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Abstract
Large language models (LLMs) have exploded a new heatwave of AI for their ability to 
engage end-users in human-level conversations with detailed and articulate answers across 
many knowledge domains. In response to their fast adoption in many industrial applica-
tions, this survey concerns their safety and trustworthiness. First, we review known vulner-
abilities and limitations of the LLMs, categorising them into inherent issues, attacks, and 
unintended bugs. Then, we consider if and how the Verification and Validation (V&V) 
techniques, which have been widely developed for traditional software and deep learn-
ing models such as convolutional neural networks as independent processes to check the 
alignment of their implementations against the specifications, can be integrated and further 
extended throughout the lifecycle of the LLMs to provide rigorous analysis to the safety 
and trustworthiness of LLMs and their applications. Specifically, we consider four com-
plementary techniques: falsification and evaluation, verification, runtime monitoring, and 
regulations and ethical use. In total, 370+ references are considered to support the quick 
understanding of the safety and trustworthiness issues from the perspective of V&V. While 
intensive research has been conducted to identify the safety and trustworthiness issues, rig-
orous yet practical methods are called for to ensure the alignment of LLMs with safety and 
trustworthiness requirements.
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1 Introduction

A large language model (LLM) is a deep learning model equipped with a massive amount 
of learnable parameters (commonly reaching more than 10 billion). LLMs are attention-
based sequential models based on the transformer architecture (Hrinchuk et  al. 2020), 
which consistently demonstrated the ability to learn universal representations of language. 
The universal representations of language can then be used in various Natural Language 
Processing (NLP) task. The recent scale-up of these models, in terms of both numbers 
of parameters and pre-trained corpora, has confirmed the universality of transformers as 
mechanisms to encode language representations. At a specific scale, these models started to 
exhibit in-context learning (Min et al. 2022; Ye et al. 2022), and the properties of learning 
from few examples (zero/one/few-shot—without the need for fine-tuning) and from natu-
ral language prompts (complex instructions which describe the behavioural intent that the 
model needs to operate). Recent works on Reinforcement Learning via Human Feedback 
(RLHF) (Ouyang et al. 2022) have further developed the ability of these models to align 
and respond to increasingly complex prompts, leading to their popularisation in systems 
such as ChatGPT (https:// openai. com/ chatg pt) and their use in a large spectrum of applica-
tions. The ability of LLMs to deliver sophisticated linguistic and reasoning behaviour, has 
pushed their application beyond their intended operational envelope.

While being consistently fluent, LLMs are prone to hallucinations (Shuster et al. 2021), 
stating factually incorrect statements (Shuster et al. 2022), lacking necessary mechanisms 
of safety, lacking transparency and control (Tanguy et al. 2016), among many others. Such 
vulnerabilities and limitations have already led to bad consequences such as suicide case 
(https:// www. vice. com/ en/ artic le/ pkadgm/ man- dies- by- suici de- after- talki ng- with- ai- chatb 
ot- widow- says), lawyer submitted fabricated cases as precedent to the court (https:// www. 
bbc. co. uk/ news/ world- us- canada- 65735 769), leakage of private information (https:// www. 
engad get. com/ chatg pt- briefl y- went- offli ne- after-a- bug- revea led- user- chat- histo ries- 11563 
2504. html), etc. Therefore, research is urgently needed to understand the potential vulner-
abilities and how the LLMs’ behaviour can be assured to be safe and trustable. The goal 
of this paper is to provide a review of known vulnerabilities and limitations of LLMs and, 
more importantly, to investigate how the V&V techniques can be adapted to improve the 
safety and trustworthiness of LLMs. While there are several surveys on LLMs (Zhou et al. 
2023; Zhao et al. 2023a), as well as a categorical archive of ChatGPT failures (Borji 2023), 
to the best of our knowledge, this is the first work that provides a comprehensive discussion 
on the safety and trustworthiness issues, from the perspective of the V&V.

With the rising of LLMs and its wide applications, the need to ensure their safety and 
trustworthiness become prominent. Considering the broader subject of deep learning 
systems, to support their safety and trustworthiness, a diverse set of technical solutions 
have been developed by different research communities. For example, the machine learn-
ing community is focused on adversarial attacks (Goodfellow et  al. 2014; Madry et  al. 
2017; Croce and Hein 2020; Xu et al. 2020a), outlier detectors Pang et al. (2021), adver-
sarial training (Szegedy et al. 2013; Mirman et al. 2018; Wong et al. 2020), and explain-
able AI (Xu et al. 2019; Gunning et al. 2019; Ribeiro et al. 2016; Zhao et al. 2021a). The 
human–computer interaction community is focused on engaging the learning systems in 
the interactions with end users to improve the end users’ confidence (Dudley and Kristens-
son 2018). Formal methods community treats ML models as yet another symbolic sys-
tem (evidenced by their consideration of neurons, layers, etc.) and adapts existing formal 
methods tools to work on the new systems (Huang et al. 2020a). While research has been 

https://openai.com/chatgpt
https://www.vice.com/en/article/pkadgm/man-dies-by-suicide-after-talking-with-ai-chatbot-widow-says
https://www.vice.com/en/article/pkadgm/man-dies-by-suicide-after-talking-with-ai-chatbot-widow-says
https://www.bbc.co.uk/news/world-us-canada-65735769
https://www.bbc.co.uk/news/world-us-canada-65735769
https://www.engadget.com/chatgpt-briefly-went-offline-after-a-bug-revealed-user-chat-histories-115632504.html
https://www.engadget.com/chatgpt-briefly-went-offline-after-a-bug-revealed-user-chat-histories-115632504.html
https://www.engadget.com/chatgpt-briefly-went-offline-after-a-bug-revealed-user-chat-histories-115632504.html
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intense on these individual methods, a synergy among them has not been addressed. With-
out a synergy, it is hard, if not impossible, to rigorously understand the causality between 
methods and how they might collectively support the safe and trusted autonomous systems 
at runtime. This survey is rooted in the field of AI assurance, aiming to apply a collection 
of rigorous V&V methods throughout the lifecycle of ML models, to provide assurance 
on the safety and trustworthiness. An illustrative diagram is given in Fig.  1 for general 
ML models. To begin with, data collection and synthesis is required to obtain as many as 
possible the training data, including the synthesis of high quality data through e.g., data 
argumentation or generative models. In the training phase, other than the prediction accu-
racy, multiple activities are needed, including e.g., the analysis of the learned feature repre-
sentations and the checking for unintended bias. After the training, we apply offline V&V 
methods to the ML model, including techniques to falsify, explain, and verify the ML mod-
els. During the deployment phase, we must analyse the impact and hazard of the poten-
tial application environment. The operational design domain and operational data will be 
recorded. A run-time monitor is associated to the ML model to detect outliers, distribution 
shifts, and failures in the application environment. We may further apply reliability assess-
ment methods to evaluate the reliability of the ML model and identify failure scenarios. 
Based on the detection or assessment results, we can identify the gaps for improvement. 
Finally, we outline the factors that affect the performance of the ML model, and optimise 
the training algorithm to obtain an enhanced ML model.

These V&V techniques have been successful in supporting the reliable and dependable 
development of software and hardware that are applied to safety-critical systems, and have 
been adapted to work with machine learning models, mainly focusing on the convolutional 
neural networks for image classification [see surveys such as Huang et  al. (2020a), Liu 
et al. (2021a) and textbooks such as Huang et al. (2012)], but also extended to consider, 
for example, object detection, deep reinforcement learning, and recurrent neural networks. 
This paper discusses how to extend further the V&V techniques to deal with the safety and 
trustworthiness challenges of LLMs.

V&V are independent procedures that are used together for checking that a system (or 
product, service) meets requirements and specifications and that it fulfills its intended 

Fig. 1  Summarisation of lifecycle V&V methods to support AI Assurance
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purpose (https:// www. imdrf. org/ sites/ defau lt/ files/ docs/ ghtf/ final/ sg3/ techn ical- docs/ 
ghtf- sg3- n99- 10- 2004- qms- proce ss- guida nce- 04010. pdf). Among them, verification 
techniques check the system against a set of design specifications, and validation tech-
niques ensure that the system meets the user’s operational needs. From software, con-
volutional neural networks to LLMs, the scale of the systems grows significantly, which 
makes the usual V&V techniques less capable due to their computational scalability 
issues. White-box V&V techniques that take the learnable parameters as their algorith-
mic input will not work well in practice. Instead, the research should focus on black-box 
techniques, on which some research has started for convolutional neural networks. In 
addition, V&V techniques need to consider the non-deterministic nature of LLMs (i.e., 
different outputs for two tests with identical input), which is a noticeable difference with 
the usual neural networks, such as convolutional neural networks and object detectors, 
that currently most V&V techniques work on.

Considering the fast development of LLMs, this survey does not intend to be com-
plete (although it includes 370+ references), especially when it comes to the applica-
tions of LLMs in various domains, but rather a collection of organised literature reviews 
and discussions to support the understanding of the safety and trustworthiness issues 
from the perspective of V&V. Through the survey, we noticed that the current research 
are focused on identifying the vulnerabilities, with limited efforts on systematic 
approaches to evaluate and verify the safety and trustworthiness properties.

The structure of the paper is as follows. In Sect. 2, we review the LLMs and its cat-
egories, its lifecycle, and several techniques introduced to improve safety and trustwor-
thiness. Then, in Sect.  3, we present a review of existing vulnerabilities. This is fol-
lowed by a general verification framework in Sect.  4. The framework includes V&V 
techniques such as falsification and evaluation (Sect. 5), verification (Sect. 6), runtime 
monitor (Sect. 7), and ethical use (Sect. 8). We conclude the paper in Sect. 10.

2  Large language models

This section summarises the categories of machine learning tasks based on LLMs, fol-
lowed by a discussion of the lifecycle of LLMs. We will also discuss a few fundamental 
techniques relevant to the safety analysis.

2.1  Categories of large language models

LLMs have been applied to many tasks, such as text generation (Li et al. 2022) content 
summary (Zhang et al. 2023a) conversational AI (i.e., chatbots) (Wei et al. 2023) and 
image synthesis (Koh et al. 2023) Other LLMs applications can be seen as their adapta-
tions or further applications. In the following, we discuss the two most notable catego-
ries of LLMs: text-based conversational AI and image synthesis. While they might have 
slightly different concerns, this survey will be more focused on issues related to the 
former, without touching some issues that are specific to image synthesis such as the 
detection of fake images.

https://www.imdrf.org/sites/default/files/docs/ghtf/final/sg3/technical-docs/ghtf-sg3-n99-10-2004-qms-process-guidance-04010.pdf
https://www.imdrf.org/sites/default/files/docs/ghtf/final/sg3/technical-docs/ghtf-sg3-n99-10-2004-qms-process-guidance-04010.pdf
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2.1.1  Text‑based conversational AI

LLMs are designed to understand natural language and generate human-like responses 
to queries and prompts. Almost all NLP tasks [e.g., language translation (Brants et al. 
2007) chatbots (Lin et  al. 2019; Gu et  al. 2020) and virtual assistants (Tulshan and 
Dhage 2019)] have witnessed tremendous success with Transformer-based pretrained 
language models (T-PTLMs), relying on Transformer (Vaswani et al. 2017) self-super-
vised learning (Jaiswal et al. 2020; Liu et al. 2021b)and transfer learning (Houlsby et al. 
2019; Ruder et  al. 2019) to process and understand the nuances of human language, 
including grammar, syntax, and context.

The well-known text-based LLMs include GPT-1 (Radford et al. 2018) BERT (Dev-
lin et al. 2019) XLNet (Yang et al. 2019) RoBERTa (Liu et al. 2019) ELECTRA (Clark 
et al. 2020) T5 (Raffel et al. 2020) ALBERT (Lan et al. 2019) BART (Lewis et al. 2020) 
and PEGASUS (Zhang et al. 2020). These models can learn general language represen-
tations from large volumes of unlabelled text data through self-supervised learning and 
subsequently transfer this knowledge to specific tasks, which has been a major factor 
contributing to their success in NLP (Kalyan et al. 2021). Kaplan et al. (2020) demon-
strated that simply increasing the size of T-PTLMs can lead to improved performance 
(Kalyan et al. 2021). This finding has spurred the development of LLMs such as GPT-3 
(Brown et  al. 2020c), PANGU (Zeng et  al. 2021b), GShard (Lepikhin et  al. 2020), 
Switch-Transformers (Fedus et al. 2021) and GPT-4 (OpenAI 2023).

With the advancement of the Transformer development (Vaswani et  al. 2017), sig-
nificant enhancements were achieved in handling sequential data. Leveraging the Trans-
former architecture, LLMs have been created as potent models with the capacity to 
generate text resembling human language. ChatGPT represents a distinct embodiment 
of an LLM, characterised by its remarkable performance that yields groundbreaking 
outcomes. The progression of LLMs, depicted in Fig.  2, starts from the evolution of 
deep learning and transformer-based frameworks, culminating in the latest explosion of 
LLMs. We divide the LLMs into Encoder-only, Decoder-only, and Encoder–Decoder 
according to Yang et  al. (2023). In Encoder-only and Encoder–Decoder architectures, 
the model predicts masked words in a sentence while taking into account the surround-
ing context. While Decoder-only models are trained by generating the subsequent word 

Fig. 2  Large language models: evolution roadmap
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in a sequence based on the preceding words. GPT-style language model belongs to the 
Decoder-only type.

