
Vol.:(0123456789)

Artificial Intelligence Review (2024) 57:247
https://doi.org/10.1007/s10462-024-10817-z

Domain generalization for semantic segmentation: a survey

Taki Hasan Rafi1 · Ratul Mahjabin2 · Emon Ghosh3 · Young‑Woong Ko1 · 
Jeong‑Gun Lee1

Accepted: 28 May 2024 / Published online: 12 August 2024 
© The Author(s) 2024

Abstract
Deep neural networks (DNNs) have proven explicit contributions in making autonomous 
driving cars and related tasks such as semantic segmentation, motion tracking, object 
detection, sensor fusion, and planning. However, in challenging situations, DNNs are 
not generalizable because of the inherent domain shift due to the nature of training under 
the i.i.d. assumption. The goal of semantic segmentation is to preserve information from 
a given image into multiple meaningful categories for visual understanding. Particularly 
for semantic segmentation, pixel-wise annotation is extremely costly and not always fea-
sible. Domain generalization for semantic segmentation aims to learn pixel-level semantic 
labels from multiple source domains and generalize to predict pixel-level semantic labels 
on multiple unseen target domains. In this survey, for the first time, we present a compre-
hensive review of DG for semantic segmentation. we present a comprehensive summary of 
recent works related to domain generalization in semantic segmentation, which establishes 
the importance of generalizing to new environments of segmentation models. Although 
domain adaptation has gained more attention in segmentation tasks than domain generali-
zation, it is still worth unveiling new trends that are adopted from domain generalization 
methods in semantic segmentation. We cover most of the recent and dominant DG methods 
in the context of semantic segmentation and also provide some other related applications. 
We conclude this survey by highlighting the future directions in this area.

Keywords  Domain generalization · Out-of-distribution generalization · Domain shift · 
Semantic segmentation

1  Introduction

Machine learning plays a crucial role in various applications such as face recognition, self-
driving cars, and healthcare (Roth et  al. 2018; Rao and Frtunikj 2018; Guo and Zhang 
2019), where a model needs to provide predictive decisions on the basis of the knowledge 
it acquired in the training stage. Nevertheless, what will happen if an autonomous system 
trained in California roads is tested on New York roads? How about a machine learning 
model that has been trained to perform sentiment analysis using data from the USA that is 
being used to interpret the sentiment of the posts from the United Kingdom? Again, Can a 
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tumor detection model trained on one group of patients work well for finding tumors in a 
diverse group with different health issues and backgrounds?

The answer to these questions is that those models will not work well based on the given 
situation. This arises from the assumption made by conventional machine learning (ML) 
techniques that the source and target data will be characterized by independence and uni-
formity. However, this assumption is not always fulfilled in reality. Often, data comes from 
different distributions introducing an issue known as domain shift (Ben-David et al. 2010; 
Blanchard et  al. 2021; Moreno-Torres et  al. 2012; Recht et  al. 2019; Taori et  al. 2020). 
Hence ML model experience notable decrease in performance when dealing with out-of-
distribution (OOD) target domain (Fig. 1).

The issue of domain shift presents a substantial threat to the scalability of machine 
learning models across diverse applications within the field of Computer Vision. One such 
example is semantic segmentation (SS), a crucial computer vision task where each pixel in 
an image is categorized into a particular class (Guo et al. 2018). It has immense application 
for numerous applications such as autonomous driving, medical imaging, image editions, 
etc. Building a robust semantic segmentation model that can work well in unfamiliar situ-
ations (new unseen domains) is essential. A direct approach to address the domain shift 
challenge is to gather data from every possible domain which is both costly and practically 
unfeasible. Another alternative approach involves data collection from the target domain to 
adapt the trained model, referred to as domain adaptation, on the source domain. It is not 
always feasible in real-world scenarios (Wang et al. 2022a). In many cases, it is difficult 
to gather or even unknown before deploying the model, e.g., in Biomedical applications 
where it is impractical to collect new patient data in advance. So it is crucial to enhance 
the model’s generalization capability. To address this issue without requiring data from the 
target domain, domain generalization (DG) was introduced (Muandet et al. 2013). The aim 
is to enhance the generalization capability of machine learning models by leveraging one 
or more related yet distinct source domains. In recent developments, domain generalization 
has been applied to advance the field of semantic segmentation. There are a few survey 
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Fig. 1   Domain generalization for semantic segmentation. Examples from GTAV and ACDC datasets with 
different conditions such as Night and Fog for domain generalization, where the model is trained on the 
GTAV dataset, and directly evaluated in the ACDC dataset
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papers that are based on domain generalization (Zhou et al. 2022a; Wang et al. 2022a), but 
they are not focused on a specific application of domain generalization but rather a general 
survey of domain generalization. This survey (Zhou et al. 2022a) mentioned the applica-
tion of domain generalization in semantic segmentation. However, it does not hold a broad 
and comprehensive understanding of DG in semantic segmentation. Another survey (Li 
et al. 2023a) discussed the transformers for the segmentation task. There are several repre-
sentative methods for semantic segmentation such as query-based and close-set segmenta-
tion methods (Cheng et al. 2020; Yu et al. 2018; Li et al. 2020b; Kirillov et al. 2020; Li 
et al. 2020b; Zhang et al. 2021a; Wang et al. 2021).

This paper presents the first comprehensive survey on Domain Generalization for 
Semantic Segmentation. We aim to introduce its recent advances, emphasizing its formu-
lations, theories, algorithms, research areas, datasets, applications, and potential future 
research directions. We anticipate this survey will provide a comprehensive review for 
researchers interested in this topic and spark more research in this and related areas. There 
are several survey papers on domain generalization(DG) and semantic segmentation sepa-
rately. However, to the best of our knowledge, this is the first paper addressing domain 
generalization in the context of semantic segmentation. Our contributions are summarized 
as follows.

