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Abstract
We survey the mathematical foundations of geometric deep learning, focusing on group
equivariant and gauge equivariant neural networks. We develop gauge equivariant convo-
lutional neural networks on arbitrary manifolds M using principal bundles with structure
group K and equivariantmaps between sections of associated vector bundles.We also discuss
group equivariant neural networks for homogeneous spaces M = G/K , which are instead
equivariant with respect to the global symmetry G on M. Group equivariant layers can be
interpreted as intertwiners between induced representations of G, and we show their relation
to gauge equivariant convolutional layers. We analyze several applications of this formalism,
including semantic segmentation and object detection networks. We also discuss the case of
spherical networks in great detail, corresponding to the caseM = S2 = SO(3)/SO(2). Here
we emphasize the use of Fourier analysis involving Wigner matrices, spherical harmonics
and Clebsch–Gordan coefficients for G = SO(3), illustrating the power of representation
theory for deep learning.

1 Introduction

Deep learning is an approach to machine learning that uses multiple transformation layers
to extract hierarchical features and learn descriptive representations of the input data. These
learned features can be applied to a wide variety of classification and regression tasks. Deep
learning has for example been enormously successful in tasks such as computer vision, speech
recognition and language processing. However, despite the overwhelming success of deep
neural networks we are still at a loss for explaining exactly why deep learning works so well.
One way to address this is to explore the underlying mathematical framework. A promising
direction is to consider symmetries as a fundamental design principle for network architec-
tures. This can be implemented by constructing deep neural networks that are compatible
with a symmetry group G that acts transitively on the input data. This is directly relevant for
instance in the case of spherical signals whereG is a rotation group. In practical applications,
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it was found that equivariance improves per-sample efficiency, reducing the need for data
augmentation (Müller et al. 2021). For linear models, this has been proven mathematically
(Elesedy and Zaidi 2021).

Even more generally, it is natural to consider the question of how to train neural networks
in the case of “non-flat” data. Relevant applications include fisheye cameras (Coors et al.
2018), biomedicine (Boomsma and Frellsen 2017; Elaldi et al. 2021), and cosmological data
(Perraudin et al. 2019), just to mention a few situations where the data is naturally curved.
Mathematically, this calls for developing a theory of deep learning on manifolds, or even
more exotic structures, like graphs or algebraic varieties. This rapidly growing research field
is referred to as geometric deep learning (Bronstein et al. 2017).

In this introduction we shall provide a birds-eye view on the subject of geometric deep
learning, with emphasis on the mathematical foundations. We will gradually build up the
formalism, starting from a simple semantic segmentation model which already illustrates the
role of symmetries in neural networks.We discuss group and gauge equivariant convolutional
neural networks, which play a leading role in the paper. The introduction concludes with a
summary of our main results, a survey of related literature, as well as an outline of the paper.

1.1 Warm up: a semantic segmentationmodel

The basic idea of deep learning is that the learning process takes place inmulti-layer networks
known as deep neural networks of “artificial neurons”, where each layer receives data from
the preceding layer and processes it before sending it to the subsequent layer. Suppose one
wishes to categorize some data sample x according to which class y it belongs to. As a
simple example, the input sample x could be an image and the output y could be a binary
classification of whether a dog or a cat is present in the image. The first layers of a deep neural
network would learn some basic low-level features, such as edges and contours, which are
then transferred as input to the subsequent layers. These layers then learn more sophisticated
high-level features, such as combinations of edges representing legs and ears. The learning
process takes place in the sequence of hidden layers, until finally producing an output ŷ, to
be compared with the correct image class y. The better the learning algorithm, the closer the
neural network predictions ŷ will be to y on new data samples it has not trained on. In short,
one wishes to minimize a loss function that measures the difference between the output ŷ
and the class y.

More abstractly, let us view a neural network as a nonlinear mapN between a set of input
variables X and output variables Y ⊇ N (X). Suppose one performs a transformation T of
the input data. This could for instance correspond to a translation or rotation of the elements
in X . The neural network is said to be equivariant to the transformation T if it satisfies

N (T x) = T ′N (x), (1)

for any input element x and some transformation T ′ acting on Y . A special case of this
is that the transformation T ′ is the identity in which case the network is simply invariant
under the transformation, i.e.N (T x) = N (x). This is for instance the case of convolutional
neural networks used for image classification problems, for which we have invariance with
respect to translations of the image. A prototypical example of a problem which requires
true equivariance is the the commonly encountered problem of semantic segmentation in
computer vision. Intuitively, this follows since the output is a pixel-wise segmentation mask
which must transform in the same way as the input image. In the remainder of this section
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Fig. 1 Semantic segmentation model. In the first row the name of the first feature map (i.e. the input image)
is given by fin, it maps the domain Z

2 to RGB values and has support on [0, d1] × [0, d2]. It is followed by
the first convolution, resulting in a feature map f2 that now maps into a N2 dimensional space corresponding
to the N2 filters of the convolution. After a point-wise activation the second convolution results in a feature
map fout that associates an Nout-dimensional vector to each point in the domain. This vector is then mapped
to a probability distribution over the Nout classes using the softmax operator

we will therefore discuss such a model and highlight its equivariance properties in order to
set the stage for later developments.

An image can be viewed as a compactly supported function f : Z
2 → R

Nc , where
Z
2 represents the pixel grid and R

Nc the color space. For example, the case of Nc = 1
corresponds to a gray scale image while Nc = 3 can represent a color RGB image. Even
though values in color space are typically restricted, for example grayscale values between 0
and 1, the color channel vectors of input data can be viewed as elements of the larger space
R

Nc . Analogous to images, a feature map fi associated with layer i in a CNN can be viewed
as a map Z

2 → R
Ni , where R

Ni is the space of feature representations.
Consider a neural network N classifying each individual pixel of RGB images fin :

Z
2 → R

3, supported on [0, d1] × [0, d2] ⊂ Z
2, into Nout classes using a convolutional

neural network. Let the sample space of Nout classes be denoted � and let P(�) denote the
space of probability distributions over �.

The network as a whole can be viewed as a map

N : L2(Z2, R
3)→ L2 (

Z
2, P(�)

)
, (2)

where L2(X , Y ) denote the space of square integrable functions with domain X and co-
domain Y . This class of functions ensures well-defined convolutions and the possibility to
construct standard loss functions.

The co-domain L2
(
Z
2, P(�)

)
ofN is usually referred to as semantic segmentations since

an element assigns a semantic class probability distribution to every pixel in an input image.
For simplicity, let the model consist of two convolutional layers where the output of the

last layer, fout, maps into an Nout-dimensional vector space, followed by a softmax operator
to produce a probability distribution over the classes for every element in [0, d1] × [0, d2].
See Fig. 1 for an overview of the spaces involved for the semantic segmentation model.

The standard 2d convolution, for example �1 in Fig. 1, is given by

[κ1� fin] (x, y) =
∑

(x ′,y′)∈Z2

κ1(x
′ − x, y′ − y) fin(x

′, y′), (3)
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where κ1 ∈ L2(Z2, R
N2×3) is the convolution kernel for �1. This is formally a cross-

correlation, but it can be transformed into a convolution by redefining the kernel.
We can rewrite this convolution group theoretically as

[κ1� fin] (x, y) =
∑

(x ′,y′)∈Z2

L(x,y)κ1(x
′, y′) fin(x ′, y′), (4)

where L(x,y) is the left-translation operator

L(x,y)κ(x ′, y′) = κ(x ′ − x, y′ − y). (5)

In the context of convolutions the terms kernel and filter appear with slight variations in
their precise meaning and mutual relationship in the literature. We will generally use them
interchangeably throughout this paper.

This convolution is equivariant with respect to translations (x, y) ∈ Z
2, i.e.

[
κ�

(
L(x,y) fin

)]
(x ′, y′) = (

L(x,y)[κ� fin]
)
(x ′, y′). (6)

The point-wise activation function and softmax operator also satisfy this property,
[
relu

(
L(x,y) fin

)]
(x ′, y′) = relu

(
fin(x

′ − x, y′ − y)
) = [

L(x,y)relu( fin)
]
(x ′, y′), (7)

where relu(x) = max{0, x}, so that the model as a whole is equivariant under translations
in Z

2. Note that this equivariance of the model ensures that a translated image produces the
corresponding translated segmentation,

N (L(x,y) fin) = L(x,y)N ( fin), (8)

as illustrated in Fig. 2. The layers in this particular model turn out to be equivariant with
respect to translations but there are many examples of non-equivariant layers such as max
pooling. Exactly what restrictions equivariance implies for a layer in an artificial neural
network is the topic of Sects. 2 and 3.

1.2 Group equivariant convolutional neural networks

Convolutional neural networks are ordinary feed-forward networks that make use of con-
volutional operations of the form (3). One of the main reasons for their power is their
aforementioned translation equivariance (8), which implies that a translation of the pixels in
an image produces an overall translation of the convolution. Since each layer is translation
equivariant all representations will be translated when the input data is translated. Further-
more, the local support of the convolution allows for efficient weight sharing across the input
data.

Notice thatZ2 in the semantic segmentation model is a group with respect to addition, and
the space of feature representations R

N is a vector space. It is therefore natural to generalize
this construction by replacing Z

2 with an arbitrary group G and R
N with a vector space V .

The feature map then generalizes to

f : G → V , (9)

and the convolution operation (3) to

[κ� f ] (g) =
∫

G
κ(g−1h) f (h)dh, (10)
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Fig. 2 Z
2 equivariance of a semantic segmentationmodel classifying pixels into classes� = {road, non-road}.

The networkN maps input images, indicated by the content of the red rectangles in the left column, to semantic
masks indicated by the corresponding content of the red rectangles in the right column. Image and semantic
mask from Cordts et al. (2016)

where dh is a left-invariant Haar measure on G. If G is a discrete group such as Z
2, then dh

becomes the counting measure and the integral reduces to a sum.
The generalized kernel κ : G → Hom(V ,W ) appearing in (10) is a function from the

group to homomorphisms between V and some feature vector spaceW , which can in general
be different from V . Consequently, the result of the convolution is another feature map

[κ� f ] : G → W , (11)

and in analogy with the terminology for ordinary CNNs we refer to the convolution (10)
itself as a layer in the network. The general form of the convolution (10) is equivariant with
respect to the left-translation by G:

[κ�Lh f ] (g) = Lh [κ� f ] (g), (12)

motivating the term equivariant layer.
In the convolution (10), the kernel κ in the integral overG is transported in the group using

the right action ofG on itself. This transport corresponds to the translation of the convolutional
kernel in (3) and generalizes the weight sharing in the case of a locally supported kernel κ .

In this paper we will explore the structure of group equivariant convolutional neural
networks and their further generalizations to manifolds. A key step in this direction is to
expose the connection with the theory of fiber bundles as well as the representation theory
of G. To this end we shall now proceed to discuss this point of view.
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It is natural to generalize the above construction even more by introducing a choice of
subgroup1 K ≤ G for each feature map, and a choice of representation ρ of K , i.e.,

ρ : K → GL(V ), (13)

where V is a vector space, and GL(V ) denotes the general linear group on V . Consider then
the coset space G/K and a vector bundle E

π−→ G/K with characteristic fiber V . Here, π

is a continuous surjection that is often referred to as the projection of E down to the base
space G/K . Sections of E are maps s : G/K → E which locally can be represented by
vector-valued functions

f : G/K → V . (14)

These maps can be identified with the feature maps of a group equivariant convolutional
neural network. Indeed, in the special case when G = Z

2, K is trivial and V = R
N , we

recover the ordinary feature maps f : Z
2 → R

N of a CNN. When the representation ρ is
non-trivial the network is called steerable (see Weiler et al. (2018); Weiler and Cesa (2019)).

As an example, consider spherical signals, i.e. the case in which the input feature map
is defined on the two-sphere S2 and can therefore be written in the form (14), since S2 �
SO(3)/SO(2). Here SO(n) denotes the special orthogonal group of n×n orthogonal matrices
of unit determinant. One way to think of this quotient is to construct points on the sphere
by using proper Euler angles Z(α)X(β)Z(γ ) ∈ SO(3) to rotate the north pole. The planar
rotation Z(γ ) ∈ SO(2) stabilizes the north pole and so the resulting point on the sphere only
depends on Z(α)X(β), the angles functioning similarly to spherical coordinates (Grafarend
and Kühnel 2011). Consequently, feature maps correspond to sections f : SO(3)/SO(2)→
V .

This construction allows us to describe G-equivariant CNNs using a very general mathe-
matical framework. The space of feature maps is identified with the space of sections �(E),
while maps between feature maps, which we refer to as layers, belong to the space of so
called G-equivariant intertwiners if they are equivariant with respect to the right action of
G on the bundle E . This implies that many properties of group equivariant CNNs can be
understood using the representation theory of G.

1.3 Group theory properties of machine learning tasks

After having laid out the basic idea of group equivariant neural networks, in this section we
will make this more concrete by discussing the group theoretical properties of the common
computer vision tasks of image classification, semantic segmentation and object detection.

Let us first focus on the case of classification. In this situation the input data consists of
color values of pixels and therefore the input feature map fin transforms under the regular
representation πreg of G, i.e. as a collection of scalar fields:

fin(x)→
[
πreg(g) fin

]
(x) = fin(σ

−1(g)x), g ∈ G, (15)

where σ is a representation of G that dictates the transformation of the image. In other
words, the color channels are not mixed by the spatial transformations. However, for image
classification the identification of images should be completely independent of how they are
transformed. For this reason we expect the network N ( fin) to be invariant under G,

N (πreg(g) fin) = N ( fin) , g ∈ G . (16)

1 We use the symbol ≤ to signify that K is a subgroup and not only a subset.
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On the other hand, when doing semantic segmentation we are effectively classifying each
individual pixel, giving a segmentation mask for the objects we wish to identify, as described
in Sect. 1.1. This implies that the output features must transform in the same way as the
input image. In this case one should not demand invariance of N , but rather non-trivial
equivariance

N (πreg(g) fin) = πreg(g)[N ( fin)], g ∈ G, (17)

where the regular representationπreg on the right-hand side transforms the output featuremap
of the network. The group-theoretic aspects of semantic segmentation are further explored
in Sect. 5.

Object detection is a slightly more complicated task. The output in this case consists
of bounding boxes around the objects present in the image together with class labels. We
may view this as a generalization of the semantic segmentation, such that, for each pixel,
we get a class probability vector p ∈ R

N (one of the classes labels the background) and
three vectors a, v1, v2 ∈ R

2 that indicate the pixel-position of the upper-left corner and two
vectors that span the parallelogram of the associated bounding box. Hence, the output is an
object (p, a, v1, v2) ∈ R

N+6 for each pixel. The first N components of the output feature
map f : R2 → R

N+6 transform as scalars as before. The three vectors a, v1, v2 on the other
hand transform in a non-trivial two-dimensional representation ρ of G. The output feature
map fout = N ( fin) hence transforms in the representation πout according to

(πout fout)(x) = ρout(g) fout(σ
−1(g)x) , (18)

where ρout = idN ⊕ ρ ⊕ ρ ⊕ ρ. The network is then equivariant with respect to πreg in the
input and πout in the output if

N (πreg(g) fin) = πout(g)[N ( fin)] . (19)

For more details on equivariant object detection see Sects. 5.3 and 6.4.

1.4 Gauge equivariant networks

In the group equivariant networks discussed above, we exploited that the domain of the input
feature map had global symmetries. Using inspiration from the physics of gauge theories and
general relativity, the framework of equivariant layers can be extended to feature maps which
are defined on a general manifoldM. Amanifold can be thought of as consisting of a union of
charts, giving rise to coordinates onM, subject to suitable gluing conditions where the charts
overlap. However, the choice of charts is arbitrary and tensors transform in a well-defined
way under changes of charts. Such transformations are called gauge transformations in
physics and correspond to the freedom of making local coordinate transformations across the
manifold. Feature maps can in this context be viewed as sections of vector bundles associated
to a principal bundle, called fields in physics parlance. A gauge equivariant network for such
fields consists of layers which are equivariant with respect to change of coordinates in M,
such that the output of the network transforms like a tensor.

In order to realize gauge equivariant layers using convolutions, we need to shift the kernel
across M. In general, a manifold does not have any global symmetries to utilize for this.
Instead, one may use parallel transport to move the filter on the manifold. This transport of
features will generically depend on the chosen path. A gauge equivariant CNN is constructed
precisely such that it is independent of the choice of path. In other words, making a coordinate
transformation at x ∈M and transporting the filter to y ∈M should give the same result as
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first transporting the filter from x to y, and then performing the coordinate transformation.
Therefore, the resulting layers are gauge equivariant. The first steps toward a general theory
of gauge equivariant convolutional neural networks on manifolds were taken in Cohen et al.
(2019); Cheng et al. (2019).

1.5 Summary of results

This paper aims to put geometric aspects of deep learning into a mathematical context. Our
intended audience includes mathematicians, theoretical physicists as well as mathematically
minded machine learning experts.

The main contribution of this paper is to give a mathematical overview of the recent
developments in group equivariant and gauge equivariant neural networks. We strive to
develop the theory in amathematical fashion, emphasizing the bundle perspective throughout.
In contrast to most of the literature on the subject we start from the point of view of neural
networks on arbitrary manifolds M (sometimes called “geometric deep learning”). This
requires gauge equivariant networks which we develop using the gauge theoretic notions of
principal bundles and associated vector bundles. Feature maps will be sections of associated
vector bundles. These notions have been used previously in different equivariant architectures
(Bronstein et al. 2021; Cheng et al. 2019; Cohen et al. 2019) and we present a unified
picture. We analyze when maps between feature spaces are equivariant with respect to gauge
transformations and define gauge equivariant layers accordingly in Sect. 2. Furthermore, we
develop gauge equivariant convolutional layers for arbitrary principal bundles in Sect. 2.5
and thereby define gauge equivariant CNNs. In Sect. 2.5 we generalize the gauge equivariant
convolution presented in Cheng et al. (2019) to the principal bundle setting.