We also note that, there are advanced uses of LLMs (or advanced prompt engineer-
ing) by considering e.g., self-consistency (Wang et al. 2023b), knowledge graph (Pan et al. 
2023), generating programs as the intermediate reasoning steps (Gao et al. 2023), gener-
ating both reasoning traces and task-specific actions in an interleaved manner (Yao et al. 
2023), etc.

2.1.2  Text‑based image synthesis

The transformer model (Vaswani et al. 2017) has become the standard choice for Language 
Modelling tasks, but it has also found widespread integration in text-to-image tasks. We 
present a chronological overview of the advancements in text-to-image research. DALL-E 
(Ramesh et al. 2021) is a representative approach that leverages Transformers for a text-
to-image generation. The methodology involves training a dVAE (Rolfe 2016) and subse-
quently training a 12B decoder-only sparse transformer supervised by image tokens from 
the pre-trained dVAE. The transformer generates image tokens solely based on text tokens 
during inference. The resulting image candidates are evaluated by a pretrained CLIP model 
(Radford et al. 2017) to produce the final generated image. StableFusion (Rombach et al. 
2022) differs from DALL-E (Ramesh et  al. 2021) by using a diffusion model instead of 
a Transformer to generate latent image tokens. To incorporate text input, StableFusion 
(Rombach et al. 2022) first encodes the text using a transformer then conditions the diffu-
sion model on the resulting text tokens. GLIDE (Nichol et al. 2021) employs a transformer 
model (Vaswani et al. 2017) to encode the text input and then trains a diffusion model to 
generate images that are conditioned on the text tokens directly. DALL-E2 (Ramesh et al. 
2022) effectively leverages LLMs by following a three-step process. First, a CLIP model is 
trained using text-image pairs. Next, using text tokens as input, an autoregressive or diffu-
sion model generates image tokens. Finally, based on these image tokens, a diffusion model 
is trained to produce the final image. Imagen (Saharia et al. 2022) employs a pre-trained 
text encoder, such as BERT (Devlin et al. 2018) or CLIP (Radford et al. 2017), to encode 
text. It then uses multiple diffusion models to train a process that generates images that 
start from low-resolution and gradually progress to high-resolution. Parti (Yu et al. 2022) 
demonstrates that a VQGAN (Esser et al. 2021) and Transformer architecture can achieve 
superior image synthesis outcomes compared to previous approaches, even without utilis-
ing a diffusion model. The eDiff-I model (Balaji et al. 2022) has recently achieved state-of-
the-art performance on the MS-COCO dataset (Lin et al. 2014) by leveraging a combina-
tion of CLIP and diffusion models.

In summary, text-to-image research commonly utilises transformer models (Vaswani 
et  al. 2017) for encoding text input and either the diffusion model or the decoder of an 
autoencoder for generating images from latent text or image tokens.

2.2  Lifecycle of LLMs

Figure 3 illustrates the lifecycle stages and the vulnerabilities of LLMs. This section will 
focus on the introduction of lifecycle stages, and the detailed discussions about vulnerabili-
ties will appear in Sect. 3. The offline model construction is formed of three steps (Zhao 
et al. 2023a): pre-training, adaptation tuning, and utilisation improvement, such that each 
step includes several interleaving sub-steps. In general, the pre-training step is similar to 
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the usual machine learning training that goes through data collection, architecture selec-
tion, and training. On adaptation tuning, it might conduct instruction tuning (Lou et  al. 
2023) to learn from task instructions, and alignment tuning (Ouyang et  al. 2022; Chris-
tiano et al. 2017) to make sure LLMs are aligned with human values, e.g., fair, honest, and 
harmless. Beyond this, to improve the interaction with the end users, utilisation improve-
ments may be conducted through, for example, in-context learning (Brown et  al. 2020c) 
and chain-of-thought learning (Wei et al. 2022).

Once an LLM is trained, an evaluation is needed to ensure that its performance matches 
the expectation. Usually, we consider the evaluation from three perspectives: evaluation 
on basic performance, safety analysis to evaluate the consequence of applying the LLM 
in an application, and the evaluation through publicly available benchmark datasets. The 
basic performance evaluation considers several basic types of abilities such as language 
generation and complex reasoning. Safety analysis is to understand the impacts of human 
alignment, interaction with external environment, and incorporation of LLMs into broader 
applications such as search engines. On top of these, benchmark datasets and publicly 
available tools are used as well to support the evaluation. The evaluation will determine if 
the LLM is acceptable (for pre-specified criteria), and if so, the process will move forward 
to the deployment stage. Otherwise, at least one failure will be identified, and the process 
will move back to either of the three training steps.

On the deployment stage, we will determine how the LLM will be used. For example, it 
could be available in a web platform for direct interaction with end users, such as the Chat-
GPT.1 Alternatively, it may be embedded into a search engine, such as the new Bing.2 Nev-
ertheless, according to the common practice, a guardrail is imposed on the conversations 
between LLMs and end users to ensure that the AI regulation is maximally implemented.

In Fig. 2, within the LLMs lifecycle, three main issues run through: performance issues, 
sustainability issues, and unintended bugs. These may be caused by one or more stages in 
the lifecycle. The red block shows that vulnerabilities appear in the LLMs lifecycle, and 
they may appear in the early stage of the whole period. For example, backdoor attacks and 

Fig. 3  Large language models: lifecycle and vulnerabilities

1 https:// openai. com/ blog/ ChatG PT.
2 https:// www. bing. com/ new.

https://openai.com/blog/ChatGPT
https://www.bing.com/new
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poisoning can contaminate raw data. When LLMs are deployed, problems such as a robust-
ness gap may also arise.

2.3  Key techniques relevant to safety and trustworthiness

In the following, we discuss two fundamental techniques that are distinct from the usual 
deep learning models and have been used by e.g., ChatGPT to improve safety and trustwor-
thiness: reinforcement learning from human feedback and guardrails.

2.3.1  Reinforcement learning from human feedback (RLHF)

RLHF can be conducted in any stage of the “Adaptation Tuning”, “Utilisation Improve-
ment”, or “Evaluation” in the framework of Fig. 3. RLHF (Christiano et al. 2017; Ouyang 
et al. 2022; Bai et al. 2022a, b; OpenAI 2023; Lambert et al. 2022; Ziegler et al. 2019) 
plays a crucial role in the training of language models, as it allows the model to learn from 
human guidance and avoid generating harmful content. In essence, RLHF assists in align-
ing language models with safety considerations through fine-tuning with human feedback. 
OpenAI initially introduced the concept of incorporating human feedback to tackle com-
plex reinforcement learning tasks in Christiano et al. (2017), which subsequently facilitated 
the development of more sophisticated LLMs, from InstructGPT (Ouyang et al. 2022) to 
GPT4 (OpenAI 2023). According to InstructGPT (Ouyang et al. 2022), the RLHF train-
ing process typically begins by learning a reward function intended to reflect what humans 
value in the task, utilising human feedback on the model’s outputs. Subsequently, the lan-
guage model is optimised via an RL algorithm, such as PPO (Schulman et al. 2017), using 
the learned reward function. Reward model training and fine-tuning with RL can be iter-
ated continuously. More comparison data is collected on the current best policy, which 
is used to train a new reward model and policy. The InstructGPT models demonstrated 
enhancements in truthfulness and reductions in generating toxic outputs while maintaining 
minimal performance regressions on public NLP datasets.

Following InstructGPT, Red Teaming language models (Bai et al. 2022a) introduces a 
harmlessness preference model to help RLHF to get less harmful agents. The comparison 
data from red team attacks is used as the training data to develop the harmlessness prefer-
ence model. The authors of Bai et  al. (2022a) utilised the helpful and harmless datasets 
in preference modelling and RLHF to fine-tune LLMs. They discovered that there was a 
significant tension between helpfulness and harmlessness. Experiments showed helpful-
ness and harmlessness model is significantly more harmless than the model trained only 
on helpfulness data. They also found that alignment with RLHF has many benefits and 
no cost to performance, like combining alignment training with programming ability and 
summarisation. The authors of Ganguli et al. (2023) found that LLMs trained with RLHF 
have the capability for moral self-correction. They believe that the models can learn intri-
cate normative concepts such as stereotyping, bias, and discrimination that pertain to harm. 
Constitutional AI (Bai et  al. 2022b) trains the preference model by relying solely on AI 
feedback, without requiring human labels to identify harmful outputs. To push the process 
of aligning LLMs with RLHF, an open-sourced modular library, RL4LMs, and evaluation 
benchmark, GRUE, designed for optimising language generator with RL are introduced in 
Ramamurthy et al. (2022). Inspired by the success of RLHF in language-related domains, 
fine-tuning approaches that utilise human feedback to improve text-to-image models (Lee 
et al. 2023; Xu et al. 2023; Wu et al. 2023c) have gained popularity as well. To achieve 
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human–robot coexistence, the authors of Gu et al. (2023b) proposed a human-centred robot 
RL framework consisting of safe exploration, safety value alignment, and safe collabora-
tion. They discussed the importance of interactive behaviours and four potential challenges 
within human–robot interactive procedures. Although many works indicate that RLHF 
could decrease the toxicity of generations from LLMs, the induced RLHF, like introduc-
ing malicious examples by annotators (Carlini et al. 2023), may cause catastrophic perfor-
mance and risks. We hope better techniques that lead to transparency, safe and trustworthy 
RLHF will be developed in the coming future.

2.3.2  Guardrails

Considering that some LLMs are interacting directly with end-users, it is necessary to put a 
layer of protection, called guardrail, when the end users ask for information about violence, 
profanity, criminal behaviours, race, or other unsavoury topics. Guardrails are deployed in 
most, if not all, LLMs, including ChatGPT, Claude, and LLaMA. In such cases, a response 
is provided with the LLM refusing to provide information. While this is a very thin layer of 
protection because there are many tricks (such as prompt injections that will be reviewed in 
Sect. 5.1) to circumvent it, it enhances the social responsibility of LLMs.

3  Vulnerabilities, attacks, and limitations

This section presents a review of the known types of vulnerabilities. The vulnerabilities 
can be categorised into inherent issues, intended attacks, and unintended bugs, as illus-
trated in Fig. 4.

Inherent issues are vulnerabilities that cannot be readily solved by the LLMs them-
selves. However, they can be gradually improved with, e.g., more data and novel training 
methods. Inherent issues include performance weaknesses, which are those aspects that 
LLMs have not reached the human-level intelligence, and sustainability issues, which are 
because the size of LLMs is significantly larger than the usual machine learning models. 
Their training and daily execution can have non-negligible sustainability implications. 
Moreover, trustworthiness and responsibility issues are inherent to the LLMs.

Attacks are initiated by malicious attackers, which attempt to implement their goals 
by attacking certain stages in the LLMs lifecycle. Known intended attacks include 

Fig. 4  Taxonomy of vulnerabilities
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robustness gap, backdoor attack, poisoning, disinformation, privacy leakage, and unau-
thorised disclosure of information.

Finally, with the integration of LLMs into broader applications, there will be more 
and more unintended bugs that are made by the developers unconsciously but have 
serious consequences, such as bias and discrimination (that are usually related to the 
quality of training data), and the recently reported incidental exposure of user informa-
tion. We separate these from inherent issues, because they could be resolved with e.g., 
high quality training data, carefully designed API, and so on. They are “unintended”, 
because they are not deliberately designed by the developers.

Figure 3 suggests how the vulnerabilities may be exploited in the lifecycle of LLMs. 
While inherent issues and unintended bugs may appear in any stage of the lifecycle, 
the attacks usually appear in particular stages of the lifecycle. For example, a back-
door attack usually occurs in pre-training and adaptation tuning, in which the back-
door trigger is embedded, and poisoning usually happens in training or alignment tun-
ing, when the LLMs acquires information/data from the environment. Besides, many 
attacks occur upon the interaction between end users and the LLMs using specific, 
well-designed prompts to retrieve information from the LLMs. We remark that, while 
there are overlapping, LLMs and usual deep learning models (such as convolutional 
neural networks or object detectors) have slightly different vulnerabilities, and while 
initiatives have been taken on developing specification languages for usual deep learn-
ing models (Bensalem et  al. 2022; Huang et  al. 2022a), such efforts may need to be 
extended to LLMs.

3.1  Inherent issues

3.1.1  Performance issues

Unlike traditional software systems, which run according to the rules that can be deter-
ministically verified, neural network-based deep learning systems, including large-scale 
LLMs, have their behaviours determined by the complex models learned from data 
through optimisation algorithms. It is unlikely that an LLM performs 100% correctly. 
As a simple example shown in Table  1, it can be observed that similar errors exist 
across different LLMs, where most of the existing LLMs are not able to provide a cor-
rect answer. Performance issues related to the correctness of the outputs include at least 
the following two categories: factual errors and reasoning errors.

Table 1  Performance error exists across different LLMs

Retrieved 24 August 2023

LLMs Output for question: “Adam’s wife is Eve. Adam’s 
daughter is Alice. Who is Alice to Eve?”