•	 To the best of our knowledge, our survey is the first paper that comprehensively reviews 
domain generalization for semantic segmentation, which recently has caught growing 
attention in many computer vision applications.

•	 We discuss the widely used datasets, and evaluation metrics, and provide a quantitative 
comparison of the backbone segmentation models in different DG approaches.

•	 We provide future challenges and research directions that can be aggregated to solve 
underlying challenges in generalized semantic segmentation.

The rest of the paper proceeds as follows: Sect.  2 provides the necessary background. 
While Sect. 3 touches on related sub-areas. We explore various methodologies addressing 
Domain Generalization in Sect. 4 and discuss relevant datasets, benchmarks, and evalua-
tion methods in Sect. 5. Section 6 houses a broad discussion on the future research direc-
tions. The paper concludes with Sect. 7.

2 � Background

2.1 � Problem formulation

Domain generalization or OOD generalization refers to signify the generalization capabil-
ity on unseen target domains, and also in source domains. Here the target domains are 
denoted as T  = {T1, ....., TN} . Usually, there are multiple sources S = {S1, .....,SK} to train 
and learn invariant semantic features. A semantic segmentation model � outputs pixel-wise 
predictions p for given an image x. This semantic segmentation model consists of a feature 
extractor �ext and classifier �cls . While training the segmentation network, we have access 
to multiple source domains Ds = {(xs, ys} . Where, Ds have multiple source domains S . 
Here, each sample xs ∈ ℝ

H×W×3 , corresponding pixel-wise labels ys ∈ ℝ
H×W×3 . The seg-

mentation loss for the baseline network � can be calculated as,
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The main goal is to minimize the source domain loss to ensure high generalization on 
unseen target domains T  , each T  is an unlabelled dataset Dt = {(xt)} . Traditionally, the 
segmentation model can be evaluated in both source S and unseen target domains T .

3 � Deep learning methods in semantic segmentation: CNN 
and transformers

Recently, deep learning-based methods played an important role in semantic segmentation 
tasks. Semantic segmentation is also referred to as visual understanding. In recent times, 
CNN and vision transformer-based methods have mostly been used to solve challenges in 
semantic segmentation. In this section, we review some of the recent methods of CNN 
and vision transformer for semantic segmentation. DeconvNet (Noh et  al. 2015) repre-
sents a significant contribution to this field, offering an approach that complements the 
conventional Fully Convolutional Network (FCN)-based methodologies, known for their 
proficiency in extracting a generalized form of objects. Contrasting the FCN, DeconvNet 
systematically organizes proposals by size, efficiently capturing multi-scale objects and 
discerning finer object details. Notably, the innovation of SegNet (Badrinarayanan et  al. 
2015, 2017) lies in its novel approach to upsample feature maps with low spatial dimen-
sions within the decoder. Furthermore, SegNet incorporates a mechanism to retain the 
max-pooling indexes from the encoder’s feature maps, bolstering its overall performance. 
Reference (Kendall et al. 2015) introduces a pixel-based probabilistic framework termed 
Bayesian SegNet, achieved by adapting the architecture of SegNet. This adaptation involves 
the implementation of a probabilistic encoder-decoder architecture using dropout (Srivas-
tava et al. 2014), a technique also utilized in approximate inference by Bayesian CNN (Gal 
and Ghahramani 2015). Besides CNN, transformers are also extensively used in semantic 
segmentation. Strudel et al. (2021) used a vision transformer for semantic segmentation, 
they utilized output embeddings corresponding to image patches and used class labels from 
the embeddings with a mask transformer. There are other methods that use transformers 
(Xie et al. 2021; Zheng et al. 2021; Zhang et al. 2022b) for semantic segmentation.

4 � Sub‑related topics

The connections and differences between the DG on Semantic Segmentation and its related 
topics are addressed in this section.

Domain adaptation (DA) is an approach for improving a model’s performance on a tar-
get domain with insufficient annotated data by using the information that the model has 
learned from a corresponding domain with enough labeled data. The goal of domain adap-
tation is to lessen disparities in the feature space across domains, both marginal and condi-
tional. This involves identifying common underlying attributes shared involving the source 
and destination domains and subsequently adjusting them to enhance alignment. In other 
words, domain adaptation tries to lessen the detrimental impacts of domain shift, which 
can result in a decline in model performance for semantic segmentation when the model 
is applied to data from a distinct distribution. It is the subject that is most relevant to DG 

