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Abstract We consider planning with uncertainty in the initial state as a case study of
incremental quantified Boolean formula (QBF) solving. We report on experiments with a
workflow to incrementally encode a planning instance into a sequence of QBFs. To solve
this sequence of successively constructed QBFs, we use our general-purpose incremen-
tal QBF solver DepQBF. Since the generated QBFs have many clauses and variables in
common, our approach avoids redundancy both in the encoding phase as well as in the solv-
ing phase. We also present experiments with incremental preprocessing techniques that are
based on blocked clause elimination (QBCE). QBCE allows to eliminate certain clauses
from a QBF in a satisfiability preserving way. We implemented the QBCE-based techniques
in DepQBF in three variants: as preprocessing, as inprocessing (which extends preprocess-
ing by taking into account variable assignments that were fixed by the QBF solver), and
as a novel dynamic approach where QBCE is tightly integrated in the solving process.
For DepQBF, experimental results show that incremental QBF solving with incremental
QBCE outperforms incremental QBF solving without QBCE, which in turn outperforms
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nonincremental QBF solving. For the first time we report on incremental QBF solving with
incremental QBCE as inprocessing. Our results are the first empirical study of incremental
QBF solving in the context of planning and motivate its use in other application domains.

Keywords Quantified Boolean formulas (QBFs) · Conformant planning · Incremental
solving · Preprocessing · Blocked clause elimination

Mathematics Subject Classifications (2010) 68T15 · 68T20 · 68T27

1 Introduction

Many workflows in formal verification and model checking rely on certain logics as
languages to model verification conditions or properties of the systems under considera-
tion. Examples for such logics are propositional logic (SAT), quantified Boolean formulas
(QBFs), and decidable fragments of first order logic in terms of satisfiability modulo theo-
ries (SMT). A tight integration of decision procedures to solve formulas in these logics is
crucial for the overall performance of the workflows in practice.

In the context of SAT, incremental solving has become a state-of-the-art approach [1,
12, 30, 40]. Given a sequence of related propositional formulas S = 〈φ0, φ1, . . . , φn〉 an
incremental SAT solver reuses information that was gathered when solving φi in order to
solve the next formula φi+1. Since this incremental approach avoids some redundancy in the
process of solving the sequence S, it is desirable to integrate incremental solvers in practical
workflows. In contrast, in nonincremental solving the solver does not keep any information
from previously solved formulas and always starts from scratch.

QBFs are an extension of propositional formulas which allow for explicit universal (∀)
and existential (∃) quantification over Boolean variables. The problem of checking the satis-
fiability of QBFs is PSPACE -complete. We consider QBFs as a natural modelling language
for planning problems with uncertainty in the initial state. In conformant planning we are
given a set of state variables over a specified domain, a set of actions (each action with
a precondition and an effect), an initial state where some values of the variables may be
unknown, and a specification of the goal. The task is to find a sequence of actions, i.e.,
a plan, that leads from the initial state to a state where the goal specification is satisfied.
Many natural problems, such as repair and therapy planning [47], can be formulated as con-
formant planning problems. When restricted to plans of length polynomial in the input size
this form of planning is �2P -complete [3], whereas classical planning with complete infor-
mation is NP -complete. Therefore, transforming conformant planning problems to QBFs
is a natural approach. Rintanen [43] presented such transformations. It is also possible to
transform an instance of conformant planning to propositional logic (SAT), for example.
However, QBF encodings are potentially exponentially more succinct than SAT encodings
because universal quantifiers have to be flattened in the SAT encodings. The compact-
ness of QBF encodings has been illustrated in the context of classical planning problems
[10].

Recently, Kronegger et al. [28] showed that solving a conformant planning instance by
transformation into a sequence of QBFs can be competitive. In this approach, they gener-
ated a QBF for every plan length under consideration and invoked an external QBF solver
on each generated QBF. However, the major drawback is that the QBF solver cannot reuse
information from previous runs. All information necessary to solve the QBF has to be
learned again because the QBF solver is called in a nonincremental way.
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In this work we present an incremental workflow to solve planning problems with uncer-
tainty in the initial state which tightly integrates a general-purpose incremental QBF solver.
To obtain a better picture of the performance gain through the incremental approach, we
implemented the workflow in a planning tool and perform a case study where we compare
incremental QBF solving and nonincremental QBF solving on benchmarks for conformant
planning. Notice that the basic workflow as implemented by our planning tool is not limited
to conformant planning problems but also applies to arbitrary reachability problems like
bounded model checking (BMC) [39].

