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A step beyond landslide susceptibility maps: a simple
method to investigate and explain the different out-
comes obtained by different approaches

Abstract Landslide susceptibility assessment is vital for landslide
risk management and urban planning, and the scientific commu-
nity is continuously proposing new approaches to map landslide
susceptibility, especially by hybridizing state-of-the-art models
and by proposing new ones. A common practice in landslide
susceptibility studies is to compare (two or more) different models
in terms of AUC (area under ROC curve) to assess which one has
the best predictive performance. The objective of this paper is to
show that the classical scheme of comparison between suscepti-
bility models can be expanded and enriched with substantial
geomorphological insights by focusing the comparison on the
mapped susceptibility values and investigating the geomorpholog-
ical reasons of the differences encountered. To this aim, we used
four susceptibility maps of the Wanzhou County (China) obtained
with four different classification methods (namely, random forest,
index of entropy, frequency ratio, and certainty factor). A quanti-
tative comparison of the susceptibility values was carried out on a
pixel-by-pixel basis, to reveal systematic spatial patterns in the
differences among susceptibility maps; then, those patterns were
put in relation with all the explanatory variables used in the
susceptibility assessments. The lithological and morphological fea-
tures of the study area that are typically associated to underesti-
mations and overestimations of susceptibility were identified. The
results shed a new light on the susceptibility models, identifying
systematic errors that could be probably associated either to
shortcomings of the models or to distinctive morphological fea-
tures of the test site, such as nearly flat low altitude areas near the
main rivers, and some lithological units.

Keywords Landslide susceptibility . Comparison of landslide
susceptibility models . AUC . Three Gorges Area . China

Introduction
Landslide susceptibility maps represent the spatial probability of
landslide occurrence and are widely used in landslide hazard
assessment (Corominas et al. 2003; Nadim et al. 2006), land plan-
ning (Cascini 2008; Frattini et al. 2010), quantitative risk analysis
(Catani et al. 2005; Chen et al. 2016), or early warning systems
(Segoni et al. 2018; Tiranti et al. 2019). The literature is rich of
applications at all scales, ranging from small areas (Rossi et al.
2010; Segoni et al. 2016; Youssef et al. 2016; Pradhan et al. 2019;
Yang et al. 2019) to entire nations (Suh et al. 2011; Sabatakakis et al.
2013; Trigila et al. 2013), continents (Günther et al. 2013), or even
the whole world (Nadim et al. 2006; Hong et al. 2007).

A landslide susceptibility assessment is generally based on the
analysis of the correlation between the location of landslide areas
and the spatial distribution of a wide set of predisposing factors,
usually including geological, geomorphological, and hydrogeological
features and soil/land cover characteristics. The correlation can be

established by means of various techniques: to date, statistical ap-
proaches (Reichenbach et al. 2018, and references therein), artificial
neural networks (Lee et al. 2004; Ermini et al. 2005), and machine
learnings algorithms (Brenning 2005; Yao et al. 2008; Pham et al. 2016)
are among the most widespread and established techniques. To im-
prove the effectiveness of landslide susceptibility assessments, brand
new methods and hybrid versions of already established methods are
continuously proposed (Huang et al. 2017; Lagomarsino et al. 2017;
Shirzadi et al. 2017; Tsangaratos et al. 2017; Pham et al. 2018; Yang et al.
2019). However, some studies warned that besides the model used, the
results of the susceptibility assessment, and the resulting maps, are
sensitive to various factors: the model configuration, the sampling
strategy, the selected conditioning factors, and the spatial resolution
(Catani et al. 2013; Sbroglia et al. 2018; Liu et al. 2019). The most
widespread technique to validate landslide susceptibility maps is to
build ROC (receiver operating characteristic) curves and to calculate
the AUC (area under the curve), which is commonly used also as an
indicator of the spatial forecasting effectiveness of the susceptibility
model (Frattini et al. 2010).

