it is always possible to have Q = P as described
in the appendix. More generally, we will strive to obtain a set Q ⊇ P as small as
possible without the respective modifications. As can be observed e.g. in Sect. 6, the
ideal sets Mk for this goal can typically be determined by inspection if a structured
problem is given. The general case of their derivation is covered in Sect. 4.

The three consistency conditions to be met when choosing the sets Mk are, for all
(i, j) ∈ Q:

Condition 1 There is a k ∈ K such that i ∈ Ik and j ∈ M E
k or j ∈ M+

k , respectively.

Condition 2 There is a k ∈ K such that j ∈ Ik and i ∈ M E
k or i ∈ M+

k , respectively.

Condition 3 There is a k ∈ K such that i ∈ Ik and j ∈ M E
k or j ∈ M−

k , respectively,
or such that j ∈ Ik and i ∈ M E

k or i ∈ M−
k , respectively.

For clarification beforewe proceed to the proof, three comments are in order. Firstly,
of course the pairs contained in Q depend on the choice of the sets Mk , and due to
the consistency conditions, this also holds vice versa. Secondly, it is a valid choice
to employ the same index k (if i, j ∈ Ik) for satisfying Conditions 1 and 2. Thirdly,
if Condition 1 or Condition 2 is established using an equation, then Condition 3 is
implied (it only needs to be considered in the presence of inequalities in the set K ).

Theorem 4 For any integer solution x ∈ {0, 1}n, the linearization constraints (9)–(11)
imply yi j = xi x j for all (i, j) ∈ Q if and only if Conditions 1–3 are satisfied.

Proof Let (i, j) ∈ Q. By Condition 1, at least one of the two constraints

∑

h∈Ik ,(h, j)∈Q

ah
k yhj +

∑

h∈Ik ,( j,h)∈Q

ah
k y jh = bk x j (∗E j )

∑

h∈Ik ,(h, j)∈Q

ah
k yhj +

∑

h∈Ik ,( j,h)∈Q

ah
k y jh ≤ bk x j (∗I j +)

exists, any of which has yi j on its left hand side. Since ah
k > 0 for all h ∈ Ik and

yi j ≥ 0, each of them establishes that yi j = 0 whenever x j = 0.
Similarly, by Condition 2, at least one of the two constraints

∑

h∈Ik ,(h,i)∈Q

ah
k yhi +

∑

h∈Ik ,(i,h)∈Q

ah
k yih = bk xi (∗Ei )
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∑

h∈Ik ,(h,i)∈Q

ah
k yhi +

∑

h∈Ik ,(i,h)∈Q

ah
k yih ≤ bk xi (∗Ii +)

exists, any of which has yi j on its left hand side. Since ah
k > 0 for all h ∈ Ik and

yi j ≥ 0, each of them establishes that yi j = 0 whenever xi = 0.
Let now xi = x j = 1. By Condition 3, we either have at least one equation or at

least one inequality of type (11) that relates yi j to either xi or x j .
Suppose first that (∗E j ) exists (the case with (∗Ei ) is analogous) and that yi j < 1

as otherwise there is nothing to show. We are then in the following situation:

∑

h∈Ik ,(h, j)∈Q,h �=i

ah
k yhj +

∑

h∈Ik ,( j,h)∈Q,h �=i

ah
k y jh = bk x j︸︷︷︸

=1

− ai
k︸︷︷︸

>0

yi j︸︷︷︸
<1

(∗′
E j
)

At the same time, we also have
∑

h∈Ik ,h �=i ah
k xh = bk − ai

k with xh ∈ {0, 1} for
each h ∈ Ik . In other words, the left hand side of (∗′

E j
) is larger by an amount of

ai
k(1 − yi j ) > 0. This implies, however, that there must be some h ∈ Ik , h �= i , such
that yhj > 0 (or y jh > 0) while xh = 0. But this is impossible since Conditions 1
and 2 are established for these variables as well.

Finally, we consider the case that Condition 3 is satisfied by the existence of at least
one of the two following inequalities (with possibly different k ∈ K I ):

∑

h∈Ik ,(h,i)∈Q

ah
k (xh − yhi ) +

∑

h∈Ik ,(i,h)∈Q

ah
k (xh − yih) ≤ bk(1 − xi ) (∗Ii −)

∑

h∈Ik ,(h, j)∈Q

ah
k (xh − yhj ) +

∑

h∈Ik ,( j,h)∈Q

ah
k (xh − y jh) ≤ bk(1 − x j ) (∗I j −)

Since xi = x j = 1, the right hand sides of both of these inequalities evaluate to
zero. Looking at the left hand side of (∗I j −), for any h ∈ Ik (including i) the terms
(xh − yhj ) respectively (xh − y jh) cannot be negative since yhj (y jh) must be equal
to zero if xh is (by the arguments above) and since the upper bounds assure yhj ≤ 1
(y jh ≤ 1) if xh is equal to one. Moreover, since the right hand side evaluates to zero
and ah

k > 0 for all h ∈ Ik , the terms cannot be positive as well. It follows that xh = yhj

for all h ∈ Ik (including i) and thus yi j = 1 as desired. The arguments for inequality
(∗Ii −) are once more analogous.