ChatGPT (https:// openai. com/ chatg pt) Alice is Eve’s granddaughter
ERNIE Bot (Yang 2023) Alice is Eve’s granddaughter
Llama2 (Touvron et al. 2023) Alice is Eve’s granddaughter
Bing Chat (Mehdi 2023) Alice is Adam’s daughter and Eve’s granddaughter
GPT-4 (OpenAI 2023) Alice is Eve’s daughter

https://openai.com/chatgpt
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3.1.1.1 Factual errors Factual errors refer to situations where the output of an LLM con-
tradicts the truth, where some literature refers this situation as hallucination (OpenAI 2023; 
Zhao et al. 2023a; Li et al. 2023a). For example, when asked to provide information about 
the expertise in the computer science department at the University of Liverpool, the Chat-
GPT refers to people who were never affiliated with the department. Hence more serious 
errors can be generated, including notably wrong medical advice. Additionally, it is inter-
esting to note that while LLMs can perform across different domains, their reliability may 
vary across domains. For example, the authors of Shen et al. (2023) show that ChatGPT 
significantly under-performs in law and science questions. Investigating if this is related to 
the training dataset or training mechanism will be interesting.

3.1.1.2 Reasoning errors It has been discovered that, when given calculation or logic rea-
soning questions, ChatGPT may not always provide correct answers. This is mainly because, 
instead of actual reasoning, LLMs fit the questions with prior experience learned from the 
training data. If the statements of the questions are close to those in the training data, it will 
give correct answers with a higher probability. Otherwise, with carefully crafted prompt 
sequence, wrong answers can be witnessed (Liu et al. 2023b; Frieder et al. 2023).

3.1.2  Sustainability issues

Sustainability issues, which are measured with, e.g., economic cost, energy consumption, 
and carbon dioxide emission, are also inherent to the LLMs. While excellent performance, 
LLMs require high costs and consumption in all the activities in its lifecycle. Notably, 
ChatGPT was trained with 30k A100 GPUs (each one is priced at around $10k), and every 
month’s energy consumption cost at around $1.5M.

In Table 2, we summarise the hardware costs and energy consumption from the litera-
ture for a set of LLMs with varied parameter sizes and training dataset sizes. Moreover, the 
carbon dioxide emission can be estimated with the following formula:

where GPUh is the GPU hours, GPU power consumption is the energy consumption as pro-
vided in Table 1, and PUE is the Power Usage Effectiveness (commonly set as a constant 
1.1). Precisely, it has been estimated that training a GPT-3 model consumed 1287 MWh, 
which emitted 552 ( = 1287 × 0.385 × 1.114 ) tons of CO2 (Patterson et al. 2022).

In the realm of technological advancements, the energy implications of various inno-
vations have become a focal point of discussion. Consider the energy footprint of train-
ing large language models (LLMs) like GPT-4. The energy required to train such a model 
ranges between 51,772 and 62,318 MWh (https:// towar dsdat ascie nce. com/ the- carbon- footp 
rint- of- gpt-4- d6c67 6eb21 ae, https:// archi ve. md/ 2RQ8X). To put this into perspective, 
this is roughly 0.05% of Bitcoin’s energy consumption in 2021, which was estimated at a 
staggering 108 TWh (De Vries et al. 2022, https:// digic onomi st. net/ bitco in- energy- consu 
mption). Two remarks on this comparison: (i) the energy cost of training LLMs is minus-
cule when juxtaposed with the colossal energy demands of other technologies such as 
cryptocurrency mining, and (ii) the energy consumption of LLMs is primarily associated 
with their training phases (one-time cost), whereas their inference is considerably more 
energy-efficient. In contrast, cryptocurrency mining consumes energy both in the creation 
of new coins and the validation of transactions, continuously, as long as the network is 

(1)tCO2eq = 0.385 × GPUh × (GPUpower consumption) × PUE

https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae
https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae
https://archive.md/2RQ8X
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
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active. This continuous energy drain underscores the vast difference in the sustainability 
profiles of these two technologies.

3.1.3  Other inherent trustworthiness and responsibility issues

Some issues occur during the lifecycle that could lead to concerns about the trustworthi-
ness and responsibilities of LLMs. Generally, these can be grouped into two sub-classes 
concerning the training data and the final model.

For the training data, there are issues around the copyright (Kim 2023), quality, and 
privacy of the training data. There is a significant difference between LLMs and other ML 
models regarding the data being used for training. In the latter case, specific (well-known/-
structured) datasets are usually used in the training process. Ideally, these datasets are 
properly pre-processed, anonymised, etc.; if needed, users have also given consent about 
using of their data. It is well known that ChatGPT crawls the internet and uses the gathered 
data to train. On the other hand, for LLMs, the data used for training needs to be more 
understood. In most cases, users have not provided any consent; most likely they are even 
unaware that their data contain personal information and that their data have been crawled 
and used in LLM training. This makes ChatGPT, and LLMs in general, privacy-nightmare 
to deal with and opens the door to many privacy leakage attacks. Even the model owners 
would need to determine the extent of private risk their model could pose.

For the final model, significant concerns include, e.g., LLMs’ capability of independent 
and conscious thinking (Hintze 2023), LLMs’ ability to be used to mimic human output 
including academic works (Lee 2023), use of LLMs to engage scammers in automatised 
and pointless communications for wasting time and resources (Cambiaso and Caviglione 
2023), use of LLMs in generating malware (Goodin 2023; News 2023; Botacin 2023), etc. 
Similar issues can also be seen in image synthesis tools such as DALL-2, where inaccu-
racies, misleading information, unanticipated features, and reproducibility have been wit-
nessed when generating maps in cartography (Kang et al. 2023b). These call for not only 
the transparency of LLMs development but also the novel technologies to verify and dif-
ferentiate the real and LLMs’ works (Uchendu et al. 2023; Mitrović et al. 2023). The latter 
is becoming a hot research topic with many (practical) initiatives such as https:// origi nality. 
ai, https:// conte ntats cale. ai/ ai- conte nt- detec tor/, https:// copyl eaks. com/ ai- conte nt- detec tor 
whose effectiveness requires in-depth study (Pegoraro et al. 2023). These issues inherent to 
the LLMs, as they are neither attacks nor unintended bugs.

3.2  Attacks

3.2.1  Unauthorised disclosure and privacy concerns

For LLMs, it is known that by utilising, e.g., prompt injection (Perez and Ribeiro 2022) or 
prompt leaking Prompt injection attacks against GPT-3 (2022) (which will be discussed in 
Sect. 5.1), it is possible to disclose the sensitive information of LLMs. For example, with 
a simple conversation (Prompt leaking 2023), the new Bing leaks its codename “Sydney” 
and enables the users to retrieve the prompt without proper authentication.

More importantly, privacy concerns also become a major issue for LLMs. First, pri-
vacy attacks on convolutional neural networks, such as membership inference attacks 
where the attacker can determine whether an input instance is in the training dataset, have 
been adapted to work on diffusion models (Duan et al. 2023). Second, an LLM may store 

https://originality.ai
https://originality.ai
https://contentatscale.ai/ai-content-detector/
https://copyleaks.com/ai-content-detector
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the conversations with the users, which already leads to concerns about privacy leakage 
because users’ conversations may include sensitive information (https:// www. engad get. 
com/ three- samsu ng- emplo yees- repor tedly- leaked- sensi tive- data- to- chatg pt- 19022 1114. 
html). ChatGPT has mentioned in its privacy policy that the conversations will be used 
for training unless the users explicitly opt out. Due to such concerns, Italy has reportedly 
banned ChatGPT (https:// www. cnbc. com/ 2023/ 04/ 04/ italy- has- banned- chatg pt- heres- 
what- other- count ries- are- doing. html) in early 2023. Most recently, both articles (Li et al. 
2023b; Greshake et al. 2023) illustrate that augmenting LLMs with retrieval and API call-
ing capabilities (so-called Application-Integrated LLMs) may induce even more severe pri-
vacy threats than ever before.

3.2.2  Robustness gaps

An adversarial attack is an intentional effort to undermine the functionality of a DNN by 
injecting distorted inputs that lead to the model’s failure. Multiple input perturbations are 
proposed in NLP for adversarial attacks (Ren et al. 2019a; Goyal et al. 2022), which can 
occur at the character, word, or sentence level (Cheng et al. 2019a; Iyyer et al. 2018; Cao 
et al. 2022). These perturbations may involve deletion, insertion, swapping, flipping, sub-
stitution with synonyms, concatenation with characters or words, or insertion of numeric 
or alphanumeric characters (Liang et al. 2017; Ebrahimi et al. 2017; Lei et al. 2022). For 
instance, in character level adversarial attacks, Belinkov et  al. (2017) introduces natural 
and synthetic noise to input data, while Gao et al. (2018), Li et al. (2018a) identifies crucial 
words within a sentence and perturbs them accordingly. Moreover, Hosseini et al. (2017) 
demonstrates that inserting additional periods or spaces between words can result in lower 
toxicity scores for the perturbed words, as observed with the “Perspective” API developed 
by Google. For word level adversarial attacks, they can be categorised into gradient-based 
(Liang et al. 2017; Samanta and Mehta 2017), importance-based (Ivankay et al. 2022; Jin 
et al. 2020), and replacement-based (Alzantot et al. 2018; Kuleshov et al. 2018; Pennington 
et al. 2014) strategies based on the perturbation method employed. In addition, in sentence 
level adversarial attacks, some attacks (Jia et al. 2017; Wang and Bansal 2018) are created 
so that they do not impact the original label of the input and can be incorporated as a con-
catenation in the original text. In such scenarios, the expected behaviour from the model is 
to maintain the original output, and the attack can be deemed successful if the label/output 
of the model is altered. Another approach (Zhao et al. 2017) involves generating sentence-
level adversaries using Generative Adversarial Networks (GANs) (Goodfellow et al. 2020), 
which produce outputs that are both grammatically correct and semantically similar to the 
input text.

As mentioned above, the robustness of small language models has been widely studied. 
However, given the increasing popularity of LLMs in various applications, evaluating their 
robustness has become paramount. For example, Shen et al. (2023) suggests that ChatGPT 
is vulnerable to adversarial examples, including the single-character change. Moreover, 
Wang et al. (2023a) extensively evaluates the adversarial robustness of ChatGPT in natural 
language understanding tasks using the adversarial datasets AdvGLUE (Wang et al. 2021b) 
and ANLI (Nie et al. 2019). The results indicate that ChatGPT surpasses all other models 
in all adversarial classification tasks. However, despite its impressive performance, there 
is still ample room for improvement, as its absolute performance is far from perfection. In 
addition, when evaluating translation robustness, Jiao et al. (2023) finds ChatGPT does not 
perform as well as the commercial systems on translating biomedical abstracts or Reddit 

https://www.engadget.com/three-samsung-employees-reportedly-leaked-sensitive-data-to-chatgpt-190221114.html
https://www.engadget.com/three-samsung-employees-reportedly-leaked-sensitive-data-to-chatgpt-190221114.html
https://www.engadget.com/three-samsung-employees-reportedly-leaked-sensitive-data-to-chatgpt-190221114.html
https://www.cnbc.com/2023/04/04/italy-has-banned-chatgpt-heres-what-other-countries-are-doing.html
https://www.cnbc.com/2023/04/04/italy-has-banned-chatgpt-heres-what-other-countries-are-doing.html
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comments but exhibits good results on spoken language translation. Moreover, Chen et al. 
(2023c) finds that the ability of ChatGPT to provide reliable and robust cancer treatment 
recommendations falls short when compared to the guidelines set forth by the National 
Comprehensive Cancer Network (NCCN). ChatGPT is a strong language model, but there 
is still some space for robustness improvement, especially in certain areas.

3.2.3  Backdoor attacks

The goal of a backdoor attack is to inject malicious knowledge into the LLMs through 
either the training of poisoning data (Chen et  al. 2021b; Shen et  al. 2021b; Dai et  al. 
2019) or modification of model parameters (Kurita et al. 2020; Yang et al. 2021b). Such 
injections should not compromise the model performance and must be bypassed from 
the human inspection. The backdoor will be activated only when input prompts to LLMs 
contain the trigger, and the compromised LLMs will behave maliciously as the attacker 
expected. Backdoor attack on DL models is firstly introduced on image classification tasks 
(Gu et al. 2019), in which the attacker can use a patch/watermark as a trigger and train a 
backdoored model from scratch. However, LLMs are developed for NLP tasks, and the 
approach of pre-training followed by fine-tuning has become a prevalent method for con-
structing LLMs. This entails pre-training the models on vast unannotated text corpora and 
fine-tuning them for particular downstream applications. To consider the above characteris-
tics of LLMs, the design of the backdoor trigger is no longer a patch/watermark but a char-
acter, word or sentence. In addition, due to the training cost of LLMs, a backdoor attack 
should consider a direct embedding of the backdoor into pre-trained models, rather than 
relying on retraining. Finally, the backdoor is not merely expressed to tie with a specific 
label due to the diversity of downstream NLP applications.