In landslide susceptibility studies, the comparison of different
models in the same test site is a common practice, surely more than
in other fields of landslide research such as rainfall thresholds
(Lagomarsino et al. 2015) or distributed physically based models
(Sorbino et al. 2010). Usually, when a new approach is proposed, a
comparison with other state-of-the-art models is performed (Shirzadi
et al. 2017; Chen et al. 2018; Pham et al. 2018); in addition, the recent
scientific literature on landslide susceptibility is rich of application to
case studies where different susceptibility maps of the same area are
obtained by means of different methods (Yilmaz 2009; Pham et al.
2016; Youssef et al. 2016; Bueechi et al. 2019). However, the different
models are compared just in terms of AUC, and the one with the
highest score is deemed to outperform the others. A discussion of the
reasons why different models produced different results in some given
map locations is rarely carried out, and a thorough investigation of the
spatial patterns of the differences obtained is usually lacking, thus
diminishing the geomorphological meaning of the comparison be-
tween susceptibility maps.

The objective of this paper is to show that the classical scheme
of comparison between susceptibility models can be expanded and
can be enriched with substantial geomorphological insights. We
used four susceptibility maps of the Wanzhou County (China)
obtained by Xiao et al. (2019) using four different classification
methods (namely random forest, index of entropy, frequency
ratio, and certainty factor). A quantitative comparison of the
susceptibility values estimated on a pixel-by-pixel basis was car-
ried out to reveal systematic spatial patterns in the differences
among susceptibility maps; then, the identified patterns were put
in relation with all the explanatory variables used in the suscepti-
bility assessments. Using this approach, the lithological and
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Fig. 1 Test site description: a Location of Three Gorges Reservoir (TGR) in China, b location of Wanzhou County in the TGR, c landslides and altitude, d landslides and
lithology (see Table 1 for explanations of lithological units)

Table 1 Lithology and stratigraphic system in the study area

Lithology
classes

Stratum
code

System Series Group Main lithology

1 J3s Jurassic Upper Suining Red purple quartz sandstone with interbedded mudstone

2 T3xj Triassic Upper Xujiahe Light gray lithic sandstone and silty shale

3 J3P Jurassic Upper Penglai Gray white quartz sandstone with interbedded shale

4 T2b Triassic Middle Badong Limestone and sandy mudstone

5 T1j Triassic Lower Jialingjiang Limestone and dolomite, karst breccia, and dolomite
limestone

6 J1z Jurassic Lower Zhengzhuchong Gray quartz sandstone with interbedded shale

7 J1-2z Jurassic Middle-lower Ziliujin Shale sandwiching quartz sandstone and limestone

8 J2x Jurassic Middle Xintiangou Gray yellow feldspar sandstone with interbedded
mudstone

9 J2xs Jurassic Middle Xiashaximiao Gray purple feldspar sandstone with interbedded
mudstone

10 J2s Jurassic Middle Shaximiao Alterative layers of purple red mudstone and feldspar
sandstone or siltstone

11 P2 Permain Middle Maokou Gray bioclastic limestone

12 T1d Triassic Lower Daye Limestone, shale, and dolomite limestone
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morphological features of the study area that are typically associ-
ated to underestimations and overestimations of susceptibility can
be identified. The results shed a new light on the susceptibility
models identifying systematic errors that could be associated to
distinctive geomorphological features of the test site.

Material and methods

Test site description
Wanzhou County is located in the Three Gorges Area of the
Yangtze River basin (Chongqing Municipality, southwestern Chi-
na) between 107° 55′ 22″–108° 53′ 25″ E and 30° 24′ 25″–31° 14′ 58″ N
covering an area of approximately 3457 km2.

The study area extends into the subtropical humid monsoon
zone and features a mild climate with abundant sunshine and a
mean annual precipitation of 1191.3 mm, mainly concentrated from
May to September (about 90% of the yearly rainfall). During
summer, the rain is characterized by short intense rainstorms
(up to more than 100 mm/day). The Yangtze River runs through-
out the study area from southwest to northeast, and 93 large and
small streams form a complex surface runoff network. The eleva-
tion gradually decreases from east to west forming a hilly land-
scape, with an overall step-like morphology formed by multi-level
fluvial terraces, which resulted from the combination of repeated
tectonic uplift stages and the Yangtze River erosion (Liu 2010)
(Fig. 1).

The bedrock lithology encompasses sandstones, mudstones,
shales, and limestones (Table 1), with nearly horizontal stratifica-
tions. Extending from both sides of the Yangtze River, the out-
cropping bedrock mainly increases in age from Triassic to Jurassic
(2.3 to 137 Ma), with sporadic Permian (299 to 252 Ma) and
Quaternary (from 2.5 Ma). The middle Jurassic Shaximiao Group,
consisting of alternating layers of sandstone and mudstone (J2 s in
Table 1), is the most widely distributed geological unit.