Different principal bundles P describe different local (gauge) symmetries. One example
of a local symmetry is the freedom to choose a basis in each tangent space or, in other words,
the freedom to choose local frames of the frame bundle P = LM. In this case, local gauge
transformations transform between different bases in tangent spaces. When the manifold is
a homogeneous space M = G/K , the global symmetry group forms a principal bundle
P = G. Here, the local symmetry is the freedom to perform translations that do not move
a given point, e.g. the north pole on S2 being invariant to rotations about the z-axis, but we
are more interested in the global translation symmetry for this bundle. Building on Aronsson
(2022), we motivate group equivariant networks from the viewpoint of homogeneous vector
bundles in Sect. 3 and connect these to the gauge equivariant networks. In Sect. 3.3, we discuss
equivariance with respect to intensity; point-wise scaling of feature maps.

Furthermore, starting from a very general setup of a symmetry group acting on functions
defined on topological spaces, we connect and unify various equivariant convolutions that
are available in the literature.

Having developed the mathematical framework underlying equivariant neural networks,
we give an overview of equivariant nonlinearities and in particular extend vector field non-
linearities to arbitrary semi-direct product groups, cf. Proposition 5.3. We review the entire
equivariant network architecture for semantic segmentation and object detection and the
associated representations.

Finally, we consider spherical networks corresponding to data defined on the two-sphere
M = S2 = SO(3)/SO(2). For this case, we explain how convolutions can be computed
in Fourier space and we give a detailed description of the convolution in terms of Wigner
matrices andClebsch-Gordan coefficients, involving in particular the decomposition of tensor
products into irreducible representations of SO(3). This is well-known in the mathematical
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physics community but we collect and present this material in a coherent way which we
found was lacking in the literature. We illustrate the formalism in terms of object detection
for the special Euclidean group SE(3), i.e. the group of (direct) Euclidean isometries of R

3

(see Sect. 6.4).

1.6 Related literature

The notion of geometric deep learning was first discussed in the seminal paper of Bronstein,
Bruna, LeCun and Szlam. Bronstein et al. (2017). They emphasized the need for neural
networks defined on arbitrary data manifolds and graphs. In a different development, group
equivariant convolutional neural networks, which incorporate global symmetries of the input
data beyond the translational equivariance of ordinary CNNs, were proposed by Cohen and
Welling (2016). Kondor and Trivedi (2018) proved that for compact groups G, a neural
network architecture can be G-equivariant if and only if it is built out of convolutions of
the form (10). The theory of equivariant neural networks on homogeneous spaces G/K was
further formalized in Cohen et al. (2019) using the theory of vector bundles in conjunction
with the representation theory of G. A proposal for including attention (Chen et al. 2018)
into group equivariant CNNs was also put forward in Romero et al. (2020). Equivariant
normalizing flows were recently constructed in Garcia Satorras et al. (2021).

The recent book (Bronstein et al. 2021) gives an in-depth overview of geometric deep
learning.Our treatment ismoremathematical thanBronstein et al. (2021), andwe put stronger
emphasis on the gauge equivariant formalism. The present paper may therefore be seen as
complementary to Bronstein et al. (2021).

The case of neural networks on spheres has attracted considerable attention due to its
extensive applicability. Group equivariant CNNs on S2 were studied in Cohen et al. (2018)
by implementing efficient Fourier analysis on M = S2 and G = SO(3). In Gerken et al.
(2022) the performance of group equivariant CNNs on S2 was compared to standard non-
equivariant CNNs trained with data augmentation. For the task of semantic segmentation it
was demonstrated that the non-equivariant networks are consistently outperformed by the
equivariant networks with considerably fewer parameters.

Some applications may benefit from equivariance with respect to azimuthal rotations,
rather than arbitrary rotations in SO(3) (Toft et al. 2021). One such example is the use of
neural networks in self-driving cars to identify vehicles and other objects.

The approach presented here follows (Cohen et al. 2018) and extends the results in the
reference at some points. The Clebsch–Gordan nets introduced in Kondor et al. (2018) have
a similar structure but use as nonlinearities tensor products in the Fourier domain, instead
of point-wise nonlinearities in the spatial domain. Several modifications of this approach
led to a more efficient implementation in Cobb et al. (2020). The constructions mentioned
so far involve convolutions which map spherical features to features defined on SO(3). The
construction in Esteves et al. (2018) on the other hand uses convolutions which map spherical
features to spherical features, at the cost of restricting to isotropic filters. Isotropic filters on
the sphere have also been realized by using graph convolutions in Defferrard et al. (2020).
In Esteves et al. (2020), spin-weighted spherical harmonics are used to obtain anisotropic
filters while still keeping the feature maps on the sphere.

A somewhat different approach to spherical signals is taken in Jiang et al. (2018), where a
linear combination of differential operators acting on the input signal is evaluated. Although
this construction is not equivariant, an equivariant version has been developed in Shen et al.
(2021).
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An important downside to many of the approaches outlined above is their poor scaling
behavior in the resolution of the input image. To improve on this problem, McEwen et al.
(2021) introduces scattering networks as an equivariant preprocessing step.

Aside from the equivariant approaches to spherical convolutions, much work has also
been done on modifying flat convolutions in R

2 to deal with the distortions in spherical
data without imposing equivariance (Coors et al. 2018; Boomsma and Frellsen 2017; Su and
Grauman 2017; Monroy et al. 2018).

A different approach to spherical CNNs was proposed in Cohen et al. (2019), were the
basic premise is to treat S2 as a manifold and use a gauge equivariant CNN, realized using the
icosahedron as a discretization of the sphere. A general theory of gauge equivariant CNNs
is discussed in Cheng et al. (2019). Further developments include gauge CNNs on meshes
and grids (Haan et al. 2020; Wiersma et al. 2020) and applications to lattice gauge theories
(Favoni et al. 2022; Luo et al. 2021). In this paper we continue to explore the mathematical
structures underlying gauge equivariant CNNs and clarify their relation to GCNNs.

A further important case studied extensively in the literature are networks equivariant with
respect to the Euclidean group E(n) or to SE(n). Such networks have been applied with great
success to 3d shape classification (Weiler et al. 2018; Thomas et al. 2018), protein structure
classification (Weiler et al. 2018), atomic potential prediction (Kondor 2018) and medical
imaging (Müller et al. 2021; Worrall et al. 2017; Winkels and Cohen 2018).

The earliest papers in the direction of SE(n) equivariant network architectures extended
classical GCNNs to 3d convolutions and discrete subgroups of SO(3) (Worrall et al. 2017;
Winkels and Cohen 2018; Marcos et al. 2017; Weiler et al. 2018).

Our discussion of SE(n) equivariant networks is most similar to the SE(3) equivariant
networks in Weiler et al. (2018), where an equivariance constraint on the convolution kernel
of a standard 3d convolution is solved by expanding it in spherical harmonics. A similar
approach was used earlier in Worrall et al. (2017) to construct SE(2) equivariant networks
using circular harmonics. A comprehensive comparison of different architectures which are
equivariant with respect to E(2) and various subgroups was given in Weiler and Cesa (2019).

Whereas the aforementioned papers specialize standard convolutions by imposing con-
straints on the filters and are therefore restricted to data on regular grids, Thomas et al. (2018);
Kondor (2018) operate on irregular point clouds and make the positions of the points part
of the features. These networks operate on non-trivially transforming input features and also
expand the convolution kernels into spherical harmonics but useClebsch–Gordan coefficients
to combine representations.

So far, the applied part of the literature is mainly focused on specific groups (mostly
rotations and translations in two and three dimensions and their subgroups). However, in the
recent paper (Lang and Weiler 2020), a general approach to solve the kernel constraint for
arbitrary compact groups is constructed by deriving aWigner–Eckart theorem for equivariant
convolution kernels. The implementation in Finzi et al. (2021) uses a different algorithm to
solve the kernel constraint formatrix groups and allows to automatically construct equivariant
CNN layers.

The review Esteves (2020) discusses various aspects of equivariant networks. The book
Bronstein et al. (2021) gives an exhaustive survey of many of the developments related to
geometric deep learning and equivariant CNNs.

It should be noted that it is by no means obvious that data domains exhibit symmetries,
let alone are endowed with a manifold structure. In this paper we are focussing on situations
where we do have such structures and how we may then use techniques and ideas from
mathematics and theoretical physics to gain a deeper understanding of deep learning. That
being said, it is natural to inquire about situations where this information is not available.
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One possible direction is through the field of topological data analysis (TDA). This provides
a framework to analyze the shape of data sets using techniques from topology. The key tool
here is “persistent homology” which is an adaptation of homology to data in the form of
point clouds. In the papers (Frosini and Jabłoński 2016; Bergomi et al. 2019; Conti et al.
2022) the authors introduce so called group equivariant non-expansive operators (GENEOs)
in the context of TDA. This gives a different approach to the question of symmetries in neural
networks, in which the topology and geometry of the data is not a priori given. Furthermore,
cases where the set of transformations acting on the data do not form a group have been
considered in the literature Bergomi et al. (2019), whereas we restrict our considerations to
group transformations.

1.7 Outline of the paper

Our paper is structured as follows. In Sect. 2 we introduce gauge equivariant convolutional
neural networks onmanifolds.We discuss global versus local symmetries in neural networks.
Associated vector bundles are introduced andmaps between feature spaces are defined.Gauge
equivariant CNNs are constructed using principal bundles over the manifold. We conclude
Sect. 2 with a discussion of some concrete examples of how gauge equivariant CNNs can be
implemented for neural networks on graphs. In Sect. 3 we restrict to homogeneous spaces
M = G/K and introduce homogeneous vector bundles. We show that when restricting to
homogeneous spaces the general framework of Sect. 2 gives rise to group equivariant convo-
lutional neural networks with respect to the global symmetry G. We also introduce intensity
equivariance and investigate its compatibility with group equivariance. Still restricting to
global symmetries, Sect. 4 explores the form of the convolutional integral and the kernel con-
straints in various cases. Here, the starting point are vector valued maps between arbitrary
topological spaces. This allows us to investigate convolutions between non-scalar features as
well as non-transitive group actions. As an application of this we consider semi-direct product
groups which are relevant for steerable neural networks. In Sect. 5 we assemble the pieces
and discuss how one can construct equivariant deep architectures using our framework. To
this end we begin by discussing how nonlinearities can be included in an equivariant setting.
We further illustrate the group equivariant formalism by analyzing deep neural networks for
semantic segmentation and object detection tasks. In Sect. 6 we provide a detailed analysis of
spherical convolutions. Convolutions on S2 can be computed using Fourier analysis with the
aid of spherical harmonics and Wigner matrices. The output of the network is characterized
through certain tensor products which decompose into irreducible representations of SO(3).
In the final Sect. 7 we offer some conclusions and suggestions for future work.

2 Gauge equivariant convolutional layers

In this sectionwepresent the structure needed to discuss local transformations and symmetries
on general manifolds. We also discuss the gauge equivariant convolution in Cheng et al.
(2019) for features defined on a smooth manifoldM along with lifting this into the principal
bundle formalism. We end this section by expanding on two applications of convolutions on
manifolds via a discretization to a mesh and compare these to the convolution on the smooth
manifold.
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2.1 Global and local symmetries

In physics the concept of symmetry is a central aspect when constructing new theories. An
object is symmetric to a transformation if applying that transformation leaves the object as
it started.

In any theory, the relevant symmetry transformations on a space form a group K .When the
symmetry transformations act on vectors via linear transformations, we have a representation
of the group. This is needed since an abstract group has no canonical action on a vector space;
to allow the action of a group K on a vector space V , one must specify a representation.
Formally a representation is a map ρ : K → GL(dim(V ), F) into the space of all invertible
dim(V )× dim(V ) matrices over a field F . Unless otherwise stated, we use complex repre-
sentations (F = C). In contrast, real representations use F = R. The representation needs
to be a group homomorphism, i.e.

ρ(kk′) = ρ(k)ρ(k′), (20)

for all k, k′ ∈ K . In particular, ρ(k−1) = ρ(k)−1 and ρ(e) = idV where e ∈ K is the identity
element.

Remark 2.1 There are several ways to denote a representation and in this paper we use Vρ to
represent the representation ρ acting on some vector space, hence Vρ and Vη will be viewed
as two (possibly) different vector spaces acted on by ρ and η respectively.

Returning to symmetries there exists, in brief, two types of symmetries: global and local.
An explicit example of a global transformation of a fieldφ : R2 → R

3 is a rotation R ∈ SO(2)
of the domain as

φ(x)
R−→ φ′(x) = ρ(R)φ(η(R−1)x), (21)

where ρ is a representation for how SO(2) acts on R
3 and η is the standard representation

for how SO(2) acts on R
2.

Remark 2.2 Note that this transformation not only transforms the vector φ(x) at each point
x ∈ R

2, but also moves the point x itself.

Example 2.3 If we let R ∈ SO(2) be the action of rotating with an angle R, then the standard
representation of R would be

η(R) =
(

cos(R) sin(R)

− sin(R) cos(R)

)
. (22)

Example 2.4 An example of a rotationally symmetric object is when φ is three scalar fields,
i.e. ρ3(R) = 1⊕ 1⊕ 1, where each scalar field only depends on the distance from the origin.
This yields

φ′(x) = ρ3(R)φ(R−1x) = φ(R−1x) = φ(x), (23)

since rotation of the domain around the origin leaves distances to the origin unchanged.

With the global transformation above we act with the same transformation on every point;
with local transformations we are allowed to transform the object at each point differently.
We can construct a similar explicit example of a local symmetry: Given a field φ : R2 → C

we can define a local transformation as

φ(x)→ φ′(x) = exp(i f (x))φ(x), (24)
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where f : R
2 → [0, 2π). This is local in the sense that at each point x the field φ is

transformed by exp(i f (x)) where f is allowed to vary over R
2. We will refer to a local

transformation as a gauge transformation. If an object is invariant under local (gauge) trans-
formations, it is called gauge invariant or that it has a gauge symmetry. The group consisting
of all local transformations is called the gauge group.

Remark 2.5 The example of a local transformation presented in (24) does not move the base
point but in general there are local transformations thatmove the base point; themain example
of which is locally defined diffeomorphisms which are heavily used in general relativity. In
this section we will only consider transformations that do not move the base point and gauge
transformations falls in this category. For amore detailed discussion on this seeRemark 5.3.10
in Hamilton (2017).

Example 2.6 A simple example of a gauge invariant object using (24) is the field

φ(x)φ(x), (25)

where the bar denotes complex conjugate. This works since multiplication of complex num-
bers is commutative. This is an example of a commutative gauge symmetry.

Note that in the above example the phase of φ at each point can be transformed arbitrarily
without affecting the field in (25), hence we have a redundancy in the phase of φ. For any
object with a gauge symmetry one can get rid of the redundancy by choosing a specific gauge.

Example 2.7 The phase redundancy in the above example can be remedied by choosing a
phase for each point. For example this can be done by

φ(x)→ φ′(x) = |φ(x)| = exp
(
− i arg

(
φ(x)

))
φ(x). (26)

Thus φ′ only takes real values at each point and since (25) is invariant to this transformation
we have an equivalent object with real fields.

To introduce equivariance, let K be a group acting on two vector spaces Vρ , Vη through
representations ρ, η and let � : Vρ → Vη be a map. We say that � is equivariant with
respect to K if for all k ∈ K and v ∈ Vρ ,

�(ρ(k)v) = η(k)�(v), (27)

or equivalently, with the representations left implicit, expressed � ◦ k = k ◦�.

2.2 Motivation and intuition for the general formulation

When a neural network receives some numerical input, unless specified, it does not know
what basis the data is expressed in, be it local or global. The goal of the general formulation
presented in Sect. 2.3 is thus that if two numerical inputs are related by a transformation
between equivalent states, e.g. by a change of basis, then the output from a layer should be
related by the same transformation: if u = k � v then φ(u) = k � φ(v), where k � is a the
action of the group element through some representation on the input data v; in words φ is
an equivariant map. The intuition for this is that it ensures that there is no basis dependence
in the way φ acts on data.

To construct such a map φ we will construct objects which are gauge invariant but contain
components that transform under gauge transformations. We then define a map � on those
using φ to act on one of the components.
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(A) (B) (C)

Fig. 3 A vector field on a base space M in different local coordinates. The local coordinates can be viewed
either as induced by the coordinate system u :M → R

2 or as a section ω :M → P of the frame bundle
P = LM that specifies a local basis at each point—see Sect. 2.3 for details. A The local basis for the vector
field is at every point aligned with the standard basis in R

2. B A new local basis induced by the coordinate
system u′ :M → R

2, or equivalently as a section ω′ :M → P . The transition map is either u′ ◦ u−1 or
ω′(x) = ω(x) � σ(x) where σ :M → K is a map from the base space to the gauge group K . C Here the
vector field is at each point expressed in the new local coordinates. This illustrates that two vector fields can
look very different when expressed in components, but when taking the local basis into account, they are the
same

Our objects will be equivalence classes consisting of two elements: an element that speci-
fies which gauge the numerical values are in and one element which are the numerical values.
By construction these will transform in “opposite” ways and hence each equivalence class
is gauge invariant. The intuition for the first element is that it will serve as book-keeping for
the theoretical formulation.

The input to a neural network can thenbe interpreted as the numerical part of an equivalence
class, and if two inputs are related by a gauge transformation the outputs from φ are also
related by the same transformation. (Through whatever representation is chosen to act on the
output space.)