(1)Lss = −
1

HW

H,W,K
∑

h,w,k=1

yslog(�(xs))
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and has been widely researched in the literature. Wang et al. (2023) Yang et al. (2022c) 
Xie et al. (2023) Toldo et al. (2022) Shyam et al. (2022b). Wang et al. (2023) proposed a 
target-to-source DA technique to encourage the model to learn comparable cross-domain 
properties using a dynamic re-weighting strategy to help the model. Yang et  al. (2022c) 
gave the idea of a framework that is easy to train and learns domain-invariant prototypes 
for domain adaptive semantic segmentation. In order to encourage the learning of class-
discriminative and class-balanced pixel representations across domains and ultimately 
improve the performance of self-training methods, Xie et al. (2023) introduced an innova-
tive concept named Semantic-Guided Pixel Contrast (SePiCo). A unique one-stage adapta-
tion model that emphasizes the semantic ideas contained in each individual pixel. Toldo 
et al. (2022) introduced that when learning incremental tasks, style transfer strategies are 
used to expand knowledge between domains, and a strong distillation framework is used 
to successfully remember task information under incremental domain change. In order to 
improve an underlying segmentation network such that it consistently performs in uniden-
tified actual destination domains, Shyam et  al. (2022b) proposed the notion of utilizing 
a large number of synthetic source domains. Yang et al. (2023b) recommended a unique 
Sparse Visual Domain Prompts (SVDP) method in order to overcome domain shift issues 
in semantic segmentation. It realizes effective cross-domain learning and seeks to extract 
more regional domain-specific information. Self-ensembling models, provide a different 
perspective on how to learn domain-invariant properties and introduce domain adaptability 
for semantic segmentation (Xu et al. 2019). He et al. (2021) offered an interactive learning 
method for domain adaptation without investigating any data from the desired domain to 
make full use of the vital semantic knowledge across source domains. The basic goal of 
domain generalization is to develop a model that can perform well on destination domains 
that were not encountered during training. The objective is to generalize across multiple 
domains. The similarities between DG and DA on semantic segmentation are the existence 
of domain shifting and the transfer of knowledge between source and destination domains. 
On the contrary, DG deals with an unseen target domain and DA addresses a known tar-
get domain. There are different settings proposed such as source-free DA, where source-
domains are not utilized during the testing. Liu et al. (2021b) proposed a distillation-based 
source-free domain adaptation method that preserves the source knowledge via knowledge 
transfer to retain contextual feature relationships for semantic segmentation. Yang et  al. 
(2022a) suggested a source-free domain adaptation method that is based on self-training 
and distribution transfer by aligning implicit feature representation of the source model. 
Kundu et al. (2021) proposed a source-free DA method based on pseudo labeling that is 
generated by a multi-head framework. On top of it, they proposed a conditional prior-
enforcing auto-encoder to retain high-quality pseudo labels in the target domain. You et al. 
proposed a source-free DA method based on positive and negative learning, where the 
main mechanism is to select class-balanced pseudo-labeled pixels, where negative learn-
ing does the heuristic complementary label selection. Some other related DA methods such 
as unsupervised DA (Zou et al. 2018; Zhang et al. 2019; Lee et al. 2021; Sankaranaray-
anan et al. 2017), semi-supervised DA (Chen et al. 2021b; Wang et al. 2020b; Hoyer et al. 
2023), and few-shot DA (Kalluri and Chandraker 2022; Lei et  al. 2022) also solved the 
similar semantic segmentation problem.

Self-supervised learning (SSL) aims to tackle problems by pretraining a general model 
with an enormous quantity of unlabeled data and subsequently tuning it on a downstream 
task with a limited amount of labeled data (Ziegler and Asano 2022). Its effectiveness is its 
capacity to make use of enormous quantities of unlabeled data and build accurate represen-
tations that highlight certain patterns and structures in the data. It can be used to pre-train 
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models and learn general-purpose representations, which can be transferable and useful 
for domain generalization. The choice of the self-supervised task and the domain differ-
ence among the pretraining and evaluation datasets play a crucial factor in determining 
the model’s success in SSL. It seeks to enhance performance on a particular task, such as 
semantic segmentation, by utilizing unlabeled data through auxiliary tasks. On the other 
hand, domain generalization focuses on making the model robust to handle different and 
unseen data distributions, enabling it to perform well in diverse real-world scenarios.

Semi-Supervised Learning (SeSL) is a branch of machine learning that emphasizes car-
rying out particular learning tasks using both labeled and unlabeled data (Van  Engelen 
and Hoos 2020). The segmentation performance is further enhanced by including predic-
tion filtering into the already established SWSSS algorithms (Bae et  al. 2022). A semi-
supervised framework built on Generative Adversarial Networks (GANs) was suggested by 
Souly et al. (2017) to ensure improved quality of images for GANs and subsequently bet-
ter pixel classification. These approaches were tested on various challenging comparative 
visual datasets, i.e. PASCAL, SiftFLow, Stanford, and CamVid. A boundary-optimized co-
training (BECO) method has been implemented to train the segmentation model in con-
sideration of the noisy pseudo-labels, and WSSS should be converted to robust learning 
Rong et al. (2023). Kweon et al. (2023) proposed a completely new WSSS framework via 
adversarial learning of a classifier and an image reconstructor. To address the noise label 
and multi-class generalization issues, Chen et al. (2023a) suggested an end-to-end multi-
granularity noise reduction and bidirectional alignment (MDBA) model. With simple-to-
complex picture synthesis and complex-to-simple adversarial learning, this approach is 
suggested to close the data distribution difference in both input and outcome space. An 
integrated transformer architecture was proposed by Lian et al. for learning two modalities 
of class-specific tokens, i.e., class-specific visual and textual tokens. In semantic segmen-
tation, domain generalization involves the procedure of training a model to perform well 
on semantic segmentation tasks across various source domains to improve its ability to 
generalize well to an unknown destination domain. The primary distinction between SSL 
and DG is that semi-supervised learning often assumes that the unlabeled data comes from 
exactly the identical distribution as the labeled data.

Multi-Task Learning (MLT) is a machine learning paradigm that attempts to capitalize 
on valuable knowledge from a variety of associated tasks to enhance the generalization 
efficiency of all the tasks (Zhang and Yang 2021). While DG aims to generalize a model 
to unknown data distribution, MTL aims to improve a model’s performance on the exact 
same set of tasks that the model was trained on. Using knowledge obtained from numer-
ous diverse independent data sources, Graham et al. (2023) proposed a multi-task learn-
ing method for segmenting and categorizing nuclei, glands, lumina, and various tissue 
regions. Bischke et al. (2019) dealt with the issue of maintaining semantic segmentation 
borders in high-resolution satellite imagery by using a recent multi-task loss methodol-
ogy. The bias resulting from the loss causes the network to give greater attention to pixels 
close to boundaries by using several output descriptions of the segmentation mask. Seman-
tic segmentation performance is improved by multi-task self-supervised learning with no 
additional annotation or inference-related computing costs (Novosel et al. 2019). Lu et al. 
(2020) suggested model can learn segmentation and per-pixel depth regression from a sin-
gle image input by using multi-task learning. Researchers introduced a novel approach to 
simultaneously estimate disparity maps and segment images by combining the training of 
an encoder-decoder-based interactive convolutional neural network (CNN) for single image 
estimation of depth and a multiple class CNN for image segmentation. In order to improve 
the super-resolution model toward generating images that are most appropriate for the 
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purpose of segmentation rather than ones that are of high fidelity, Aakerberg et al. (2021) 
introduced an approach that jointly trains a high-resolution and semantic segmentation 
model from beginning to end manner using exactly the same task loss for both models. In 
parallel, researchers updated the segmentation model to more effectively use the enhanced 
images and raise segmentation accuracy. An innovative multi-task learning technique for 
the categorization of tumors in ABUS images implementing an encoder-decoder network 
and a lightweight multi-scale network has been developed (Zhou et al. 2021). A new shar-
ing unit called a cross-stitch unit, that can be trained end-to-end, combines the activations 
from several networks (Misra et  al. 2016). The goal of multi-task learning for semantic 
segmentation is to jointly build a model to carry out a variety of segmentation-related tasks 
by utilizing shared representations. By employing data to train a model from many source 
domains, domain generalization for semantic segmentation tries to make a model resilient 
to domain transformation and enable it to function well on an unknown destination domain. 
In order to enhance the performance of the model, both strategies use shared knowledge, 
but they focus on different problems: task diversity in multi-task learning and domain shift 
in domain generalization.