The total area of landslides is 102.64 km2, accounting for about
3% of the total study area. They are mainly slow-moving slides,
with near horizontal sliding surface (Gui 2014). The maximum and
minimum sizes of the landslides identified and mapped in the
study area are approximately 9.6 × 105 m2 and 30 m2, respectively.
Since the impoundment of the Three Gorges Reservoir in 2003,
many dormant landslides have been reactivated, mainly triggered
by water level fluctuation and rainfall (Gui 2014). The well-known
Anlesi Landslide, Caojiezi Landslide, and Taibaiyan Landslide are
all ancient landslides with a volume of more than ten million cubic
meters, and they all developed in sub-horizontally dipping sand-
stone and mudstone interbedded strata (Gui et al. 2016).

Input data and methodology
Four landslide susceptibilitymaps ofWanzhou County are used in this
research (Xiao et al. 2019), and they are based on random forest (RF),
frequency ratio (FR), certainty factor (CF), and index of entropy (IOE)
models. Thirteen causal factors were selected for susceptibility assess-
ment: altitude, slope, aspect, plan curvature, profile curvature, stream
power index (SPI), topographic wetness index (TWI), bedding struc-
ture, lithology, land use, geological structure, distance to rivers, and
distance to roads/railways. Table 2 provides further details on the
classification scheme used for every causative factor and their impor-
tance in the susceptibility assessment: “FR” and “CF” represent the
contribution of each class calculated from the FR and CF models,Ta
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respectively, and “Wj” is the weighting coefficient of each factor
(calculated using the IOE model). Distance to rivers was variably
divided into several classes depending on the typology of rivers, and
the same as the roads. The AUC of RF, FR, CF, and IOE models were
80.1%, 72.7%, 72.9%, and 73.8%, respectively. Further details on how
the susceptibility assessments were carried out can be found in Xiao
(Xiao et al. 2019).

Analysis and comparison of these four susceptibility maps is
the main research aim. The proposed method of comparison
includes the following steps.

– First, in a GIS system, the susceptibility maps were paired, and
their values were subtracted to define their differences (Fig. 2).
Since the RF model was characterized by a higher AUC value
than the other three and by a better spatial agreement between
inventoried landslides and highest susceptibility classes (Xiao

et al. 2019), it was chosen as a benchmark, and six comparison
maps were obtained following two distinct criteria. Group 1
comprises all the straight comparisons with the benchmark
and includes “RF-FR,” “RF-CF,” and “RF-IOE” (Fig. 2a–c),
while group 2 includes comparisons among the other models,
namely “IOE-FR,” “IOE-CF,” and “CF-FR” (Fig. 2d–f). Since
the raster value of each susceptibility map is between 0 and 1,
the values of the comparison maps could potentially range
from − 1 to 1. A simple visual inspection of Fig. 2 reveals that
the differences in group 1 are wide, while in group 2, they are
relatively small. Most important, the differences are not evenly
distributed, and some spatial patterns can be clearly recog-
nized in almost all comparisons. This step can be considered
a preliminary stage, allowing a visual inspection of the spatial
distribution of the differences and providing quantitative data
to be analyzed in the further steps.

0.81

-0.85

0.69

-0.83

0.33

-0.31

0.32

-0.47

0.87

-0.94

0.30

-0.09

a RF-FR

b RF-CF

c RF-IOE

d IOE-FR

e IOE-CF

f CF-FR

Fig. 2 Six comparison maps (uniform legend: blue–red band from − 1~1)
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– The value of comparison maps was divided into three levels,
namely “underestimation,” “approximation,” and “overes-
timation.” The value of maps in group 1 is broken at − 0.50
and 0.50, while the value is broken at − 0.25 and 0.25 in
group 2. We used a different approach in group 2 because
the models involved provided quite similar results with
differences contained between + 50% and − 50%. Compared
with group 1, the different classification demands a different
interpretation of the results: in the first group, the focus is
finding and inspecting relevant differences, and in the sec-
ond group, the focus is inspecting small differences. The
percentage of each level in the total area is shown in Table 3.

– The subsequent step of the methodology is aimed at iden-
tifying systematic underestimations and overestimations,
with a spatial pattern that could be influenced by one or
more causative factors used in the susceptibility assessment.
To explore the key factors that led to differences between
susceptibility maps, a large number of statistics (Table 4 and
Table 5) were performed on the area interested by underes-
timations and overestimations for each class of each causa-
tive factor. Data presentation and analysis are in the next
section.