The main contributions of this work are as follows.1

– Planning tool. We present a planning tool based on the transformation of planning
instances with uncertainty in the initial state to QBFs. This tool implements an incre-
mental and exact approach, i.e., it is guaranteed to find a plan whenever a plan exists
and – if successful – it returns a plan of minimal length. Furthermore, our tool allows
for the use of arbitrary QBF preprocessors and (incremental) QBF solvers.

– QBF solving. We apply the general-purpose incremental QBF solver DepQBF2 [34, 35]
in the workflow implemented by the planning tool. DepQBF is a search-based QBF
solver with clause and cube learning [15, 31, 36, 50]. We have integrated incremen-
tal preprocessing techniques into DepQBF to combine preprocessing and incremental
solving. For this purpose, we have implemented a nonincremental and an incremental
version of blocked clause elimination for QBF (QBCE) [6, 17]. QBCE allows to elimi-
nate certain clauses from a QBF in a satisfiability preserving way. The nonincremental
and incremental version of QBCE is applied for preprocessing and inprocessing, which
extends preprocessing by taking into account variable assignments that were fixed by
the QBF solver. Additionally, QBCE is applied in a novel dynamic approach where
it is tightly coupled with the solving process [32]. These techniques are explained in
Section 2. Apart from DepQBF, we have integrated Nenofex [33] and RAReQS [23]
as additional nonincremental QBF solvers and Bloqqer [6] as a QBF preprocessor into
our planning tool.

– Experimental evaluation. We evaluate the performance of the incremental and the
nonincremental QBF-based approach to solve planning instances with uncertainty
in the initial state. For that matter, we rely on the nonincremental QBF solvers
Nenofex, RAReQS, and incremental and nonincremental variants of DepQBF. For the
nonincremental approach we also analyze the performance of the QBF solvers when
the QBF preprocessor Bloqqer is applied prior to solving. For both the incremental
and nonincremental approach we analyze the performance of DepQBF when combined
with QBCE as a preprocessing and inprocessing technique. We also evaluate the novel
dynamic application of QBCE [32]. In addition, we briefly report on experiments with
heuristic approaches to solve the considered planning problems.

This article is organized as follows. In Section 2 we give an overview on QBF solving,
preprocessing by QBCE, and incremental QBF solving together with incremental QBCE.
In Section 3 we briefly describe the necessary background on conformant planning and the
two benchmark types we used in our experimental evaluation. Then, in Section 4 we discuss
our planning tool that takes planning instances as input and encodes them as a sequence
of QBFs. In Section 5 we report in detail on the experimental evaluation of our approach.
Finally, in Section 6 we conclude and give directions for future work.

1This article is an extended and enhanced version of the conference article [13].
2DepQBF is free software: http://lonsing.github.io/depqbf/.

http://lonsing.github.io/depqbf/
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2 QBF solving and preprocessing

We focus on quantified Boolean formulas (QBFs) ψ = Q̂.φ in prenex conjunctive normal
form (PCNF). All quantifiers occur in the prefix Q̂ = Q1B1 . . . QnBn and the matrix φ is
a quantifier-free propositional formula in CNF. A CNF consists of a conjunction of clauses.
A clause (cube) is a disjunction (conjunction) of literals. For simplicity, we identify a clause
(cube) as a set of literals. A literal is either a variable x or a negated variable x̄. The negation
of a literal l is denoted by l̄. A clause C is tautological if x ∈ C and x̄ ∈ C for some variable
x. Let i, j ∈ {1, . . . , n} and 1 ≤ k ≤ n − 1. The prefix consists of quantifiers Qi ∈ {∀, ∃}
where Qk �= Qk+1 and pairwise disjoint sets Bi of Boolean variables, where QiBi is called
a quantifier set. For simplicity, we omit parentheses when we write quantifier sets. The
prefix gives rise to a linear ordering of the variables: we define x ≤ y if x ∈ Bi , y ∈ Bj and
i ≤ j . A QBF ψ = Q̂.φ is closed if all variables which occur in the matrix φ also occur in
the prefix Q̂. We consider only closed QBFs.

Given a QBF ψ , an assignment is a mapping from the variables in ψ to truth values true
or false. We identify an assignment A := {l1, . . . , ln} as a set of literals li such that if some
variable x is assigned true then li ∈ A and li = x, and if x is assigned false then li ∈ A

and li = x̄. Given a QBF ψ and an assignment A, the QBF ψ under A, denoted by ψ[A],
is obtained by replacing every occurrence of a variable x in ψ such that l = x (l = x̄) and
l ∈ A by the truth constant 	 (⊥). Simplifications with respect to truth constants may result
in a new matrix without truth constants and in a smaller quantifier prefix.