3.2.3.1 Design of  backdoor trigger Three categories of triggers are utilised to execute 
the backdoor attack: BadChar (triggers at the character level), BadWord (triggers at the 
word level), and BadSentence (triggers at the sentence level), with each consisting of basic 
(non-semantic) and semantic-preserving patterns (Chen et al. 2021b). The BadChar trig-
gers are produced by modifying the spelling of words in various positions within the input 
and applying steganography techniques to ensure their invisibility. The BadWord triggers 
involve selecting a word from the ML model’s dictionary, and increasing their adaptability 
to different inputs. MixUp-based and Thesaurus-based triggers are then proposed (Chen 
et al. 2021b). The BadSentence triggers are generated by inserting or substituting sub-sen-
tences, with a fixed sentence chosen as the trigger. To preserve the original content, Syntax-
transfer (Chen et al. 2021b) is employed to alter the underlying grammatical rules. These 
three types of triggers allow the flexibility to tailor their attacks to different applications.

Two new concealed backdoor attacks are introduced: the homograph and dynamic sen-
tence attacks (Struppek et al. 2022). The homograph attack uses a character-level trigger 
that employs visual spoofing homographs, effectively deceiving human inspectors. How-
ever, for NLP systems that do not support Unicode homographs, the dynamic sentence 
backdoor attack is proposed (Struppek et  al. 2022), which employs language models to 
generate highly natural and fluent sentences to act as the backdoor trigger.

3.2.3.2 Backdoor embedding strategies Shen et al. (2021b) is the first to propose a back-
door attack on pre-trained NLP models that do not require task-specific labels. Specifically, 
they select a target token from the pre-trained model and define a target predefined output 
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representation (POR) for it. They then insert triggers into the clean text to generate the poi-
soned text data. While mapping the triggers to the PORs using the poisoned text data, they 
simultaneously use the clean pre-trained model as a reference, ensuring that the backdoor 
target model maintains the normal usability of other token representations. After injecting 
the backdoor, all auxiliary structures are removed, resulting in a backdoor model indistin-
guishable from a normal one in terms of model architecture and outputs for clean inputs.

A method called Restricted Inner Product Poison Learning (RIPPLe) (Kurita et  al. 
2020) is introduced to optimise the backdoor objective function in the presence of fine-
tuning dataset. They also propose an extension called Embedding Surgery to improve the 
backdoor’s resilience to fine-tuning by replacing the embeddings of trigger keywords with 
a new embedding associated with the target class. The authors validate their approach on 
several datasets and demonstrate that pre-trained models can be poisoned even after fine-
tuning on a clean dataset.

3.2.3.3 Expression of  backdoor In contrast to prior works that concentrate on backdoor 
attacks in text classification tasks, the applicability of backdoor attacks is investigated in 
more complex downstream NLP tasks such as toxic comment detection, Neural Machine 
Translation (NMT), and Question Answer (QA) (Li et al. 2021a). By replicating thought-
fully designed questions, users may receive a harmful response, such as phishing or toxic 
content. In particular, a backdoored system can disregard toxic comments by employing 
well-crafted triggers. Moreover, backdoored NMT systems can be exploited by attackers 
to direct users towards unsafe actions such as redirection to phishing pages. Additionally, 
Transformer-based QA systems, which aid in more efficient information retrieval, can be 
susceptible to backdoor attacks.

Considering the prevalence of LLMs in automatic code suggestion (i.e., GitHub Copi-
lot), the data poisoning based backdoor attack, called TROJANPUZZLE, is studied for 
code-suggestion models (Aghakhani et  al. 2023). TROJANPUZZLE produces poisoning 
data that appears less suspicious by ensuring that certain potentially suspicious parts of the 
payload are never present in the poisoned data. However, the induced model still proposes 
the full payload when it completes code, especially outside of docstrings. This characteris-
tic makes TROJANPUZZLE resilient to dataset cleaning techniques that rely on signatures 
to spot and remove suspicious patterns from the training data.

The backdoor attack on LLMs for text-based image synthesis tasks is firstly introduced 
in Struppek et al. (2022). The authors employ a teacher–student approach to integrate the 
backdoor into the pre-trained text encoder and demonstrate that when the input prompt 
contains the backdoor trigger, e.g., the underlined Latin characters are replaced with the 
Cyrillic trigger characters, the generation of images will follow a specific description or 
include certain attributes.

3.2.4  Poisoning and disinformation

Among various adversarial attacks against DNNs, poisoning attack is one of the most 
significant and rising security concerns for technologies that rely on data, particularly 
for models trained by enormous amounts of data acquired from diverse sources. Poi-
soning attacks attempt to manipulate some of the training data, which might lead the 
model to generate wrong or biased outputs. As LLM are often fine-tuned based on pub-
licly accessible data (Chen et al. 2021a; Brown et al. 2020a), which are from unreliable 
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and un-trusted documents or websites, the attacker can easily inject some adversaries 
into the training set of the victim model. Microsoft released a chatbot called Tay on 
Twitter (Lee 2016). Still it was forced to suspend activity after just one day because it 
was attacked by being taught to express racist and hateful rhetoric. Gmail’s spam filter 
can be affected by simply injecting corrupted data in the training mails set (Bursz-
tein 2018). Consequently, some evil chatbots might be designed to simulate people to 
spread disinformation or manipulate people, resulting in a critical need to evaluate the 
robustness of LLMs against data poisoning.

Nelson et  al. (2008) demonstrates how the poisoning attack can render the spam 
filter useless. By interfering with the training process, even if only 1% of the training 
dataset is manipulated, the spam filter might be ineffective. The authors propose two 
attack methods, one is an indiscriminate attack, and another is a targeted attack. The 
indiscriminate attack sends spam emails that contain words commonly used in legiti-
mate messages to the victim, to force the victim to see more spam and more likely to 
mark a legitimate email as spam. As for the target attack, the attacker will send train-
ing emails containing words likely to be seen in the target email.

With the increasing popularity of developing LLMs, researchers are becoming con-
cerned about using chatbots to spread information. Since these LLMs, such as Chat-
GPT, MidJourney, and Stable Diffusion, are trained on a vast amount of data collected 
from the internet, monitoring the quality of data sources is challenging. A recent study 
Carlini et  al. (2023) introduced two poisoning attacks on various popular datasets 
acquired from websites. The first attack involves manipulating the data viewed by the 
customer who downloads the data to train the model. This takes advantage of the fact 
that the data observed by the dataset administrator during collection can differ from 
the data retrieved by the end user. Therefore, an attacker only needs to purchase a few 
domain names to gain control of a small portion of the data in the overall data collec-
tion. Another attack involves modifying datasets containing periodic snapshots, such 
as Wikipedia. The attacker can manipulate Wikipedia articles before they are included 
in the snapshot, resulting in the internet storing perturbed documents. Thus, a signifi-
cant level of uncertainty and risk is involved when people use these LLMs as search 
engines.

3.3  Unintended bugs

3.3.1  Incidental exposure of user information

In addition to the above attacks that an attacker actively initiates, ChatGPT was reported 
(https:// www. engad get. com/ chatg pt- brief ly- went- offli ne- after-a- bug- revea led- user- 
chat- histo ries- 11563 2504. html) to have a “chat history” bug that enabled the users to 
see from their ChatGPT sidebars previous chat histories from other users, and OpenAI 
recognised that this chat history bug may have also potentially revealed personal data 
from the paid ChatGPT Plus subscribers. According to the official report from Ope-
nAI (https:// openai. com/ blog/ march- 20- chatg pt- outage), the same bug may have caused 
inadvertent disclosure of payment-related information for 1.2% of ChatGPT Plus sub-
scribers. The bug was detected within the open-source Redis client library, redis-py. 
This cannot be an isolated incident, and we are expecting to witness more such “bugs” 
that could have severe security and privacy implications.

https://www.engadget.com/chatgpt-briefly-went-offline-after-a-bug-revealed-user-chat-histories-115632504.html
https://www.engadget.com/chatgpt-briefly-went-offline-after-a-bug-revealed-user-chat-histories-115632504.html
https://openai.com/blog/march-20-chatgpt-outage
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3.3.2  Bias and discrimination

Similar to the usual machine learning algorithms, LLMs are trained from data, which 
may include bias and discrimination. If not amplified, such vulnerabilities will be inher-
ited by the LLMs. For example, Galactica, an LLM similar to ChatGPT trained on 46 
million text examples, was shut down by Meta after 3 days because it spewed false and 
racist information (https:// arste chnica. com/ infor mation- techn ology/ 2022/ 11/ after- contr 
oversy- meta- pulls- demo- of- ai- model- that- writes- scien tific- papers/). A political com-
pass test (Rutinowski et  al. 2023) reveals that ChatGPT is biased towards progressive 
and libertarian views. In addition, ChatGPT has a self-perception (Rutinowski et  al. 
2023) of seeing itself as having the Myers–Briggs personality type ENFJ.

4  General verification framework

Figure 5 provides an illustration of the general verification framework that might work 
with LLMs, by positioning the few categories of V&V techniques onto the lifecycle. 
In the Evaluation stage, other than the activities that are currently conducted (as men-
tioned in Fig.  3), we need to start with the falsification and evaluation techniques, in 
parallel with the explanation techniques. Falsification and evaluation techniques pro-
vide diverse, yet non-exhaustive, methods to find failure cases and have a statistical 
understanding about potential failures. Explanation techniques are to provide human-
understandable explanations to the output of a LLMs. While these two categories are in 
parallel, they can interact, e.g., a failure case may require an explanation technique to 
understand the root cause, and the explanation needs to differentiate between different 
failure and non-failure cases. The verification techniques, which are usually high cost, 
may be only required when the LLMs pass the first two categories.

Finally, ethical principles and AI regulations are imposed throughout the lifecycle to 
ensure the ethical use of LLMs.

Figure 6 presents the taxonomy of verification and validation techniques we surveyed 
in this paper that can be used for large language models. In the following sections, we 
will review these techniques in greater details.

Fig. 5  Large language models: verification framework in lifecycle

https://arstechnica.com/information-technology/2022/11/after-controversy-meta-pulls-demo-of-ai-model-that-writes-scientific-papers/
https://arstechnica.com/information-technology/2022/11/after-controversy-meta-pulls-demo-of-ai-model-that-writes-scientific-papers/
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5  Falsification and evaluation

This section summarises the known methods for identifying and evaluating the vulnerabili-
ties of LLM-based machine learning applications. Falsification and evaluation requires a 
red team (Bullwinkle and Urban 2023), which, instead of having annotators label pre-exist-
ing texts, interacts with a model and actively finds examples that fail. The red team needs 
to be consist of people of diverse backgrounds and concerning about different risks (benign 
vs. malicious). We also discuss on how the methods can, and should, be adapted.

5.1  Prompt injection

This section discusses using prompts to direct LLMs to generate outputs that do not align 
with human values. This includes the generation of malware, violence instruction, and so 
on. Conditional misdirection has been successfully applied which misdirects the AI by cre-
ating a situation where a certain event needs to occur to avoid violence.

Prompt injection for LLMs is not vastly distinct from other injection attacks commonly 
observed in information security. It arises from the concatenation of instructions and data, 
rendering it arduous for the underlying engine to distinguish them. Consequently, attack-
ers can incorporate instructions into the data fields they manage and compel the engine 
to carry out unforeseen actions. Within this comprehensive definition of injection attacks, 
prompt engineering work can be regarded as instructions (analogous to a SQL query, for 
instance). At the same time, the input information provided can be deemed as data.

Several methods for mis-aligning LLMs via Prompt Injection (PI) attacks have been 
successfully applied (https:// github. com/ dair- ai/ Prompt- Engin eering- Guide/ tree/ main/ 
guides). In these attacks, the adversary can prompt the LLM to generate malicious 

Fig. 6  Taxonomy of surveyed verification and validation techniques for large language models

https://github.com/dair-ai/Prompt-Engineering-Guide/tree/main/guides
https://github.com/dair-ai/Prompt-Engineering-Guide/tree/main/guides
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content or override the initial instructions and the filtering mechanisms. Recent stud-
ies have demonstrated that these attacks are difficult to mitigate since current state-
of-the-art LLMs are programmed to follow instructions. Therefore, most attacks were 
based on the assumption that the adversary can directly inject prompt to the LLMs. 
For example, Perez and Ribeiro (2022) reveals two kinds of threats by manipulating 
the prompts. The first one is goal hijacking, aiming to divert the intended goal of the 
original prompts towards a target goal, while prompt leaking endeavours to retrieve 
information from private prompts.

Kang et al. (2023a) explores the programmatic behaviour of LLMs, demonstrating 
that classical security attacks such as obfuscation, code injection, and virtualisation 
can be used to circumvent the defence mechanisms of LLMs. This further exhibits that 
instruction-based LLMs can be misguided to generate natural and convincing person-
alised malicious content by leveraging unnatural prompts.

Moreover, Deshpande et al. (2023) suggests that by assigning ChatGPT a persona, 
say that of the boxer Muhammad Ali (with a prompt “Speak like Muhammad Ali.”), 
the toxicity of generations can be significantly increased. Maus et al. (2023) develops 
a black-box framework for producing adversarial prompts for unstructured image and 
text generation. Employing a token space projection operator provides a solution from 
mapping the continuous word embedding space into the discrete token space, such that 
some black-box attacks method, like square attacks, can be applied to explore adversar-
ial prompts. Experimental results found that those adversarial prompts encourage posi-
tive sentiments or increase the frequency of the targeted letter in the generated text. 
Wolf et al. (2023) also suggests the existence of a fundamental limitation on mitigating 
such prompt injection to trigger undesirable behaviour, i.e., as long as the length of the 
prompts can be increased, the behaviour has a positive probability to be exhibited.