– The critical classes and factors are further investigated by
counting the underestimations/overestimations there located
and calculating the mean value and standard deviation of the
difference with the benchmark.

– As a last step, the results obtained are critically analyzed: the
factors and classes responsible for systematic overestimations
and underestimations of certain models are discussed trying to
identify possible reasons of success/failure of the susceptibility
models in some geomorphological settings.

Results
For each pair of maps, the overestimation and underestimation
pixels were put in relation with all the causative factors used in the
susceptibility analysis. Thirteen causal factors were used in the
susceptibility maps, and each factor was divided into several
classes (totaling 80 classes). For each class, we calculated “A” as
the percentage of each class in the total area, “B” as the ratio of the
underestimation pixels found in the class to total underestimation,
and “A − B” as the difference between the two ratios, which could
be used to identify critical classes with anomalous clustering of
underestimations. The same process was repeated for the
overestimations.

As an example, in Table 4, the comparison between RF and FR
maps shows that concerning altitude factor, class 1, covers only
14.61% of the total area (A), but it contains 68.25% of the under-
estimation pixels (B), providing an imbalance of 53.64% (B − A)
that could be symptomatic of a systematic distribution of
underestimations.

Overall, thirteen classes were analyzed according to this proce-
dure. For the ease of reading, only two representative factors are
listed in Table 4 and Table 5, while a complete summary is pro-
vided as supplementary material. The number of underestimation
pixels of IOE-FR and CF-FR comparison map and overestimation
pixels of IOE-CF comparison map is nearly zero, so they do not
appear in Table 5.

According to the “B − A” values defined for each class, the
classes with the highest imbalances were selected for further in-
vestigation (Table 6). Overestimation pixels in group 1 are clearly
related to classes 1, 2, and 6 of lithology, while several factors are
involved in systematic underestimations: altitude, slope, and as-
pect are the main imbalanced classes in “RF-FR” and “RF-CF,”
while 98.56% underestimation area of “RF-IOE” is located in class

Table 3 Classification of comparison maps

Comparison Value Classification Percentage

Group 1 RF-FR − 0.85~0.81 Underestimation − 0.85~− 0.50 0.18

Approximation − 0.50~0.50 98.43

Overestimation 0.50~0.81 1.39

RF-CF − 0.83~0.69 Underestimation − 0.83~− 0.50 1.57

Approximation − 0.50~0.50 98.31

Overestimation 0.50~0.69 0.12

RF-IOE − 0.94~0.87 Underestimation − 0.94~− 0.50 0.93

Approximation − 0.50~0.50 96.65

Overestimation 0.50~0.87 2.42

Group 2 IOE-FR − 0.31~0.33 Underestimation − 0.31~− 0.25 0.01

Approximation − 0.25~0.25 99.27

Overestimation 0.25~0.33 0.72

IOE-CF − 0.47~0.32 Underestimation − 0.47~− 0.25 23.11

Approximation − 0.25~0.25 76.86

Overestimation 0.25~0.32 0.03

CF-FR − 0.09~0.30 Approximation − 0.09~0.23 99.72

Overestimation 0.23~0.30 0.28
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1 of altitude. In group 2, the underestimation pixels of “IOE-CF”
are randomly distributed and no regular pattern could be ob-
served. The overestimation pixels of “IOE-FR” are all located in
class 1 of altitude, and 98.04% overestimation pixels of “CF-FR”
are in class 2 of altitude.

The most imbalanced classes underwent also a visual inspec-
tion that clearly exemplifies their relationship with underestima-
tion or overestimation areas. Figure 3 reports four figures that
clearly visualize this connection: underestimations of “RF-IOE”
driven by altitude class 1 (Fig. 3a), overestimations of “RF-IOE”
driven by lithology (Fig. 3b), overestimations of “IOE-FR” driven
by altitude (Fig. 3c), and overestimations of “CF-FR” driven by
altitude (Fig. 3d). In each figure, the yellow represents the imbal-
anced class(es), and the other classes are in gray. Almost all
underestimation pixels are at class 1 of altitude, and the percentage
is 98.56% marked in Fig. 3a. In Fig. 3b, there is a clear trend for
overestimation pixels, and 63.16% of the pixels are in lithology
classes 1, 2, and 6. All the overestimation pixels are located in class
1 of altitude in Fig. 3c. For CF-FR comparison map (Fig. 3d),
98.04% of overestimation pixels are located in class 2 of altitude.