The semantics of QBFs is defined recursively based on the quantifier types and the prefix
ordering of the variables. In a semantical evaluation, a QBF ψ is split into subcases. The
QBF consisting only of the truth constant true (	) or false (⊥) is satisfiable or unsatisfiable,
respectively. The QBF ψ = ∀x. ψ ′ with the universal quantification ∀x at the leftmost
position in the prefix is satisfiable if the subcases ψ[{x̄}] and ψ[{x}] are satisfiable. The
QBF ψ = ∃x. ψ ′ with the existential quantification ∃x is satisfiable if at least one of the
subcases ψ[{x̄}] or ψ[{x}] is satisfiable.

Search-based QBF solving [9] is a generalization of the DPLL algorithm [11] for SAT.
DPLL solves a propositional formula by systematically splitting it into subcases based on
assignments to the variables. Search-based QBF solvers implement a QBF-specific variant
of conflict-driven clause learning (CDCL) for SAT, called QCDCL [15, 31, 36, 50]. In
QCDCL as implemented in DepQBF, assignments A to the variables in a given closed QBF
ψ are successively generated. In general, the variables have to be assigned starting from
the left end of the quantifier prefix. After assignments have been made, the QBF ψ[A] is
analyzed.

The case where ψ[A] = ⊥ constitutes an unsatisfiable subcase, also called a conflict.
The subcase is analyzed and a new clause C, called a learned clause, is derived from ψ[A]
by Q-resolution [27]. Q-resolution is a variant of resolution for propositional logic which
takes the quantification of variables into account and which combines resolution and uni-
versal reduction, defined as follows. Given two nontautological clauses C1 and C2 such that
l ∈ C1, l̄ ∈ C2, and the variable of l is existential, the resolvent of C1 and C2 is the nontau-
tological clause C := (C1 \ {l}) ∪ (C2 \ {l̄}). The variable of l is the pivot variable. If C is
tautological then by definition no resolvent of C1 and C2 exists. Given a clause C = C′ ∨ l

where the variable var(l) of l is universal and for all variables var(l′) of existential liter-
als l′ ∈ C′ it holds that var(l′) ≤ var(l), universal reduction of C results in the clause C′.
For simplicity, we consider a clause a resolvent if it was derived by a single application of
resolution followed by universal reduction. The actual selection of the clauses in ψ to be
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resolved in order to produce a learned clause C depends on the current assignment A. A
learned clause C is added conjunctively to ψ .

The case where ψ[A] = 	 constitutes a satisfiable subcase, also called a solution
because every clause in ψ is satisfied by A. A cube C = (

∧
l∈A l) comprising the literals

in A is constructed and added disjunctively to ψ as a learned cube. Hence the set of learned
cubes (clauses) appear in a formula in disjunctive (conjunctive) normal form. Dual to the
derivation of clauses, Q-resolution is applied to derive new cubes from previously learned
ones, where pivot variables must be universally quantified. Dual to universal reduction, exis-
tential reduction allows to remove existential literals from cubes which are maximal with
respect to the prefix ordering.

After a learned clause or cube has been added to ψ , assignments are retracted by
backtracking. Assignment generation proceeds until the next (un)satisfiable subcase is
encountered. QCDCL terminates if an empty clause or cube is derived. QCDCL derives an
empty clause (cube) if and only if the given QBF is unsatisfiable (satisfiable).

Example 1 (Adapted from Example 1 in [32]) Consider the QBF ψ with prefix ∃z,z′∀u∃y

and matrix (u∨ ȳ)∧(ū∨y)∧(z∨u∨ ȳ)∧(z∨u∨y)∧(z′ ∨ ū∨y)∧(z̄∨ ū∨ ȳ)∧(z̄′ ∨u∨y).
We solve ψ by QCDCL. Suppose that all the variables in ψ are assigned to true following

the prefix ordering, resulting in the assignment A := {z, z′, u, y}. The clause (z̄ ∨ ū ∨ ȳ)

is falsified under assignment A, which constitutes an unsatisfiable subcase. In the course of
conflict-driven clause learning, resolving the clauses (z̄∨ ū∨ ȳ) and (ū∨y) by Q-resolution
produces the learned unit clause (z̄). The learned unit clause (z̄) can only be satisfied by
assigning variable z to false. During backtracking, all assignments in A are retracted and
the search process starts over with the new assignment A := {z̄}.