Images can be thought of as compactly supported vector valued functions on R
2 (or

Z
2 after discretization) but when going to a more general surface, a smooth d-dimensional

manifold, the image needs instead to be interpreted as a section of a fiber bundle. In this
case we cannot, in general, have a global transformation and we really need the local gauge
viewpoint.

Example 2.8 If our image is an RGB image every pixel has a “color vector” and one could
apply a random permutation of the color channels for each pixel. Applying a random SO(3)
elementwould not quitework since each element of the “color vector” needs to lie in [0, 255]∩
Z and under a random SO(3) element a “color vector” could be rotated outside this allowable
space.

Remark 2.9 As mentioned in the previous section there are local transformations that move
base points locally, e.g. a diffeomorphism ψ : M → M such that ψ(x) = x for some
x ∈M. Note that this is not the same as a local change of coordinates at each point. In the
neighborhood, and the tangent space, of x though one can view this as a local change of
coordinates. Hence if one transforms a feature map at each point, the transformation of each
feature vector can be viewed as a diffeomorphism centered at that point. See Fig. 4. A local
coordinate chart on the manifold around a point would give the same result.
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Xx

M

TxM
Xx

M

TxM

Fig. 4 The manifold M has a different choice of gauge—local coordinates on M—at x in the left and the
right figure leading to a different choice of basis in the corresponding tangent space TxM. This is the same
process as in Fig. 3 where the difference is that in this case the base space is curved

2.3 General formulation

The construction presented here is based on the one used in Aronsson (2022). Since in the
general case all transformations will be local, we need to formulate the theory in the language
of fiber bundles. In short, a bundle E

π−→M is a triple (E, π,M) consisting of a total space
E and a surjective continuous projection map π onto a base manifold M. Given a point
x ∈M, the fiber over x is π−1(x) = {v ∈ E : π(v) = x} and is denoted Ex . If for every
x ∈ M the fibers Ex are isomorphic the bundle is called a fiber bundle. Furthermore, a
section of a bundle E is a map σ :M→ E such that π ◦σ = idM is the identity map onM.
We will use associated, vector, and principal bundles and will assume a passing familiarity
with these, but will for completeness give a short overview. For more details see (Nakahara
2018; Kolář et al. 1993; Marsh 2019a).

In this section we follow the construction of Aronsson (2022) and begin by defining a
principal bundle encoding some symmetry group K wewant to incorporate into our network:

Definition 2.10 Let K be a Lie-group. A principal K -bundle overM is a fiber bundle P
πP−→

M with a fiber preserving, free and transitive right action of K on P ,

� : P × K → P, satisfying πP (p � k) = πP (p), (28)

and such that p � e = p for all p ∈ P where e is the identity in K . As a consequence of the
action being free and transitive we have that Px and K are isomorphic as sets.

Remark 2.11 Note that even though Px and K are isomorphic as sets we cannot view Px as
a group since there is no identity in Px . To view the fiber Px as isomorphic to the group we
need to specify p ∈ Px as a reference-point. With this we can make the following map from
K to Px

k �→ p � k, (29)

which is an isomorphism for each fixed p ∈ Px since the group action on the fibers is free
and transitive. We will refer to this choice of reference point as choosing a gauge for the fiber
Px .

Given a local patch U ⊆ M, a local section ω : U → P of the principal bundle P
provides an element ω(x) which can be used as reference point in the fiber Px , yielding a
local trivialization

U × K → P, (x, k) �→ ω(x) � k. (30)

This is called choosing a (local) gauge on the patch U ⊆M.
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Remark 2.12 For the case when M is a surface, i.e. is of (real) dimension 2, Melzi et al.
(2019) presents a method for assigning a gauge (basis for the tangent space) to each point.
This is done by letting one basis vector be the gradient of some suitable scalar function on
M and the other being the cross product of the normal at that point with the gradient. This
requires M to be embedded in R

3.

If it is possible to choose a continuous global gauge (U =M) then the principal bundle is
trivial since (30) is then a global trivialization. On the other hand, if P is non-trivial and we
allowω : U → P to be discontinuous we can always choose a reference-point independently
for each fiber. Alternatively, we may choose a set of continuous sections {ωi }whose domains
Ui are open subsets covering M. In the latter setting, if x ∈ Ui ∩Uj then there is a unique
element kx ∈ K relating the gauges ωi and ω j at x , such that ωi (x) = ω j (x) � kx .
Remark 2.13 As stated, a principal bundle is trivial if and only if there exists a global con-
tinuous gauge. Consequently, even if one has a covering {Ui } of the manifold M and a
local gauge ωi for each Ui there is no way to combine these into a global continuous gauge
unless the principal bundle is trivial. It is, however, possible to define a global section if one
drops the continuity condition. In this paper will not implicitly assume that a chosen gauge
is continuous unless specified.

Continuing in the same fashion we can view a local map σ : U ⊆M→ K as changing
the gauge at each point, or in other words a gauge transformation. With this we now define
associated bundles:

Definition 2.14 Let P
πP−→M be a principal K -bundle and let V be a vector space on which

K acts from the left through some representation ρ

K × V → V , k � v = ρ(k)v. (31)

Now, consider the space P × V consisting of pairs (p, v) and define an equivalence relation
on this space by

(p, v) ∼ρ (p � k, k−1 � v), k ∈ K . (32)

Denoting the resulting quotient space P × V / ∼ρ by Eρ = P ×ρ Vρ and equipping it with
a projection πρ : Eρ →M acting as πρ([p, v]) = πP (p) makes Eρ a fiber bundle over M
associated to P . Moreover, π−1ρ (x) is isomorphic to V and thus P ×ρ Vρ is a vector bundle
overM. The space of sections�(Eρ) is a vector space with respect to the point-wise addition
and scalar multiplication of V .

Moving on we provide the definition of data points and feature maps in the setting of
networks.

Definition 2.15 We define a data point s ∈ �(Eρ) as a continuous section of an associated
bundle Eρ , and a feature map f ∈ C(P; ρ) as a continuous function f : P → Vρ satisfying
the following equivariance condition:

k � f (p) = f (p � k−1). (33)

To connect the two notions we can use the following lemma.

Lemma 2.16 (Kolář et al. (1993)) The linear map ϕρ : C(P; ρ) → �(Eρ) , f �→ s f =
[π−1P , f ◦ π−1P ], is a vector space isomorphism.
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Remark 2.17 With the notation [π−1P , f ◦ π−1P ] we mean that when applying this to x ∈M
one first picks an element p ∈ π−1P so that s f (x) = [p, f (p)]. Note that this equality is
well-defined since the equivalence class [p, f (p)] does not depend on the choice of p in the
fiber over x :

[
p′, f (p′)

] = [p � k, f (p � k)] = [
p � k, k−1 � f (p)

] = [p, f (p)] . (34)

Remark 2.18 To present a quick argument for this note that with the equivalence class struc-
ture on the associated bundle every section s f ∈ �(Eρ) is of the form s f (x) = [p, f (p)]
where p ∈ π−1P (x) since every element in the associated bundle consists of an element from
the principal bundle and a vector from a vector space. Here we use f to specify which vector
is used.

Before moving on to gauge equivariant layers we need to establish how a gauge transfor-
mation σ :M→ K acts on the data points.

Definition 2.19 Let k ∈ K be an element of the gauge group and [p, v] an element of the
associated bundle Eρ = P ×ρ Vρ . Then the action of k on [p, v] is defined as

k · [p, v] = [p � k, v] = [p, k � v], (35)

which induces an action of σ : U ⊆M→ K on s f = [·, f ] as
(σ · s f )(x) = σ(x) · [p, f (p)] = [p, σ (x) � f (p)] = sσ� f (x). (36)

We call σ a gauge transformation. If σ is constant on U it is called a rigid gauge transfor-
mation.

Remark 2.20 Note that (36) is really abuse of notation. To view σ as a map from region of
the manifold U ⊆M to the group K we first have to choose a gauge ω : U → P . This is
identical to choosing a local trivialization of P and allows us to identify the fibers of P with
K . For details on this see Hamilton (2017).

With this we now define layers as map between spaces of sections of associated vector
bundles.

Definition 2.21 Let Eρ = P ×ρ Vρ and Eη = P ×η Vη be two associated bundles over a
smooth manifold M. Then a layer is a map � : �(Eρ) → �(Eη). Moreover, � is gauge
equivariant if σ ◦� = � ◦ σ in the sense (36) for all gauge transformations σ .

Remark 2.22 Since the map ϕπ : C(P;π) → �(Eπ ) is a vector space isomorphism for
any representation π , any layer � : �(Eρ)→ �(Eη) induces a unique map φ : C(P; ρ)→
C(P; η) by φ = ϕ−1η ◦� ◦ ϕρ , and vice versa; see the diagram below. We will refer to both
� and φ as layers.

�(Eρ) �(Eη)

C(P; ρ) C(P; η)

�

ϕ−1η
ϕρ

φ

The equivariance property expressed explicitly in terms of φ, given a feature map f , is

k � (
φ f

)
(p) = φ(k � f )(p), (37)

and since φ f ∈ C(P; η), the transformation property (33) yields the constraint

(φ f )(p � k−1) = φ(k � f )(p). (38)
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2.4 Geometric symmetries onmanifolds and the frame bundle

A special case of the general structure presented above is when the gauge symmetry is a
freedom to choose a different coordinate patch U ⊂M around each point in the manifold
M. This is also needed as soon as M is curved since it is impossible to impose a global
consistent coordinate system on a general curved manifold. Because of this one is forced to
work locally and use the fiber bundle approach.

In this section we will work within a coordinate patch u : U → R
d around x ∈ U , and the

i :th coordinate of x is denoted yi = ui (x) being the i :th component of the vector u ∈ R
d . A

coordinate patch is sometimes denoted (u,U ). This coordinate chart induces a basis for the
tangent space TxM as {∂1, . . . , ∂d} such that any vector v ∈ TxM can be written

v =
d∑

m=1
vm∂m = vm∂m, (39)

where vm are called the components of v andwe are using the Einstein summation convention
that indices repeated upstairs and downstairs are implicitly summed over. We will use this
convention for the rest of this section.

Given a coordinate chart u : U → R
d around x ∈ U in which we denote coordinates

yi a change to a different coordinate chart u′ : U → R
d where we denote coordinates y′i

would be done through a map u′ ◦ u−1 : Rd → R
d . This map can be expressed as a matrix

k−1 ∈ GL(d) (we use k−1 for notational reasons) and in coordinates this transformation
would be

y′n = (k−1)nm ym, (40)

where (k−1)nm should be interpreted as the element in the n:th row and m:th column. For a
tangent vector v ∈ TxM expressed in the first coordinate chart v = vm∂m the components
transform as the coordinates

v′m = kmnv
n, (41)

whereas the basis transforms

∂ ′m = knm∂n . (42)

As a consequence the vector v is independent of the choice of coordinate chart:

v = vm∂m = (k−1)nmv′mk j
n∂
′
j = v′mk j

n (k
−1)nm∂ ′j = v′mδ

j
m∂ ′j = v′m∂ ′m = v′, (43)

where δnm = 1 if n = m else 0. The change of coordinates is hence a gauge symmetry
as presented in Sect. 2.1 and because of this we have the freedom of choosing a local basis
at each point in M without affecting the tangent vectors, although the components might
change, so we need to track both the components and the gauge the vector is expressed in.

To express this in the formalism introduced in Sect. 2.3, let again M be a d-dimensional
smooth manifold and consider the frame bundle P = LM over M. The frame bundle is
defined by its fiber LxM over a point x ∈M as2

LxM = {(e1, . . . , ed) : (e1, . . . , ed) is a basis for TxM} � GL(d, R). (44)

2 Technically LxM and GL(d, R) are isomorphic as sets.
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This is a principal K -bundle LM π−→ M over M with K = GL(d, R); the projection is
defined by mapping a given frame to the point inM where it is attached. In the fundamental
representation, the group acts from the right on the frame bundle as

� : LM× GL(d, R)→ LM, (e1, . . . , ed) � k = (km1em, . . . , kmd em). (45)

Hence the action performs a change of basis in the tangent space as described above. If we also
choose a (real) representation (ρ, V ) of the general linear group, we obtain an associated
bundle LM ×ρ V with typical fiber V as constructed in Sect. 2.3. Its elements [e, v] are
equivalence classes of frames e = (e1, . . . , ed) ∈ LM and vectors v ∈ V , subject to the
equivalence relation introduced in (32):

[e, v] = [e � k, k−1 � v] = [e � k, ρ(k−1)v]. (46)

The bundle associated to LM with fiber R
d over a smooth d-dimensional manifold M is

closely related to the tangent bundle TM by the following classical result, see (Nakahara
2018; Kolář et al. 1993) for more details:

Theorem 2.23 Let ρ be the standard representation ofGL(d, R) on R
d . Then the associated

bundle LM×ρ R
d and the tangent bundle TM are isomorphic as bundles.

Remark 2.24 One can use the same approach to create an associated bundle which is isomor-
phic to the (p, q)-tensor bundle T p

q M, for any p, q , where the tangent bundle is the special
case (p, q) = (1, 0).

Remark 2.25 It is not necessary to use the full general linear group as structure group. One
can instead construct a frame bundle and associated bundles using a subgroup, such as SO(d).
This represents the restriction to orthogonal frames on a Riemannian manifold.

2.5 Explicit gauge equivariant convolution

Having developed the framework for gauge equivariant neural network layers, we will now
describe how this can be used to construct concrete gauge equivariant convolutions. These
were first developed in Cheng et al. (2019) andwe lift this construction to the principal bundle
P .

To begin, let P be a principal K -bundle, Eρ and Eη be two associated bundles as con-
structed in Sect. 2.3. Since the general layer � : �(Eρ) → �(Eη) induces a unique map
φ : C(P; ρ) → C(P; η) we can focus on presenting a construction of the map φ. When
constructing such a map with C(P; η) as its co-domain it needs to respect the equivariance
of the feature maps (33). Hence we get the following condition on φ:

k � (φ f )(p) = (φ f )(p � k−1). (47)

For gauge equivariance, i.e. a gauge transformation σ : U ⊆M→ K commuting with φ,
we need φ to satisfy (37):

σ � φ f = φ(σ � f ), (48)

where (σ � f )(p) = σ(πP (p)) � f (p).
Equation (47) is a condition on how the feature map φ f needs to transform when moving

in the fiber. To move across the manifold we need the concept of geodesics and for that a
connection on the tangent bundle TM is necessary. The intuition for a connection is that it
designates how a tangent vector changes whenmoved along the manifold. Themost common
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choice, if we have a (pseudo) Riemannian metric gM : TM×TM→ R onM, is to induce
a connection from the metric, called the Levi-Civita connection. This construction is the one
we will assume here. For details see (Nakahara 2018).

Remark 2.26 The metric acts on two tangent vectors from the same tangent space. Hence
writing gM(X , X) for X ∈ TxM is unique. If we want to reference the metric at some
specific point we will denote this in the subscript.

To make clear how we move on the manifold we introduce the exponential map from
differential geometry, which lets us move around by following geodesics. The exponential
map,

exp :M× TM→M, (49)

maps (x, X), where x ∈ M is a point and X ∈ TxM is a tangent vector, to the point
γ (1) where γ is a geodesic such that γ (0) = x and d

dt γ (0) = X . The exponential map is
well-defined since every tangent vector X ∈ TxM corresponds to a unique geodesic.

Remark 2.27 It is common to write the exponential map exp(x, X) as expx X , which is then
interpreted as a mapping expx : TxM→M for each fixed x ∈M.

Note that the exponential map defines a diffeomorphism between the subset BR = {X ∈
TxM : √gM(X , X) < R} ⊂ TxM and the open set {y ∈M : dgM(x, y) < R}where dgM
is the geodesic induced distance function on M. This will later be used as our integration
domain.

In order to lift the convolution presented in Cheng et al. (2019) we need a notion of parallel
transport in the principal bundle P . This will be necessary for the layer φ to actually output
feature maps. In order to do this, we introduce vertical and horizontal directions with respect
to the base manifold M in the tangent spaces Tp P for p ∈ P .

Definition 2.28 A connection on a principal bundle P is a smooth decomposition Tp P =
VpP ⊕ HpP , into a vertical and a horizontal subspace, which is equivariant with respect to
the right action � of K on P .

In particular, the connection allows us to uniquely decompose each vector X ∈ Tp P as
X = XV + XH where XV ∈ VpP and XH ∈ HpP , and provides a notion of transporting a
point p ∈ P parallel to a curve in M.

Definition 2.29 Let γ : [0, 1] → M be a curve and let P be a principal bundle equipped
with a connection. The horizontal lift of γ through p ∈ π−1P (γ (0)) is the unique curve

γ
↑
p : [0, 1] → P such that ∀t ∈ [0, 1]
i) πP

(
γ
↑
p (t)

)
= γ (t)

ii) d
dt γ
↑
p (t) ∈ H

γ
↑
p (t)

P

Remark 2.30 The property d
dt γ
↑
p (t) ∈ H

γ
↑
p (t)

P implies that the tangent to the lift γ ↑p has no

vertical component at any point along the curve.

Given a curve γ onM connecting γ (0) = x and γ (1) = y we can now define the parallel
transport map Tγ on P as

Tγ : Px → Py, p �→ γ ↑p (1). (50)
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Moreover, the map Tγ is equivariant with respect to K (Theorem 11.6 Kolář et al. (1993));
that is

Tγ (p � k) = Tγ (p) � k, ∀k ∈ K . (51)

Since we will only be working with geodesics and there is a bijection between geodesics
through x ∈ M and TxM we will instead denote the parallel transport map as TX where
X = d

dt γ (0).
The final parts we need to discuss before defining the equivariant convolutions are the

properties of the integration region and measure.