The analysis of underestimations and overestimations, as de-
fined in Table 3, characterizes the distribution of extreme values,
while to represent the overall situation in each class, mean values
are more useful. Starting from the comparison maps (Fig. 2),
simple statistical properties of the differences in susceptibility
values and their distribution across each critical class is calculated
and listed in Table 7; moreover, the differences in susceptibility
values were averaged for each class and histograms were built (Fig.
4). The brown in the histogram is the class with the most pixels of
underestimation, and the purple column is the class with a distinct
concentration of overestimation pixels. In general, the distribution
of mean values is driven by the same classes that drive the extreme
underestimation and overestimations. In Fig. 4a, the value of class
1 is negative, while the values of other five classes are similar and
positive, this highlighting the clear underestimation trend associ-
ated to that class. Concerning lithology in Fig. 4b, all classes are
characterized by positive (or very small negative) values, but
classes 1, 2, and 6 stand out for their higher values. In Fig. 4c, only
class1 is positive, and the other five categories are negative and
significantly lower than class 1. The value of class 2 is the highest in
Fig. 4d, but not much different from the other five classes, which is
in accordance with the proportion of extreme pixel in the com-
parison map. The percentage of overestimation in CF-FR map is
only 0.28%, while the percentage of underestimation in RF-IOE,
overestimation in RF-IOE, and overestimation in IOE-FR is 0.93%,
2.42%, and 0.72%, respectively.

Discussion
Even if in Table 3 we observed that extreme overestimations and
underestimations are limited in number (the overall discrepancies
range from 1.57% of the total area in RF-FR to 3.35% in RF-IOE),
the impact on AUC values is great (AUC values of IOE, FR, and CF
are lower than RF by about 6–7%). This is because overestimations
and underestimations are not randomly distributed, but some
spatial patterns are present. These patterns, in turn, are clearly
related to systematic errors in the susceptibility assessment that
can be linked to a limited effectiveness of certain models to
account for specific features of the test area.
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Concerning group 1 (RFmodel used as a benchmark in comparison
with all other models), extreme values of both overestimations and
underestimations are present and both show a spatial pattern that can
be related to some morphological or geological feature.

Our analyses showed that for all the three comparisons, over-
estimations have a similar trend which is driven by the same
geological factors. Indeed, the classes 1, 2, and 6 of lithology clearly
stand out as the most important for all the comparisons. We could
not identify some spatial, geological, or structural feature that is
associated to these three classes and at the same time differentiate
them from the remaining nine classes (see also Fig. 1 and Table 1).
We therefore concluded that the reason is more likely related to a

higher effectiveness of the random forest algorithm in analyzing a
relatively high number of geological classes (namely, 12) and using
them for a more reliable susceptibility assessment. As a conse-
quence, it would be possible that in this study lithology has a more
significant contribution in RF model when calculating the suscep-
tibility. To verify this hypothesis, we produced a new susceptibility
map based on RF model using only 12 factors (lithology was not
taken into account): its AUC was only 55%, much lower than the
80% value obtained with the full configuration. This proves the
conjecture that lithology occupies a vital importance in RF model
and that in this study RF could exploit a complex lithological
information better than the other models.

Table 5 Statistics on underestimation pixels and overestimation pixels in two representative factors (group 2)

Factors Classes A (%) Underestimation Overestimation
IOE-CF IOE-FR CF-FR
B (%) B − A (%) B (%) B − A (%) B (%) B − A (%)

Altitude 1 14.61 0.00 − 14.61 100.00 85.39 0.00 − 14.61

2 24.19 15.94 − 8.25 0.00 − 24.19 98.04 73.86

3 27.52 43.53 16.01 0.00 − 27.52 0.74 − 26.78

4 16.42 15.28 − 1.14 0.00 − 16.42 0.46 − 15.96

5 11.53 15.96 4.44 0.00 − 11.53 0.46 − 11.06

6 5.74 9.29 3.55 0.00 − 5.74 0.29 − 5.45

Slope 1 13.58 21.52 7.94 4.87 − 8.71 51.56 37.98

2 20.04 30.34 10.30 7.21 − 12.84 33.89 13.84

3 23.84 28.61 4.77 13.53 − 10.30 13.19 − 10.65

4 21.99 13.09 − 8.90 33.77 11.78 0.97 − 21.02

5 15.33 4.70 − 10.62 32.31 16.98 0.27 − 15.05

6 5.22 1.74 − 3.48 8.31 3.09 0.11 − 5.11

Italics are most imbalanced classes in each factor

Table 6 Most imbalanced classes driving the spatial distribution of underestimations and overestimations