Assume that A is further extended to A := {z̄, z̄′, ū, ȳ} by following the prefix ordering.
The clause (z ∨ u ∨ y) is falsified under A. The learned clause (z) is produced by resolving
the falsified clause (z ∨ u ∨ y) and the clause (u ∨ ȳ). Further, the learned clause (z) is
resolved with the previously learned clause (z̄), resulting in the empty clause and proving
that ψ is unsatisfiable.

The purpose of the clauses and cubes learned in QCDCL is to prune the search space
and hence speed up the search. Additionally, QCDCL-based QBF solvers can produce Q-
resolution proofs of the (un)satisfiability of a given QBF. A Q-resolution proof � consists of
all the Q-resolution steps involved in the generation of clauses or cubes needed to derive the
empty clause or cube. This allows us to verify the result of a QBF solver independently [49].

Given a Q-resolution proof � of the unsatisfiability of a QBF ψ , a countermodel [2] or
strategy [16] can be extracted from � in terms of a set of Herbrand functions. Intuitively,
an Herbrand function gy(x1, . . . , xn) represents the values that a universal variable y must
take to falsify ψ with respect to the values of all existential variables x1, . . . , xn with xi < y

in the prefix ordering. Given an unsatisfiable QBF ψ , the process of Herbrandization of
ψ replaces the universal variables in ψ by their respective Herbrand functions and results
in an unsatisfiable propositional formula ψ ′ not necessarily in CNF and containing only
existential variables.

Example 2 (Continues Example 1) Consider the QBF ψ from Example 1 and the derivation
of the empty clause in terms of resolving the learned clauses C := (z̄) and C′ := (z). The
learned clause C was obtained by resolving the clauses (z̄∨ū∨ȳ) and (ū∨y) and the learned
clause C′ by resolving the clauses (z ∨ u ∨ y) and (u ∨ ȳ), respectively. The Q-resolution
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steps needed to derive the learned clauses up to the empty clause constitute a Q-resolution
proof � of the unsatisfiability of ψ .

By inspecting � it is possible to construct Herbrand functions for the universal variables
in ψ . We refer to the literature [2] for details on the construction of Herbrand functions.
Suppose that we have constructed the Herbrand function gu(z, z

′) := z for the single uni-
versal variable u in ψ . Note that gu(z, z

′) technically depends on both existential variables z

and z′ which are smaller than u in the prefix ordering. However, actually gu(z, z
′) depends

only on z since z′ does not occur in its definition.
Herbrandization replaces all occurrences of u in ψ by gu(z, z

′), resulting in the proposi-
tional formula ψ ′ := ∃z, z′, y.(z∨ ȳ)∧ (z̄∨y)∧ (z∨y)∧ (z′ ∨ z̄∨y)∧ (z̄∨ ȳ)∧ (z̄′ ∨z∨y),
which contains only existential variables. The formula ψ ′ is unsatisfiable, which shows that
gu(z, z

′) is indeed a correct Herbrand function, thus confirming the unsatisfiability of the
original QBF ψ .

In order to check the correctness of Herbrand functions as illustrated in Example 2,
the satisfiability of the propositional formula ψ ′ resulting from Herbrandization must be
checked, which is an NP -complete problem.

Dual to Q-resolution proofs of unsatisfiability and Herbrand functions, Skolem functions
can be extracted from a Q-resolution proof � of the satisfiability of a QBF ψ . A Skolem
function fy(x1, . . . , xn) represents the values that an existential variable y must take to
satisfy ψ with respect to the values of all universal variables x1, . . . , xn with xi < y in
the prefix ordering. Dual to Herbrandization, Skolemization of ψ replaces the existential
variables in ψ by their respective Skolem functions and results in a satisfiable QBF ψ ′ not
necessarily in CNF and containing only universal variables.

Example 3 (Taken from Example 1 in [32]) Consider the QBF ψ with prefix ∃z,z′∀u∃y

and matrix (u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄′ ∨ u ∨ y).
We solve ψ by QCDCL. Suppose that assignment A := {z̄, z̄′, ū, ȳ} has been enumerated.
All clauses are satisfied under A, which corresponds to a solution, and hence the cube
C0 = (z̄ ∧ z̄′ ∧ ū ∧ ȳ) is learned. Likewise, the cube C1 = (z̄ ∧ z̄′ ∧ u ∧ y) is learned given
assignment A := {z̄, z̄′, u, y}, which is also a solution. By existential reduction, the cubes
C2 = (z̄∧ z̄′ ∧ ū) and C3 = (z̄∧ z̄′ ∧u) are derived from C0 and C1, respectively. Resolving
the cubes C2 and C3 produces the cube C4 = (z̄∧ z̄′). Finally, applying existential reduction
to C4 results in the empty cube. The Q-resolution steps needed to derive the learned cubes
up to the empty cube constitute a Q-resolution proof � of the satisfiability of ψ .