Transfer Learning (TL) focuses on transferring knowledge from one (or more) problem/
domain/task to another but associated one (Pan and Yang 2009). Fine-tuning is a widely 
recognized example in contemporary deep learning: pre-train deep neural networks on 
enormous datasets, such as ImageNet (Deng et al. 2009) for vision models or BooksCorpus 
(Zhu et al. 2015) for language models, and then improve them on subsequent tasks (Gir-
shick et al. 2014). To bridge the gap between the large source domain and the constrained 
destination domain, Sun et  al. (2019) suggested a technique that makes use of transfer 
learning for semantic segmentation. It adapts to the destination domain using both actual 
and synthetic images as learning sources. Without taking into account the supine or prone 
positions, Ham et al. (2023) suggested that Semantic Segmentation uses transfer learning of 
convolutional neural networks to perform robust breast segmentation in supine breast MRI. 
Yang et al. (2021) suggested an effective semantic segmentation technique that makes use 
of the feature extractor of a real-time object detection model. Nigam et al. (2018) presented 
a new dataset and suggested a successful method for comparing train and test distributions 
with totally distinct scene organization, views, and object statistics. A common transfer 
learning strategy is pretraining-finetuning, in which the tasks for the source and destina-
tion domains are different and the destination domain can be accessed during training. The 
training and test tasks are typically the same despite having different distributions, and the 
target domain is not available in DG. In contrast to DG, which assumes no access to the 
target data and instead focuses on model generalization, TL requires the target data for 
model fine-tuning for new downstream tasks.

Few-Shot Meta-Learning (FSML) is a machine learning technique that uses a mini-
mal number of labeled samples per class to guarantee that a pre-trained model general-
izes across new types of data (that the pre-trained model has not seen in training). It is 
unique compared to traditional supervised learning. Traditional supervised learning meth-
ods require a huge amount of labeled training data. The test set also contains samples of 
data that must have a similar statistical distribution and come from the same categories 
as the training set. However in the case of FSML, even if the model was pre-trained using 
a statistically different distribution of data, the model can be used to expand to additional 
data domains as long as the data in the support and query sets are coherent. Pambala 
et  al. (2021) proposed Semantic MetaLearning (SML), a modern meta-learning system 
that builds prototypes for a select group of annotated training images that includes class-
level semantic descriptions. Tian et al. (2020) introduced the MetaSegNet framework for 
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multi-object segmentation. In order to extract the appropriate meta-knowledge for the few-
shot segmentation, an embedding module architecture composed of the global and local 
feature branches was developed. A novel Cycle-Resemblance Attention (CRA) module has 
been added to a special self-supervised few-shot medical image segmentation network in 
order to make full use of the pixel-wise relationship between the query and support medi-
cal pictures (Ding et al. 2023). In order to conquer the difficult CD-FSS problem, Lei et al. 
(2022) introduced a novel Pyramid-anchor-transformation-based few-shot segmentation 
network (PATNet) that converts domain-specific attributes into domain-agnostic ones for 
downstream segmentation modules to quickly adapt to unknown domains. For learning 
semantic alignment with query features, Chen et al. (2021a) presented a class-specific blue-
print and a class-agnostic blueprint and produced complete sample pairs. Li et al. (2021c) 
proposed method produces arbitrary pseudo-classes at random in the background of the 
query photos, supplying additional training data that is not available when forecasting par-
ticular target classes. The objective of domain generalization is to improve the robustness 
and generalization ability of models across various domains by addressing domain shifts. 
The similarity between DG and FSML is that, both the strategy increase the generaliza-
tion ability of models. But in the case of FSML, it focuses on adjustment on new tasks 
while in DG it enhances the competence of the model to perform well on unknown data 
distribution.

5 � Methodology

There are three categories in domain generalization (Wang et al. 2022a), such as (a) Data 
Manipulation, where it manipulates the input for better learning of the data, e.g. data aug-
mentation, generation, normalization, and randomization fall into this category. (b) Rep-
resentation Learning, which is apparently the most popular category, e.g. Domain invari-
ant feature representation and feature disentanglement, where features are disentangled for 
domain-specific learning, and lastly, (c) Learning Strategy, which focuses on general learn-
ing capabilities to improve generalization, e.g., meta-learning, self-supervised learning. As 
mentioned, these categories are also divided into sub-categories. In this section, we provide 
a detailed explanation of existing domain generalization (DG) methods for semantic seg-
mentation (SS). Figure 2 depicts the structure of the categories of domain generalization.