We have just shown the sufficiency of the constraints induced by satisfying Condi-
tions 1–3. For necessity: Any yi j inevitably needs to be related at least once to xi and
at least once to x j . Within a framework that constructs a linearization only bymeans of
constraints of type (9)–(11), this is equivalent to satisfying Conditions 1 and 2. As has
been shown, if these are satisfied using equations, Condition 3 is implied. Otherwise,
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556 S. Mallach

i.e., if two inequalities of type (11) are used, it is easy to see that the case xi = x j = 1
does not imply yi j = 1 without an inequality of type (11). �

Remark 1 The induced set Q may contain tuples that correspond to squares. Elimi-
nating them is a simple and worthwhile optimization (see also Theorem 8 in Sect. 5).
Recognition is already possible when squares are (or rather would be) induced: If
x j is used as a multiplier for a constraint with j ∈ Ik , the result may be instantly
strengthened to:

∑

i∈Ik ,i �= j

ai
k xi x j = (bk − a j

k )x j for all j ∈ M E
k , k ∈ KE

∑

i∈Ik ,i �= j

ai
k xi x j ≤ (bk − a j

k )x j for all j ∈ M+
k , k ∈ K I

∑

i∈Ik ,i �= j

ai
k xi (1 − x j ) ≤ bk(1 − x j ) for all j ∈ M−

k , k ∈ K I

If the structure of the present linear constraints is more specific, satisfying Condi-
tions 1–3 has more implications, and may even lead to linear programming relaxations
that are provably at least as tight as the one obtained with the “standard linearization”.
This will be discussed in more detail in Sect. 5. Beforehand, we strive to clarify how
to determine a compact inductive linearization.

4 Obtaining a compact inductive linearization (automatically)

Especially for combinatorial optimization problems, inductive linearizations (i.e.,mul-
tiplier sets that induce a set Q ⊇ P and satisfy the consistency conditions) are derived
almost naturally, and have been derived in the literature even without any notice of
the more general concept presented here. Section 6 gives three prominent examples.
Moreover, if a particular BQP has some structure and a (sub-)set of constraints suitable
to be employed, an inductive linearization can often be found by inspection once the
necessary way of combining constraints with multipliers dictated by Conditions 1–3
is understood.

In any case, an inductive linearization that is as compact as possible (in terms
of additional variables and constraints) can be computed. On the negative side, the
associated optimization problem is NP-hard in its general form as wewill prove below.
On the positive side, it can be modeled and solved in practice using a mixed-integer
program, and there are polynomial time algorithms for more specifically structured
BQPs. Further potential for quick computations in practice stems from the possibility
to carefully preselect the set K of original constraints considered for inductions, and
from the fact that the number of candidate constraints to induce a certain product is
typically not too large.

Before we discuss this in some more detail, we first present the hardness proof.
To this end, the problem to determine a most compact inductive linearization is now
defined more formally.
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Problem 1 (Most Compact Inductive Linearization Problem (MCILP)) Let a BQP
with variable index set N , products P , and a selection of constraints K = KE ∪ K I

with left hand side index sets Ik for all k ∈ K be given. If k ∈ KE , let wE
k j ∈ R be

a given cost for multiplying the equation with x j . If k ∈ K I , let w+
k j ∈ R be a given

cost for multiplying the inequality with x j , and let w−
k j ∈ R be a given scalar cost

for multiplying the inequality with (1 − x j ). Moreover, let wi j ∈ R be a given scalar
cost for inducing the product associated to the tuple (i, j) ∈ N × N , i < j . Then the
Most Compact Inductive Linearization Problem (MCILP) is to compute a multiplier
multiset M := ⋃

k∈K Mk of an inductive linearization such that a set Q ⊇ P is
induced minimizing the expression

∑

k∈KE , j∈M E
k

wE
k j +

∑

k∈K I , j∈M+
k

w+
k j +

∑

k∈K I , j∈M−
k

w−
k j +

∑

(i, j)∈Q

wi j

among all possible choices of M satisfying the consistency conditions.

Theorem 5 The MCILP is NP-hard (even in the equation-only case).

Proof We show a polynomial time and space transformation of the minimum set
covering problem, that was shown to be NP-hard by Karp (1972), to the MCILP.

For this purpose, consider a given finite set S together with a given collection
C = {S j | S j ⊆ S, j ∈ {1, . . . , m}} of m subsets of S whose union gives S. The set
covering problem is then to find a minimum cardinality selection C∗ ⊆ C of these
subsets that still covers S. An instance of this problemwill subsequently be denoted by
(S, C) and the elements of S will be identified by their indices. For technical reasons
and w.l.o.g., we let these indices start at 2, i.e., we assume that 1 /∈ S.

Given an instance (S, C) of the set covering problem as just defined, create a
corresponding instance of the MCILP as follows: First, set N = S ∪ {1} and P =
{(1, i) | i ∈ S}. Then, for each subset Sk ∈ C , k ∈ {1, . . . , m}, define a corresponding
equation with index set Ik = Sk , and append a single equation with index set Im+1 =
{1}. All the resulting |K | = |C | + 1 = m + 1 linear equations may have arbitrary
positive coefficients on the left hand side and an arbitrary positive right hand side.
Finally, we choose wE

k j = 1 for all k ∈ K = KE and all j ∈ N , wi j = 1 for all
(i, j) ∈ N × N , i < j , and all other costs (they do not apply) to be zero.