Group Comparison maps Imbalanced classes (descending order)

1 Underestimation RF-FR Altitude, class 1; land use, class 6;
Slope, class 1; aspect, class 1

RF-CF Lithology, class 10; plan curvature, class 2;
Slope, class 1; profile curvature, class 2;
Altitude class 3; aspect, class 1

RF-IOE Altitude, class 1

Overestimation RF-FR Lithology, classes 1, 2, and 6

RF-CF Lithology, classes 1, 2, and 6

RF-IOE Lithology, classes 1, 2, and 6

2 Underestimation IOE-FR None

CF-FR None

IOE-CF Altitude, class 3; geological structure, class 6; land
use, class 5; bedding structure, class 4; plan curvature,
class 2; rivers, class 1; lithology, class 10; slope, class 2;
profile curvature, class 2;

Overestimation IOE-FR Altitude, class 1

CF-FR Altitude, class 2

IOE-CF None
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Concerning the spatial distribution of underestimations,
different trends were identified for the three comparisons of
group 1. For “RF-FR” comparison, our analyses showed that
they are clearly driven by class 1 of altitude (“B − A” =
53.64%), class 1 of slope (“B − A” = 43.73%), and class 1 of
aspect (“B − A” = 36.27%). The three morphological classes
have a high degree of spatial overlap and basically represent
low elevation and flat areas alongside the Yangtze River. This
is confirmed also by the values characterizing class 6 of land
use (areas besides water bodies—“B − A” = 45.68%) and by
the planar and profile curvature factors (see supplementary
material), for which the classes representing planar morphol-
ogies are imbalanced toward underestimation as well. Similar
flat morphologies are typical of the study area and have been
traditionally explained with two main geomorphological rea-
sons (Li et al. 2001; Jian et al. 2009; Huang 2012): differences
in weathering of horizontal geological formations (sandstone
with interbedded mudstone) and presence of relict fluvial
terraces formed by the Yangtze River and its tributaries.

For “RF-CF” comparisonmap, there are six important classes and
no one is more prominent than others. “RF-CF” map has fewer
extreme underestimations than “RF-FR” map, which may be due
to the different distribution of CF and FR value. In the landslide
susceptibility evaluation, the RF value of each factor ranges from 0 to
3.63, and the CF value ranges from − 1 to 0.75. The range of CF values
is smaller, and the distribution is more even than FR values.

For “RF-IOE” comparison map, class 1 of altitude is the only
imbalanced class. IOE model has a weight coefficient for each
factor, and altitude in the study area is the largest in weight and
significantly larger than the other factors. At the same time, the
contribution of this class is the largest among the six classes of
altitude. This is why the susceptibility map performed by IOE
model has a too large value in class 1 of altitude.

To sum up, the application of the proposed approach in group 1
allowed to identify systematic errors in some of the models and to
relate them to a combination of computational characteristics of
the algorithm and morphological features of the study area.

Even if landslides are geomorphological processes, landslide sus-
ceptibility assessments usually rely on advanced statistical approaches
that, although providing good results, completely bypass the geotech-
nical triggeringmechanism and neglect the geomorphological features
of the study area. The models used in this comparison make no
exception, but the comparison procedure proposed in this manuscript
can lead to identify and explain some systematic errors. In addition,
the outcomes of the statistical analysis described in this work can be
used as a starting point to address further and more thorough geo-
morphological investigations on the study area. For instance, the
comparison highlighted a possible involvement of relict fluvial terraces
in controlling the landslide susceptibility of the area in low altitude
and low gradient areas. Nowadays, terraces are not present everywhere
and have been partially masked or erased by natural processes and
human modifications of the territory (Li et al. 2001; Yang et al. 2017).