Li et  al. (2023b) claims that in the previous versions of ChatGPT, some personal 
private information could be successfully extracted via direct prompting. However, 
with the improved guardrails, some behaviours have been well-protected in the March 
2023 version of ChatGPT, where ChatGPT is aware of leaking privacy when direct 
prompts are applied, it will tend to refuse to provide the answer that may contain pri-
vate information. Although some efforts have been conducted to prevent training data 
extraction attacks with direct prompts, Li et al. (2023b) illustrates that there is still a 
sideway to bypass ChatGPT’s ethical modules. They propose a method named jail-
break to exploit tricky prompts to set up user-created role plays to alter ChatGPT’s 
ego and programming restrictions, which allows it to answer users’ queries unethi-
cally. More recently, Greshake et al. (2023) proposes a novel indirect prompt injection, 
which required the community to have an urgent investigation and evaluation of cur-
rent mitigation techniques against these threats. When LLMs are integrated with other 
plugins or using its API calling, the content retrieved from the Web (public source) 
may already be poisoned and contain malicious prompts pre-injected and selected by 
adversaries, such that these prompts can be indirectly used to control and direct the 
model. In other words, prompt injection risks may occur not only in situations where 
adversaries explicitly prompt LLMs but also among users, developers, and automated 
data processing systems.

We also noticed that prompt injection, and techniques based on prompt injection 
to work with the APIs of LLMs, have been used to generate malware (Goodin 2023; 
News 2023; Botacin 2023).
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5.2  Comparison with Human Experts

Another evaluation thread is to study how LLMs are compared with human experts. For 
example, for ChatGPT, Guo et al. (2023) conducts the comparison on questions from open-
domain, financial, medical, legal, and psychological areas, Farhat et al. (2023) compares 
on the bibliometric analysis, Malinka et al. (2023) evaluates on university education with 
a primary focus on computer security-oriented specialisation, Ji et al. (2023) considers the 
ranking of contents, and Wu et al. (2023e) compares on the grammatical error correction 
(GEC) task. It is surprising to note that, in all these comparisons, the conclusion is that, 
ChatGPT does not perform as well as expected. One step further, to study collaboration 
rather than only focus on comparisons, Qi et al. (2023) explores how ChatGPT’s perfor-
mance on safety analysis can be compared with human experts, and concludes that the best 
results are from the close collaboration between ChatGPT and the human experts. A simi-
lar conclusion was also drawn by Jang and Lukasiewicz (2023) when studying ChatGPT’s 
logically consistent behaviours.

In some cases, LLMs can outperform human experts in specific tasks, like processing 
enormous amounts of data or doing repeated activities with great accuracy. For example, 
LLMs can be used to analyse massive numbers of medical records to uncover patterns and 
links between different illnesses, which can aid in medical diagnosis and therapy (Liu et al. 
2023d; Agrawal et al. 2022). On the other hand, human experts may outperform LLMs in 
jobs requiring more complicated reasoning or comprehension of social and cultural con-
texts. Human specialists, for example, may better interpret and respond to delicate social 
signs in a conversation, which can be difficult for LLMs. It is important emphasising that 
LLMs are intended to supplement rather than replace human competence (Shanahan 2022). 
LLMs can automate specific processes or help human professionals accomplish things 
more efficiently and precisely (Zhao et  al. 2023a). For example, Qi et  al. (2023) studies 
how ChatGPT’s performance on safety analysis can be compared with human experts and 
concludes that the best results are from the close collaboration between ChatGPT and the 
human experts. Holmes et al. (2023) also shows that huge language models have a lot of 
potential as knowledgeable assistants collaborating with subject specialists.

5.3  Benchmarks

Benchmark datasets have been used to evaluate the performance of LLMs. For example, 
in Wang et al. (2023a), AdvGLUE and ANLI benchmark datasets are used to assess adver-
sarial robustness, and Flipkart review and DDXPlus medical diagnosis datasets are used to 
evaluate out-of-distribution evaluation. In Sun et al. (2023), eight kinds of typical safety 
scenarios and six types of more challenging instruction attacks are used to expose safety 
issues of LLMs. In Frieder et al. (2023), the GHOSTS dataset is used to evaluate the math-
ematical capability of ChatGPT.

Regarding the LLMs as a software as a service, rather than previous deep learning mod-
els, it becomes imperative to incorporate lifelong time assessment. In Chen et al. (2023a), 
they evaluated the March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on several 
diverse benchmarks. The LLM service’s behavior can undergo significant changes within 
a fairly brief period, as evidenced by their findings. According to Edwards (2023), it states 
that while releasing the results of the benchmark, the providers should provide raw results, 
not only high-level metrics. So that the inspector is capable of conducting a more thorough 
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examination of the model’s defects. Previous NLP works show that fine-tuning pre-trained 
transformer-based language models such as BERT (Devlin et al. 2018) is an unstable pro-
cess (Dodge et al. 2020; Lee et al. 2019). During the continual updating of LLMs, it could 
go through multiple iterations of finetune and RLHF, which even increases the risk of cata-
strophic forgetting. In Aiyappa et al. (2023), the challenge of ensuring fair model evalu-
ation in the age of closed and continuously trained models is discussed. Moreover, Low-
Rank Adaptation (LoRA) is proposed to reduce the trainable parameters and thus could 
avoid catastrophic forgetting (Hu et al. 2021).

5.4  Testing and statistical evaluation

As mentioned above, most existing techniques on the falsification and evaluation heavily 
rely on human intelligence and therefore have a significant level of human involvement. 
In red teaming, the red team must be creative in finding bad examples. In prompt injec-
tion, the attacker needs to design specific (sequence of) prompts to retrieve the informa-
tion they need. Unfortunately, human expertise and intelligence are expensive and scarce, 
which calls for automated techniques to have an intensive and fair evaluation, and to find 
corner cases as exhaustive as possible. In the following, we discuss how testing and statisti-
cal evaluation methods can be adapted for a fair evaluation of LLMs.

To simplify it, we assume an LLM is a system that generates an output given an input. 
Let D be the space of nature data, an LLM is a function M ∶ D → D . In the meantime, 
there is another function H ∶ D → D representing human’s response. For an automated 
generation of test cases, we need to have an oracle O , a test coverage metric C , and a test 
case generation method A . The oracle O determines if an input–output pair (x, y) is correct. 
The implementation of oracle is related to both M and H, by checking whether given any 
input x their outputs M(x) and H(x) are similar under certain criteria. We call an input–out-
put pair a test case. Given a set of test cases P = {(xi, yi)}i=1,...,n , an evaluation of the cover-
age metric C returns a probability value representing the percentage of cases in P over the 
cases that should be tested. Finally, the test case generation method A generates the set P of 
test cases. Usually, the design of coverage metric C should be based on the property to be 
verified. Therefore, the verification problem is reduced to determining of whether the per-
centage of test cases in P that passes the oracle O is above a pre-specified threshold.

Statistical evaluation applies statistical methods in order to gain insights into the veri-
fication problem we are concerned about. In addition to the purpose of determining the 
existence of failures (i.e., counterexamples to the satisfiability of desirable properties) 
in the deep learning model, statistical evaluation assesses the satisfiability of a property 
in a probabilistic way, by, e.g., aggregating sampling results. The aggregated evaluation 
result may have the probabilistic guarantee, e.g., the probability of failure rate lower than a 
threshold l is greater than 1 − � , for some small constant �.

While the study on LLMs is just started (Reiss 2023), statistical evaluation methods 
have been proposed for the general machine learning models.

Sampling methods and testing methods have been considered for convolutional or 
recurrent neural networks. Sampling methods, such as Weng et al. (2018), are to sum-
marise property-related statistics from the samples. There are many ways to determine 
how the test cases are generated, including, e.g., fuzzing, coverage metrics (Sun et al. 
2019; Huang et al. 2021), symbolic execution (Gopinath et al. 2018), concolic testing 
(Sun et al. 2018b), etc. Testing methods, on the other hand, generate a set of test cases 
and use the generated test cases to evaluate the reliability (or other properties) of deep 
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learning (Sun et al. 2018a). While sampling methods can have probabilistic guarantees 
via, e.g., Chebyshev’s inequality, it is still under investigation on associating test cov-
erage metrics with probabilistic guarantees. Moreover, ensuring that the generated or 
sampled test cases are realistic is necessary, i.e., on the data distribution (Huang et al. 
2022b; Zhao et al. 2021b).

For LLMs, the key technical challenges are on the design of test coverage metrics and 
the test case generation algorithms because (1) LLMs need to be considered in a black-box 
manner, rather than white-box one; this is mainly due to the size of LLMs that cannot be 
reasonably explored, and therefore an exploration on the input space will become more 
practical; (2) LLMs are for natural language texts, and it is hard to define the ordering 
between two texts; the ordering between two inputs are key to the design of test case gen-
eration algorithms; and (3) LLMs are non-deterministic, i.e., different outputs are expected 
in two tests with identical input.

6  Verification

This section discusses if and how more rigorous verification can be extended to work on 
LLM-based machine-learning tasks. So far, the verification or certification of LLMs is still 
an emerging research area. This section will first provide a comprehensive and systematic 
review of the verification techniques on various NLP models. Then, we will discuss a few 
pioneering black-box verification methods that are workable on large-scale language mod-
els. These are followed by a discussion on how to extend these efforts towards LLMs and 
a review of the efforts to reduce the scale of LLMs to increase the validity of verification 
techniques.

We remark that, this section is focused on verifying LLMs. For the other direction of 
utilising LLMs to support the verification, there are works related to e.g., specification 
autoformalisation (Wu et al. 2022a), code generation (Thakur et al. 2023), assertion gen-
eration (Kande et al. 2023), zero-shot vulnerability repair (Pearce et al. 2023).

6.1  Verification on natural language processing models

As discussed in previous sections, an attacker could generate millions of adversarial exam-
ples by manipulating every word in a sentence. Adversarial examples have different safety 
and trustworthiness implications to the downstream tasks. For example, a perturbed output 
text might include different emotions that will affect the sentiment analysis, and it is possi-
ble that a perturbed text might have the same meaning but different language style to affect 
the spam detection. However, such methods may still fail to address numerous unseen 
cases arising from exponential combinations of different words in a text input. To over-
come these limitations, another class of techniques has emerged, grounded in the concept 
of “certification” or “verification” (Seshia et  al. 2016; Huang et  al. 2017). For example, 
via certification or verification, these methods train the model to provide an upper bound 
on the worst-case loss of perturbations, thereby offering a certificate of robustness without 
necessitating the exploration of the adversarial space (Sinha et al. 2017). By utilising these 
certification-driven methods, we can better evaluate the model’s robustness in the face of 
adversarial attacks (Goodfellow and Papernot 2017).
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6.1.1  Verification via interval bound propagation

The first technique successfully adapted from the computer vision domain for verifying 
NLP models is Interval Bound Propagation (IBP). It is a bounding technique that has 
gained significant attention for its effectiveness in training large, robust, and verifiable 
neural networks (Gowal et  al. 2018). By striving to minimise the upper bound on the 
maximum difference between the classification boundary and input perturbation region, 
IBP allows the incorporation of a loss term during training. This enables the minimisa-
tion of the last layer of the perturbation region, ensuring it remains on one side of the 
classification boundary. As a result, the adversarial region becomes tighter and can be 
considered certified robust. Notably, Jia et  al. (2019) proposed certified robust mod-
els while providing maximum perturbations in text classification. The authors employed 
interval bound propagation to optimise the upper bound over perturbations, providing 
an upper bound over the discrete set of perturbations in the word vector space.

Later on, Huang et  al. (2019a) introduced a verification and verifiable training 
method for neural networks in NLP, proposing a tighter over-approximation in the 
form of a ‘simplex’ in the embedding space for input perturbations. To make the net-
work verifiable, they defined the convex hull of all the original unperturbed inputs as a 
space of delta perturbation. By employing the IBP algorithm, they generated robustness 
bounds for each neural network layer. Furthermore, as shown in Fig. 7, Ye et al. (2020) 
proposed structure-free certified robust models, which can be applied to any arbitrary 
model, overcoming the limitations of IBP-based methods that are not applicable to char-
acter-level and sub-word-level models. This work introduced a perturbation set of words 
using synonym sets and top-K nearest neighbours under the cosine similarity of GloVE 
vectors (Pennington et al. 2014), which could subsequently generate sentence perturba-
tions using word perturbations and train a provably robust classifier. Very recently, Wal-
lace et al. (2022) highlighted the limitations of IBP-based methods in a broader range of 
NLP tasks, demonstrating that IBP methods have poor generalisability. In this work, the 
authors performed a systematic evaluation of various of sentiment analysis tasks. They 
pointed out some insights regarding the promising improvements and adaptations for 
IBP methods in the NLP domain.