Due to this construction, a collection C∗ ⊆ C covers S if and only if P can
be induced by multiplying the left hand sides of the equations associated to the sets
S j ∈ C∗ plus the finally appended onewith variables from the set N in away satisfying
Conditions 1–3. To see that, observe first that P can always be induced by choosing
M E

m+1 = S which is also the only way to satisfy Condition 1 (and thus Condition 3)
for all (1, i) ∈ P . However, satisfying Condition 2 for all (1, i) ∈ P requires to use
variable 1 ∈ N as a multiplier for a selection of the first |C | = m equations such that
the union of their index sets contains all elements of S.

Moreover, in any optimal solution (M, Q) of the corresponding MCILP, each set
M E

k associated to some Sk ∈ C will either be empty or contain only the variable 1 ∈ N ,
while M E

m+1 = S. This is true, since by construction, using any other j ∈ N , j �= 1,
as a multiplier for the first |C | = m equations would not further contribute to cover P
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but result in a higher objective value. The same is true if M E
m+1 would be appended by

1 ∈ N . As a consequence, any optimal solution (M, Q) has Q = P . Moreover, the
restriction of M to the sets that contain the variable 1 ∈ N is a minimum cardinality
selection of constraints whose left hand sides are, by the construction of the sets
Ik , k ∈ K , in one-to-one correspondence to a minimum cardinality (sub-)collection
C∗ ⊆ C covering S. �


As a remark, under the assumption made that each factor of a product arises with
a non-zero coefficient in at least one linear constraint in K , a feasible solution to the
MCILP (and also a solution to the theoretical case with all-negative cost coefficients)
is trivially obtained by multiplying each constraint in K with every variable in N .

For a general BQP, a “most compact” inductive linearization can be computed by
solving the following mixed-integer program:

min
∑

j∈N

( ∑

k∈KE

wE
k j zE

k j +
∑

k∈K I

(
w+

k j z+
k j + w−

k j z−
k j

))
+

( ∑

i, j∈N ,i≤ j

wi j fi j

)

s.t. fi j = 1 for all (i, j) ∈ P (12)

fi j ≥ zE
k j for all k ∈ KE , i ∈ Ik, j ∈ N , i ≤ j (13)

f j i ≥ zE
k j for all k ∈ KE , i ∈ Ik, j ∈ N , j < i (14)

fi j ≥ z+
k j for all k ∈ K I , i ∈ Ik, j ∈ N , i ≤ j (15)

f j i ≥ z+
k j for all k ∈ K I , i ∈ Ik, j ∈ N , j < i (16)

fi j ≥ z−
k j for all k ∈ K I , i ∈ Ik, j ∈ N , i ≤ j (17)

f j i ≥ z−
k j for all k ∈ K I , i ∈ Ik, j ∈ N , j < i (18)

∑

k∈KE :i∈Ik

zE
k j +

∑

k∈K I :i∈Ik

z+
k j ≥ fi j for all i, j ∈ N , i ≤ j (19)

∑

k∈KE : j∈Ik

zE
ki +

∑

k∈K I : j∈Ik

z+
ki ≥ fi j for all i, j ∈ N , i ≤ j (20)

∑

k∈KE : j∈Ik

zE
ki +

∑

k∈K I : j∈Ik

z−
ki +

∑

k∈KE :i∈Ik

zE
k j +

∑

k∈K I :i∈Ik

z−
k j ≥ fi j for all i, j ∈ N , i ≤ j (21)

fi j ∈ [0, 1] for all i, j ∈ N , i ≤ j

zE
k j ∈ {0, 1} for all k ∈ KE , j ∈ N

z+
k j , z−

k j ∈ {0, 1} for all k ∈ K I , j ∈ N

The formulation involves binary variables zE
k j supposed to be equal to one if j ∈ M E

k

for k ∈ KE and equal to zero otherwise, and binary variables z+
k j and z−

k j supposed to

express whether j ∈ M+
k and j ∈ M−

k for k ∈ K I . To account for whether (i, j) ∈ Q,
there is a further continuous variable fi j for all i, j ∈ N , i ≤ j that will be equal to
one in this case and equal to zero otherwise. Constraints (12) fix those fi j to one where
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the corresponding pair (i, j) is contained in P . Whenever some j ∈ N is assigned to
some set Mk , then the corresponding products (i, j) ∈ Q or ( j, i) ∈ Q for all i ∈ Ik

are induced by the inequalities (13)–(18). Finally, if (i, j) ∈ Q, then Conditions 1–3
are enforced by the inequalities (19)–(21), respectively.