Fig. 3 Spatial location of underestimations and overestimations, in relationship with the most imbalanced classes
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However, the presence of many systematic errors concentrated in the
areas once occupied by terraces may be symptomatic of the fact that
landslides could have been one of the geomorphological processes
involved in the disruption of the relict terraces. Of course, this is only a
hypothesis in the attempt of giving a physical interpretation to the
results of the statistical models used in the susceptibility assessment.
Nevertheless, as stated in the test site description, landslides can be
found on fluvial terraces and can be activated by water level fluctua-
tions in the reservoir (Yang et al. 2017). Simpler models (FR, CF, and
IOE) fail in addressing such complex concepts given the simple inputs
available for the statistical correlation (morphological attributes and
thematic maps). In contrast, RF model indirectly “recognizes” the
geomorphological fluvial terrace feature and the mechanism of the
water level fluctuation by combining some simple features (low gra-
dient, flat morphology, elevation close to the river course); thus, it
calculates a more appropriate susceptibility level.

The number of imbalanced pixels cannot be closely related to
the AUC, as we observed that the statistical model with the lowest

AUC (IOE) is the least imbalanced one and the most imbalanced
one has the highest AUC (FR) (Table 3). In this case of study, this
outcome has a relative importance because the differences in AUC
between FR, CF, and IOE are very contained; nevertheless, it
represents an additional argument stressing the importance of
the need of comparison procedures more advanced than just a
comparison between AUC values.

Concerning group 2 (comparison among IOE, CF, and FR), the
models provide similar results, leading to similar AUC values and
absence of extreme underestimations and overestimations. In addition,
the spatial distribution of the small differences in susceptibility values is
quite random, meaning that no class can imprint a spatial pattern.

In the “IOE-CF” comparison, there is not a single class or a
group of classes that clearly dominates the spatial distribution of
underestimations, while overestimations are nearly absent.

In the “IOE-FR,” the underestimations are negligible, while the
overestimations, although small in absolute value, show an interesting
trend: they are all located in class 1 of altitude. The weight coefficient is

Fig. 4 Histograms with the mean value of comparison maps encountered in each class
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the only difference between IOE and FR model. Altitude has a largest
weight coefficient and class 1 contributesmost among classes, so class 1
of altitude is the area where the value of IOE susceptibility map is
much larger than FR susceptibility map.

A similar trend can be observed in “CF-FR”: the underestimations
are nearly absent, while overestimations are mainly found in class 2 of
altitude which may be due only to their different computational
characteristics of the algorithm. However, the differences of “CF-FR”
are very small, from 0.09 to 0.30. The AUC of susceptibility map based
on FR and CF models are 72.7% and 72.9%, respectively. It indicates
that the two susceptibility maps based on FR and CF models are very

similar, both in terms of AUC values and spatial distribution of
susceptibility values.

It should be stressed that our methodology proposes a new
approach to make a more thorough comparison among suscepti-
bility maps; therefore, the definition of overestimation and under-
estimation should not be considered in an absolute way: we
defined them by means of a comparison among different models
and all of them are representations of reality, not reality itself.
Among the four models, the one with the highest AUC value is
selected as a benchmark, but after that, a procedure is developed
to expand the comparison beyond the simple AUC values.

Table 7 Simple statistical properties of the differences in susceptibility values and their distribution across each class of the most critical factors