5.1 � Data augmentation

Augmentation techniques have been found in extensive use in supervised learning for 
training machine learning models to reduce overfitting problems by enhancing the gen-
eralization performance of a model (Honarvar  Nazari and Kovashka 2020; Shorten and 
Khoshgoftaar 2019; Khosla and Saini 2020; Yang et al. 2022b). The fundamental concept 
involves augmenting the original pairs (x, y) with new pairs (A(x), y), where A(x) denotes 
the transformation applied to x. Invariably they can be adopted for DGSS. In their work, Xu 
et al. introduced a novel data augmentation strategy called “amplitude mix,” which relies on 
Fourier-based techniques. This method involves interpolating between the amplitude spec-
trums of two images in order to preserve phase information (Xu et al. 2021). Su et al. pro-
posed SLAug, Saliency-balancing Location-scale Augmentation (LLA) comprising Global 
scale Augmentation(GLA) for increasing source-like images through global distribution 
shifting and LLA for conducting class-specific augmentation (Su et  al. 2023). Inspired 
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by topology-altering augmentation techniques (Chen et  al. 2019; Dwibedi et  al. 2017; 
Kumar Singh and Jae Lee 2017; Yun et al. 2019), Sellner et al. (2023) demonstrated Organ 
Transplantation to address geometric domain shifts based on application-specific data aug-
mentation. Based on adversarial style augmentation, Zhong et  al. (2022) introduced an 
innovative augmentation approach named AdvStyle. This technique generates challenging 
stylized images during the training process, effectively countering overfitting on the source 
domain. Kim et al. (2023a) proposed LiDAR semantic segmentation(DGLSS) by augment-
ing domains with diverse sparsity. Shyam et  al. (2022a) introduced a style mixing aug-
mentation that leads to features belonging to the same category having different styles. To 
address blind feature alignment, Shen et al. (2023) proposed a cross-domain mixture data 
augmentation technique. Zhao et al. (2022a) proposed a clustering instance mix(CINMix) 
augmentation technique to diversify the layouts of the source data. Lyu et al. (2022) intro-
duced an approach called Automated Augmentation for Domain Generalization(AADG). 
This work aimed to create novel domains through a proxy task to enhance diversity in the 
context of retinal image segmentation.

5.2 � Domain randomization

Domain randomization (DR) is a technique for improving the generalization abil-
ity of ML models to new domains. This work involves the stochastic generation of syn-
thetic data encompassing a wide range of potential domains. This contributes to learn-
ing domain invariant features such as lighting, object pose, and background clutter. Wu 
et  al. (2022) proposed a “SiamDoGe” segmentation method that hinges upon a fea-
ture randomization technique with the objective of learning domain invariant features. 
Gong et  al. (2022) formulated a strategy known as Class Mixed Sampling Intermediate 
Domain Randomization(CIDR) which works between source and pseudo-target domain. 
Peng et  al. (2021) introduced Local Texture Randomization(LTR) and Global Texture 
Randomization(GTR) to induce randomization into the texture of source images for the 
diversification in texture styles. Xiao et al. (2023) designed PointDR that alternatively ran-
domizes the geometry styles of the point clouds and aggregates their embeddings for the 
purpose of broadening training point cloud dataset distribution for 3D segmentation.

Domain generalization techniques

Data manipulation Representation learning Learning strategy

Data augmentation

Data generation

Feature normalization

Style transfer

Pseudo-labels

Data randomization

Data invariant

Adversarial learning

Meta-learning

Self-supervised learning

Fig. 2   Taxonomy of domain generalization methods
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5.3 � Domain generation

Data generation is a technique for improving the generalization of machine learning 
models to novel domains. This is achieved through the generation of synthetic data cov-
ering a diverse range of domains. Chen et  al. (2023b) proposed a Generative Semantic 
Segmentation(GSS) model based on Vector Quantized Variation AutoEncoder(VQVAE). 
Li et  al. (2021a) introduced an innovative generative framework built upon StyleGAN2 
(Karras et  al. 2020). It is tailored for addressing semantic segmentation tasks utilizing 
generative models with joint image-label distribution. Zhao et al. (2022b) proposed Style-
Hallucinated Dual Consistency learning(SHADE) framework. It was introduced to address 
domain shift challenges in the context of semantic segmentation.

5.4 � Domain adversarial learning

Domain adversarial learning can be used for semantic segmentation for learning domain 
invariant features. Ganin and Lempitsky (2015) first introduced Domain-Adversarial Neu-
ral Network(DANN) with the objective of adaptation between source and target domain. 
In the architecture, a single network accommodates both the generator and discriminator. 
The generator tries to fool the domain classifier and the domain classifier forces the genera-
tor to extract domain-invariant features. Tjio et al. (2022) proposed an adversarial seman-
tic hallucination(ASH) approach with the aggregation of a class-conditioned hallucination 
module and a semantic segmentation module. Similar to the generator and discriminator, 
the segmentation module and hallucination module challenge each other to boost the gen-
eralization capability of the model. Xu et al. (2022a) proposed an adversarial framework 
for organ segmentation from a single domain to ensure semantic consistency through con-
trastive learning with Mutual information regularizer. To improve cooperation between 
domains, Zhang et al. (2023) introduced MTDA, a self-training method combining pseudo-
labeling and feature stylization. Xu et  al. (2022a) also proposed a novel adversarial DG 
method for organ segmentation trained on a single domain. A novel component Adversarial 
Domain Synthesizer(ADS) was incorporated to enable effective training on a single domain 
in the presence of domain shift. GAN-based method presented by Sankaranarayanan et al. 
(2018) to align the source and target data samples in the latent feature space.