The Conditions 1–3 impose a certain minimum number of constraints required for a
consistent linearization of any set Q ⊇ P that naturally depends on P , the cardinalities
of the sets Ik , k ∈ K , and the distribution of the variables xi , i ∈ N , across them. To
obtain a solution with this minimum number of constraints that, among all of these
solutions, also induces a minimum number of variables, one may e.g. set wi j = 1 for
all i, j ∈ N , i ≤ j , and all other cost coefficients to a value larger than maxk∈K |Ik |,
or solve two MIPs where the number of constraints is fixed within the second one.
In general, a more fine grained preference of certain constraints (e.g., with few non-
zeroes, or rather equations than inequalities) is possible.

Finally, the mixed-integer program significantly simplifies if only equations are
considered. If in addition, the constraints comprising each xi , i ∈ N , are unique,
i.e., Ik ∩ I� = ∅, for all k, � ∈ K , � �= k, its constraint matrix becomes totally
unimodular. Thus, it may then be solved as a linear program or, alternatively, using a
simple combinatorial algorithm as described in Mallach (2018). This algorithm might
also be altered to a heuristic for the general case of non-disjoint sets Ik , k ∈ K .

5 Linear relaxation strength of inductive linearizations

5.1 Implication of the“standard linearization”

We first elaborate on particular settings where the inequalities (1)–(3) are implied by
(part of) an inductive linearization.

The case when only equations with right hand sides and coefficients equal to one
are employed has already been covered in Mallach (2018). However, accidentally, the
proof there did not verify that inequalities (3) hold [in addition to inequalities (1) and
(2)] in case of non-integral solutions x . This is caught up on now by giving a complete
proof of the following theorem. Moreover, across all the proofs that follow, emphasis
is given to precisely identify the subsets of products affected by the respective setting.

Theorem 6 Consider a (sub-)set K ′
E of Eq. (4) with bk = 1 for all k ∈ K ′

E , and
ai

k = 1 for each i ∈ Ik , k ∈ K ′
E . Let Q′ ⊆ Q be the set of tuples induced by the

multipliers M E
k , k ∈ K ′

E , and suppose that these multipliers satisfy the Conditions 1
and 2 for all (i, j) ∈ Q′. Then, for any 0 ≤ x ≤ 1, we have yi j ≤ xi , yi j ≤ x j and
yi j ≥ xi + x j − 1 for all (i, j) ∈ Q′.
Proof Let (i, j) ∈ Q′. By Condition 1 and the assumption on the multipliers, there is
a k ∈ K ′

E such that i ∈ Ik , j ∈ M E
k and such that the associated equation is:

∑

h∈Ik ,(h, j)∈Q′
yhj +

∑

h∈Ik ,( j,h)∈Q′
y jh = x j (22)

Since it has yi j on its left hand side, it establishes that yi j ≤ x j .
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Similarly, by Condition 2 and the assumption on the multipliers, there is a k ∈ K ′
E

such that j ∈ Ik , i ∈ M E
k and such that the associated equation is:

∑

h∈Ik ,(h,i)∈Q′
yhi +

∑

h∈Ik ,(i,h)∈Q′
yih = xi (23)

Since it has yi j on its left hand side, it establishes that yi j ≤ xi .
To show that yi j ≥ xi + x j − 1, consider Eq. (22) in combination with its original

counterpart
∑

h∈Ik
xh = 1. For any yhj (or y jh) in (22), the Conditions 1 and 2 and the

assumption on the multipliers assure that there is an equation establishing yhj ≤ xh

(y jh ≤ xh). Thus we have:
∑

h∈Ik ,(h, j)∈Q′,h �=i

yh j +
∑

h∈Ik ,( j,h)∈Q′,h �=i

y jh ≤
∑

h∈Ik ,h �=i

xh = 1 − xi

Applying this upper bound within Eq. (22), we obtain:

yi j +
∑

h∈Ik ,(h, j)∈Q′,h �=i

yh j +
∑

h∈Ik ,( j,h)∈Q′,h �=i

y jh

︸ ︷︷ ︸
≤1−xi

= x j ⇔ yi j ≥ xi + x j − 1

�

The same result can be obtained, if only inequalities are employed.

Theorem 7 Consider a (sub-)set K ′
I of inequalities (5) with bk = 1 for all k ∈ K ′

I ,
and ai

k = 1 for each i ∈ Ik , k ∈ K ′
I . Let Q′ ⊆ Q be the set of tuples induced by

the multipliers M+
k and M−

k , k ∈ K ′
I , and suppose that these multipliers satisfy the

Conditions 1–3 for all (i, j) ∈ Q′. Then, for any 0 ≤ x ≤ 1, we have yi j ≤ xi ,
yi j ≤ x j and yi j ≥ xi + x j − 1 for all (i, j) ∈ Q′.
Proof Let (i, j) ∈ Q′. Conditions 1 and 2 and the assumption on the multipliers imply
yi j ≤ x j and yi j ≤ xi in the same way as in the proof of Theorem 6. Moreover, by
Condition 3, there is, w.l.o.g., some k ∈ K ′

I with i ∈ Ik and j ∈ M−
k , i.e., such that

there is an inequality of the form:

∑

h∈Ik ,(h, j)∈Q′
(xh − yhj ) +

∑

h∈Ik ,( j,h)∈Q′
(xh − y jh) ≤ 1 − x j (24)