Similar to Example 2, Skolem functions for the existential variables in ψ may be con-
structed by inspecting � [2]. Suppose that we have constructed Skolem functions fz := ⊥,
fz′ := ⊥, and fy(u) := u for z, z′, and y in ψ . Skolemization replaces all occurrences
of existential variables in ψ by their respective Skolem function, resulting in the QBF
ψ ′ := ∀u.(u∨ ū)∧ (ū∨u)∧ (⊥∨u∨ ū)∧ (⊥∨ ū∨u)∧ (	∨ ū∨ ū)∧ (	∨u∨u). Further
simplification reduces ψ ′ to 	, showing that ψ ′ is satisfiable. Hence, fz, fz′ , and fy(u) are
correct Skolem functions, which confirms that the original QBF ψ is satisfiable.

In order to check the correctness of Skolem functions as illustrated in Example 3, the
satisfiability of the QBF ψ ′ resulting from Skolemization must be checked, a problem which
is in the complexity class co-NP .

Skolem and Herbrand functions provide a more detailed explanation of the (un)satis-
fiability of a QBF than Q-resolution proofs. The functions express concrete values the
variables must take whereas Q-resolution proofs indicate only (un)satisfiability.
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To encode an instance of conformant planning as a QBF, we build upon the work of
Rintanen [43]. We encode the problem whether a plan of a particular length k exists as
a QBF ψ = ∃B1∀B2∃B3.φ with a prefix having two quantifier alternations. Notice that,
although the computational complexity of this planning problem is on the second level of
the polynomial hierarchy, we use a more natural encoding that simplifies the PCNF trans-
formation which is on the third level of the polynomial hierarchy. If ψ is satisfiable then
a plan of length k can be extracted from the assignments to the variables in the leftmost
existential quantifier set ∃B1. To this end, however, it is not necessary to explicitly produce
Q-resolution proofs and Skolem functions from a run of QCDCL on ψ . The Skolem func-
tion fy of a variable y in B1 does not depend on any universal variables and hence has an
arity of zero (as illustrated in Example 3). For this special case, the value of fy is a truth con-
stant and can be computed by a QCDCL-based QBF solver during a run and be represented
in the QDIMACS output format.3 The correctness of the extracted plan can be checked by
partial Skolemization of ψ based on the constant Skolem functions of the variables in B1,
which must result in a satisfiable QBF ψ ′ = ∀B2∃B3.φ

′ in PCNF containing universal and
existential variables. Checking the correctness of the constant Skolem functions amount to
checking the satisfiability of ψ ′, which is �2P-complete.

Example 4 (Continues Example 3) Consider the QBF ψ with prefix ∃z,z′∀u∃y and matrix
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄′ ∨ u ∨ y) from Example 3
and the constant Skolem functions fz := ⊥ and fz′ := ⊥ for the existential variables z and
z′ from the leftmost existential quantifier set. Partial Skolemization with respect to fz and
fz′ and simplification results in the satisfiable QBF ψ ′ := ∀u∃y.(u ∨ ȳ) ∧ (ū ∨ y).

Extracting constant Skolem functions of variables in the leftmost existential quantifier
set only amounts to partial certification of the satisfiability of ψ . Partial certification is
appealing for QBF-based workflows as it avoids to generate Q-resolution proofs. In practice,
the generation of Skolem functions of arbitrary existential variables may be prohibitive in
terms of run time and memory footprint [41]. Moreover, partial certification is compatible
with preprocessing and incremental solving.

Checking the correctness of constant Skolem functions as illustrated in Example 4 is
PSPACE -complete in general if the number of quantifier alternations in ψ ′ resulting from
partial Skolemization is unbounded. However, a Q-resolution proof �′ of the satisfiability of
ψ ′ may be obtained from a Q-resolution proof � of the original QBF ψ and constant Skolem
functions fy of existential variables y in the leftmost quantifier set of ψ by interpreting �

under fz [16].

2.1 Expansion-based QBF solving

In contrast to search-based QBF solving, expansion-based solvers successively eliminate
variables in the formula (e.g., [5, 8, 33]). In general, variables are eliminated from right to
left with respect to the prefix ordering. In the following, we briefly illustrate the idea of
eliminating variables by expansion.