Comparison
map

Factor Class Percentage of
underestimation
pixels in each
class

Percentage of
overestimation
pixels in each
class

Difference in susceptibility values
Mean Standard

deviation
Max Min

RF-IOE Altitude 1 6.16 0.06 − 0.16 0.21 0.34 − 0.94

2 0.05 2.94 0.11 0.20 0.68 − 0.55

3 0.00 2.97 0.09 0.19 0.85 − 0.48

4 0.00 3.42 0.11 0.19 0.83 − 0.39

5 0.00 1.87 0.07 0.16 0.87 − 0.40

6 0.00 1.00 0.05 0.15 0.78 − 0.32

RF-IOE Lithology 1 0.31 3.98 0.13 0.21 0.83 − 0.8

2 0.00 8.14 0.18 0.21 0.83 − 0.58

3 0.15 1.88 0.04 0.19 0.81 − 0.69

4 0.11 0.71 0.06 0.16 0.87 − 0.68

5 0.01 0.18 0.00 0.12 0.82 − 0.4

6 0.09 9.25 0.20 0.22 0.84 − 0.68

7 0.17 1.90 0.08 0.18 0.72 − 0.63

8 3.10 1.41 − 0.01 0.24 0.75 − 0.94

9 1.96 0.61 − 0.01 0.21 0.8 − 0.78

10 1.10 1.25 0.01 0.20 0.85 − 0.86

11 0.00 0.00 0.03 0.06 0.32 0.04

12 0.00 0.00 0.01 0.05 0.33 − 0.09

IOE-FR Altitude 1 0.00 4.85 0.17 0.05 0.33 0

2 0.00 0.00 − 0.01 0.04 0.13 − 0.2

3 0.02 0.00 − 0.08 0.04 0.05 − 0.29

4 0.00 0.00 − 0.07 0.04 0.05 − 0.28

5 0.02 0.00 − 0.09 0.04 0.01 − 0.3

6 0.05 0.00 − 0.11 0.04 0.01 − 0.31

CF-FR Altitude 1 0.00 0.09 0.05 0.21 − 0.09

2 1.09 0.18 0.03 0.3 − 0.03

3 0.01 0.14 0.03 0.27 − 0.05

4 0.01 0.13 0.03 0.30 − 0.07

5 0.01 0.12 0.04 0.27 − 0.07

6 0.01 0.11 0.04 0.25 − 0.08

Italics are most imbalanced classes in each factor
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Rossi et al. (2010) showed that the best AUC does not neces-
sarily means best predictive power, and they suggested that a more
effective susceptibility assessment can be obtained merging differ-
ent models. Our findings are partially in line with these statements
and lead them to a further step, where the geotechnical and
geomorphological reasons of differences should be ascertained,
and systematic errors should be identified and excluded from
the generalization procedure to improve the hazard assessment.
However, in our test site, a merging or averaging of the four
available susceptibility maps would not be advisable: the analysis
of group 2 highlighted that IOE, CF, and FR provided very similar
maps; thus, their joint use would lead to include redundant infor-
mation in the final hazard assessment; more importantly, this
information would be affected by systematic errors caused by a
limited effectiveness of the models to correctly take into account
some morphologic and lithological parameters.

Conclusion
This paper shows that the classical scheme of comparison between
susceptibility models in terms of AUC can be expanded and can be
enriched with substantial insights connected to the physical features of
the study area.Working on a test site inWanzhou County, a quantitative
comparison of the susceptibility values estimated on a pixel-by-pixel
basis was carried out to reveal systematic spatial patterns in the differ-
ences among four susceptibility maps obtained with four models (RF,
IOE, FR, and CF), then the identified patterns were put in relation with
all the explanatory variables used in the susceptibility assessments. This
procedure showed where the most relevant differences among the
susceptibility maps were located and the morphological and lithological
features of the study area that are typically associated to underestima-
tions and overestimations of susceptibility could be identified. In our
case of study, the main differences in susceptibility maps were clearly
driven by some geological formations and by nearly flat low altitude
areas near the main rivers. The results shed a new light on the suscep-
tibility models identifying systematic errors that could be possibly
associated to distinctive geomorphological features of the test site.

Compared to traditional methods for the comparative analysis
of different assessments of landslide susceptibility (mainly based
only on AUC calculation and visual inspection of the maps), we
believe that the proposed procedure has some advantages:

– It is more thorough, since maps are compared pixel by pixel
instead of summarizing their overall performance in a single
parameter (AUC) and comparing that single value;

– It is more detailed and refined, leading to outcomes that can be
useful to gain new perspectives and insights on the susceptibility
assessments, possibly identifying weak points of themodels used;

– It holds a more complete geomorphological meaning: land-
slides are complex processes, and differences in predictive
performances of the models and in the resulting mapped
values could be related to an inadequate parameterization of
the geomorphological features of the study area;

– It constitutes a step forward toward the recognition of the
importance of geomorphology in interpreting the results of
landslide susceptibility assessments: advanced approaches
based on statistics or machine-learning algorithms usually
completely bypass the geomorphological implications of the
problem at hand, and geomorphology should be used to inter-
pret the results obtained;

– It provides more substantial conclusions: averaging different
susceptibility assessments or comparing maps and taking the
one with the highest AUC as the “ground truth” could lead to
biased hazard assessments. The methodology of comparison
proposed in this paper could be used to ascertain localized and
generalized underestimations and overestimations of suscepti-
bility, thus reducing uncertainties and identifying hotspots
worth of further inspection.
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