Due to Conditions 1 and 2 and the assumptions made, we have that xh ≥ y jh for each
h ∈ Ik, ( j, h) ∈ Q′ and xh ≥ yhj for each h ∈ Ik, (h, j) ∈ Q′ in (24). By reordering
the inequality to

x j + xi − yi j +
∑

h∈Ik ,(h, j)∈Q′,h �=i

(xh − yhj ) +
∑

h∈Ik ,( j,h)∈Q′,h �=i

(xh − y jh)

︸ ︷︷ ︸
≥0

≤ 1,

we obtain the desired result. �
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There is another special case where a provably strong inductive linearization can
be obtained and that arises in the context of the example application in Sect. 6.2. It
covers equations with a right hand side of two and coefficients one that are multiplied
by all variables on their left hand sides (i.e., Mk = Ik).

Theorem 8 Consider a (sub-)set K ′
E of Eq. (4) with bk = 2 for all k ∈ K ′

E , ai
k = 1

for each i ∈ Ik , k ∈ K ′
E , and suppose that M E

k = Ik for all k ∈ K ′
E . Let Q′ ⊆ Q be

the set of tuples induced by these multipliers after eliminating squares. Then, for any
0 ≤ x ≤ 1, we have yi j ≤ xi , yi j ≤ x j and yi j ≥ xi + x j − 1 for all (i, j) ∈ Q′.

Proof In the case assumed in the theorem, the induced Eq. (9) first look like

y j j +
∑

h∈Ik ,h< j

yh j +
∑

h∈Ik , j<h

y jh = 2x j for all j ∈ Ik, k ∈ K ′
E

and satisfy Conditions 1 and 2 for all products on the left hand side.
Since y j j shall take on the same value as x j , we may eliminate y j j on the left and

once subtract x j on the right (cf. Remark 1). We obtain:
∑

h∈Ik ,h< j

yh j +
∑

h∈Ik , j<h

y jh = x j for all j ∈ Ik, k ∈ K ′
E (25)

As before, these equations imply inequalities (1) and (2) for all the products on the
left hand side. Combining them with the original equations

∑
a∈Ik

xa = 2 yields the
following identities:

2 =
∑

a∈Ik

xa =
∑

a∈Ik

⎛

⎝
∑

h∈Ik ,h<a

yha +
∑

h∈Ik ,a<h

yah

⎞

⎠ = 2 ·
∑

a∈Ik

∑

h∈Ik ,a<h

yah

As an immediate consequence, it follows that
∑

a∈Ik

∑

h∈Ik ,a<h

yah = 1. (26)

For any pair {i, j} ⊆ Ik we obtain a subtotal of (26) if we sum the Eq. (25) expressed
for i and for j (which both contain yi j on their left hand sides). We can exploit this as
follows (cf. Fischer (2013)) in order to show that yi j ≥ xi + x j − 1:

xi + x j =
∑

h∈Ik ,i<h

yih +
∑

h∈Ik ,h<i

yhi +
∑

h∈Ik , j<h

y jh +
∑

h∈Ik ,h< j

yh j

= yi j +
∑

h∈Ik ,i<h �= j

yih +
∑

h∈Ik , j �=h<i

yhi +
∑

h∈Ik , j<h

y jh +
∑

h∈Ik ,h< j

yh j

≤ yi j +
∑

a∈Ik

∑

h∈Ik ,a<h

yah

(26)= yi j + 1

�
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Remark 2 In Theorem 8, if Mk �= Ik , then it is impossible to conclude yi j ≥ xi +x j −1
from Eq. (26). Moreover, if bk > 2 or squares are not eliminated then one cannot
conclude yi j ≤ xi and yi j ≤ x j from Eq. (9) for arbitrary non-integral x . The latter is
also true if bk ≥ 2 in the general setting where the non-zero left hand side coefficients
are all equal to one. It is thus apparent that the strength of the relaxations of inductively
linearized BQPs relates to the ratio between the right hand side and the left hand side
coefficients.

5.2 A scenario with a strictly stronger linear relaxation

A particular case where an inductive linearization can be shown to have a linear
relaxation that is even strictly stronger than the one obtained with the “standard lin-
earization”, is the following one.

Theorem 9 Consider an inductive linearization that has Q = P and that contains the
equation

∑

h∈Ik ,h<i

ah
k yhi +

∑

h∈Ik ,i<h

ah
k yih = bk xi

for some fixed i ∈ N. Suppose further there is a feasible solution x∗ for the linear
relaxation of the respective problem where x∗

i > 0, x∗
h > 0, and x∗

i + x∗
h ≤ 1, for

all h ∈ Ik . Then the linear relaxation of the “standard linearization” contains points
that are infeasible to the one obtained by the inductive linearization.