Lemma 2.31 Let (u,U ) be a coordinate patch around x ∈M. The set BR = {X ∈ TxM :√
gM(X , X) < R} ⊂ TxM and the integration measure

√
det(gM,x )dX are invariant

under change of coordinates that preserve orientation.

Remark 2.32 The above lemma abuses notation for X since X in gM(X , X) is indeed a
tangent vector in TxM while dX = dy1 ∧ dy2 ∧ · · · ∧ dyd where yi are the coordinates
obtained from the coordinate chart. See the previous section for more details on coordinate
charts.

Proof If X = Xnen and Y = Ynen are two tangent vectors in TxM then the metric evaluated
on these is

gM(X , Y ) = XnYmgM(en, em). (52)

Expressing X in other coordinates X ′ = (k−1)nm Xmkin ei and similar for Y we get that (52)
transforms as

gM(X ′, Y ′) = (k−1)n j X j (k−1)miY
i gM(k�

n e�, k
o
meo). (53)

Since gM,x is bilinear at each x ∈M

gM(X ′, Y ′) = δl j X
jδmi Y

i gM(el , em) = gM(X , Y ), (54)

and we are done. The invariance of
√
det(gM,x )dX comes from noting dX ′ = det(k−1)dX

and

det(g′M,x ) = det(gM(e′m, e′n)) = det(kim k
j
n gM(ei , e j )) = det(k)2 det(gM,x ). (55)

Hence,
√
det(g′M,x )dX

′ =
√
det(k)2 det(gM,x ) det(k

−1)dX = √
det(gM,x )dX , (56)

since we have restricted GL(d, R) to those elements with positive determinant, i.e. preserve
orientation. ��
Remark 2.33 The integration measure

√
det(gM)dX is expressed in local coordinates but is

an intrinsic property of the (pseudo) Riemannian manifold. It is often written as volTxM to
be explicitly coordinate independent.

We can now state the convolution defined in Cheng et al. (2019) as follows. Choose a
local coordinate chart around x ∈M and let s ∈ �(Eρ) be a section of an associated bundle
(a data point in our terminology in Sect. 2.3). The gauge equivariant convolution is

(�s)(x) =
∫

BR

κ(x, X)s|expx XG (x)
√
det(gM)dX , (57)
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given a convolution kernel function

κ :M× TM→ Hom(Eρ, Eη), (58)

and XG is the geometric tangent vector that corresponds to the coordinate representation X .
Here, det(gM) is the determinant of the Riemannian metric at x , and s|expx X (x) represents
the parallel transport, with respect to a connection on the associated bundle, of the element
s(expx X) back to x along a geodesic. The convolution (57) is gauge equivariant if κ satisfies
the constraint (61).

Note that s(expx X) is parallel transported back to x along a geodesic since this results in
a consistent construction. To see this, bear in mind that choosing different paths for different
tangent vectors X could change the resulting value due to s(expx X) transforming differently
along different paths when transported back to x on a curved manifold. Fixing the parallel
transport to geodesics resolves this ambiguity in a diffeomorphism invariant way.

Using the principle bundle construction from above, we now present the lifted version
of (57).

Definition 2.34 (Gauge equivariant convolution) Let U ⊆ M be such that x = πP (p) ∈
BR ⊆ U and choose a gauge ω : U → PU = π−1P (U ). Let f ∈ C(P; ρ) be a feature map,
then the gauge equivariant convolution is defined as

(φ f )(p) = [κ� f ](p) =
∫

BR

κ(x, X) f (TX p)volTxM, (59)

where

κ :M× TM→ Hom(Vρ, Vη), (60)

is the convolution kernel and volTxM is the volume form for TxM.

As we will see in Theorem 2.36, the convolution (59) is gauge equivariant if κ satisfies the
constraint (61).

Remark 2.35 In an ordinary CNN a convolutional kernel has compact support on the image
plane, κ : Z2 → Hom(Vin, Vout) and hence depends on its position but in this case the kernel
depends on its position on M and a direction.

For φ to be gauge equivariant, the kernel κ must have the following properties.

Theorem 2.36 Let (u,U ) be a coordinate chart such that U ⊆ M is a neighborhood to
x = πP (p) and let φ : C(P; ρ) → C(P; η) be defined as in (59). Then φ satisfies the
feature map condition (47), along with the gauge equivariance condition (48) for all rigid
gauge transformations σ : U → K, if

κ(x, X ′) = η(k−1)κ(x, X)ρ(k), (61)

where X ′ = k � X is the transformation of tangent vectors under the gauge group.

Proof Choose a local coordinate chart (u,U ) and let U ⊆ M be a neighborhood to x =
πP (p). Let further φ : C(P; ρ)→ C(P; η) be defined in (59). We can then write (59) in the
local chart as

(φ f )(p) =
∫

BR

κ(x, X ′) f (TX ′G p)
√
det(gM)dX ′. (62)
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Let k ∈ K be such that X ′ = k � X and let σ : U → K , σ (y) = k for all y ∈ U be a
rigid gauge transformation. Note that X ′G = XG since the geometric vector is independent
of choice of coordinate representation. Then the left hand side of (48) can be written as

(σ � φ f )(p) = σ(x) � (φ f )(p) = k � (φ f )(p)

= η(k)
∫

BR

κ(x, X ′) f (TX ′G p)
√
det(gM)dX ′. (63)

Using (61) and a change of variables we get
∫

BR

κ(x, X)ρ(k) f (TXG p)
√
det(gM)dX . (64)

From here we first prove the feature map condition and follow up with the proof of the gauge
equivariance.

Since f is a feature map we get ρ(k) f (TXG p) = f
(
(TXG p) � k−1

)
and using the equiv-

ariance of T we arrive at

f
(
(TXG p) � k−1

) = f
(
TXG (p � k−1)). (65)

Thus,

k � (φ f )(p) = (φ f )(p � k−1), (66)

which gives the feature map condition.
For the gauge equivariance condition note that

ρ(k) f (TXG p) = σ(x) � f (TXG p) = σ
(
πP (TXG p)

) � f (TXG p) = (σ � f )(TXG p), (67)

using that σ is a rigid gauge transformation. Hence we arrive at

(σ � φ f )(p) = φ(σ � f )(p), (68)

proving the gauge equivariance of (59) for kernels which satisfy (61).
Note that we use the equivariance of the parallel transport in P to get the feature map

condition and the rigidness of σ to arrive at the gauge equivariance. ��
Remark 2.37 Along the same lines, one can also prove that the convolution (57) is gauge
equivariant if the kernel satisfies (61). The main difference is that in the general case the
point p ∈ P , at which the feature map is evaluated, holds information about the gauge used.
For (57) the choice of gauge is more implicit. For more intuition on this, see the discussion
below.

To get an intuition of the difference between the gauge equivariant convolution presented
in Cheng et al. (2019) and the lifted convolution in (59) we first note that both require an
initial choice: for (57) we need to choose a coordinate chart u around the point x ∈ U ⊆M
and for the lifted version we need to choose a local gauge ω : U → P around x = πP (p).
When dealing with gauge transformations that are changes of local basis choosing a gauge
and a local coordinate system is the same.

Continuing, we note that applying a gauge transformation to a featuremap on the principal
bundle is the same as moving the evaluation point of the feature map along a fiber in the
principal bundle:

(σ � f )(p) = σ
(
πP (p)

) � f (p) = f
(
p � σ

(
πP (p)

))
. (69)
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Since the action of the gauge group is free and transitive on the fibers of P we can interpret
this as the feature using its evaluation point as information about what gauge it is in. Hence
this states that the gauge group action on f amounts to evaluating f in a different gauge over
the same point inM. Using this interpretation we get that to parallel transport a feature map
f (TX p) designates which gauge should be used at every point and hence how f transforms
when moved along γ . Choosing a connection on an associated bundle does the same thing:
it prescribes how a vector changes when moved between fibers. In this sense the transport of
a feature map on P is the same as parallel transport a vector in an associated bundle. Since
the integration measure used in (57) is just a local coordinate representation of the volume
form volTxM we have now related all components of (57) to our lifted version.

2.6 Examples: gauge equivariant networks on graphs andmeshes

In this sectionwewill illustrate howgauge-equivariant CNNs can be implemented in practice.
This will be done in the context of graph networks where gauge equivariance corresponds
to changes of coordinate system in the tangent space at each point in the graph. The main
references for this section are (Worrall et al. 2017; Haan et al. 2020; Wiersma et al. 2020).
We begin by introducing some relevant background on harmonic networks.

2.6.1 Harmonic networks on surfaces

LetM be a smooth manifold of real dimension 2. For any point x ∈M we have the tangent
space TxM ∼= R

2. The main idea is to consider a convolution inR
2 at the point x and lift it to

M using the Riemann exponential mapping. As we identify the tangent space TxM with R
2

we have a rotational ambiguity depending on the choice of coordinate system. This is morally
the same as a “local Lorentz frame” in general relativity. This implies that the information
content of a feature map in the neighborhood of a point x can be arbitrarily rotated with
respect to the local coordinate system of the tangent space at x . We would like to have a
network that is independent of this choice of coordinate system. Moreover, we also have a
path-dependence when transporting filters across the manifold M. To this end we want to
construct a network which is equivariant in the sense that the convolution at each point is
equivariant with respect to an arbitrary choice of coordinate system in R

2. Neural networks
with these properties were constructed in Worrall et al. (2017); Wiersma et al. (2020) and
called harmonic networks.

We begin by introducing standard polar coordinates in R
2:

(r , θ) ∈ R+ × [0, 2π). (70)

In order to ensure equivariance we will assume that the kernels in our network are given by
the (complex valued) circular harmonics

κm(r , θ;β) = R(r)ei(mθ+β). (71)

Here the function R : R+ → R is the radial profile of the kernel and β is a free parameter.
The degree of rotation is encoded in m ∈ Z. The circular harmonic transforms by an overall
phase with respect to rotations in SO(2):

κm(r , θ − φ;β) = eimφκm(r , θ;β). (72)
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Let f : M → C be a feature map. The convolution of f with κm at a point x ∈ M is
defined by

(κm� f )(x) =
∫∫

Dx (ε)

κm(r , θ;β) f (r , θ) r dr dθ. (73)

The dependence on the point x on the right hand side is implicit in the choice of integration
domain

Dx (ε) =
{
(r , θ) ∈ TxM

∣
∣
∣ r ∈ [0, ε], θ ∈ [0, 2π)

}
, (74)

which is a disc inside the tangent space TxM.
The group SO(2) acts on feature maps by rotations ϕ ∈ [0, 2π) according to the regular

representation ρ:

(ρ(ϕ) f )(r , θ) = f (r , θ − ϕ). (75)

Under such a rotation the convolution by κm is equivariant

(κm�ρ(ϕ) f )(x) = eimϕ(κm� f )(x), (76)

as desired. Note that when m = 0 the convolution is invariant under rotations.
Now assume that we may approximate M by a triangular mesh. This is done in order to

facilitate the computer implementation of the network. The feature map is represented by a
vector fi at the vertex i in the triangular mesh. This plays the role of choosing a point x ∈M.
Suppose we have a deep network and that we are studying the feature vector at layer � in the
network. When needed we then decorate the feature vector with the layer � as well as the
degree m of rotation: f �

i,m .
A feature vector is parallel transported from a vertex j to vertex i along a geodesic

connecting them. Any such parallel transport can be implemented by a rotation in the tangent
space:

Pj→i ( f
�
j,m) = eimϕ j i f �

j,m, (77)

where ϕ j i is the angle of rotation. We are now equipped to define the convolutional layers
of the network. For any vertex i we denote by Ni the set of vertices that contribute to the
convolution. In the continuous setting this corresponds to the support of the feature map f
on M. The convolution mapping features at layer � to features at layer � + 1 at vertex i is
now given by

f �+1
i,m+m′ =

∑

j∈Ni

w j κm(ri j , θi j ;β)Pj→i ( f
�
j,m′). (78)

The coefficient w j represents the approximation of the integral measure and is given by

w j = 1

3

∑

jkl

A jkl , (79)

where A jkl is the area of the triangle with vertices jkl. The radial function R and the phase
eiβ are learned parameters of the network. The coordinates (ri j , θi j ) represents the polar
coordinates of the tangent space of every vertex j in Ni .
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Let us now verify that this is indeed the building blocks of a deep equivariant network. To
this end we should prove that the following diagram commutes:

f �
i,m f ′�i,m

f �+1
i,m+m′ f ′�+1i,m+m′

(2.61)

Here, f ′ = ρ(−ϕ) f . The commutativity of this diagram ensures that a coordinate change
in the tangent space commutes with the convolution. Let us now check this.

If we rotate the coordinate system at vertex i by an angle−ϕ the feature vector transforms
according to

f �
i,m → f ′�i,m = eimϕ f �

i,m . (62)

This coordinate transformation will affect the coordinates (ri j , θi j ) according to

(r ′i j , θ ′i j ) = (ri j , θi j + ϕ). (63)

The parallel transport Pj→i of features from j to i further transforms as

P ′j→i = eimϕPj→i . (64)

Using the above observations, let us now write the convolution with respect to the rotated
coordinate system

f ′�+1i,m+m′ =
∑

j∈Ni

w j κm(r ′i j , θ ′i j ;β)P ′j→i ( f
′�
j,m′) = ei(m+m′) f �+1

i,m+m′ . (65)

Thus we conclude that the diagram commutes. Note that nonlinearities can also be imple-
mented in an equivariant fashion by only acting on the radial profile R(ri j ) but leaving the
angular phase eiθ untouched.

The formula (78) can be viewed as a discretization of the general gauge equivariant
convolution on an arbitrary n-dimensional manifold M given in equation (57). The disc
Dx (ε) plays the role of the ball BR in the general formula. The combination

√
det(gM,x )dX

is approximated by the weight coefficientsw j in (78), while the coordinates X in the ball BR

corresponds to (ri j , θi j ) here. The parallel transport of the input feature f is implemented
by the exponential map expx X , whose discretization is Pj→i . Thus we conclude that the
harmonic networkdiscussed abovemaybeviewedas a discretized two-dimensional versionof
gauge equivariant convolutional neural networks, a fact that appears to have gone previously
unnoticed in the literature.

2.6.2 Gauge-equivariant mesh CNNs

A different approach to gauge equivariant networks on meshes was given in Haan et al.
(2020). A mesh can be viewed as a discretization of a two-dimensional manifold. A mesh
consists of a set of vertices, edges, and faces. One can represent the mesh by a graph, albeit
at the expense of loosing information concerning the angle and ordering between incident
edges. Gauge equivariant CNNs on meshes can then be modeled by graph CNNs with gauge
equivariant kernels.

Let M be a mesh, considered as a discretization of a two-dimensional manifold M. We
can describe this by considering a set of vertices V in R

3, together with a set of tuples F

123



Geometric deep learning and equivariant neural networks… 14631

consisting of vertices at the corners of each face. The mesh M induces a graph G by ignoring
the information about the coordinates of the vertices.

Wefirst consider graph convolutional networks.At a vertex x ∈ V the convolution between
a feature f and a kernel K is given by

(κ� f )(x) = κself f (x)+
∑

y∈Nx

κnb f (x). (66)

The sum runs over the set Nx of neighboring vertices to x . The maps κself, κnb ∈ R
Nin×Nout

are modeling the self-interactions and nearest neighbor interactions, respectively. Notice that
κnb is independent of y ∈ Nx and so does not distinguish between neighboring vertices. Such
kernels are said to be isotropic (see also Remark 6.1).

One can generalize this straightforwardly by allowing the kernel κnb to depend on the
neighboring vertices. In order to obtain a general gauge equivariant network on M we must
further allow for features to be parallel transported between neighboring vertices. To this end
we introduce the matrix ρ(ky→x ) ∈ R

Nin×Nout which transports the feature vector at y to the
vertex x . The notation here is chosen to indicate that this is a representation ρ of the group
element ky→x that rotates between neighboring vertices in M .

Putting the pieces together we arrive at the gauge equivariant convolution on the mesh
M :

(κ� f )(x) = κself f (x)+
∑

y∈Nx

κnb(θxy)
(
ρ(gy→x ) f

)
(x), (67)

where θxy is the polar coordinate of y in the tangent space TxM . Under a general rotation kϕ

by an angle ϕ the kernels must transform according to

κ(θ − ϕ) = ρout(k−ϕ)κ(θ)ρin(kϕ), (68)

in order for the network to be equivariant:

(κ�ρin(k−ϕ) f )(x) = ρout(k−ϕ)(κ� f )(x). (69)

Let us compare this with the harmonic networks discussed in the previous section. If we
omit the self-interaction term, the structure of the convolution is very similar. The sum is
taken over neighboring verticesNx , which is analogous to (78). The kernel κnb is a function
of the polar coordinate θxy in the tangent space at x . The corresponding radial coordinate
rxy is suppressed here, but obviously we can generalize to kernels of the form κnb(rxy, θxy).
Note, however, that here we have not made any assumption on the angular dependence of
κnb(rxy, θxy), in contrast to the circular harmonics in (71). Note also that the condition (68)
is indeed a special case of the general kernel condition for gauge equivariance as given in
Theorem 2.36.

3 Group equivariant layers for homogeneous spaces

In the previous section, we considered neural networks which process data and feature maps
defined on general manifoldsM, and studied the equivariance of those networks with respect
to local gauge transformations. A prominent example was the local transformations of frames
induced by a change of coordinates on M. The freedom to choose frames is a local (gauge)
symmetry which exists in any vector bundle over the manifoldM, but ifM has an additional
global (translation) symmetry, this can be exploited with great performance gains. In this
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section, we discuss group equivariant convolutional neural networks (GCNNs) (Cohen et al.
2019; Cohen andWelling 2016), which are equivariant with respect to global transformations
of feature maps induced from a global symmetry on M. This section is largely based on
Aronsson (2022), with a few additions: We relate convolutional layers in GCNNs to the
gauge equivariant convolutions defined in Sect. 2.5, and we also discuss equivariance with
respect to intensity and analyze its compatibility with group equivariance.