5.5 � Self supervised learning

Self Supervised Learning (SSL) can be used to improve generalization. The key idea is 
that a model learns generic features regardless of the target task by solving pretext tasks. 
Without the need for any domain labels, it can be used for semantic segmentation in single 
and multi-source settings (Zhou et al. 2022a). Vertens et al. (2020) proposed a multimodal 
semantic segmentation model utilizing a teacher-student training approach that transfers 
knowledge from the daytime domain to the nighttime domain. Yang et al. (2023a) proposed 
a Domain Projection and Contrastive Learning(DPCL) approach including self-supervised 
domain projection(SSDP) and multi-level contrastive learning(MLCL). SSDP aims to 
lessen the domain gap by projecting to the source domain. Zhou et al. (2022b) presented 
a multi-task paradigm with domain-specific image restoration(DSIR) module employing 
self-supervision.
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5.6 � Meta learning

Meta-learning is referred to as “learn to learn”. It can quickly adapt to new tasks with 
limited data by learning from a variety of tasks. The goal of meta-learning is to use prior 
knowledge from the learned tasks to handle new tasks efficiently. Since it can be employed 
to increase generalization, it can be used for semantic segmentation tasks learning from 
a variety of complex scenarios. Kim et  al. (2022) presented a memory-guided domain 
generalization method based on a learning framework. Zhang et al. (2022a) introduced a 
novel domain for semantic segmentation that takes advantage of model-agnostic learning. 
Dou et al. (2019) adopted a model-agnostic learning paradigm with gradient-based meta-
learning. They introduced a pair of complementary losses designed to effectively regulate 
the semantic structure of the feature space. Gong et al. (2021) proposed a meta-learning-
based strategy for addressing Open Compound Domain Adaptation(OCDA) in the context 
of semantic segmentation. Shiau et al. (2021) addressed domain generalized semantic seg-
mentation by proposing a novel meta-learning scheme with feature disentanglement ability. 
Zhang et al. (2022a) developed a domain generalization framework that jointly exploits the 
model-agnostic training scheme and target-specific normalization test strategy for seman-
tic segmentation tasks. Qiao et al. (2020) introduced adversarial domain augmentation to 
counter the OOD generalization problem by leveraging the meta-learning framework.

5.7 � Feature disentanglement

Feature disentanglement refers to the process of separating the factors of variation by 
breaking down the learned representations of the data. In the context of DG, it can be used 
to separate the domain-specific and domain-invariant features in the data. It focuses on the 
features that vary across domains by learning domain-invariant features. Jin et al. (2021) 
designed a Style Normalization and Restitution module(SNR) where disentanglement aims 
at better restitution. Bi et al. (2023) proposed a novel mutual information(MI) based frame-
work to disentangle the anatomical and domain feature representations. Similar to this 
work (Bi et al. 2023), Li et al. (2021b) utilized MI-based disentanglement representation 
for left atrial(LA) segmentation.

5.8 � Feature normalization

Feature normalization is a process to standardize data into uniform and stable distribu-
tion without extra data (Liu et  al. 2023). Liu et  al. (2023) proposed the spectral-spatial 
normalization(SS-Norm) module to enhance the generalization ability of the model. 
Bahmani et al. (2021) enhanced the inference procedure with normalization layers.

5.9 � Domain invariant

The main objective of domain invariant representation-based approach is to learn 
domain invariant features from source(s) that will be applied to target as well. By lev-
eraging general semantic shape priors, Liu et  al. (2022) presented a novel approach 
Test-time Adaptation from Shape Dictionary (TASD) to overcome the single domain 
generalization problem for medical image segmentation. Xu et  al. (2022) proposed 
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Domain-invariant Representation Learning(DIRL) algorithm to realize the quantifica-
tion and utilization of the feature prior to urban-scene segmentation. Liao et al. (2023) 
introduced a domain generalization approach for semantic segmentation exploiting 
edge and semantic layout reconstruction to clarify content information. He et al. (2023) 
designed Patch Statistical Perturbation (PSP) to enhance the patch diversity facilitating 
the model to learn features that are domain invariant.

5.10 � Pseudo label

Pseudo-label can be used to leverage unlabeled data for the target domain in domain gen-
eralization. The aim of Pseudo label DG for semantic segmentation is to enhance the qual-
ity of pseudo labels. This enables the model to be generalized well in unknown domains. 
Zhang et  al. (2023) established Multi-Target Domain Adaptation (MTDA) framework 
which leverages implicit stylization and pseudo-labeling based on self-training to improve 
alignment between target domains. Kim et al. (2023b) presented WEDGE scheme to use 
the web-crawled images with their predicted pseudo labels for semantic segmentation. Yao 
et al. (2022) suggested a confident-aware cross pseudo supervision algorithm and Fourier 
transformed-based data augmentation to improve the quality of pseudo labels for unlabeled 
images from unknown distributions. Fourier transformation helps to obtain low-level static 
information and augment the image data using cross-domain information. Confidence-
aware regularization helps to measure pseudo variances which can be used as a quality 
factor. Kundu et al. (2021) developed a conditional prior-enforcing auto-encoder to aid the 
client-side self-training. Hoyer et al. (2022) proposed a UDA-based method DAFormer. It 
comprises three ways where the quality of the pseudo-labels is improved by reducing the 
confirmation bias of self-training towards common classes through uncommon class sam-
pling on the source domain.

5.11 � Style transfer

Style transfer is a technique that is used to change image style while maintaining 
the content of the image. It is possible to build an overlap between source and tar-
get domains in the context of domain generalization (Su et al. 2022). Su et al. (2022) 
introduced a novel framework to perform an effective stylization with the preserva-
tion of fine-grained semantic clues for semantic segmentation. Wang et  al. (2022b) 
proposed Feature-based Style Randomization(FSR) which helps to produce random 
styles to enhance the model robustness. Lee et  al. (2022) proposed feature styliztion, 
content extension learning, style extension learning, semantic consistency regulariza-
tion by increasing both the content and style of the source domain to the wild. Zhao 
et al. (2022b) proposed (SHADE) based on two components Style Consistency(SC) and 
Retrospection Consistency(RC) to address domain shift. Gong et  al. (2019) presented 
domain flow generation(DLOW) model, which is able in order to convert photos from 
the source domain into a random intermediate domain between the source and target 
domains. Fantauzzo et  al. (2022) introduced FedDrive, a federated learning approach 
in semantic segmentation combined with style transfer techniques to improve their 
generalization.
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6 � Medical segmentation