Proof For any solution x∗ as in the theorem, the inequalities (3) of the “standard
linearization” for each yih , h ∈ Ik , are dominated by yih ≥ 0, and thus there is a
feasible point in the corresponding relaxation where yih = 0 for all h ∈ Ik . Any such
point is readily seen to be infeasible for the equation of the inductive linearization
displayed in the theorem, as its right hand side is non-zero for x∗. �

Remark 3 The assumption Q = P is important to facilitate a formal proof of a superior
strength case, as a “standard linearization” only linearizes the products in P . Also,
without assuming Q = P , the value bk xi could be entirely complemented by ah

k yhi

or ah
k yih for some h ∈ Ik where (h, i) respectively (i, h) is in Q\P . By the way, for

the same reason, it is also necessary to satisfy Conditions 1–3 for all products in Q
rather than just for those in P in order to obtain a truly consistent linearization of the
latter (which is one of the corrections to the initial approach for assignment constraints
made in Mallach (2018)).

6 Example applications and computational aspects

In the following, we highlight some prominent combinatorial optimization problems
where formulations found earlier appear now as inductive linearizations, and pro-
vide some pointers to early computational evidence for successful applications of the
proposed method.
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6.1 The quadratic assignment problem

A canonical integer programming formulation for the quadratic assignment problem
(QAP) in the form by Koopmans and Beckmann (1957), has variables xip ∈ {0, 1}
for “facilities” i and “locations” p, both indexed by {1, . . . , n}. As already mentioned
by Liberti (2007), the following formulation by Frieze and Yadegar (1983) may then
be obtained by applying the inductive linearization technique (and ignoring commu-
tativity in the first place).

min
n∑

i=1

n∑

p=1

n∑

j=1

n∑

q=1

di jpq yipjq +
n∑

i=1

n∑

p=1

cipxip

s.t.
n∑

i=1

xip = 1 for all p ∈ {1, . . . , n} (27)

n∑

p=1

xip = 1 for all i ∈ {1, . . . , n} (28)

n∑

i=1

yipjq = x jq for all p, j, q ∈ {1, . . . , n} (29)

n∑

p=1

yipjq = x jq for all i, j, q ∈ {1, . . . , n} (30)

n∑

j=1

yipjq = xip for all i, p, q ∈ {1, . . . , n} (31)

n∑

q=1

yipjq = xip for all i, p, j ∈ {1, . . . , n} (32)

yipip = xip for all i, p ∈ {1, . . . , n} (33)

yipjq ∈ [0, 1] for all i, p, j, q ∈ {1, . . . , n}
xip ∈ {0, 1} for all i, p ∈ {1, . . . , n}

For each linearization variable yipjq representing the product xipx jq , i, p, j, q ∈
{1, . . . , n}, the displayed formulation however satisfies each of the Conditions 1
and 2 twice, i.e., it is not a “most compact” inductive linearization. There is also
an equivalent formulation by Adams and Johnson (1994) that cannot, at least not
directly, be generated from the approach proposed. It comprises only (29) and
(30), and thus satisfies Conditions 1 twice while Conditions 2 are “indirectly”
enforced by means of additional constraints yipjq = y jqip for all i, p, j, q ∈
{1, . . . , n}.

To characterize a “most compact” inductive QAP linearization, observe first that
each of the variables X := {xip | i, p ∈ {1, . . . , n}} occurs exactly once in
the set of constraints (27) and exactly once in the set of constraints (28). Thus,
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in order to induce all products and to satisfy Conditions 1 and 2 for them, it
suffices to either multiply all of constraints (27) with X – which induces (29) and
(31), or to multiply all of constraints (28) with X – which induces (30) and (32).
Moreover, since the identities (33) and the variables yipiq for all p, q ∈ {1, . . . , n}
as well as all variables yipjp for all i, j ∈ {1, . . . , n} can be eliminated, it suffices
to formulate (30) and (32) only for i �= j , and (29) and (31) only for p �= q.
If one further identifies y jqip with yipjq whenever i < j , it even suffices to have
only exactly one of these four equation sets in order to satisfy Conditions 1 and 2.
The total number of additional equations then reduces to n3 − n2 compared to
3 · ( 1

2 (n
2 − n)(n2 − n)

) = 3
2 (n

4 − 2n3 + n2) inequalities when using the “stan-
dard linearization” and creating yipjq only for i < j and p �= q as well. However,
these most compact formulations have a considerably weaker linear programming
relaxation than the ones by Frieze and Yadegar (1983) and Adams and Johnson
(1994).

6.2 The symmetric quadratic traveling salesman problem

The symmetric quadratic traveling salesman problem asks for a tour T ⊆ E in a
complete undirected graph G = (V , E) such that the objective

∑
{i, j,k}⊆V , j �=i<k �= j

ci jk xi j x jk (where xi j = 1 if {i, j} ∈ T and xi j = 0 otherwise) is mini-
mized.