3.1 Homogeneous spaces and bundles

3.1.1 Homogeneous spaces

A manifold M with a sufficiently high degree of symmetry gives rise to symmetry trans-
formations which translate any point x ∈ M to any other point y ∈ M. For instance on a
sphere M = S2, any point x can be rotated into any other point y; similarly, any point y in
Euclidean space M = R

n can be reached by translation from any other point x . Intuitively,
this means that all points on the manifold are equivalent. This idea is formalized in the notion
of a homogeneous space.

Definition 3.1 LetG be a topological group. A topological spaceM is called a homogeneous
G-space, or just a homogeneous space, if there is a continuous, transitive group action

G ×M→M, (g, x) �→ g · x . (70)

In the special case of Lie groups G and smooth manifoldsM, all homogeneous G-spaces
are diffeomorphic to a quotient space G/K , with K ≤ G a closed subgroup (Theorem
21.18 Lee 2012). We therefore restrict attention to such quotient spaces. The elements of
a homogeneous space M = G/K are denoted sometimes as x and sometimes as gK ,
depending on the context.

Remark 3.2 For technical reasons, the Lie group G is assumed to be unimodular. This is
not a strong assumption, since examples of such groups include all finite or (countable)
discrete groups, all abelian or compact Lie groups, the Euclidean groups, and many others
(Folland 2016; Führ 2005). We also assume the subgroup K ≤ G to be compact—a common
assumption that includes most homogeneous spaces of practical interest.

Example 3.3 (1) Any group G is a homogeneous space over itself with respect to group
multiplication. In this case, K is the trivial subgroup so that M = G/K = G.

(2) In particular, the pixel lattice M = Z
2 used in ordinary CNNs is a homogeneous space

with respect to translations: G = Z
2.

(3) The n-sphere is a homogeneous space Sn = SO(n+1)/SO(n) for all n ≥ 1. The special
case n = 2, S2 = SO(3)/SO(2), has been extensively studied in the context of geometric
deep learning, cf. Sect. 6.

(4) Euclidean space R
n = E(n)/O(n) is homogeneous under rigid motions; combinations

of translations and rotations which form the Euclidean group G = E(n) = R
n

� O(n).

Homogeneous G-spaces are naturally equipped with a bundle structure (§7.5 Steenrod
(1999)) since G is decomposed into orbits of the subgroup K , which form fibers over the
base manifold G/K . The bundle projection is given by the quotient map

q : G → G/K , g �→ gK , (71)
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which maps a group element to its equivalence class. The free right action G × K → G
defined by right multiplication, (g, k) �→ gk, preserves each fiber q−1(gK ) and turns G into
a principal bundle with structure group K . We can therefore view the homogeneous setting
as a special case of the framework discussed in Sect. 2 with P = G and M = G/K .

3.1.2 Homogeneous vector bundles

Consider a rotation g ∈ SO(3) of the sphere, such that x ∈ S2 is mapped to gx ∈ S2.
Intuitively, it seems reasonable that when the sphere rotates, its tangent spaces rotate with it
and the corresponding transformation Tx S2 → Tgx S2 should be linear, because all tangent
vectors are rotated in the same way. Indeed, for any homogeneous space M = G/K , the
differential of the left-translation map Lg on M is a linear isomorphism dLg : TxM →
TgxM for all x ∈ M and each g ∈ G. This means that the transitive G-action on the
homogeneous space M induces a transitive G-action on the tangent bundle TM that is
linear on each fiber. This idea is captured in the notion of a homogeneous vector bundle.

Definition 3.4 (§5.2.1 Wallach (1973)) LetM be a homogeneous G-space and let E
π−→M

be a smooth vector bundle with fibers Ex . We say that E is homogeneous if there is a smooth
left action G × E → E satisfying

g · Ex = Egx , (72)

and such that the induced map Lg,x : Ex → Egx is linear, for all g ∈ G, x ∈M.

Associated vector bundles Eρ = G ×ρ Vρ are homogeneous vector bundles with respect
to the action G × Eρ → Eρ defined by g · [g′, v] = [gg′, v]. The induced linear maps

Lg,x : Ex → Egx , [g′, v] �→ [gg′, v], (73)

leave the vector inside the fiber invariant and are thus linear. Any homogeneous vector bundle
E is isomorphic to an associated vector bundle G ×ρ EK where K = eK ∈ G/K is the
identity coset and where ρ is the representation defined by ρ(k) = Lk,K : EK → EK (§5.2.3
Wallach (1973)).

Remark 3.5 In this section, (ρ, Vρ) and (η, Vη) are finite-dimensional unitary representations
of the compact subgroup K ≤ G. Unitarity is important for defining induced representations
and, by extension, G-equivariant layers below. This is not a restriction of the theory. Indeed,
since K is compact, unitarity of ρ (η) can be assumed without loss of generality by defining
an appropriate inner product on Vρ (Vη) (Lemma 7.1.1 Deitmar and Echterhoff (2014)).

Let 〈·, ·〉ρ be an inner product that turns Vρ � EK into a Hilbert space and makes ρ

unitary. This inner product then induces an inner product on each fiber Ex ,

〈[g, v], [g, w]〉x = 〈v,w〉ρ, (74)

which is well-defined precisely because ρ is unitary. Further consider the unique G-invariant
measure dx on G/K such that, for all integrable functions f : G → C (Theorem 1.5.3
Deitmar and Echterhoff (2014)),

∫

G
f (g) dg =

∫

G/K

∫

K
f (xk) dkdx . (75)

We can then combine the measure dx with (74) to integrate the point-wise norm of a section.

123



14634 J. E. Gerken et al.

Definition 3.6 Let (ρ, Vρ) be a finite-dimensional unitary K -representation and consider the
homogeneous vector bundle Eρ = G ×ρ Vρ .

(1) The induced representation indGKρ of G is the representation

(
indGKρ(g)s

)
(x) = g · s(g−1x), (76)

on the complex Hilbert space of square-integrable sections

L2(Eρ) =
{
s : G/K → Eρ

∣
∣
∣
∣

∫

G/K
‖s(x)‖2x dx <∞

}
. (77)

(2) The induced representation IndGKρ of G is the representation

(
IndGKρ(g) f

)
(g′) = f (g−1g′), (78)

on the complex Hilbert space of square-integrable feature maps

L2(G; ρ) =
{
f : G → Vρ

∣
∣
∣∣

∫

G
‖ f (g)‖2ρ dg <∞

}
. (79)

The linear isomorphism ϕρ : C(G; ρ) → �(Eρ), f �→ s f extends to a unitary iso-
morphism L2(G; ρ) → L2(Eρ) that intertwines the induced representations indGKρ and
IndGKρ. That is, the induced representations are unitarily equivalent and we therefore choose
to identify them.

3.2 Group equivariant layers

To summarize the previous subsection, global symmetry of the homogeneous space M =
G/K gives rise to homogeneous vector bundles and an induced representation that lets us
translate sections and featuremaps. GCNNs aremotivated by the idea that layers between fea-
ture maps should preserve the global translation symmetry ofM. They do so by intertwining
induced representations.

Definition 3.7 A G-equivariant layer is a bounded linear map � : L2(Eρ)→ L2(Eη) that
intertwines the induced representations:

� ◦ indGKρ = indGKη ◦�. (80)

That is, G-equivariant layers are elements � ∈ HomG(L2(Eρ), L2(Eη)).

The unitary equivalence between indGKρ and IndGKρ implies that any G-equivariant layer
� : L2(Eρ)→ L2(Eη) induces a unique bounded linear operatorφ : L2(G; ρ)→ L2(G; η)

such that�s f = sφ f , as in Sect. 2. This operator also intertwines the induced representations,

φ ◦ indGKρ = indGKη ◦ φ, (81)

henceφ ∈ HomG(L2(G; ρ), L2(G; η)). The operatorsφ are also calledG-equivariant layers.
As the name suggests, GCNNs generalize convolutional neural networks (G = Z

2, K =
{0}) to other homogeneous spaces G/K . The next definition generalize convolutional layers
(3) in this direction.
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Definition 3.8 A convolutional layer φ : L2(G; ρ)→ L2(G; η) is a bounded operator

(φ f )(g) = [κ� f ](g) =
∫

G
κ(g−1g′) f (g′) dg′, f ∈ L2(G; ρ), (82)

with an operator-valued kernel κ : G → Hom(Vρ, Vη).

Given bases for Vρ and Vη, we can think of the kernel κ as a matrix-valued function. Each
row in this matrix is a function κi : G → Vρ , just like the feature maps, so we can interpret
each row as a separate filter that we convolve with respect to. This is analogous to ordinary
CNNs in which both data and filters have the same structure as images. Furthermore, dim Vρ

is the number of input channels and dim Vη the number of output channels, one for each filter
κi . From this perspective, the full matrix κ is a stack of dim Vη filters and the convolutional
layer φ computes all output-channels simultaneously.

Convolutional layers form the backbone of GCNNs, and implementations are often based
on these layers. Note that the kernel in a convolutional layer cannot be chosen arbitrarily but
must satisfy certain transformation properties, to make sure that κ� f transforms correctly.
First of all, the requirement that κ� f ∈ L2(G; η) implies that

∫

G
η(k)κ(g) f (g) dg = η(k) [κ� f ] (e) = [κ� f ] (k−1) =

∫

G
κ(kg) f (g) dg, (83)

which is satisfied if κ(kg) = η(k)κ(g). Moreover, unimodularity of G means that the left
Haar measure on G is also right-invariant, so we can perform a change of variables g �→ gk,

∫

G
κ(g) f (g) dg =

∫

G
κ(gk) f (gk) dg =

∫

G
κ(gk)ρ(k)−1 f (g) dg, (84)

which indicates that κ(gk) = κ(g)ρ(k). These relations can be summarized in one equation,

κ(kgk′) = η(k)κ(g)ρ(k′), g ∈ G, k, k′ ∈ K . (85)

This was previously discussed in Cohen et al. (2019). A consequence of this relation is that
κ(gk) f (gk) = κ(g) f (g) for all k ∈ K and each g ∈ G, so the product κ f only depends on
the base point x = q(g) ∈ G/K . The quotient integral formula (75) then implies that

[κ� f ] (g) =
∫

G/K
κ(g−1x) f (x) dx, (86)

see (Corollary 3.24 Aronsson (2022)) for a formal proof.
The fact that convolutional layers can be computed by integrating over the homogeneous

space G/K , rather than integrating over the group G, can greatly improve computational
efficiency when G is large.

Remark 3.9 The integral (86) is closely related to the gauge equivariant convolution (59).
First of all, homogeneous spaces M = G/K always admit Riemannian metrics gM that
are invariant under translations (§2.3 Howard (1994)), see also (Santaló and Kac 2004). The
Riemannian volume form volM is also invariant, and the corresponding Riemannian volume
measure is thus an invariant measure on M. By the quotient integral formula (Theorem
1.5.3 Deitmar and Echterhoff (2014)), the Riemannian volume measure is related to dy by a
positive scaling factor c > 0, so that

∫

M
κ(g−1y) f (y) dy =

∫

M
Lgκ f volM. (87)
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The sliding kernel κ(g−1y) in (86) can be viewed as a special case of the explicitly base point-
dependent kernel κ(x, X) in (59), after taking into account the diffeomorphism between BR

and {y ∈M : dgM(x, y) < R}. We can also interpret the domain of integration as the kernel
support. The parallel transport map TX need not be invoked here as the integrand in (86) is
already defined on x ∈ G/K , without lifting to G. Finally, the relation volM|x = volTxM
lets us rewrite (86), with some abuse of notation and ignoring the constant c, as

[κ� f ](g) =
∫

BR

Lgκ f volTxM, (88)

which is similar to (59).

Boundedness of (82) is guaranteed if the kernel matrix elements κi j : G → C are
integrable functions, for some choices of bases in Vρ , Vη Aronsson (2022).

Theorem 3.10 (Aronsson (2022)) Let φ : L2(G; ρ)→ L2(G; η) be a bounded linear map.

(1) If φ is a convolutional layer, then φ is a G-equivariant layer.
(2) If φ is a G-equivariant layer such that �(φ) is a space of bandlimited functions, then φ

is a convolutional layer.

The bandlimit criteria is automatically satisfied for all finite groups and for discrete abelian
groups such asG = Z

2 (Corollaries 20–21Aronsson (2022)). It follows that allG-equivariant
layers can be expressed as convolutional layers for these groups.

3.3 Equivariance with respect to intensity

In image processing tasks, a neural network may treat an image differently depending on the
level of saturation. One way to avoid this is to design saturation-equivariant neural networks,
or intensity-equivariant neural networks if we generalize beyond image data. In this section,
we define this notion of equivariance and investigate the question of when a G-equivariant
layer is also intensity-equivariant. This part is based on the concept of induced systems of
imprimitivity in (§3.2 Kaniuth and Taylor (2012)).

Mathematically, one changes the intensity of a data point s ∈ L2(Eρ) by scaling the
vector at each point: (ψs)(x) = ψ(x)s(x) where ψ : G/K → C is a continuous function.
Equivalently, we can scale the feature maps instead, via the mapping

S(ψ) : L2(G; ρ)→ L2(G; ρ),
(
S(ψ) f

)
(g) = ψ(gK ) f (g). (89)

For technical reasons we assume that ψ vanishes at infinity: ψ ∈ C0(G/K ).

Definition 3.11 Abounded linear map φ : L2(G; ρ)→ L2(G; η) is equivariant with respect
to intensity, or intensity-equivariant, if

S(ψ) ◦ φ = φ ◦ S(ψ), (90)

for all ψ ∈ C0(G/K ).

Remark 3.12 The mapping (89) is a ∗-representation of C0(G/K ) on the space L2(G; ρ),
and intensity-equivariant maps (90) are intertwiners of two such representations.
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Example 3.13 Let T : Vρ → Vη be a bounded linear map that intertwines ρ and η, that is,
T ∈ HomK (Vρ, Vη). By letting T act point-wise on feature maps f ∈ L2(G; ρ), we obtain
a bounded linear map

φT : L2(G; ρ)→ L2(G; η), (φT f )(g) = T
(
f (g)

)
, (91)

and we observe that φT is equivariant with respect to intensity. This is because φT performs
point-wise transformations of vectors and S performs point-wise multiplication by scalar, so
we need only employ the linearity of T :

(
S(ψ)φT f

)
(g) = ψ(gK )T

(
f (g)

) = T
(
ψ(gK ) f (g)

) = (
φT S(ψ) f

)
(g). (92)

Note that (91) is also G-equivariant since its action on f (g) ∈ Vη does not depend on g ∈ G.
Indeed,

(
φT ◦ IndGKρ(g) f

)
(g′) = T

(
f (g−1g′)

) = (φT f )(g−1g′) = (
IndGKη(g) ◦ φT f

)
(g). (93)

It turns out that (91) are the only possible transformations φ : L2(G; ρ)→ L2(G; η) that
are both G-equivariant and intensity-equivariant.

Theorem 3.14 (Theorem 3.16 Kaniuth and Taylor (2012)) Let φ : L2(G; ρ) → L2(G; η)

be a G-equivariant layer. Then φ is intensity-equivariant if and only if φ = φT for some
T ∈ HomK (Vρ, Vη).

For some groups, this theorem exclude convolutional layers from being intensity-
equivariant, as the following example illustrates. This means that intensity-equivariant and
convolutional layers are two separate classes of layers for these groups.

Example 3.15 Consider the special caseG = R and let K = {0} be the trivial subgroup. Then
ρ, η are trivial representations, and assume for simplicity that dim Vρ = dim Vη = 1 so that
L2(R; ρ) = L2(R; η) = L2(R). If we now let φ : L2(R)→ L2(R) be a convolutional layer
with some kernel κ : R→ C,

(φ f )(x) = [κ� f ](x) =
∫ ∞

−∞
κ(y − x) f (y) dy, f ∈ L2(R), (94)

and consider an arbitrary element ψ ∈ C0(R), then

φ(S(ψ) f )(x) =
∫ ∞

−∞
κ(y − x)ψ(y) f (y) dy. (95)

Note that the function ψ is part of the integrand, which is not the case for S(ψ)φ f . This is
essentially what prevents convolutional layers (94) from being intensity-equivariant.

To see this, fix ε > 0 and consider the bump function ψε : R→ [0, 1] defined by

ψε(x) =

⎧
⎪⎨

⎪⎩

exp

(
1− 1

1− (x/ε)2

)
, x ∈ (−ε, ε)

0, otherwise

, (96)

which is supported on the compact interval [−ε, ε] and satisfiesψε(0) = 1. Thenψε ∈ C0(R)

and it is clear that
(
S(ψε)φ f

)
(0) = ψε(0)φ f (0) = φ f (0). (97)
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Comparing (95) and (97), we see that the convolutional layer φ is intensity-equivariant only
if

∫ ∞

−∞
κ(y) f (y) dy = φ f (0) =

∫ ∞

−∞
κ(y)ψε(y) f (y) dy, (98)

for each f ∈ L2(R). Hölder’s inequality yields the bound

|φ f (0)| ≤
∫ ∞

−∞
|κ(y)ψε(y) f (y)| dy = ‖κψε f ‖1 ≤ ‖κψε‖2‖ f ‖2. (99)

However, because ψε ≤ 1 everywhere and vanishes outside [−ε, ε], we have

‖κψε‖22 ≤
∫ ε

−ε

|κ(x)|2 dx, (100)

which vanishes as ε → 0. It follows that φ f (0) = 0 for all f ∈ L2(R). This argument can be
adapted to show that φ f (x) = 0 for all x ∈ R, so we conclude that φ must vanish identically.
In other words, there does not exist a non-zero, intensity-equivariant convolutional layer in
the case G = R, K = {0}. This is consistent with Theorem 3.14 because if a convolutional
layer (94) had been intensity-equivariant, then Theorem 3.14 would imply that φ = φT acts
point-wise, i.e. that φ f (x) ∈ C only depends on f (x) ∈ C. This would require the kernel κ
to behave like a Dirac delta function, which is not a mathematically well-defined function.