In this section, popular applications for domain generalization (DG) in medical segmen-
tation are discussed. Semantic Segmentation is widely used in medical imaging for pre-
cise diagnosis of diseases. Domain shift may pose a challenge for semantic segmentation. 
So there are ample applications of semantic segmentation based on domain generaliza-
tion in the medical domain. Luo et  al. (2023) proposed a single DG framework that is 
based on dual-level mixing for fundus image segmentation. Lyu et  al. (2022) proposed 
an augmentation-based domain generalization method for renal image segmentation, 
this method generates novel domains for training. And novel proxy task maximizes the 
diversity between novel domains. Wang et al. (2020a) proposed a domain-oriented feature 
embedding to improve domain generalization for fundus image segmentation. Wang et al. 
(2019) also presented a method based on unsupervised domain adaptation via boundary-
entropy-driven adversarial learning for optic disc (OD) and optic cup (OC) segmentation 
from fundus images. Liu et al. (2022) use T2-weighted MRIs from three public datasets 
including NCI-ISBI13 (Bloch et  al. 2015), I2CVB (Lemaître et  al. 2015), PROMISE 
(Litjens et al. 2014) for Prostate MRI segmentation and REFUGE (Orlando et al. 2020), 
DristhiGS (Sivaswamy et al. 2015), RIM-ONE-r3 (Fumero et al. 2011) for Fundus image 
segmentation. There are a few works on single-domain generalization(SGD). (Su et  al. 
2023) use cross-modality abdominal dataset (Landman et  al. 2015) and cross-sequence 
cardiac dataset (Zhang et al. 2021b) for two single-source domain generalization (SDG) 
tasks. Yao et al. (2022) utilize M&M (Campello et al. 2021) and SCGM dataset (Prados 
et al. 2017) for multi-disease cardiac image segmentation. Xu et al. (2022a) conducted the 
experiment on cross-modality image segmentation with the abdominal CT scan (Land-
man et al. 2015) and MRI scans (Kavur et al. 2021). Bi et al. (2023) evaluate proposed 
MI-SegNet, a medical segmentation framework that is evaluated on ValS, TS1, TS2, TS3 
(Říha et al. 2013) datasets. In Hu et al. (2021) Hu et al. demonstrate the effectiveness of 
the proposed DAC, CAC​ module on prostate segmentation using MRI, COVID-19 lesion 
segmentation using CT and OC/CD segmentation using color fundus image (Wang et al. 
2020a; Liu et al. 2020; Tsai et al. 2021). Wang et al. (2020a) evaluate novel Domain-ori-
ented Feature Embedding (DoFE) framework on optic cup (OC) / disc (OD) segmentation 
and vessel segmentation with retinal fundus image dataset. For semantic segmentation of 
hyperspectral images, Sellner et al. (2023) use 600 intraoperative Hyperspectral Images 
(HSI) under geometric domain shift. For left atrial(LA) segmentation, Li et al. (2021b) 
use late gadolinium-enhanced magnetic resonance imaging (LGE MRI) from MICCAI 
2018 Atrial Segmentation Challenge (Pop et al. 2019) and ISBI 2012 Left Atrium Fibro-
sis and Scar Segmentation Challenge (Meng et al. 2020). Liu et al. (2021a) evaluate the 
proposed MixSearch framework on Composite, ISIC, CVC, Union, and CHAOS-CT data-
sets. Gu et al. (2021) demonstrate experimental results of proposed DCA-Net on multi-
site prostate MRI segmentation using T2-weighted MRI dataset (Lemaître et  al. 2015). 
Lyu et al. (2022) validate the proposed AADG framework on fundus vessel, OD/OC, reti-
nal lesion, and OCTA vessel segmentation. Zhou et al. (2022b) demonstrate the effective-
ness of the presented framework on Fundus (Wang et al. 2020a) and Prostate (Liu et al. 
2020) segmentation task.
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7 � DGSS datasets and evaluation

7.1 � Datasets

We describe most of the common and widely used benchmarks for DGSS task. DGSS 
benchmarks are divided into synthetic datasets and real-world datasets, there are some 
other rarely used datasets like ADE20k (Zhou et al. 2019), and MSeg (Lambert et al. 2020) 
available for DGSS, that are shown in Table 2.

GTA-V. GTA-V (Richter et al. 2016) is a synthetic semantic segmentation dataset that 
consists of nearly 25,000 densely labeled samples with 19 individual classes. The reso-
lution of each sample is 1914 × 1052 pixels. It is extensively used in domain-generalized 
segmentation tasks.

Cityscapes. Cityscapes (Cordts et al. 2016) is a real-world driving dataset that consists 
of nearly 5000 labeled samples with 30 individual classes. The resolution of labeled sam-
ples is 2048 × 1024 pixels. In most of the DG literature, this dataset is used as a target set.

Mapillary. Mapillary (Neuhold et al. 2017) is a real-world semantic segmentation data-
set that consists of 25000 labeled samples of 66 classes. The resolution of each sample is 
1920 × 1024 pixels.

SYNTHIA. SYNTHIA (Ros et  al. 2016) is a synthetic dataset as its name suggests. It 
is developed for semantic segmentation for urban scene understanding. It contains three 
different weather and illumination conditions, across three different road conditions 
(Highway, New York-like, and Old Europan Town). The majority of the work utilized 13 
classes from this dataset, which has 9400 labeled samples. The resolution of each sample is 
960 × 720 pixels.

KITTI. KITTI (Geiger et  al. 2012) is a real-world semantic segmentation dataset that 
consists of nearly 400 labeled samples of 28 classes. The resolution of each sample is 
1240 × 376 pixels.

IDD. IDD (Varma et  al. 2019) is a real-world driving dataset that consists of nearly 
10,000 labeled samples of 34 classes. The resolution of each sample is 1678 × 968 pixels.