Fig. 7  Pipeline for robustness verification in Ye et al. (2020)
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6.1.2  Verification via abstract interpretation

Another popular verification technique applied to various NLP models is based on 
abstract interpretation or functional over-approximation. The idea behind abstract inter-
pretation is to approximate the behaviour of a program by representing it using a sim-
pler model that is easier to analyse. Specifically, this technique can represent the net-
work using an abstract domain that captures the possible range of values the network 
can output for a given input. This abstract domain can then be used to reason about 
the network’s behaviour under different conditions, such as when the network is under 
adversarial perturbation. One notable contribution in this area is POPQORN (Ko et al. 
2019). It can find a certificate of robustness for RNN-based networks, which utilised 2D 
planes to bound the cross-nonlinearity in Long Short-Term Memory (LSTM) networks 
so a certificate within an lp ball can be located if the lower bound on the true label out-
put unit is larger than the upper bounds of all other output units. Later on, Cert-RNN 
(Du et al. 2021) introduced a robust certification framework for RNNs that overcomes 
the limitations of POPQORN (Ko et al. 2019). The framework maintains inter-variable 
correlation and accelerates the non-linearities of RNNs for practical uses. This work 
utilised Zonotopes (Eppstein 1996) to encapsulate input perturbations. Cert-RNN can 
verify the properties of the output Zonotopes to determine certifiable robustness. Using 
Zonotopes, as opposed to boxes, allows improved precision and tighter bounds, leading 
to a significant speedup compared to POPQORN.

Recently, Abstractive Recursive Certification (ARC) was introduced to verify the 
robustness of RNNs (Zhang et al. 2021). Using those transformations, ARC defined a set 
of programmatically perturbed string transformations and constructed a perturbation space. 
By memorising the hidden states of strings in the perturbation space that share a com-
mon prefix, ARC can efficiently calculate an upper bound while avoiding redundant hidden 
state computations. Roughly at the same time, Ryou et al. proposed a similar method called 
Polyhedral Robustness Verifier (PROVER) (Ryou et  al. 2021). PROVER can represent 
input perturbations as polyhedral to generate a certifiably verified network for more gen-
eral sequential data. To certify large transformers, DeepT was proposed by Bonaert et al. 
(2021). It was specifically designed to verify the robustness of transformers against syno-
nym replacement-based attacks. DeepT employed multi-norm Zonotopes to achieve larger 
robustness radii in the certification. For the transformers with self-attention layers, Shi 
et al. (2019) developed a verification algorithm that can provide a lower bound to ensure 
the probability of the correct label is consistently higher than that of the incorrect labels. 
This method can obtain a tighter bound than those obtained from IBP-based methods.

6.1.3  Verification via randomised smoothing

Randomised smoothing (RS) (Cohen et  al. 2019) is another promising technique for 
verifying the robustness of deep language models. Its basic idea is to leverage ran-
domness during inference to create a smoothed classifier that is more robust to small 
perturbations in the input. This technique can also be used to give certified guaran-
tees against adversarial perturbations within a certain radius. Generally, randomized 
smoothing begins by training a regular neural network on a given dataset. Then, given 
a trained base classifier f and an input x, the smoothed classifier g is defined using ran-
domness (e.g., Gaussian noise) as: g(x) = argmaxcℙ(f (x + �) = c) , where � is the noise 
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sampled from some distribution (e.g., a Gaussian distribution). During the inference 
phase, to classify a new sample, noise is randomly sampled from the predetermined 
distribution multiple times. These instances of noise are then injected into the input x, 
resulting in noisy samples. Subsequently, the base classifier f(x) generates predictions 
for each of these noisy samples. The final prediction is determined by the class with 
the highest frequency of predictions, thereby shaping the smoothed classifier g(x). To 
certify the robustness of the smoothed classifier g(x) against adversarial perturbations 
within a specific radius r centered around the input x, RS calculates the likelihood of 
agreement between the base classifier f(x) and g(x) when noise is introduced to x. If 
this likelihood exceeds a certain threshold (e.g., surpassing 0.5 + � , where � represents 
a minor positive constant), it indicates the certified robustness of g(x) within a radius r 
around x.

Figure 8 depicts one of the pioneering efforts of using RS for verifying the robust-
ness of NLP models. It is called WordDP developed by Wang et al. (2021a), the authors 
introduced a novel approach to provide a certificate of robustness by leveraging the 
concept of differential privacy. In this work, the researchers considered a sentence as 
a database and the individual words within it as records. They demonstrated that if a 
predictive model satisfies a specific threshold of epsilon-differential privacy for a per-
turbed input, it can be inferred that the input is identical to the clean, unaltered data. 
This methodology offers a certification of robustness against L-adversary word sub-
stitution attacks. In another recent study, Zeng et  al. (2021c) introduced RanMASK, 
a certifiably robust defence method against text adversarial attacks, which employs a 
novel randomised smoothing technique specifically tailored for NLP models. The input 
text is manually perturbed in this approach and subsequently fed into a mask language 
model. Random masks are then generated within the input text to create a large set 
of masked copies, which are subsequently classified by a base classifier. A “majority 
vote” mechanism determines the final robust classification. Furthermore, the research-
ers utilised pre-trained models such as BERT and RoBERTa to generate and train with 
the masked inputs, showcasing the practical applicability and effectiveness of the Ran-
MASK technique in some real-world NLP scenarios.

Fig. 8  Pipeline of wordDP for word-substitution attack and robustness verification (Wang et al. 2021a)
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6.2  Black‑box verification

Many existing verification techniques impose specific requirements on DNNs, such as tar-
geting a specific network category or networks with particular activation functions (Huang 
et al. 2017). With the increasing complexity and scale of large language models (LLMs), 
traditional verification methods based on layer-by-layer search, abstraction, and transfor-
mation have become computationally impractical. Consequently, we envision that black-
box approaches have emerged as a more feasible alternative for verifying such models 
(Wicker et al. 2018; Wu et al. 2020; Xu et al. 2022).

In the black-box setting, adversaries can only query the target classifier without knowing 
the underlying model or the feature representations of inputs. Several studies have explored 
more efficient methods for black-box settings, although most of current approaches focus 
on vision models (Wicker et  al. 2018; Wu et  al. 2020; Xu et  al. 2022). For instance, 
DeepGO, a reachability analysis tool, offers provable guarantees for neural networks with 
deep layers and nonlinear activation functions (Ruan et  al. 2018). Its extended version, 
DeepAgn, is compatible with various networks, including feedforward and recurrent neural 
networks, as long as they exhibit Lipschitz continuity (Zhang et al. 2023b).

Subsequently, an anytime algorithm was developed to approximate global robustness by 
iteratively computing lower and upper bounds (Ruan et al. 2019). This algorithm returns 
intermediate bounds and robustness estimates that improve as computation proceeds. For 
neural network control systems (NNCSs), the DeepNNC verification framework utilises 
a black-box optimisation algorithm and demonstrates comparable efficiency and accuracy 
across a wide range of neural network controllers (Zhang et al. 2023c). GeoRobust, another 
black-box analyser, efficiently verifies the robustness of large-scale DNNs against geomet-
ric transformations (Wang et al. 2023c). This method can identify the worst-case manip-
ulation that minimises adversarial loss without knowledge of the target model’s internal 
structures and has been employed to systematically benchmark the geometric robustness of 
popular ImageNet classifiers.

Recently, some researchers have attempted to develop black-box verification methods 
for NLP models, although these methods are not scalable to LLMs. For example, one study 
introduced a framework for evaluating the robustness of NLP models against word substi-
tutions (La Malfa et al. 2020). By computing a lower and upper bound for the maximal safe 
radius for a given input text, this verification method can guarantee that the model predic-
tion does not change if a word is replaced with a plausible alternative, such as a synonym.

We also notice another thread of works focusing on training verifiers, for the correctness 
of language-to-code generation (Ni et  al. 2023) or solving math word problems (Cobbe 
et al. 2021).

6.3  Robustness evaluation on LLMs

Given the prominence of large-scale language models such as GPT, LLaMA, and BERT, 
some researchers have recently started exploring the robustness evaluation of these models. 
One such investigation is the work of Cheng et al. (2020), who developed a seq2seq algo-
rithm based on a projected gradient method combined with group lasso and gradient regu-
larisation. To address the challenges posed by the vast output space of LLMs, the authors 
introduced innovative loss functions to conduct non-overlapping and targeted keyword 
attacks. Through applications in machine translation and text summarisation tasks, their 
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seq2seq model demonstrated the capability to produce desired outputs with high success 
rates by altering fewer than three words. The preservation of semantic meanings in the 
generated adversarial examples was further verified using an external sentiment classifier. 
Another notable contribution comes from Weng et  al. (2022, 2023), as shown in Fig. 9. 
They proposed a self-verification method that leverages the conclusion of the chain of 
thought (CoT) as a condition for constructing a new sample. The LLM is then tasked with 
re-predicting the original conditions, which have been masked. This approach allows for 
the calculation of an explainable verification score based on accuracy, providing valuable 
insights into the performance of LLMs. Finally, Jiang et al. (2022) introduced an approach 
that addresses both auto-formalisation (the translation of informal mathematics into formal 
logical notation) and the proving of “proof sketches” resulting from the auto-formalisation 
of informal proofs.

To the best of our knowledge, there remains a conspicuous absence of research on veri-
fying large language models (LLMs). As such, we encourage the academic community to 
prioritise this vital research domain by developing practical black-box verification methods 
tailored specifically to LLMs.

6.4  Towards smaller models

The current LLMs are of large scale with billions or trillions of parameters. This will make 
the verification hard, even with the above-mentioned verification techniques. Another pos-
sible thread of research to support the ultimate verification is to use smaller LLMs.

A prevailing strategy of developing a smaller LLM is to apply techniques that reduce the 
parameters of a pre-trained model. One typical method is model compression, such as quan-
tisation (Nagel et  al. 2020; Liu et  al. 2021c; Frantar and Alistarh 2022). However, directly 
applying quantisation techniques on LLMs leads to performance degradation. To this end, 

Fig. 9  Example of Self-Verification proposed in Weng et al. (2022). In Stage-1, LLM generates some can-
didate conclusions. Then LLM verifies these conclusions and counts the number of masked conditions that 
reasoning is correct to as the verification score in Stage-2
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ZeroQuant (Yao et al. 2022) utilise kernel fusion (Wang et al. 2010) to compress weights and 
activations before data movement, to maximise memory bandwidth utilisation and speed up 
inference. Similarly, Park et al. (2022) introduces a new LUT-GEMM kernel that allows quan-
tised matrix multiplications with either uniform or non-uniform weight quantisation. Both 
Wang et al. (2010), Park et al. (2022) require custom CUDA kernels. In contrast, Dettmers 
et al. (2022) improves predictive performance on billion-scale 8-bit transformers. Frantar et al. 
(2023) further improves GPT model with near-zero performance drop on 3 or 4-bit precision 
by deploying Optimal Brain Quantisation (Frantar and Alistarh 2022), Lazy Batch-Updates 
and Cholesky Reformulation. Other than quantisation techniques, Low-rank adaptation 
(LORA) (Hu et al. 2022) involves decomposing the weights into low-rank matrices, which 
has been shown to reduce the number of parameters while maintaining model performance 
significantly.

Knowledge distillation refers to the methodology wherein a streamlined “student” model 
is trained to approximate the predictive behavior of a more complex “teacher” model (Hin-
ton et al. 2015). This is achieved by leveraging both the ground-truth labels and the teacher 
model’s soft predictions during the training process (Cho and Hariharan 2019; Tung and 
Mori 2019). The training process enables the student model to assimilate the implicit knowl-
edge encapsulated by the teacher model with less parameters. Specifically, the student model 
achieves performance similar to the teacher model while being more computationally effi-
cient, making it suitable for deployment in resource-limited settings (Gou et al. 2021; He et al. 
2022). In LLMs, the small student model is often used to assimilate information from the 
pre-trained teacher model (Taori et al. 2023; Chiang et al. 2023; Wu et al. 2023d; Peng et al. 
2023; Gu et al. 2023a). This multifaceted transfer of knowledge enables the student model to 
augment its capabilities in language understanding and generation, which particularly advan-
tageous for deployment in computational environments where resource efficiency is a criti-
cal consideration. The “teacher” neural network is trained on extensive text data for various 
language tasks, such as understanding, generation, translation, and sentiment analysis, and the 
“student” model, designed to be more resource-efficient, aims to replicate the teacher model’s 
capabilities while using fewer layers and neurons or a simplified architecture. The goal is to 
achieve comparable performance but with reduced computational overhead.

It is worth noting that Spiking Neural Networks (SNNs), as the third generation neural net-
works, offer a complementary approach to improve computing efficiency, e.g., utilising sparse 
operation (Rueckauer et al. 2017; Wu et al. 2022b, 2023b). Recent research has introduced 
SpikeGPT (Zhu et al. 2023), the largest SNN-based model with 260 million parameters, to 
demonstrate the performance of SNNs on GPT models, comparable to that of traditional neu-
ral networks. In contrast, SNNs require implementation on specialised hardware, such as neu-
romorphic chips like TrueNorth (Akopyan et al. 2015) and Loihi (Davies et al. 2018), which 
have been designed to mimic biological neurons at the circuit level. While the development of 
SNNs on LLM is still in its early stages, it presents an alternative approach to achieving com-
puting efficiency that works parallel to compression techniques.

7  Runtime monitor

Guardrails mentioned in Sect. 2.3.2 provide a safeguard for the LLMs to interact with the end 
users while retaining its social responsibility. This section discusses a V&V method, i.e., runt-
ime monitor, that is somewhat similar to the guardrails in that, it provides the safeguards on 
the behaviour of the LLMs against vulnerabilities such as those discussed in Sect. 3. The key 
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motivation for using runtime monitors, rather than the verification, is twofold. First, verifica-
tion methods require significant computation and hence can become impractical when dealing 
with large models such as LLMs. Second, a deep learning model might be applied to sce-
narios different from where the training data is collected. These suggest the need for a runtime 
monitor to determine the satisfiability of a specification on the fly.