The conclusion would have been different, had (100) not vanished in the limit ε → 0.
This would have required the singleton {0} to have non-zero Haar measure, which is only
possible if the Haar measure is the counting measure, that is, if G is discrete (Proposition
1.4.4 Deitmar and Echterhoff (2014)). In that case, one could define a convolution kernel
κT : G → Hom(Vρ, Vη) in terms of a Kronecker delta, κT (g) = δg,eT for some linear
operator T ∈ HomK (Vρ, Vη). The convolutional layer

(φ f )(g) = [κT � f ](g) =
∫

G
κT (g−1g′) f (g′) dg′ = T

(
f (g)

)
, (101)

would then coincide with φT and intensity equivariance would be achieved.

4 General group equivariant convolutions

In the previous sections, we have developed amathematical framework for the construction of
equivariant convolutional neural networks on homogeneous spaces, starting from an abstract
notion of principal bundles, leading to the convolutional integral (82). Here, we continue
this discussion and consider various generalizations of (82) which could be implemented in
a CNN. While doing so, we will reproduce various expressions for convolutions found in
the literature. A similar overview of convolutions over feature maps and kernels defined on
homogeneous spaces can be found in Kondor and Trivedi (2018), however our discussion
also takes non-trivial input- and output representations into account (see also (Cohen et al.
2019, 2018a)).

4.1 Structure of symmetric featuremaps

Let X ,Y be topological spaces and V1, V2 vector spaces. The input features are maps f1 :
X → V1, the output features are maps f2 : Y → V2. Assume that a group G acts on all four
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spaces by3

σ1(g)x , ∀x ∈ X , ρ1(g)v1 , ∀v1 ∈ V1 , (102)

σ2(g)y , ∀y ∈ Y , ρ2(g)v2 , ∀v2 ∈ V2 , (103)

for all g ∈ G. These actions can be combined to define a group action on the feature maps:

[π1(g) f1] (x) = ρ1(g) f1(σ
−1
1 (g)x) , (104)

[π2(g) f2] (y) = ρ2(g) f2(σ
−1
2 (g)y) . (105)

In the case of non-trivial group actions ρ1 or ρ2, the resulting networks are called steerable.

Example 4.1 (GCNNs) In the simplest case of non-steerable GCNNs discussed above, we
have ρ1 = ρ2 = id and the input to the first layer is defined on the homogeneous space
X = G/K of G with respect to some subgroup K . The output of the first layer then has
Y = G. Subsequent layers have X = Y = G. The group G acts on itself and on G/K by
group multiplication: σ1,2(g′)g = g′g for g′ ∈ G and g ∈ G or g ∈ G/K .

On top of this, Kondor and Trivedi (2018) discusses also the cases of convolutions from
a homogeneous space into itself, X = Y = G/K and of a double coset space into a
homogeneous space X = H\G/K , Y = G/K . In all these cases, σ1,2 are given by group
multiplication.4

The representations σi , ρi arising in applications are dictated by the problem at hand. In
the following example, we discuss some typical cases arising in computer vision.

Example 4.2 (Typical computer vision problems)
Consider the case that the input data of the network consists of flat images. Then, for the

first layer of the network, we have X = R
2 and V1 = R

N if the image has N color channels
and the input features are functions f1 : R2 → R

N . Typical symmetry groups G of the data
are rotations (SO(2)), translations (R2) or both (SE(2)) or finite subgroups of these. For these
groups, the representation σ1 is the fundamental representation 2SO(2) which acts by matrix
multiplication, i.e. for G = SO(2), we have

σ1(φ) =
(

cosφ sin φ

− sin φ cosφ

)
, (106)

and similarly for the other groups. Since the color channels of images do not contain direc-
tional information, the input representation ρ1 is the trivial representation: ρ1 = idN .

The structure of the output layer depends on the problem considered. For image classifi-
cation, the output should be a probability distribution P(�) over classes�which is invariant
under actions of G. In the language of this section, this would correspond to the domain Y
of the last layer and the representations σ2 and ρ2 being trivial and V2 = P(�).

The cases of semantic segmentation andobject detection are discussed in detail inSects. 5.2
and 5.3 below.

3 Note that as opposed to previous sections, here, we are considering representations of the entire group G,
not just of a subgroup.
4 Note, however, that there appear to be some mathematical inconsistencies in Kondor and Trivedi (2018).
For example, in Case I of Sect. 4.1, the symmetry group acts from the right on a left quotient space, which is
ill-defined. Furthermore, the choice of coset representative denoted by x̄ is not equivariant with respect to the
group action, even from the left. Similar problems arise in Case III.
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4.2 The kernel constraint

The integral mapping f1 to f2 is defined in terms of the kernel κ which is a bounded,
linear-operator valued, continuous mapping

κ : X × Y → Hom(V1, V2) . (107)

That is, κ(x, y) : V1 → V2 is a homomorphism for each pair (x, y) ∈ X × Y . In neural
networks, κ additionally has local support, but we do not make this assumption here as the
following discussion does not need it.

In order to have an integral which is compatible with the group actions, we require X to
have a Borel measure which is invariant under σ1, i.e.

∫

X
f1(σ1(g)x)dx =

∫

X
f1(x)dx, (108)

for every integrable function f1 : X1 → V1 and all g ∈ G. Now, we can write the output
features as an integral over the kernel κ and the input features,

f2(y) = [κ · f1](y) =
∫

X
κ(x, y) f1(x)dx , (109)

where the matrix multiplication in the integrand is left implicit.
We now require the map from input to output features to be equivariant with respect to

the group actions (104) and (105), i.e. for any input function f1, we require

[κ · π1(g) f1] = π2(g)[κ · f1] ∀g ∈ G. (110)

This leads to the following

Lemma 4.3 The transformation (109) is equivariant with respect to π1, π2 if the kernel
satisfies the constraint

κ
(
σ−11 (g)x, σ−12 (g)y

) = ρ−12 (g)κ(x, y)ρ1(g), ∀x ∈ X , ∀y ∈ Y, ∀g ∈ G. (111)

Proof The constraint (111) is equivalent to

κ
(
σ1(g)x, y

)
ρ1(g) = ρ2(g)κ

(
x, σ−12 (g)y

)
. (112)

Integrating against f1 leads to
∫

X
κ
(
σ1(g)x, y

)
ρ1(g) f1(x)dx =

∫

X
ρ2(g)κ

(
x, σ−12 (g)y

)
f1(x)dx . (113)

Using (108) on the left-hand side shows that this is equivalent to (110). ��

4.3 Transitive group actions

In the formulation above, the output feature map is computed as a scalar product of the input
feature map with a kernel which satisfies the constraint (111). In this section, we discuss how
the two can be combined into one expression, which is the familiar convolutional integral, if
the group acts transitively by σ1 on the space X . I.e. we assume that there exists a base point
x0 ∈ X such that for any x ∈ X , there is a gx ∈ G with

x = σ1(gx )x0. (114)
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Defining

κ(y) = κ(x0, y), (115)

we obtain from (111)

κ(x, y) = ρ2(gx )κ
(
σ−12 (gx )y

)
ρ−11 (gx ) . (116)

Plugging this into (109) and using (114) yields a convolution as summarized in the following
proposition.

Proposition 4.4 If G acts transitively on X , the map κ · f1 defined in (109) subject to the
constraint (111) can be realized as the convolution

[κ� f1] (y) =
∫

X
ρ2(gx ) κ

(
σ−12 (gx )y

)
ρ−11 (gx ) f1(σ1(gx )x0) dx . (117)

Since in (117), the integrand only depends on x through gx , we can replace the integral over
X by an integral over G if the group element gx is unique for all x ∈ X (we can then identify
X with G by x �→ gx ). In this is the case, the group action of G on X is called regular (i.e.
it is transitive and free), leading to

Proposition 4.5 If G acts regularly on X , the map κ · f1 defined in (109) subject to the
constraint (111) can be realized as the convolution

[κ� f1] (y) =
∫

G
ρ2(g) κ

(
σ−12 (g)y

)
ρ−11 (g) f1(σ1(g)x0) dg, (118)

where we use the Haar measure to integrate on G. Furthermore, for a regular group action,
the group element gx in (116) is unique and hence the kernel κ(y) in (118) is unconstrained.

Remark 4.6 If there is a subgroup K of G which stabilizes x0, i.e. σ1(h)x0 = x0 ∀h ∈ K , X
can be identified with the homogeneous space G/K . Proposition 4.5 corresponds to K being
trivial. As will be spelled out in detail in Sect. 4.4, the integral in (118) effectively averages
the kernel κ over K before it is combined with f1, leading to significantly less expressive
effective kernels. In the case of spherical convolutions, this was pointed out in Makadia et al.
(2007); Cohen et al. (2018). Nevertheless, constructions of this form are used in the literature,
cf. e.g. Esteves et al. (2018).

To illustrate (118), we start by considering GCNNs as discussed in Example 4.1.

Example 4.7 (GCNNs with non-scalar features) Consider a GCNN as discussed in Exam-
ple 4.1 above. On G, a natural reference point is the unit element e, so we set x0 = e and
hence gx = x . Since σ1 is now a regular group action, we can use (118) which simplifies to

[κ� f ] (y) =
∫

G
ρ2(g)κ(σ−12 (g)y)ρ−11 (g) f (g)dg, (119)

where κ(y) is unconstrained. This is the convolution used for GCNNs if the input- and output
features are not scalars.

Another important special case for (118) is given by spherical convolutions which are
widely studied in the literature, cf. Sects. 1.6 and 6.
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Example 4.8 (Spherical convolutions) Consider an equivariant network layer with X = Y =
G = SO(3) as used in spherical CNNs Cohen et al. (2018). G acts on itself transitively by
left-multiplication, σi (Q)R = QR for Q, R ∈ SO(3) with base point x0 = e. Therefore,
according to Proposition (118), the transformation (109) can be written as5

[κ� f1] (S) =
∫

SO(3)
ρ2(R)κ(R−1S)ρ−11 (R) f1(R) dR , (120)

where the Haar measure on SO(3) is given in terms of the Euler angles α, β, γ by
∫

SO(3)
dR =

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ . (121)

Instead of assuming a transitive group action on X and using this to solve the kernel
constraint, one can also assume a transitive group action on Y and use this to solve the kernel
constraint. Specifically, if there is a y0 ∈ Y such that for any y ∈ Y , we have a gy ∈ G
satisfying

y = gy y0 , (122)

we can define

κ(x) = κ(x, y0) . (123)

Then, according to (111), the two-argument kernel is given by

κ(x, y) = ρ2(gy)κ(σ−11 (gy)x)ρ
−1
1 (gy) , (124)

yielding the following

Proposition 4.9 If G acts transitively on Y , the map κ · f1 defined in (109) subject to the
constraint (111) can be realized as the convolution

[κ� f1] (y) =
∫

X
ρ2(gy)κ(σ−11 (gy)x)ρ

−1
1 (gy) f1(x)dx . (125)

However, since the group element now depends on y instead of on the integration variable
x , we cannot replace the integral over X by an integral over G as we did above in (118) and
have to compute the group element gy for each y.6

4.4 Semi-direct product groups

In the previous section, we considered different convolutional integrals for the case that G
acts transitively on X . In particular, we recovered the familiar integral over G in the case
that G acts regularly on X . In practice however, the action of G on X is often transitive,
but not regular. To study this case, consider a group G which is a semi-direct product group
G = N � K of a normal subgroup N ⊂ G and a subgroup K ⊂ G. We require that N acts

5 In Cohen et al. (2018), the spherical convolution is defined as [κ� f1](S) = ∫
SO(3) κ(S−1R) f1(R) dR,

which arises from our expression by ρ1,2 → id, κ(R) → κ(R−1). In the language developed below, the
reference fixes a point inY instead ofX . We use a different convention here to make the relation to the general
case more transparent. For applications, the distinction is irrelevant.
6 In the spherical case of fixing a point inY to solve the kernel constraint, mentioned in footnote 5, this problem
does not arise: We haveX = Y = G and therefore integrate over G from the beginning. Furthermore, we can
choose y0 = e, so y = gy .
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regularly on X and one can choose a base point x0 ∈ X which is stabilized by K . In this
case, we again define

κ(y) = κ(x0, y), (126)

obtaining

κ(x, y) = ρ2(nx )κ(σ−12 (nx )y)ρ
−1
1 (nx ), (127)

where nx ∈ N is the unique group element which satisfies x = σ1(nx )x0. The convolutional
integral then becomes

[κ� f1] (y) =
∫

X
ρ2(nx )κ(σ−12 (nx )y)ρ

−1
1 (nx ) f1(σ1(nx )x0) dx . (128)

Since N acts regularly on X , the integral over X can be replaced by an integral over N .
However, since (127) only fixes an element of N but not of K , the kernel is not unconstrained
and we have the following

Proposition 4.10 If G = N � K is a semi-direct product group, with N and K as above, the
map κ · f1 defined in (109) subject to the constraint (111) can be realized as the convolution

[κ� f1] (y) =
∫

N
ρ2(n)κ(σ−12 (n)y)ρ−11 (n) f1(σ1(n)x0)dn , (129)

where the kernel satisfies the constraint

κ(σ2(h)y) = ρ2(h)κ(y)ρ−11 (h) . (130)

In practice, the constraint (130) restricts the expressivity of the network, as mentioned in
Remark 4.6. To construct a network layer using (129) and (130), one identifies a basis of the
space of solutions of (130), expands κ in this basis in (129) and trains only the coefficients of
the expansion. A basis of solutions of (130) for compact groups K in terms of representation-
theoretic quantities was given in Lang and Weiler (2020).

Example 4.11 (SE(n) equivariant CNNs) In the literature, the special case G = SE(n) =
R
n

� SO(n) and X = Y = R
n has received considerable attention due to its relevance to

applications. Our treatment follows Weiler et al. (2018), for a brief overview of the relevant
literature, see Sect. 1.6.

In this case, Rn acts by vector addition on itself, for t ∈ R
n , σ1(t)x = σ2(t)x = x + t and

SO(n) acts by matrix multiplication, for R ∈ SO(n), σ1(R)x = σ2(R)x = Rx . Moreover,
R
n acts trivially on V1 and V2, i.e. ρ1(t) = ρ2(t) = id. The base point x0 is in this case the

origin of R
n , which is left invariant by rotations. With this setup, (129) simplifies to

[κ� f1] (y) =
∫

Rn
κ(y − t) f1(t)dt . (131)

The kernel constraint (130) becomes

κ(Ry) = ρ2(R)κ(y)ρ−11 (R) ∀R ∈ SO(n) . (132)
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4.5 Non-transitive group actions

If the group action of G on X is not transitive, we cannot simply replace the integral over X
by an integral over G as in (118). However, we can split the space X into equivalence classes
under the group action by defining

X/G = {[x0] : x0 ∈ X } where x0 ∈ X ∼ x̃0 ∈ X ⇔ ∃ g ∈ G s.t. σ1(g)x0 = x̃0 .

(133)

Within each equivalence class [x0], G acts transitively by definition. For each class we select
an arbitrary representative as base point and define a one-argument kernel by

κx0(y) = κ(x0, y) . (134)

Using this kernel, we can write the integral (109) as

[κ� f1](y) =
∫

X /G

∫

G
ρ2(g)κx0(σ

−1
2 (g)y)ρ−11 (g) f1(σ1(g)x0) dgdx0 . (135)

Example 4.12 (SO(3) acting on R
3) Consider X = R

3 and G = SO(3). In this case, G does
not act transitively on X , since SO(3) conserves the norm on R

3 and integrating over G is
not enough to cover all of X . Hence, X/G can be identified with the space R

+ of norms
in R

3. The split of X into X/G and G therefore corresponds to the usual split in spherical
coordinates, in which the integral over the radius is separate from the integral over the solid
angle. In Fox et al. (2021), a similar split is used, where the integral over G is realized as a
graph convolution with isotropic kernels.

5 Equivariant deep network architectures for machine learning

After having defined various general convolution operators in the previous section, we now
want to illustrate how to assemble these into an equivariant neural network architecture
using discretized versions of the integral operators that appeared above. To this end, we will
first discuss the crucial equivariant nonlinearities that enable the network to learn non-linear
functions. Then, we will use two important tasks from computer vision, namely semantic
segmentation on S2 and object detection on Z

2, to show in detail what the entire equivariant
network architecture looks like.

5.1 Nonlinearities and equivariance

So far, we have only discussed the linear transformation in the equivariant network layers.
However, in order to approximate nonlinear functions, it is crucial to include nonlineari-
ties into the network architecture. Of course, for the entire network to be equivariant with
respect to group transformations, the nonlinearities must also be equivariant. Various equiv-
ariant nonlinearities have been discussed in the literature which we will review here briefly.
An overview and experimental comparison of different nonlinearities for E(2) equivariant
networks was given in Weiler and Cesa (2019).

A nonlinear activation function of a neural network is a nonlinear function η which maps
feature maps to feature maps. An equivariant nonlinearity additionally satisfies the constraint

η[π1(g) f ] = π2(g)η( f ) , (136)
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where we used the notation introduced in (104) and (105).

Remark 5.1 (Biases) Often, the featuremap towhich the nonlinearity is applied is not directly
the output of a convolutional layer, but instead a learnable bias is added first, i.e. we compute
η( f + b), where b : X → V1 is constant.