BDD100k. BDD100k (Yu et  al. 2020) is a real-world driving dataset that consists of 
10000 labeled samples of 19 classes. The resolution of each sample is 1280 × 720 pixels.

ADCD. ADCD (Sakaridis et  al. 2021) is a real-world driving dataset that consists of 
4000 labeled samples of 19 classes. The resolution of each sample is 1920 × 1080 pixels 
(Table 1).

Table 1   Popular and extensively used datasets in domain generalization for semantic segmentation task

Category denotes a real-world dataset or synthetic dataset

Dataset Category Classes Annotated Samples Resolution

GTA-V Richter et al. (2016) Synthetic 19 24,966 1914 × 1052

SYNTHIA Ros et al. (2016) Synthetic 13 200,000 960 × 720

Cityscapes Cordts et al. (2016) Real 30 5000 2048 × 1024

KITTI Geiger et al. (2012) Real 28 400 1240 × 376

Mapillary Neuhold et al. (2017) Real 66 25,000 1920 × 1024

IDD Varma et al. (2019) Real 34 10,004 1678 × 968

BDD100k Yu et al. (2020) Real 19 10,000 1280 × 720

ADCD Sakaridis et al. (2021) Real 19 4,000 1920 × 1080
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8 � Future research directions

8.1 � Variation in segmentation models

In most of the recent work we see, they used variants of the DeepLab model as a seg-
mentation model. On the other hand, ResNet-50/ResNet-101 and VGG-16 are the back-
bone networks in most of the works. However, there is no work that utilizes the power 
of vision transformers in DG research. Utilizing the full power of vision transformers 
can lead to promising results in multiple challenging conditions. However, it is not well-
answered how vision transformers can perform in domain gaps, hence these ViTs should 
be extensively explored as a backbone network.

8.2 � Continual domain generalization

In many real-world applications, a system can encounter online data that belong to non-
stationary distributions. So, to make a more robust segmentation model, generalization 
should be continuous against the non-stationary distributed data. It allows the model to 
learn and adapt data efficiently without catastrophic forgetting (Douillard et al. (2021)). 
Apparently, there is no work that has been done while focusing on this area.

8.3 � Test‑time generalization in segmentation

Most of the generalizations have been done in the training phase, we can also explore 
the inference phase to make it more concrete for real-world applications. It will allow 
us to leverage the full power of domain adaptation and generalization in a single frame-
work. Test-time generalization helps to allow more flexibility and efficiency under lim-
ited resources (Wang et al. 2022a).

8.4 � Large‑scale benchmark

Most of the benchmarks are relatively small considering industrial applications. To 
achieve better generalization, we need a large-scale benchmark to overcome non-sta-
tionary shifts in the real-time target generalization. Currently, most of the segmentation 
tasks are done with the camera module, but autonomous vehicles or other related appli-
cations actively leverage the

8.5 � Interpretability

Domain-invariant methods provide some interpretation in DG for segmentation tasks. 
However, other conventional DG methods do not provide enough or are not comprehen-
sively interpretable. But in many cases, we need to understand how the comprehended 
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results are more close to the input space. This area can be explored for autonomous 
driving applications.

8.6 � Vision‑language models

Recently, vision-language models (VLMs) (Zhang et  al. 2024a) have shown remarkable 
zero-shot transfer ability due to explicit vision-language pre-training (Gao et al. 2022; Bao 
et al. 2022) on multiple downstream tasks. Based on the applications, VLMs are becom-
ing useful in OOD generalization tasks, hence multiple researches have explored plausible 
solutions for VLMs on domain generalization (Chen et al. 2024; Wang et al. 2024; Li et al. 
2023b). However, most solutions focus general-purpose domain generalization, rather than 
specialized for the out-of-distribtuion segmentation tasks. So, this area can be explored due 
to the recent high potential of vision-language models in multiple applications.

8.7 � Open vocabulary learning

Due to the recent emergence of vision-language models, open vocabulary learning (Wu 
et  al. 2024) is proposed. Where models can discover categories beyond the training set 
category, it is no longer restricted to close-set classification. Recently, open vocabulary 
learning is adopted for domain adaptation tasks (Huang et al. 2023). However, it is widely 
considered for semantic segmentation tasks (Xu et al. 2023b; Liang et al. 2023; Xu et al. 
2023a). So, this area also has a high-potential for DG-based semantic segmentation tasks. 
Future researches can be explored in this area.

8.8 � Multimodal large‑language models

Recently, multimodal large language models become the hotshot in AI research. It cer-
tainly has surprising power to deliver many downstream tasks, such as writing, generating 
codes or math reasoning. However, multimodal large language models are getting utilized 
in semantic segmentation tasks (Yang et  al. 2024; Li et  al. 2022a). Although, MLLMs 
are less popular in solving OOD problems (Zhang et al. 2024b). So, this area also can be 
explored particularly for DG for semantic segmentation.
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9 � Conclusion

In this paper, we comprehensively review the recent advances in domain generalization 
in semantic segmentation. In semantic segmentation tasks, domain adaptation is widely 
explored, but domain generalization is not well adopted. But generalization solves more 
tasks in more realistic and challenging scenarios. Our survey focuses on a very promising 
area of domain generalization in semantic segmentation. Most recent works have focused 
on domain adaptation in segmentation tasks, but the main challenge is large-scale deploy-
ment in industrial settings. We have explored recent generalization methods that are used 
in segmentation and provide a comprehensive overview of the whole scenario. We provide 
related background and methods that are extensively used in semantic segmentation along-
side domain generalization. We also provide a critical analysis that is found in our observa-
tion as a future research direction in DG for segmentation. Based on the critical analysis, 
we recommend exploring variation in new baseline segmentation models, continual gener-
alization in a real-world setting, test-time generalization, and interpretation. However, we 
believe that this survey will bring a new dimension to the community and interest in apply-
ing domain generalization in semantic segmentation tasks.

Appendix

See Tables 2, 3.
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