Let ψ := Q1x1 . . . Qn−1xn−1Qnxn.φ be a QBF where Qi ∈ {∀, ∃}, xi are variables, and
φ is a quantifier-free propositional formula not necessarily in CNF. If the rightmost variable
xn is existentially quantified, i.e., Qn = ∃, then xn is expanded by replacing the original

3QDIMACS output format definition: http://www.qbflib.org/qdimacs.html.

http://www.qbflib.org/qdimacs.html
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QBF ψ := Q1x1 . . . Qn−1xn−1Qnxn.φ by Q1x1 . . . Qn−1xn−1.(φ[x̄n] ∨ φ[xn]). In the two
copies φ[x̄n] and φ[xn] of φ, all occurrences of xn are replaced by the truth constants ⊥
and 	, respectively. Expansion of variables may stop early as soon as the formula after
expansion reduces to either ⊥ or 	 under Boolean simplifications, meaning that the original
QBF ψ is unsatisfiable or satisfiable, respectively.

If the rightmost variable xn is universally quantified, i.e., Qn = ∀, then xn is expanded
by joining the two copies of φ conjunctively (∧). Expansion can be generalized to variables
which are not rightmost, which requires to duplicate certain variables, add new quantifier
sets, and rename variables in one copy of the formula.

In the worst case, the size of the formula doubles each time a variable is expanded. In
practice, expansion-based solvers like Nenofex [33] and RAReQS [23], which we consider
in our experimental study in Section 5, apply sophisticated techniques like integrated SAT
solving, redundancy removal, and abstraction to limit the increase of the formula size.

From a theoretical point of view, expansion of variables is different from Q-resolution,
which is applied in QCDCL. On certain classes of QBFs, expansion allows for proofs which
are exponentially more succinct than any Q-resolution proof, and vice versa [4, 24]. Hence
solvers based on variable expansion and QCDCL have individual strengths depending on
the QBFs to be solved.

2.2 Preprocessing by blocked clause elimination

Preprocessing has been found crucial for the performance of QBF-based workflows (see,
e.g., the results of the QBF Gallery 2013 and 2014).4 Preprocessing transforms a given QBF
ψ into a QBF ψ ′ by adding or removing clauses or variables in a satisfiability preserving
way. The goal of preprocessing is to speed up solving ψ ′ (compared to ψ) when also taking
the time for preprocessing into account. Techniques applied for preprocessing include failed
literal detection, variable expansion, equivalence reasoning, and variable elimination [5, 8,
14, 45, 48]. In contrast to expansion-based QBF solving as outlined in the previous section,
in the context of preprocessing variable expansion is applied only in restricted fashion to
avoid an increase of the formula size.

In our incremental QBF-based workflow to solve conformant planning problems, we
focus on blocked clause elimination (QBCE) [6, 17] as a QBF preprocessing technique.
Among other techniques, QBCE is implemented in the QBF preprocessor Bloqqer.5

Definition 1 (Blocked clause [6, 17]) Let ψ = Q̂.φ be a QBF and C ∈ φ be a clause. An
existential literal l ∈ C is a blocking literal if for all clauses C′ ∈ φ with l̄ ∈ C′, a literal l′
with l′ ≤ l exists such that l′, l̄′ ∈ C ∪ (C′ \ {l̄}). A clause is blocked if it contains a blocking
literal.

Note that blocking literal l in Definition 1 must be existential whereas literals l′, l̄′ can be
existential or universal. An informal definition of blocked clauses based on resolution is as
follows. Consider an existential literal l in a clause C of a QBF and all clauses C′ containing
the literal l̄. Let C′′ := (C \ {l}) ∪ (C′ \ {l̄}) be the potential resolvent of C and C′ using the
variable of l as the pivot variable. Then l is a blocking literal in C if, for all C′, (1) the clause
C′′ contains complementary literals l′ and l̄′ (hence C′′ is not a resolvent by definition) and

4http://www.kr.tuwien.ac.at/events/qbfgallery2013/ and http://qbf.satisfiability.org/gallery/.
5http://fmv.jku.at/bloqqer/.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/
http://qbf.satisfiability.org/gallery/
http://fmv.jku.at/bloqqer/
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(2) the literals l′ and l̄′ are smaller than l according to the prefix ordering. Thus, checking
whether l ∈ C is a blocking literal amounts to inspecting all potential resolvents that can be
generated by selecting the variable of l as pivot variable. Originally, blocked clauses were
presented in the context of extended resolution and propositional logic [29].