The most important class of nonlinearities used in group equivariant networks act point-
wise on the input, i.e.

(η( f ))(x) = η̄( f (x)) , (137)

for some nonlinear function η̄ : V1 → V2. If f transforms as a scalar (i.e. ρ1,2 = id in
(104) and (105)), then any function η̄ can be used to construct an equivariant nonlinearity
according to (137). In this case, a rectified linear unit is the most popular choice for η̄ and
was used e.g. in Worrall et al. (2017); Weiler et al. (2018); Cohen et al. (2018); Esteves et al.
(2020), but other popular activation functions appear as well Thomas et al. (2018).

If however the input- and output feature maps transform in non-trivial representations of
G, η̄ needs to satisfy

η̄ ◦ ρ1(g) = ρ2(g) ◦ η̄ , ∀g ∈ G . (138)

Remark 5.2 If the convolution is computed in Fourier space with limited bandwidth (as
discussed for the spherical case in Sect. 6.2), point-wise nonlinearities in position space as
(137) break strict equivariance since they violate the bandlimit. The resulting networks are
then only approximately group equivariant.

In the special case that the domain of f is a finite group G and ρ1,2 are trivial, the point-
wise nonlinearity (137) is called regular Cohen and Welling (2016). Regular nonlinearities
haven been used widely in the literature, e.g. Cohen et al. (2019, 2018); Weiler et al. (2018);
Dieleman et al. (2016); Hoogeboom et al. (2018); Bekkers et al. (2018). If the domain of
the feature map is a quotient space G/K , Weiler and Cesa (2019) calls (137) a quotient
nonlinearity. Similarly, given a non-linear function which satisfies (138) for representations
ρ1,2 of the subgroup K , a nonlinearity which is equivariant with respect to the induced
representation IndGK can be constructed by point-wise action onG/K Weiler andCesa (2019).
If f is defined on a semi-direct product group N �G, all these constructions can be extended
by acting point-wise on N .

A nonlinearity which is equivariant with respect to a subgroup K of a semi-direct product
groupG = K �N is given by the vector field nonlinearity defined inWeiler and Cesa (2019)
after a construction in Marcos et al. (2017). In the reference, it is constructed for the cyclic
rotation group K = CN < SO(2) and the group of translations N = R

2 in two dimensions,
but we generalize it here to arbitrary semi-direct product groups. The vector field nonlinearity
maps a function on G to a function on N and is equivariant with respect to representations
πreg and π2 defined by

[
πreg(k̃) f1

]
(kn) = f1(k̃

−1kn) , (139)
[
π2(k̃) f2

]
(n) = ρ2(k̃) f2(n) , (140)

for some representation ρ2 of K . It reduces the domain of the feature map by taking the
maximum over orbits of K , akin to a subgroup maxpooling operation. However, in order to
retain some of the information contained in the K -dependence of the featuremap, itmultiplies
the maximum with an argmax over orbits of K which is used to construct a feature vector
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transforming in the representation ρ2 of K . Its equivariance is shown in the proof of the
following

Proposition 5.3 (Vector field nonlinearity) The nonlinearity η : L2(K � N , V1) →
L2(N , V2) defined by

[η( f )] (n) = max
k∈K ( f (kn))ρ2(argmax

k∈K
( f (kn)))v0 , (141)

where max (argmax) of a vector-valued function is defined as the max (argmax) of the norm
and v0 ∈ V2 is some reference point, satisfies the equivariance property

η(πreg(k) f ) = π2(k)[η( f )] , ∀k ∈ K . (142)

Proof To verify the equivariance, we act with the πreg on f , yielding
[
η(πreg(k̃) f )

]
(n) = max

k∈K ( f (k̃−1kn))ρ2(argmax
k∈K

( f (k̃−1kn)))v0

= max
k∈K ( f (kn))ρ2(k̃ argmax

k∈K
( f (kn)))v0

= ρ2(k̃)[η( f )](n) , (143)

where we used that the maximum is invariant and the argmax equivariant with respect to
shifts.7 ��
Example 5.4 (Two-dimensional roto-translations) Consider the special case G = CN � R

2,
v0 = (1, 0) and ρ2 the fundamental representation of CN in R

2 which was discussed in
Weiler and Cesa (2019), where the vector field nonlinearity was first developed. In this case,
we will denote a feature map on CN � R

2 by a function fθ (x) where θ ∈ CN and x ∈ R
2.

Then, the vector field nonlinearity is given by

[η( f )](x) = max
θ∈CN

( fθ (x))

(
cos(argmaxθ∈CN

fθ (x))
sin(argmaxθ∈CN

fθ (x))

)
, (144)

illustrating the origin of its name.

If the input- and output features transform in the same unitary transformation, i.e. ρ1 =
ρ2 = ρ and ρ(g)ρ†(g) = id for all g ∈ G, then norm nonlinearities are a widely used special
case of (137). These satisfy (138) and are defined as

η̄( f (x)) = α(|| f (x)||) f (x) , (145)

for any nonlinear function α : R→ R. Examples for α used in the literature include sigmoid
Weiler et al. (2018), relu (Worrall et al. 2017; Esteves et al. 2020), shifted soft plus (Thomas
et al. 2018) and swish Müller et al. (2021). In Favoni et al. (2022), norm nonlinearities
are used for matrix valued feature maps with || · || = "(tr(·)) and α = relu. A further
variation are gated nonlinearities (Weiler et al. 2018; Finzi et al. 2021) which are of the form
η̄( f (x)) = σ(s(x)) f (x) with σ the sigmoid function and s(x) an additional scalar feature
from the previous layer.

Instead of point-wise nonlinearities in position space, nonlinearities in Fourier space have
also been used. These circumvent the problem mentioned in Remark 5.2 and the resulting

7 Note that the equivariance of the argmax function relies on the uniqueness of the maximum. If the global
maximum is not unique, there is an ambiguity which cannot be resolved.
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networks are therefore equivariant within numerical precision. E.g. (Thomas et al. 2018)
uses norm nonlinearities of the form (145) in Fourier space. However, the most important
nonlinearity in this class are tensor product nonlinearities (Kondor 2018; Kondor et al.
2018) which compute the tensor product of two Fourier components of the input feature
map. They yield a feature map transforming in the tensor product representation which is
then decomposed into irreducible representations. To eschew the large tensors in this process,
Cobb et al. (2020); McEwen et al. (2021) introduce various refinements of this basic idea.

Remark 5.5 (Universality) The Fourier-space analogue of a point-wise nonlinearity in posi-
tion space is a nonlinearity which does not mix the different Fourier components, i.e. which
is of the form

[η( f )]� = η̄( f �) . (146)

This is the way that norm- and gated nonlinearities have been used in Thomas et al. (2018);
Weiler et al. (2018); Finzi et al. (2021). However, as pointed out in Finzi et al. (2021), these
nonlinearities can dramatically reduce the approximation capacity of the resulting equivariant
networks. This problem does not exist for tensor product nonlinearities.

Subgroup pooling (Cohen and Welling 2016; Weiler et al. 2018; Bekkers et al. 2018;
Worrall et al. 2017; Winkels and Cohen 2018) with respect to a subgroup K of G can be seen
as a nonlinearity which does not act point-wise on f , but on orbits of K in the domain of f ,

η( f )(gK ) = η̄( f ({gk|k ∈ K })) . (147)

This breaks the symmetry group of the network from G to G/K and yields a feature map
defined on G/K . The function η̄ is typically an average8 or maximum of the arguments.

5.2 Semantic segmentation on S2

After having reviewed equivariant nonlinearities, we can now proceed to discuss concrete
equivariant network architectures. For computer vision tasks such as semantic segmentation
and object detection, the standard flat image space of Z

2 is a homogeneous space under
translation and hence falls in the class of convolutions discussed in Sect. 3. The standard
convolution (3) is, by (3.10), the natural Z

2 equivariant layer in this context. Let’s now take
the first concrete steps into a more complex example of how the equivariant structure on
homogeneous spaces can be applied in a more interesting setup.

Moving to the sphere S2 provides a simple example of a non-trivial homogeneous space
as the input manifold. As detailed in (2), a semantic segmentation model can now be viewed
as a map

N : L2(S2, R
3)→ L2(S2, P(�)), (148)

where P(�) is the space of probability distributions over the N classes�. The output features
transform as scalars under the group action on the input manifold. In the notation of (104)
and (105), this means that X = Y = S2, V1 = R

3 and V2 = R
N . The symmetry group

should act on the output space in the same way as on the input space, i.e. σ2 = σ1. Since the
output class labels do not carry any directional information, we have ρ2 = idN .

Viewed as a quotient space S2 = SO(3)/SO(2), the sphere is a homogeneous space where
each point can be associated with a particular rotation. One possible parametrization would

8 Of course, the average is a linear operation.
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Fig. 5 Objects detected by bounding boxes. A bounding box is given by an anchor point (x, y) together with
dimensions (w, h). Image from Cordts et al. (2016)

Fig. 6 Simple object detection model. In the first row the name of the first feature map (i.e. input image) is
given by fin, it maps the domain Z

2 to RGB values. It can be represented by a rank 3 tensor ( fin)
c
i j . The first

convolution maps fin to a new feature map f2 with N2 filters giving rise to another rank 3 tensor. The output
is a feature map Z

2 → R
2 ⊕ R

3, where an element in the co-domain takes the form (x, y, w, h, c). The first
part in the co-domain R

2, represents anchor point coordinates and transforms under translations. The second
part R

3 represents the dimensions of the bounding box together with a confidence score, both invariant under
translations

be in terms of latitude (θ ) and longitude (φ), i.e. the latitude specifies the angular distance
from the north pole whereas the longitude specifies the angular distance from a meridian.

The corresponding convolution following from (82) can be formulated as an integral over
S2 using this parametrization. In practice there are much more efficient formulations using
the spectral structure on the sphere, see Sect. 6 for a more detailed treatment of spherical
convolutions.

5.3 Object detection onZ
2

If we instead stay on Z
2 as the input space but let the model output object detections we

have a non-trivial example of where the output transforms under the group action and where
equivariance of the full model becomes relevant.

Let us consider a single-stage object detection model that outputs a dense map Z
2 →

R
2 ⊕ R

3 of candidate detection in the form (x, y, w, h, c), where (x, y) ∈ R
2 corresponds
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to the anchor point of an axis aligned bounding box with dimensions (w, h). The confidence
score c (or binary classifier) corresponds to the probability of the bounding box containing an
object.9 Fig. 6 illustrates how the anchor point together with the dimensions form a bounding
box used to indicate a detection. The first subspace R

2 in the co-domain, corresponding to
anchor point coordinates, is identified as continuous coordinates on the input space Z

2 and
transforms under translations.

Starting from the same example architecture as the semantic segmentationmodel in Fig. 1,
the object detection model in Fig. 5 ends with a feature map transforming in the fundamental
representation of the translation groupZ

2. Note that since the detection problem is formulated
as a regression task,which is usually implementedusingmodelswithfloatingpoint arithmetic,
the output naturally takes values in R rather than Z.

As introduced in (4), on Z
2, the convolutions are discretized to

f2(x, y) = �1( fin)(x, y) = [κ1� fin](x, y) =
∑

(x ′,y′)∈Z2

L(x,y)κ1(x
′, y′) fin(x ′, y′) , (149)

where we have specified the first layer as an illustration (cf. Fig. 5) and κ1 is the kernel.
Concretely on [0,W ] × [0, H ] ∈ Z

2 with the feature map and kernel represented as rank 3
tensors10 this takes the form

( f2)
c
xy =

∑

(x ′,y′)∈Z2

2∑

c=0
κc
(x ′−x)(y′−y)( fin)

c
x ′ y′ . (150)

The convolution in (149) is equivariant with respect to translations under Z
2 as shown

in (6). For the nonlinearity, we can choose any of the ones discussed in Sect. 5.1, e.g. a
point-wise relu,

( f ′2)ci j = relu
(
( f2)

c
i j

)
. (151)

Thus the model is a G-equivariant network that respects the Z
2 structure of the image

plane. Note that in contrast to the case of semantic segmentation in Sect. 5.2 the output
features here transforms under the group action. If the image is translated the corresponding
anchor points for the detections should also be translated. This equivariance is built into the
model rather than being learned from data, as would be the case in a standard object detection
model.

In the notation of (104) and (105) the input and output spaces are X = Y = Z
2 with

output feature maps taking values in V2 = R
2 ⊕ R

3. The symmetry group G = Z
2 acts by

σ(x ′,y′)(x, y) = (x+ x ′, y+ y′) on the input and output space and by ρ(x ′,y′)(x, y, w, h, c) =
(x + x ′, y + y′, w, h, c) on V2.

The output of thismodel in terms of anchor points and corresponding bounding box dimen-
sions is one of many possible ways to formulate the object detection task. For equivariance
under translations this representation makes it clear that it is the position of the bounding box
that transforms with the translation group.

If we instead are interested in a model that is equivariant with respect to rotations of the
image plane it is instructive to regard a model that predicts bounding boxes that are not axis
aligned. Let the output of the new model, as in Sect. 1, take values in V2 = R

2 ⊕ R
2 ⊕ R

2

9 The dense map of candidate detections is typically filtered based on the confidence score using a method
such as non-maximum suppression.
10 In the sense of multidimensional arrays.
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where an element (a, v1, v2) corresponds to a bounding box with one corner at a and spanned
by the parallelogram of v1 and v2. All three output vector spaces transform in the fundamental
representation of SO(2) so that ρ2 = 2SO(2) ⊕ 2SO(2) ⊕ 2SO(2), cf. (106).

6 Spherical convolutions

In this section, we will investigate the spherical convolutions introduced in Example 4.8 in
more detail. Mathematically, this case is particularly interesting, because on the sphere and
on SO(3), we can leverage the power of the rich spectral theory on the sphere in terms of
spherical harmonics and Wigner matrices to find explicit and compact expressions for the
convolutions. Also for practical considerations, this case is of particular importance since
data given on a sphere arises naturally in many applications, e.g. for fisheye cameras Coors
et al. (2018), cosmological data Perraudin et al. (2019), weather data, molecular modeling
Boomsma and Frellsen (2017) or diffusion MRI Elaldi et al. (2021). To faithfully represent
this data, equivariant convolutions are essential.

There is a sizable literature on equivariant spherical convolutions. The approach presented
here follows Cohen et al. (2018) and extends the results in the reference at some points. An
overview of the existing literature in the field can be found in Sect. 1.6.

6.1 Preliminaries

For spherical CNNs, the input data has the form f : S2 → R
N , i.e. the first layer of the

network has X = S2. The networks discussed here are special cases of the GCNNs con-
structed in Sect. 3 for which the symmetry group G is the rotation group in three dimensions,
SO(3) and the subgroup K is either SO(2) or trivial. In this framework, we identify S2 with
the homogeneous space G/K = SO(3)/SO(2). The first layer of the network has trivial K
in the output, i.e. Y = SO(3) and subsequent layers have trivial K also in the input, i.e.
X = Y = SO(3). The latter case was already discussed in Example 4.8, leading to (120).

For the first layer, SO(3) acts by the matrix–vector product on the input space, σ1(R)x =
Rx and as usual by group multiplication on the output, σ2(R)Q = RQ. The construction in
Cohen et al. (2018) uses in this case the identity element in Y = SO(3) to solve the kernel
constraint, leading to

(κ� f )(R) =
∫

S2
ρ2(R)κ(R−1x)ρ−11 (R) f (x) dx , (152)

cf. (125). The integration measure on the sphere is given by
∫

S2
dx(θ, ϕ) =

∫ 2π

0
dϕ

∫ π

0
dθ sin θ . (153)

Note that in (152) we perform the integral here over the input domainX and not the symmetry
groupG sincewe cannot replace the integral overX by an integral overG if we use a reference
point in Y , as mentioned above.

Remark 6.1 (Convolutions with X = Y = S2) At first, it might seem counter-intuitive that
the feature maps in a spherical CNN have domain SO(3) instead of S2 after the first layer.
Hence, it is instructive to study a convolutional integral with X = Y = S2 constructed using
the techniques of Sect. 4. The action of SO(3) on S2 is as above by matrix–vector product.
We next choose an arbitrary reference point x0 on the sphere and denote by Rx the rotation
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matrix which rotates x0 into x : Rx x0 = x . Following (117), we can thenwrite the convolution
as

[κ� f ] (y) =
∫

X
ρ2(Rx )κ(R−1x y)ρ−11 (Rx ) f (x) dx . (154)

However, the element Rx is not unique: If Q rotates around x0, Qx0 = x0, then Rx Q also
rotates x0 into x . In fact, the symmetry group splits into a semi-direct product SO(3) = N�H
with H = SO(2) the stabilizer of x0 and N = SO(3)/H . This special case was considered
in Sect. 4.4 and we can write (154) as

[κ� f ] (y) =
∫

SO(3)/H
ρ2(R)κ(R−1y)ρ−11 (R) f (Rx0) dR . (155)

According to (130), the kernel κ is now not unconstrained anymore but satisfies

κ(Qy) = ρ2(Q)κ(y)ρ−11 (Q) , (156)

for Q ∈ H . In particular, if the input and output features transform like scalars, ρ1 = ρ2 = id,
(156) implies that the kernel is invariant under rotations around x0, i.e. isotropic, as was
noticed also in Makadia et al. (2007). In practice, this isotropy decreases the expressibility
of the layer considerably.

6.2 Spherical convolutions and Fourier transforms

The Fourier decomposition on the sphere and on SO(3) is well studied and can be used to find
compact explicit expressions for the integrals defined in the previous section. To simplify
some expressions, we will assume in this and the following section that V1,2 are vector spaces
over R, so in particular ρ1,2 are real representations.