Similar to evaluation and verification, there is no existing work on LLMs, but there are pro-
posals for e.g., the convolutional neural networks. Given the missing specifications [(although 
the attempts to formalise specifications started (Bensalem et  al. 2022; Balakrishnan et  al. 
2019; Huang et al. 2022a)], the current runtime monitoring methods for deep learning start 
from constructing an abstraction of a property, followed by determining the failure of the 
property by checking the distance between the abstraction and the original learning model. 
There are a few existing methods for abstraction of deep learning. For example, in Cheng 
et al. (2019b), a Boolean abstraction on the ReLU activation pattern of some specific layer is 
considered and monitored. Conversely of Boolean abstraction, Henzinger et al. (2020) con-
sider box abstractions. In Berthier et al. (2021), a Bayesian network based abstraction, which 
abstracts hidden features as random variables, is considered.

The construction of a runtime monitor requires the specification of the failures. Other than 
direct specifications such as Huang et al. (2022a), which requires additional efforts to con-
vert the formulas into runtime monitors, this can usually be done by collecting a set of failure 
data and then summarising (through either learning or symbolic reasoning or a combination of 
them) the relation between failure data and the part of the LLMs to be monitored, e.g., some 
critical layers of the LLMs or the output (Li et al. 2018b; Cheng et al. 2022).

7.1  Monitoring out‑of‑distribution

In the following, we discuss how runtime monitoring techniques have been developed for a 
specific type of failure, i.e., out of distribution, which suggests that the runtime data is on a 
different distribution from the training data. It is commonly believed that ML models can-
not be reliable when working with data drifted from the training data. Therefore the occur-
rence of out-of-distribution suggests the existence of risks.

Neural networks, used in computer vision (CV) or natural language process (NLP) 
tasks, are known to make overconfident predictions on out-of-distribution (OoD) samples 
that do not belong to any of the training classes, i.e., in-distribution (ID) data. For security 
reasons, such inputs and their corresponding predictions must be monitored at runtime, 
especially for networks deployed in safety-critical applications. Runtime monitoring or 
detection of out-of-distribution (OoD) samples have been extensively studied in CV (Hen-
drycks and Gimpel 2016; DeVries and Taylor 2018; Liang et al. 2018; Ren et al. 2019b; 
Liu et al. 2020; Yang et al. 2021a). Recently, researchers have paid more attention to this 
problem for NLP models (Hendrycks et al. 2020), although large-scale language models 
(ChatGPT) have shown continuous improvement on most adversarial and OoD classifica-
tion tasks (Wang et al. 2023a). Generally, to monitor OoD samples, one has to devise an ID 
confidence score function S(x) such that an input x is classified as OoD if the value S(x) is 
less than a predefined threshold � , as shown in Eq. 2.

According to what information is used to construct this confidence function S(x) , the cur-
rent OoD monitoring methods for NLP models (Arora et  al. 2021; Huang et  al. 2020b; 

(2)M(x) =

{

ID if S(x) ≥ �

OoD otherwise
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Chen et al. 2022, 2023b; Cho et al. 2022; Duan et al. 2022) can be roughly divided into the 
following three categories.

The first category includes input density estimation methods (Ren et al. 2019b; Lee et al. 
2020; Gangal et al. 2020; Arora et al. 2021). These methods usually involve a density esti-
mator, either directly in the input space or in the latent space of the generative models for 
the ID data. The probability value of the input given by such a density estimator can be 
used as the ID score. One of these examples is Arora et al. (2021) that uses the token per-
plexity (Lee et al. 2020), avoiding the bias of text length as the ID confidence score.

The second category includes feature or embedding space approximation methods (Xu 
et al. 2020b; Podolskiy et al. 2021; Zeng et al. 2021a; Zhou et al. 2021, 2022; Chen et al. 
2022). These methods first approximate the seen features by some distribution function, 
and then use the distance (e.g., Euclidean and Mahalanobis distances) between this dis-
tribution and the input feature as the ID confidence score. For instance, Chen et al. (2022) 
extracts holistic sentence vector embeddings from all intermediate layers and shadow states 
of all tokens to enhance the general semantics in sentence vectors, thereby improving the 
performance of OoD text detection algorithms based on feature space distance.

The third category includes output confidence calibration methods (Hendrycks et  al. 
2020; Desai and Durrett 2020; Dan and Roth 2021; Li et  al. 2021b; Shen et  al. 2021a; 
Yilmaz and Toraman 2022). These methods use the model’s prediction confidence (usually 
calibrated) as the ID score. The classic is the maximum softmax probability, often used as a 
strong baseline for OoD detection.

Despite a lot of work and effort, the current results can still be improved. Moreover, no 
single method is better than the other at present, which is understandable, given the infin-
ity of OoD data and the ambiguous boundaries of ID data. In terms of performance, the 
methods mentioned above do not entail significant overhead, as they all involve a single 
computation of a function related to high-dimensional vectors, which can be accomplished 
within a short timeframe. When compared to the time required for a single inference of a 
neural network, this overhead can be considered negligible.

Finally, we remark that OoD detection task in the field of NLP still requires greater 
efforts in the following two aspects. First, the community ought to reach a consensus on a 
fine-grained definition of the OoD problem for NLP models, by precisely considering the 
sources of OoD data and the tasks of NLP models. For example, existing work is done on 
NLP classification tasks. How to define the OoD problem for the generative NLP models, 
e.g., what kind of data should be called OoD data to these generative models? Second, a 
fair evaluation method is needed, given the fact that the training datasets for most large 
language models (LLM) are unavailable, i.e., it is unclear whether the used test dataset for 
evaluating OoD methods are OoD data to the tested models or not.

7.2  Monitoring attacks

In this subsection, we discuss how to detect adversarial and backdoor attacks in real-time. 
It is possible to detect the backdoor input at runtime, given a set of clean reference data-
set. The runtime monitoring for backdoor attack is based on the observation that although 
backdoor input and target samples from reference dataset are classified the same by the 
compromised network, the rationale for this classification is different. The network identi-
fies input features that it has learnt correlate to the target class in the case of clean samples 
from the target class. It identifies features associated with the backdoor trigger in the case 
of backdoor samples, causing it to identify the input as the target class.
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Based on the above idea, several detection strategies for backdoor input are developed. 
Activation Clustering (AC) approach is adopted to check the activation similarity between 
the runtime input and reference dataset (Chen et al. 2019). The activations of last convo-
lutional layer are obtained for reference dataset and input. They are grouped according to 
the label and each group is clustered separately. To cluster the activations, the dimensional-
ity reduction technique, Independent Component Analysis (ICA) is applied. Then cluster 
analysis methods, like exclusionary reclassification, relative size comparison and silhouette 
score can help users identify if the input contains the backdoor trigger. In addition, the 
feature importance maps generated from XAI techniques can be leveraged to help iden-
tify the backdoor input (Huang et al. 2019b; Tejankar et al. 2023). Since the compromised 
neural network relies on backdoor trigger to make decision, the backdoor trigger is high-
lighted when generating the feature importance maps regarding the input. Then, the back-
door input can be filtered out when simple and fixed decision logic is summarised from 
the explanations. While the runtime monitoring of backdoor for LLMs is few, we believe 
the current techniques can be extended to LLMs once we can get the hidden activation or 
explanations from LLMs.

Adversarial examples are thought to exhibit distinguishable features that set them apart 
from clean inputs (Ilyas et  al. 2019). Consequently, we can leverage this distinction to 
develop a runtime robust detector. For example, uncertainty values are used as features to 
build a binary classifier as a detector. Feinman et al. (2017) introduced the Bayesian Uncer-
tainty metric, employing Monte Carlo dropout to estimate uncertainty, primarily detect-
ing adversarial examples situated near the class boundaries, while Smith and Gal (2018) 
utilised a mutual information approach for the same purpose. Furthermore, Hendrycks and 
Gimpel (2016) demonstrated that softmax prediction probabilities can be used to iden-
tify adversarial examples. They appended a decoder to reconstruct clean inputs from the 
softmax and jointly trained it with the baseline classifier. Following the hypothesis that 
diverse models exhibit different mistakes when confronted with the same attack inputs, 
Monteiro et al. (2019) proposed a bimodel mismatch detection. Moreover, Feinman et al. 
(2017) introduced kernel density estimation for each class within the training data and 
subsequently trained a binary classifier as a detector, utilising the density and uncertainty 
features associated with clean, noisy, and adversarial examples. Although there are also 
few runtime monitoring methods for detecting adversarial examples in LLMs, we believe 
these current techniques can be extended to LLMs once we can develop an LLM detection 
model.

7.3  Monitoring output failures

As we mentioned in previous sections, although LLMs have shown strong performance 
in many domains (Bang et al. 2023; Liu et al. 2023a; Jiao et al. 2023; Sobania et al. 2023; 
Zhong et al. 2023), they are also found to be prone to various types of failures after scru-
tiny and evaluation (Borji 2023; Shen et al. 2023; Zhao et al. 2023b), such as factual errors 
(Zhao et  al. 2023b), coding (Liu et  al. 2023c; Khoury et  al. 2023), math (Frieder et  al. 
2023), and reasoning (Liu et al. 2023b). These failures can spell fatal disaster for down-
stream tasks, especially in safety-critical applications. To address these issues, one way 
is to devise a mechanism to generate constrained outputs (Hu et  al. 2017; Kumar et  al. 
2020; Madaan et al. 2021). However, LLMs generate output by selecting appropriate words 
from a vocabulary rather than grabbing corresponding snippets from sources of truth, or 
reasoning on them. This generative nature makes it challenging to control the output, and 
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even more challenging to ensure that the generated output is, in fact, consistent with the 
information source. Another way is to monitor the output of the models and take necessary 
actions. In the following, we first summarise the limited amount of existing work on runt-
ime monitoring of such failures and then discuss how to proceed from a future perspective.

In addition to the generative nature of LLMs, the diversity of downstream tasks also 
makes it extremely difficult, if not impossible, to have a general monitoring framework 
for such generative outputs. Such output failures need to be addressed in a targeted man-
ner, according to different application scenarios and the specific scientific knowledge accu-
mulated by humans in various fields such as science and technology. Regarding factual 
errors, Thorne et al. (2018) proposed a testbed for fact verification. However, this remains 
an unsolved challenge. Similar to fact-checking, we argue that for code generation fail-
ures, the fruitful methods, techniques, and tools accumulated in the field of formal methods 
related to compilers design (Lam et al. 2006) and program verification (Vardi and Wolper 
1986) can be adapted to check whether the generated code is executable or satisfies some 
specified invariants (Manna and Pnueli 2012; Bensalem et al. 1996, 1998), respectively. As 
for math-related failures, existing tools in automated theorem proving (Fitting 1996; Bibel 
2013) [e.g., Z3 (De Moura and Bjørner 2008) and Prover9 (McCune 2005)] may help. If 
an LLM is employed within safety-critical systems and its outputs are required to adhere 
to specified system safety properties, then a combination of traditional runtime monitoring 
and enforcement techniques (Bauer et  al. 2011; Bartocci and Falcone 2018), along with 
those (Garcıa and Fernández 2015; Alshiekh et al. 2018; Jansen et al. 2018, 2020; Gu et al. 
2022) specifically developed for safe reinforcement learning, can be put into action. This 
allows to detect in real-time whether the model’s outputs violate predefined behavioural 
specifications and enforce corrective actions on the model’s outputs to ensure the safe 
operation of the system.

In order to conduct runtime monitoring for the aforementioned output errors, substantial 
offline or online overheads are incurred. This is due to the requirement of establishing an 
auxiliary system aimed at efficiently detecting a range of output anomalies in the model.

Finally, we point out that the current research on the output failures of large-scale lan-
guage models is still blank. More research is needed, such as configuring a runtime moni-
tor for the output of a specific application, or combining symbolic reasoning and causal 
reasoning with the model’s learning process to ensure that the output avoids failures from 
the source.

7.4  Perspective

Since LLMs are still in their infancy and have many known vulnerabilities, monitoring 
these models in real time is a longstanding challenge. In this section, we outline topics for 
future work to call on more researchers to address this challenge from three perspectives: 
why, what, and how.

Why does a model need to be monitored? The first thing we want to highlight is whether 
at some point the LLMs can be trained intelligent enough, so that there is no need to design 
a separate runtime monitor for these models. For instance, the model is endowed with abil-
ities to automatically detect “illegal inputs” (e.g., out-of-distribution inputs) and guaran-
tee the correctness of its outputs. From our authors’ perspective, achieving such level of 
intelligent models in the foreseeable future is very difficult, if not impossible. The main 
reasons are as follows. Existing LLMs are still learned from observations, i.e., a training 
dataset containing partial information. There is no evidence that current learning methods 
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can infer from parts to wholes, even in the case of massive data, nor is there evidence that 
a training dataset captures all the information. Furthermore, existing learning methods do 
not characterize their generalization bounds but instead measure the so-called generaliza-
tion error, which prevents the identification of “illegal inputs”. Therefore, it is necessary to 
monitor the model in real-time.