Definition 2 (Blocked clause elimination [6, 17]) Given a QBF ψ , blocked clause elim-
ination (QBCE) produces the QBF ψ ′ by removing all blocked clauses from ψ until
completion.

QBCE has a unique fixpoint, preserves unsatisfiability and can be carried out in time
which is polynomial in the size of ψ [6]. The following example illustrates the elimination
of blocked clauses by QBCE.

Example 5 Consider the satisfiable QBF ψ := ∃x1, x2∀y3∃x4.(
∧5

i:=1 Ci) where the clauses
Ci are defined as follows:

C1 = (y3 ∨ x̄4) C3 = (x1 ∨ y3 ∨ x̄4) C5 = (x̄1 ∨ ȳ3 ∨ x̄4)

C2 = (ȳ3 ∨ x4) C4 = (x2 ∨ ȳ3 ∨ x4)

QBCE successively removes all clauses in ψ and maintains a sequence BC of blocked
clauses in the order they were identified as blocked. Initially, BC := ∅. Consider C4 and
literal x4 ∈ C4, which is not a blocking literal due to x̄4 ∈ C5. However, literal x2 ∈ C4
is a blocking literal because there is no clause containing x̄2 and hence BC := 〈C4〉. Now
x̄4 ∈ C1 is a blocking literal since ȳ3 ∈ C2 and C4 with x4 ∈ C4 is already blocked. For the
same reasons x̄4 ∈ C3 is a blocking literal. Hence BC is updated to BC := 〈C4, C1, C3〉.
Then x̄1 ∈ C5 is a blocking literal since C3 with x1 ∈ C3 has already been identified as
blocked, and thus BC := 〈C4, C1, C3, C5〉. Finally, x4 ∈ C2 is a blocking literal since every
clause containing x̄4 is blocked and BC := 〈C4, C1, C3, C5, C2〉.

A partial certificate in terms of Skolem functions of the existential variables in the left-
most quantifier set of a QBF ψ can be extracted from a partial certificate of a QBF ψ ′
obtained from ψ by QBCE. To this end, we apply the following known approach [20] related
to blocked clause elimination for propositional logic [25]. Let ψ be a QBF, ψ ′ be the QBF
obtained from ψ by QBCE and BC = 〈C1, . . . , Cn〉 be the sequence of blocked clauses in
the order they were identified as blocked when applying QBCE to ψ . Assume that A′ is a
partial certificate of ψ ′ = ∃B1Q̂

′.φ′ where all variables in B1 are assigned. To reconstruct
a partial certificate A of ψ from A′, we initially set A := A′ and consider each clause Ci in
BC for i = n, . . . , 1 in reverse order. If the variable v of the blocking literal of Ci appears in
B1 and if Ci is not satisfied by the current assignment of v in A, then we flip the assignment
of v in A. The following example illustrates the reconstruction of a partial certificate.

Example 6 (Continues Example 5) Consider the QBF ψ from Example 5, where all clauses
are blocked, and let BC := 〈C4, C1, C3, C5, C2〉 be the sequence of clauses in ψ in the
order they were found blocked. Applying QBCE to ψ results in the empty QBF ψ ′ := 	
containing no clauses. Any assignment to the existential variables x1, x2 is a partial certifi-
cate of ψ ′. However, the assignment A′ = {x1, x2} where both x1 and x2 are assigned true is
not a partial certificate of the original QBF ψ because replacing x1 and x2 by 	 in ψ results
in the unsatisfiable QBF ∀y3, ∃x4.(y3 ∨ x̄4)∧ (ȳ3 ∨ x4)∧ (ȳ3 ∨ x̄4). We reconstruct a partial
certificate A from A′ as follows. Let A := A′ and consider Ci ∈ BC in reverse ordering. No
assignment is flipped for C2. The assignment of x1 is flipped from true to false since x̄1 ∈ C5
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is a blocking literal, it appears in the leftmost existential quantifier set and the previous
assignment of true to x1 does not satisfy C5. No assignments are flipped when inspecting
the remaining clauses in BC. Finally, we obtain the partial certificate A = {x̄1, x2} of the
original QBF ψ .

In our incremental QBF-based workflow to solve instances of conformant planning, we
simplify the QBFs ψ that encode the existence of a plan of length k by QBCE to obtain
a QBF ψ ′. We apply the reconstruction procedure illustrated in Example 6 to extract a
plan for the planning instance from a partial certificate of ψ ′ returned by the QBF solver.
We remark that the QRAT proof system [18, 19] allows to generate Skolem functions of
satisfiable QBFs which have been preprocessed by common techniques other than QBCE
like elimination or expansion of variables, for example. Since we consider only QBCE for
preprocessing and partial certificates, the generation of Skolem functions based on QRAT
is possible but not necessary in our workflow.