Consider the followingmixed-integer programming formulation for this problem as
presented by Fischer and Helmberg (2013) and based on the integer programming for-
mulation for the classical traveling salesman problem with linear objective by Dantzig
et al. (1954).

min
∑

{i, j,k}⊆V , j �=i<k �= j

ci jk yi jk

s.t.
∑

{i, j}∈E

xi j = 2 for all i ∈ V (34)

x(E(W )) ≤ |W | − 1 for all W � V , 2 ≤ |W | ≤ |V | − 2

yi jk = xi j x jk for all {i, j, k} ⊆ V , j �= i < k �= j (35)

xi j ∈ {0, 1} for all {i, j} ∈ E

Here, we restrict the set K of constraints considered for inductions to the Eq. (34).
To induce the products as in (35), i.e. each pair of edges with common index j , we need
to multiply the left hand sides of the Eq. (34) exactly with all the variables occurring
there, i.e., we have to set Mk = Ik for all k ∈ K . This choice satisfies both Conditions 1
and 2 for all these pairs. Since ai

k = 1 for all i ∈ Ik and bk = 2 for all k ∈ K , we
comply to the requirements of the special case addressed in Theorem 8 (Sect. 5.1) and
obtain the equations:

∑

{i, j}∈E

xi j x jk = 2x jk for all { j, k} ∈ E, j ∈ V
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After introducing linearization variables with indices ordered as desired, these are
rewritten as:

∑

{i, j,k}⊆V , j �=i≤k �= j

yi jk = 2x jk for all { j, k} ∈ E, j ∈ V

Each of these equations induces one variable more than truly desired, namely yk jk

as the linearized substitute for the square term x jk x jk . Thus we may safely subtract
yk jk from the left and x jk from the right hand side and obtain

∑

{i, j,k}⊆V , j �=i<k �= j

yi jk = x jk for all { j, k} ∈ E, j ∈ V

which are exactly the linearization constraints as presented by Fischer and Helmberg
(2013). For the here assumed complete undirected graph on |V | = n vertices, the num-
ber of these equations amounts to only n2 compared to 3

2 (n
3 − 3n2 + 2n) inequalities

that would result from a “standard linearization”.

6.3 The quadratic 0-1 knapsack problem

A very simple inequality-only application for the inductive linearization technique is
the quadratic 0-1 knapsack problem. Here, items from a ground set J are to be selected
while each item j ∈ J has a size a j ∈ R, and there is a capacity limit b ∈ R. The
goal is to maximize a quadratic profit function associated to single items and pairs of
items selected.

Billionnet and Calmels (1996) as well as many succeeding authors employed
inequalites of type (7) in combination with the “standard linearization”. A few years
later, Helmberg et al. (2000) considered the further addition of inequalities of type (8)
in the context of semidefinite relaxations and showed that they can help to obtain better
dual bounds.

A corresponding square-reduced (cf. Remark 1) inductive linearization is the fol-
lowing mixed-integer program:

max
∑

i, j∈J ,i< j

qi j yi j +
∑

i∈J

ci xi

s.t.
∑

i∈J

ai xi ≤ b

∑

i∈J ,i �= j

ai yi j ≤ (b − a j )x j for all j ∈ J

∑

i∈J ,i �= j

ai (xi − yi j ) ≤ b(1 − x j ) for all j ∈ J

yi j ∈ [0, 1] for all i, j ∈ J , i < j

xi ∈ {0, 1} for all i ∈ J
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Once more, the formulation is more compact than a “standard linearization”:
Assuming |J | = n, the

(n
2

)
products are linearized using only 2n instead of 3

(n
2

)

inequalities. However, in the general case of arbitrary a j , j ∈ J , and b, an implication
of the “standard linearization” inequalities (1)–(3) cannot be expected.

6.4 Computational aspects

Sections 6.1 and 6.2 exemplified two favorable situations where one obtains an induc-
tive linearization that is at least as strong as the “standard linearization” and that is
considerably smaller in size at the same time. Although this does not necessarily lead
to faster solution times of the entire mixed-integer programs, it generally improves the
applicability to somewhat larger instances as one can solve smaller linear relaxations
without any trade-off regarding the bounds obtained.

For some particular combinatorial optimization problems, there is also already
computational evidence that the inductive linearization approach is superior to the
“standard linearization”. One example is the graph partitioning problem as addressed
in Mallach (2018). Another one is the multiprocessor scheduling problem with com-
munication delays addressed in Davidović et al. (2007), Liberti (2007), and Mallach
(2017).

Since the inductive approach is applicable to any BQP with linear constraints,
many more well-suited applications can be expected, but also limitations concerning
the relaxation strength (e.g., because of large ratios between right hand sides and
left hand side coefficients) and compactness (e.g., if the support of the constraints at
hand relates undesirably to the set P) are indicated. A meaningful impression of the
corresponding effects for the practical solution of various kinds of BQPs can thus be
provided only by a broad computational study that is beyond the scope of this paper.

7 Conclusion and outlook

The inductive (previously termed “compact”) linearization technique has been
extended to binary quadratic problems with arbitrary linear constraints. While such
a linearization can often be derived by inspection for combinatorial optimization
problems, it can also be computed by solving a mixed-integer program or using a
polynomial-time combinatorial algorithm for specially structured BQPs. Several cases
where the linear relaxation of an inductively linearized binary quadratic problem is
provably at least as strong as or even strictly stronger than the one obtained with the
“standard linearization” have been identified. Moreover, previously found formula-
tions for the quadratic assignment, the symmetric quadratic traveling salesman, and
the quadratic 0-1 knapsack problem were highlighted that can also be derived by
applying the proposed technique. A few examples from the literature already provide
computational evidence that the inductive linearization can be superior to the “stan-
dard linearization” in practice. A thorough and broad computational study across the
vast field of potential applications is in order.
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Appendix: normalization of linear constraints in binary optimization

Let Ax ≤ b be a system of linear equations and less-or-equal inequalities with A ∈
R

m×n and b ∈ R
m for some m > 0. It is clear that any linear constraint system can be

cast in this way, as any greater-or-equal inequality can be turned into a less-or-equal
one by simply negating its left and right hand sides. In the case of a binary (quadratic)
program, we may even restrict A to be non-negative, and b to be non-negative or even
positive, although this might seem counter-intuitive in the first place. The “proof” (no
originality is claimed) is as follows.