What should be monitored? One needs to overcome various vulnerabilities listed in 
Sect.  3 to reliably use LLMs in safety-critical applications. Equipping the model with a 
corresponding runtime monitor provides a possible solution complementary to offline veri-
fication methods. For example, there have been some works on monitoring whether the 
model’s prediction is made for out-of-distribution inputs and whether the model’s output is 
consistent with some existing fact base. However, to our knowledge, there is no monitor-
ing work on other output failures, e.g., reasoning and code errors; on intended attacks, e.g., 
robustness, backdoor, and data poisoning. Thus, we call on researchers and practitioners to 
investigate more in these topics.

How to better design a monitor for a model? The state-of-the-art methods are based on 
the uncertainty model’s predictions. Unfortunately, low uncertainty cannot assure the mod-
el’s prediction is reliable, and vice versa. To better design monitors for LLMs, we need the 
following efforts. First, some fundamental intrinsic issues of deep learning models must 
be better addressed, such as model implicit generalisation and decision boundaries and 
explainability of model decisions, which may provide more rigorous and formal characteri-
sation and specification for building monitors. Specific to LLMs, some special issues need 
to be tackled, such as the unavailability of training datasets, the non-transparency of mod-
els, the generative nature of multi-modality, etc. Regarding specific tasks, such as the most 
studied problem of monitoring out-of-distribution inputs, principled methods for system 
design and evaluation of monitors still needs to be included, as current work is based on 
calibration of predictive confidence scores and evaluation on one-sided test datasets. Last, 
we call for great attention to unexplored topics, such as how to monitor other trustworthi-
ness and responsibility issues, attacks, and unintended bugs, along with the model’s social 
and ethical alignments with human society.

8  Regulations and ethical use

V&V provides a set of technical means to support the alignment of LLMs with human 
interests. However, it has been argued that constructing LLMs that cannot be abused can 
be impossible. This suggests that technical means are necessary, but can be insufficient. To 
this end, it is needed to have ethical means, to supplement the technical means, in ensuring 
that the complete alignment of the use of LLMs with human interests. In the following, we 
discuss several recent signs of progress.

8.1  Regulate or ban?

A recent debate on “a 6-month suspension on the development (https:// futur eofli fe. org/ 
open- letter/ pause- giant- ai- exper iments/) vs. a regulated development” has shown the anxi-
ety of, and the difference of opinions from, the community upon the possibilities of AI 
development being misaligned with human interests. More radical actions have also been 
taken. For example, Italy has reportedly banned the ChatGPT (https:// www. cnbc. com/ 
2023/ 04/ 04/ italy- has- banned- chatg pt- heres- what- other- count ries- are- doing. html). In a US 

https://futureoflife.org/open-letter/pause-giant-ai-experiments/
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
https://www.cnbc.com/2023/04/04/italy-has-banned-chatgpt-heres-what-other-countries-are-doing.html
https://www.cnbc.com/2023/04/04/italy-has-banned-chatgpt-heres-what-other-countries-are-doing.html
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Senate Hearing on May 2023, OpenAI CEO Sam Altman asked the government to reg-
ulate AI (Senate 2023). Actually, on AI regulations, major players such as the EU, US, 
UK, and China all have their respective approaches and initiatives, e.g., the EU’s GDPR 
(2016), AI Act (https:// artifi cial intel ligen ceact. eu). Data Act (https:// ec. europa. eu/ commi 
ssion/ press corner/ detail/ en/ ip_ 22_ 1113), the UK’s Data Protection Act (https:// www. legis 
lation. gov. uk/ ukpga/ 2018/ 12/ conte nts/ enact ed) and pro-innovative approach to regulate AI 
(https:// assets. publi shing. servi ce. gov. uk/ gover nment/ uploa ds/ system/ uploa ds/ attac hment_ 
data/ file/ 11465 42/a_ pro- innov ation_ appro ach_ to_ AI_ regul ation. pdf), the US’s Blueprint 
for an AI Bill of Rights (https:// www. white house. gov/ ostp/ ai- bill- of- rights/) and AI Risk 
Management Framework (https:// www. nist. gov/ itl/ ai- risk- manag ement- frame work), and 
China’s regulations for recommendation algorithms (http:// www. cac. gov. cn/ 2022- 01/ 
04/c_ 16428 94606 258238. htm), deep synthesis (https:// www. china lawtr ansla te. com/ en/ 
deep- synth esis/), and algorithm registry (https:// beian. cac. gov. cn/#/ index). It is unclear (1) 
whether these regulations on the more general AI/ML, or other AI/ML algorithms, can 
automatically work for LLMs without any changes, and (2) how the regulations can be 
projected onto each other in a rigorous, yet operational, way. More importantly, even for 
general AI/ML, it still needs to be clarified how to sufficiently and effectively address regu-
latory requirements (such as robustness and transparency) with technical means. The V&V 
framework proposed in this survey will be one viable solution.

Nevertheless, significant issues raised by the LLMs, notably the ChatGPT, include cop-
yright and privacy. The ChatGPT developers reportedly use data from the internet, and it 
is unclear if the copyrights of the training data have been carefully dealt with, especially 
when the ChatGPT is eventually for commercial use. Moreover, as a conversational AI, 
the privacy of the end users, when engaged in a dialogue, is a serious concern. The end-
users should be informed on whether and how their dialogues will be stored, used, and 
redistributed.

8.2  Responsible AI principles

Responsible and accountable AI has been a topic of discussion for the past years (see e.g., 
https:// ec. europa. eu/ futur ium/ en/ ai- allia nce- consu ltati on.1. html, https:// www. micro soft. 
com/ en- us/ ai/ respo nsible- ai, https:// www. turing. ac. uk/ news/ publi catio ns/ under stand ing- 
artifi cial- intel ligen ce- ethics- and- safety.), with a gradual convergence to include properties 
such as transparency, explainability, fairness, robustness, security, privacy, etc. A govern-
ance framework is called for to ensure that these properties are implemented, evaluated, 
and monitored. A comprehensive discussion and comparison is out of the scope of this sur-
vey, but we note that, many properties are required, consistent definitions to many of them 
are still missing, and properties can be conflicting (i.e., the improvement of one property 
may compromise others). It is therefore not surprising that it can still be a long way to turn 
the principles into operational rules.

Specific to LLMs, ChatGPT and the like have led to severe concerns on e.g., potential 
misuse, unintended bias, and fair access. To this end, on the enterprise level, ethical princi-
ples are needed to guide the development and use of LLMs, including questioning whether 
something should be done rather than whether it can be done, as requested in https:// www. 
nature. com/ artic les/ d41586- 023- 00191-1. Moreover, systematic research is also called for 
to understand the certain to which the misuse of LLMs can lead to bad consequence, as is 
done in Botacin (2023) on attackers generating malware with LLMs or in Sandoval et al. 
(2023) which discusses the security implication of using LLMs in generating codes.

https://artificialintelligenceact.eu
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1113
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1113
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https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1146542/a_pro-innovation_approach_to_AI_regulation.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1146542/a_pro-innovation_approach_to_AI_regulation.pdf
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://www.nist.gov/itl/ai-risk-management-framework
http://www.cac.gov.cn/2022-01/04/c_1642894606258238.htm
http://www.cac.gov.cn/2022-01/04/c_1642894606258238.htm
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https://beian.cac.gov.cn/#/index
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https://www.microsoft.com/en-us/ai/responsible-ai
https://www.microsoft.com/en-us/ai/responsible-ai
https://www.turing.ac.uk/news/publications/understanding-artificial-intelligence-ethics-and-safety
https://www.turing.ac.uk/news/publications/understanding-artificial-intelligence-ethics-and-safety
https://www.nature.com/articles/d41586-023-00191-1
https://www.nature.com/articles/d41586-023-00191-1
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8.3  Educational challenges

Verification and validation of safe and trustworthy AI models are not central to the com-
puter science curriculum or data science curricula. When validation and verification of 
models are taught at all, it is often part of an AI course that emphasizes tinkering with 
testing data-set rather than as a systematic and rigorous discipline with a solid scientific 
foundation. We need a curriculum beyond traditional education, covering formal verifi-
cation, statistics, and XAI.

This need for adequately trained engineers impacts industrial practice, creating inef-
ficiencies and difficulties in building AI systems with safety guarantees. Engineers 
untrained in safety and trustworthy AI models are often asked to make AI models for 
AI-critical applications.

The need for a shared cultural background between AI and rigorous design commu-
nities results in fragmented research. They use different terminologies. For example, 
“trustworthiness” does not have the same meaning across communities. Conferences are 
separate, no interaction between the two communities. The educational system will take 
time to adapt to evolving industrial and cultural needs. At the least, we suggest intro-
ducing AI students to the rigorous and systematic analysis of safety and trust and the 
corresponding approaches to the design of AI-critical applications. Another short-term 
objective should be to define and promote a reference curriculum in computer science 
with an optional program for designing safe and trusted AI applications.

8.4  Transparency and explainability

First, OpenAI’s decision to not open-source GPT-3 and beyond has already led to con-
cerns on the transparent development of AI. However, OpenAI said it plans to make 
more technical details available to other third parties for them to advise on how to weigh 
the competitive and safety considerations against the scientific value of further transpar-
ency. Nevertheless, we have seen a trend of open-sourcing LLMs, with notably Meta’s 
Llama 2 (Touvron et al. 2023). It is also important to note that, no technical details are 
available on how the guardrail is designed and implemented. It will also be interesting 
to discuss on whether the guardrail itself should undergo a verification process.

Second, it has been hard to interpret and explain the decisions of the deep learning 
models such as image classifiers. The situation becomes worsens when dealing with 
LLMs (Kambhampati 2022), which have emergent and hard-to-explain behaviours. 
For example, it has been observed that adding an incarnation, such as “Let’s think step 
by step”, to the prompt can achieve improved responses from GPT-3. Techniques are 
needed to explain such a phenomenon. This calls for extending explainable AI tech-
niques to work with LLMs. In particular, it is necessary to consider the explanations’ 
robustness to explain why such incarnation can lead to improved, yet different, answers. 
To this end, some prior works on image classifiers, such as Zhao et al. (2021a), Huang 
et al. (2022c), can be considered.
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9  Discussions

The safety and trustworthiness issues become more important with the wider adoption 
of machine learning, especially for LLMs, with which a large number of end users 
have direct interactions. Research has been significantly lagged behind, partly due to 
the fact that some issues become more significant for LLMs than they are for the usual 
machine learning models. The following are an incomplete list of research directions 
that we believe require significant investments in the near future.

• Data privacy. For usual machine learning models, their training data are obtained 
beforehand, with many of them being made available to the public. Notable exam-
ples include the ImageNet dataset. That is, the privacy and copyright issues for the 
training data were not as serious. However, LLMs’ training data come directly from 
the internet, many of which are private information and do not have the authori-
sations from the data owners. On top of this, various techniques, such as prompt 
injection and privacy attacks, are available to leak the information. It requires a 
multi-disciplinary approach to deal with the data privacy issue.

• Safety and trustworthiness implications. Currently, research is focused on trick-
ing the LLMs to generate unexpected outcomes. There needs to be systematic 
approaches to study and measure the certain to which such unexpected outcomes 
might lead to bad consequences. This requires the modelling of the environment 
(e.g., an organisation) in which the LLMs are used, including how they are used 
and the consequences of all possible outcomes. A systematic study will enable the 
understanding of which aspects of alignments are needed and how to fine-tune the 
LLMs to different applications domains.

• Rigorous engineering. The LLMs, in its current development, are mostly relying on 
the massive training data and the exceptional computational power owned by the 
large tech giants. Its performance currently is measured with various small scale 
benchmark datasets that are designed for the domain specific aspects of the abili-
ties, for example, the mathematics, the reasoning, and so on. A rigorous engineer-
ing approach, by considering the entire development cycle including the evalua-
tion, is needed to support the shifting of the development from extensive mode to 
intensive mode, and for the benefit of providing assurance cases for the applica-
tions of LLMs to safety critical domains.

• Verification with provable guarantees. Empirical evaluation provides certain evi-
dence about the performance, but cannot be regarded as a rigorous justification, 
especially in safety critical domains. A mathematically well-founded proof about 
the performance, e.g., in the form of statistical guarantees such as chain constraint 
(Bensalem et al. 2023), can be useful for improving the confidence of the users.

• Regulations and standards. The necessity of regulations has been commonly 
agreed. However, the regulations do not provide workable measures that are usually 
recommended in industrial standards. Compliance with regulations and standards is 
an important part of an assurance case to justify the safety of a product. It is urgent 
for the community to come up with standards so as to release the full potential of 
LLMs and AI in general.
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10  Conclusions

This paper provides an overview of the known vulnerabilities of LLMs, and discusses how 
the V&V techniques might be adapted to work with them. Given the LLMs are quickly 
adopted by applications that have direct or indirect interactions with end users, it is impera-
tive that the deployed LLMs undergoes sufficient verdict processes to avoid any undesir-
able safety and trustworthy consequences. Novel V&V techniques are called for, to deal 
with the special characteristics of the LLMs such as the nondeterministic behaviours, the 
model sizes that are significantly larger than the usual machine learning models, the train-
ing dataset that is obtained from internet rather than through a careful collection process, 
etc. Multi-disciplinary development is needed to make sure that all trustworthy issues are 
fully considered and tackled.
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