A square-integrable function f : S2 → R
c can be decomposed into the spherical har-

monics Y �
m via

f (x) =
∞∑

�=0

�∑

m=−�

f̂ �
mY

�
m(x) , (157)

with Fourier coefficients

f̂ �
m =

∫

S2
f (x)Y �

m(x) dx , (158)

since the spherical harmonics form a complete orthogonal set,

∞∑

�=0

�∑

m=−�

Y �
m(x)Y �

m(y) = δ(x − y) , (159)

∫

S2
Y �1
m1(x)Y

�2
m2

(x)dx = δ�1�2δm1m2 . (160)

For later convenience, we also note the following property of spherical harmonics:

Y �
m(x) = (−1)mY �−m(x) . (161)

In practice, one truncates the sum over � at some finite L , the bandwidth, obtaining an
approximation of f .
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Similarly, a square-integrable function f : SO(3)→ R
c can be decomposed into Wigner

D-matrices D�
mn(R) (for a comprehensive review, see Varshalovich et al. (1988)) via

f (R) =
∞∑

�=0

�∑

m,n=−�

f̂ �
mnD�

mn(R) , (162)

with Fourier coefficients

f̂ �
mn =

2�+ 1

8π2

∫

SO(3)
f (R)D�

mn(R) dR , (163)

since the Wigner matrices satisfy the orthogonality and completeness relations
∫

SO(3)
D�1
m1n1(R)D�2

m2n2(R)dR = 8π2

2�1 + 1
δ�1�2δm1m2δn1n2 (164)

∞∑

�=0

�∑

m,n=−�

D�
mn(Q)D�

mn(R) = 8π2

2�+ 1
δ(R − Q) . (165)

Furthermore, theWigner D-matrices form a unitary representation of SO(3) since they satisfy

D�
mn(QR) =

�∑

p=−�

D�
mp(Q)D�

pn(R) , (166)

D�
mn(R

−1) = (D�
mn(R))−1 = (D�

mn(R))† = D�
nm(R) . (167)

Note furthermore that

D�
mn(R) = (−1)n−mD�−m,−n(R) . (168)

The regular representation of SO(3) on spherical harmonics of order � is given by the corre-
sponding Wigner matrices:

Y �
m(Rx) =

�∑

n=−�

D�
mn(R)Y �

n (x) . (169)

A product of two Wigner matrices is given in terms of the Clebsch–Gordan coefficients
C JM

�1m1;�2m2
by

D�1
m1n1(R)D�2

m2n2(R) =
�1+�2∑

J=|�1−�2|

J∑

M,N=−J
C JM

�1m1;�2m2
C JN

�1n1;�2n2D
J
MN (R) . (170)

We will now use these decompositions to write the convolutions (152) and (120) in the
Fourier domain. To this end, we use Greek letters to index vectors in the spaces V1 and V2 in
which the feature maps take values.

Proposition 6.2 The Fourier transform of the spherical convolution (152) with X = S2 and
Y = SO(3) is given by

[
̂(κ� f )μ

]�

mn
=

dim V2∑

ν=1

dim V1∑

σ,τ=1

∞∑

�i=0
i=1,2,3

�i∑

mi ,ni=−�i
i=1,2,3

�2+�1∑

J=|�2−�1|

J∑

M,N=−J
C JM

�2m2;�1n1C
JN
�2n2;�1m1

C�m
JM;�3m3

C�n
J N ;�3n3 (̂ρ2,μν)

�2

m2n2
(̂κνσ )

�1

m1
ρ̂1,σ τ

�3
n3m3

(̂ fτ )
�1

n1 . (171)
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For ρ1 = ρ2 = id, (171) simplifies to

[
(̂κ� f )μ

]�

mn
=

dim V1∑

ν=1
(̂κμν)

�
n( f̂ν)

�
m . (172)

A similar calculation can be performed for input features in SO(3) as detailed by the following
proposition.

Proposition 6.3 The Fourier transform of the spherical convolution (120) with X = Y =
SO(3) can be written in the Fourier domain as

[
(̂κ� f )

]�

mn
= 8π2

2�+ 1

�∑

p=−�

∞∑

�i=0
i=1,2,3

�i∑

mi ,ni=−�i
i=1,2,3

�1+�2∑

J=|�1−�2|

J∑

M,N=−J
C JM

�1m1;�2m2
C JN

�1n1;�2n2

C�m
JM;�3m3

C�p
J N ;�3n3 ρ̂2

�1
m1n1 · κ̂�

pn · ρ̂1�2
n2m2 · f̂ �3

m3n3 . (173)

Here, the dot · denotes matrix multiplication in V1,2, as spelled out in (171).

For ρ1 = ρ2 = id (173) becomes

[
(̂κ� f )

]�

mn
= 8π2

2�+ 1

�∑

p=−�

κ̂�
pn · f̂ �

mp . (174)

Note that in all these expressions, the Fourier transform is done component wise with respect
to the indices in V1,2.

6.3 Decomposition into irreducible representations

An immediate simplification of (171) and (173) can be achieved by decomposing ρ1,2 into
irreps of SO(3) which are given by the Wigner matrices DL ,

ρ(R) =
⊕

λ

⊕

μ

Dλ(R) , (175)

whereμ counts the multiplicity ofDλ in ρ. Correspondingly, the spaces V1,2 are decomposed
according to V1,2 =⊕

λ

⊕
μ V λμ

1,2 , where V
λμ
1,2 = R

2λ+1. The featuremaps then carry indices

f λμ
ν with λ = 0, . . . ,∞, μ = 1, . . . ,∞, ν = −λ, . . . , λ with only finitely many non-zero

components. Using this decomposition of V1,2 the convolution (152) is given by

(κ� f )λμ
ν (R) =

λ∑

ρ=−λ

∞∑

θ=0

∞∑

σ=1

θ∑

τ,π=−θ

∫

S2
Dλ

νρ(R)κ
λμ;θσ

ρ;τ (R−1x)Dθ
τπ (R−1) f θσ

π (x)dx .

(176)

By plugging these expressions for ρ1,2, κ and f into (171), we obtain the following propo-
sition.
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Proposition 6.4 The decomposition of (171) into representation spaces of irreducible repre-
sentations of SO(3) is given by

[
̂

(κ� f )λμ
ν

]�

mn
=

λ∑

ρ=−λ

∞∑

θ=0

∞∑

σ=1

θ∑

τ,π=−θ

∞∑

j=0

�i∑

q,r=− j

�2+ j∑

J=|�2− j |

J∑

M,N=−J
C JM

λν; jrC
J N
λρ; jq

C�m
JM;θτC

�n
J N ;θπ (

̂
κ

λμ;θσ

ρ;τ )
j
q (̂ f θσ

π )
j
r . (177)

Similarly, (173) decomposes according to

(
̂

(κ� f )λμ
ν )�mn =

8π2

2�+ 1

λ∑

ρ=−λ

∞∑

θ=0

∞∑

σ=1

θ∑

τ,π=−θ

�∑

p=−�

∞∑

j=0

j∑

q,r=− j

λ+σ∑

J=|λ−σ |

J∑

M,N=−J
C JM

λν;θτC
JN
λρ;θπ

C�m
JM; jqC

�p
J N ; jr (

̂
κ

λμ;θσ

ρ;τ )�pn (̂ f
θσ
π )

j
qr . (178)

In these expressions, the Fourier transform of the convolution is given entirely in terms of
the Fourier transforms of the kernel and the input feature map, as well as Clebsch–Gordan
coefficients. In particular, Fourier transforms of the representation matrices ρ1,2 are trivial
in this decomposition of the spaces V1 and V2.

6.4 Output features in SE(3)

As an example of a possible application of the techniques presented in this section, consider
the problem of 3D object detection in pictures taken by fisheye cameras. These cameras have
a spherical image plane and therefore, the components of the input feature map f transform
as scalars under the regular representation (cf. (104)):

[π1(R) f ] (x) = f (R−1x) . (179)

Since this is the transformation property considered in the context of spherical CNNs, the
entire network can be built using the layers discussed in this section.

As detailed in Sect. 5.3, for object detection, we want to identify the class, physical size,
position and orientation for each object in the image. This can be realized by associating to
each pixel in the output picture (which is often of lower resolution than the input) a class
probability vector p ∈ P(�), a size vector s ∈ R

3 containing height, width and depth of
the object, a position vector x ∈ R

3 and an orientation given by a matrix Q ∈ SO(3). Here,
P(�) is the space of probability distributions in N classes as in (2). In the framework outlined
above, this means that the output feature map takes values in P(�)⊕ R

3 ⊕ R
3 ⊕ SO(3).

If the fisheye camera rotates by R ∈ SO(3), the output features have to transform accord-
ingly. In particular, since the classification and the size of the object do not depend on the
rotation, p transforms as N scalars and s transforms as three scalars:

ρ2(R)p = p, ρ2(R)s = s , (180)

where we used the notation introduced in (105). The position vector x on the other hand
transforms in the fundamental representation of SO(3)

ρ2(R)x = R · x . (181)

Finally, the rotation matrix Q transforms by a similarity transformation

ρ2(R)Q = R · Q · RT . (182)
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As described above for the general case, the transformation property (180)–(182) of the
output feature map can be decomposed into a direct sum of irreducible representations,
labeled by an integer �. The scalar transformations of (180) are N + 3 copies of the � = 0
representation and the fundamental representation in (181) is the � = 1 representation. To
decompose the similarity transformation in (182), we use the following

Proposition 6.5 Let A, B, C be arbitrary matrices and vec(M) denote the concatenation of
the columns of the matrix M. Then,

vec(A · B · C) = (A ⊗ CT ) · vec(B) , (183)

where ⊗ denotes the Kronecker product.

Remark 6.6 To illustrate the matrix dimensions in (183), consider A ∈ R
m×n , B ∈ R

n×k
and C ∈ R

k×�, hence A · B · C ∈ R
m×� and vec(A · B · C) ∈ R

m�. On the other hand,
A⊗CT ∈ R

m�×nk and vec(B) ∈ R
nk and hence the two can bemultiplied by amatrix–vector

product, yielding also a vector in R
m�.

With this, we obtain for (182)

ρ2(R) vec(Q) = (R ⊗ R) · vec(Q) , (184)

i.e. Q transforms with the tensor product of two fundamental representations. According
to (170), this tensor product decomposes into a direct sum of one � = 0, one � = 1 and
one � = 2 representation. In total, the final layer of the network will therefore have (in the
notation introduced below (175)) λ = 0, 1, 2, ν = −λ, . . . , λ and μ = 1, . . . , N + 4 for
λ = 0, μ = 1, 2 for λ = 1 and μ = 1 for λ = 2.

Note that the transformation properties (180)–(182) of the output feature map are inde-
pendent of the transformation properties of the input feature map. We have restricted the
discussion here to fisheye cameras since, as stated above, these can be realized by the spher-
ical convolutions considered in this section. For pinhole cameras on the other hand, the
representation π1 acting on the input features will be a complicated non-linear transforma-
tion arising from the projection of the transformation in 3D space onto the flat image plane.
Working out the details of this representation is an interesting direction for further research.

6.5 SE(3) equivariant networks

The same decomposition of V1,2 into representation spaces of irreducible representations of
SO(3), which was used in Sect. 6.3 can also be used to solve the kernel constraint (132) for
equivariant networks of SE(3), as discussed inWeiler et al. (2018). In this section, we review
this construction.

In the decomposition into irreps, the kernel constraint (132) reads

κ
λμ;θσ

ρ;τ (Ry) =
λ∑

ν=−λ

θ∑

π=−θ

Dλ
ρν(R) κ

λμ;θσ

ν;π (y)Dθ
πτ (R

−1) . (185)

In the following, we will use · to denote matrix multiplication in ρ, ν, π, τ and drop the
multiplicity indices μ, σ since (185) is a component-wise equation with respect to the mul-
tiplicity.

On the right-hand side of (185), SO(3) acts in a tensor product representation on the
kernel. To make this explicit, we use the vectorization (183) and the unitarity of the Wigner
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matrices to rewrite (185) into11

vec(κλθ (Ry)) = (Dλ(R)⊗Dθ (R)) · vec(κλθ (y)) . (186)

Using (168) and (170), we can decompose the tensor product of the two Wigner matrices
into a direct sum of Wigner matrices DJ with J = |λ − θ |, . . . , λ + θ . Performing the
corresponding change of basis for vec(κλθ ) leads to components vec(κλθ;J ) on which the
constraint takes the form

vec(κλθ;J (Ry)) = DJ (R) · vec(κλθ;J (y)) . (187)

According to (161) and (169), the spherical harmonics Y �
m solve this constraint and they in

fact span the space of solutions with respect to the angular dependence of κλθ,J . Therefore,
a general solution of (187) has the form

vec(κλθ;J (y)) =
∑

k

J∑

m=−J
w

λθ;J
k,m ϕk(||y||)Y J

m (y) , (188)

with radial basis functions ϕk and (trainable) coefficients w.
As an example of an application of group equivariant network architectures, we considered

spherical CNNs in this section, which are of great practical importance. Spherical convolu-
tions serve as a good example of the Fourier perspective on group equivariant convolutions
since the spectral theory on the sphere and rotation group SO(3) is well-understood. Con-
sequently, in Proposition 6.4, we could give explicit, yet completely general expressions for
spherical convolutions for feature maps transforming in arbitrary representations of SO(3),
given just in terms of Clebsch–Gordan coefficients.

In principle, such expressions could be derived for a large class of symmetry groups. The
foundation of this generalization was laid in Lang and Weiler (2020), where it was shown
how the kernel constraint for any compact symmetry group can be solved in terms of well-
known representation theoretic quantities. In position space, algorithms already exist which
can solve the symmetry constraint and generate equivariant architectures automatically Finzi
et al. (2021).

7 Conclusions

In this paper we have reviewed the recent developments in geometric deep learning and
presented a coherent mathematical framework for equivariant neural networks. In the process
we have also developed the theory in various directions, in an attempt tomake itmore coherent
and emphasize the geometric perspective on equivariance.

Throughout the paper we have used the examples of equivariant semantic segmentation
and object detection networks to illustrate equivariant CNNs. In particular, in Sect. 6.4 we
showed that in rotation-equivariant object detection using fisheye cameras, the input features
transform as scalars with respect to the regular representation of R ∈ SO(3), while the
output features take values in SE(3). It would be very interesting to generalize this to object
detection that is equivariant with respect to SE(3) instead of SO(3). In this case, wewould add
translations of the two-dimensional image plane R

2 ⊂ R
3 and so the regular representation

of SE(3) needs to be projected onto the image plane. For instance, translations which change

11 Note that there is a typo in the corresponding equation (13) in Weiler et al. (2018), where the complex
conjugation is missing.
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the distance of the object to the image plane will be projected to scalings. If this is extended
to pinhole cameras, the resulting group action will be highly non-linear.

Yet another interesting open problem is the development of an unsupervised theory of
deep learning on manifolds. This would require to develop a formalism of group equivariant
generative networks. For example, one would like to construct group equivariant versions
of variational autoencoders, deep Boltzmann machines and GANs (see e.g. Venkatesh et al.
(2020)).

An interesting aspect of equivariant neural networks is their stability with respect to data
perturbations and transformations which are close to, but not exact group actions. Since real
world data is often noisy this is an important property which was studied in the context of
wavelets Mallat (2012) and GENEOs Frosini and Jabłoński (2016). It would be interesting
to extend these considerations to the gauge equivariant layers discussed in Sect. 2.

As we have emphasized in this work, the feature maps in gauge equivariant CNNs can be
viewed as sections of principal (frame) bundles,which are generally called fields in theoretical
physics. The basic building blocks of these theories are special sections corresponding to
irreducible representations of the gauge group; these are the elementary particles of Nature.
It is tantalizing to speculate that this notion could also play a key role in deep learning, in the
sense that a neural network gradually learns more and more complex feature representations
which are built from “elementary feature types” arising from irreducible representations of
the equivariance group.

The concept of equivariance to symmetries has been a guiding design principle for the-
oretical physics throughout the past century. The standard model of particle physics and
the general theory of relativity provide prime examples of this. In physics, the fundamental
role of symmetries is related to the fact that to every (continuous) symmetry is associated
through Noether’s theorem a conserved physical quantity. For example, equivariance with
respect to time translations corresponds to conservation of energy during the evolution of
a physical system. It is interesting to speculate that equivariance to global and local sym-
metries may play similar key roles in building neural network architectures, and that the
associated conserved quantities can be used to understand the dynamics of the evolution of
the network during training. Steps in this direction have been taken to examine and interpret
the symmetries and conserved quantities associated to different gradient methods and data
augmentation during the training of neural networks Głuch and Urbanke (2021). In the appli-
cation of neural networks to model physical systems, several authors have also constructed
equivariant (or invariant) models by incorporating equations of motion—in either the Hamil-
tonian or Lagrangian formulation of classical mechanics—to accommodate the learning of
system dynamics and conservation laws (Greydanus et al. 2019; Toth et al. 2020; Cranmer
et al. 2020). Along these lines, it would be very interesting to look for the general analogue
of Noether’s theorem in equivariant neural networks, and understand the importance of the
corresponding conserved quantities for the dynamics of machine learning.

We hopewe have convinced the reader that geometric deep learning is an exciting research
fieldwith interesting connections to bothmathematics and physics, aswell as a host of promis-
ing applications in artificial intelligence, ranging from autonomous driving to biomedicine.
Although a huge amount of progress has been made, it is fair to say that the field is still in its
infancy. In particular, there is a need for a more foundational understanding of the underlying
mathematical structures of neural networks in general, and equivariant neural networks in
particular. It is our hope that this paper may serve as a bridge connecting mathematics with
deep learning, and will provide seeds for fruitful interactions across the fields of machine
learning, mathematics and theoretical physics.
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