Let

∑

i∈Ik

ai
k xi = bk

be an equation of the system (the following also holds for a ≤-inequality), and let
I −
k ⊆ Ik be the set of variable indices such that ai

k < 0 for each i ∈ I −
k . For ease of

notation, define also I +
k = Ik\I −

k .
Now define a new complement variable x̄i for each i ∈ I −

k along with the corre-
sponding equation

xi + x̄i = 1 (36)

that apparently has only positive coefficients on the left hand side and a positive right
hand side. Moreover, we may now replace the initial original equation with

∑

i∈I +
k

ai
k xi +

∑

i∈I −
k

ai
k(1 − x̄i ) = bk
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⇔
∑

i∈I +
k

ai
k xi +

∑

i∈I −
k

ai
k −

∑

i∈I −
k

ai
k x̄i = bk

⇔
∑

i∈I +
k

ai
k xi −

∑

i∈I −
k

ai
k x̄i = bk −

∑

i∈I −
k

ai
k

where now the term −∑
i∈I −

k
ai

k on the left and on the right hand side is non-negative
as well.

Carrying out this procedure for every equation or inequality with negative coeffi-
cients on the left hand side clearly gives a system with only non-negative coefficients
on the left.

Now suppose that any of the (resulting) constraints has a negative right hand side.
Then, since each ai

k ≥ 0 and xi ≥ 0 (x̄i ≥ 0), the system is infeasible. Since this could
be detected this way, wemay assumew.l.o.g. that bk ≥ 0. Furthermore, if bk = 0, then
all the variables on the left hand side can be fixed (original ones to zero, complemented
ones to one) and thus be removed from the formulation.

While the above approach introducing complement variables turns any BQP with
linear constraints into one that is suitable for an inductive linearization, it is not nec-
essary to (explicitly) apply it in practice. In general, it is also not advisable to do so.
For instance, because it may add up to n variables and equations. Moreover, because
each multiplication of the Eq. (36) with an original variable induces two rather unde-
sirable linearization equations (to satisfy Conditions 1 and 2) that even inevitably
result if a factor xi appears only with negative support in the original constraints (and
thus multiplication would be with x̄i instead of with xi in its modified counterpart).
Finally, complementing variables in original constraints “beforehand” may also incur
avoidable overhead if it is not a priori clear that the respective constraints will be at
all employed for multiplications.

A more advisable strategy is thus to keep the original constraints as they are, and to
consider them for multiplication with each x j and x̄ j without ever really introducing
the latter (as one can directly use (1 − x j ) instead). Thereby, one may keep track for
each xi with a non-zero coefficient on the left hand side which of the four possible
combinations xi x j , x̄i x j , xi x̄ j , and x̄i x̄ j has to be induced (respectively, which of these
is to be represented by a linearization variable) such that the respective linearization
constraint imposes the necessary implications on their value. Then, with the relaxed
condition that not necessarily a linearization variable for xi x j is induced but a variable
with Conditions 1–3 satisfied for (at least) one of the four combinations, we are already
done for all products not appearing in the objective function. For those appearing in
the objective function, the value of xi x j can, if necessary, always be deduced by (one
of) the three equations

xi x j = x j − x̄i x j

xi x j = xi − xi x̄ j

xi x j = x̄i x̄ j + xi + x j − 1
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and substituting for the respective linearization variables. Instead of adding anyof these
to the formulation along with yi j , one may also exploit the relations by substituting for
xi x j directly in the objective function. This way no additional equations are caused
at all, and the handling of constraints with negative coefficients thus becomes almost
completely oblivious.

As a further postprocessing option, onemay eliminate all variables in Q\P from the
linearization constraints if all of these have been generated from inequalities (possibly
due to a splitting of equations). Due to their less-or-equal sense and their positive left
hand side coefficients, such an elimination does neither affect their validity nor their
implications w.r.t. the consistency of the linearization. However, the feasible set of the
relaxation is, in general, relaxed by this procedure.

As a very final remark, even for a BQP without any (non-trivial) linear constraints
one could employ the inductive linearization technique using the upper bound inequal-
ities xi ≤ 1. However, not surprisingly, multiplying these with some x j and 1−x j (and
multiplying x j ≤ 1 with xi and (1 − xi )) induces the respective “standard lineariza-
tion” inequalities (1)–(3). So while this is pointless in principle, it may nevertheless
be a convenient way to deal with single “unconstrained” variables (if these appear as
factors) within the approach presented, respectively without implementing a special
handling. More appropriate artificial valid constraints should however be employed
instead whenever this is possible.
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