In addition to QBCE as a preprocessing technique, we also apply QBCE for inprocess-
ing [26] within DepQBF in our workflow. Inprocessing has been introduced in the context of
CDCL-based SAT solving and combines preprocessing with formula simplifications based
on unit clauses that have been learned. Inprocessing has not been presented for QCDCL-
based QBF solvers so far. After a unit clause (l) has been learned in QCDCL when solving
a QBF ψ , all clauses containing the literal l are removed from ψ , and all literals l̄ are
removed from clauses in ψ . After simplifications by learned unit clauses, further simplifi-
cations by QBCE may become possible. Whereas preprocessing is a static approach which
is applied once before a QBF is solved, inprocessing is more dynamic since it takes unit
clauses learned during a run of QCDCL into account.

Example 7 (Related to Examples 1 and 3) Consider the QBF ψ with prefix ∃z,z′∀u∃y and
matrix (u∨ ȳ)∧(ū∨y)∧(z∨u∨ ȳ)∧(z′ ∨ ū∨y)∧(z̄∨ ū∨ ȳ)∧(z̄′ ∨u∨y) from Example 3.
No clause is blocked in ψ and hence applying QBCE as a preprocessing technique to ψ has
no effect.

We solve ψ by QCDCL including inprocessing. Suppose that all the variables in ψ are
assigned to true following the prefix ordering, resulting in the assignment A := {z, z′, u, y}.
The clause (z̄ ∨ ū ∨ ȳ) is falsified under assignment A, which constitutes an unsatisfiable
subcase. The learned unit clause (z̄) is produced in the same way as in Example 1. The
learned unit clause (z̄) can only be satisfied by assigning variable z to false. Hence during
backtracking, all assignments in A are retracted and the search process starts over with the
new assignment A := {z̄}.

At this point, inprocessing simplifies ψ under A by removing the clause (z̄∨ū∨ȳ), which
is satisfied under A, by removing the literal z from the clause (z ∨ u ∨ ȳ), and by removing
the variable z from the prefix, resulting in the simplified QBF ψ ′ := ∃z′∀u∃y.(u∨ ȳ)∧ (ū∨
y)∧ (z′ ∨ ū∨y)∧ (z̄′ ∨u∨y). When applying QBCE as part of inprocessing to ψ ′, literal y

in (z′ ∨ ū ∨ y) is a blocking literal. After the blocked clause (z′ ∨ ū ∨ y) has been removed,
also z̄′ in (z̄′ ∨ u ∨ y) is a blocking literal. Finally the two remaining clauses (u ∨ ȳ) and
(ū∨ y) are also blocked with blocking literals ȳ and y, respectively. Thus simplifications in
inprocessing based on the learned unit clause (z̄) and QBCE reduce the original QBF ψ to
the empty QBF, showing that ψ is satisfiable.

In this example, clauses became blocked during inprocessing only because the origi-
nal QBF ψ has been simplified by taking into account the learned unit clause (z̄) and the
corresponding necessary assignment to variable z. Hence in general, inprocessing is more
powerful than preprocessing.
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In DepQBF we also implemented a novel, fully dynamic application of QBCE [32].6

Thereby, QBCE is used to simplify the given QBF ψ[A] interpreted under the assignment
A that has currently been generated in QCDCL. If QBCE simplifies ψ[A] to the empty
QBF, then a new cube can be learned with respect to A without the need to make further
assignments. This dynamic application of QBCE is in contrast to its usual application as a
preprocessing and inprocessing technique. As illustrated by Example 7, with inprocessing
QBCE is applied only after ψ has been simplified according to a new learned unit clause
C. With the novel dynamic application, however, QBCE may be applied to ψ[A] each
time after variables have been assigned to obtain a new assignment A. We refer to related
literature [32] on dynamic QBCE for further details and examples.

In our experiments with the QBF-based conformant planning workflow, we evaluate all
configurations of DepQBF implementing QBCE as preprocessing, inprocessing, and the
novel dynamic variant of QBCE. Further, we compare these configurations combined with
incremental and nonincremental solving.

2.3 Incremental QBF solving and incremental QBCE

In the QBF-based conformant planning workflow, a sequence of QBFs must be solved.
Each QBF in the sequence encodes the existence of a plan of a particular length. Let S :=
〈ψ0, ψ1, . . . , ψn〉 be a sequence of QBFs. Each QBF ψi in S is obtained from the previous
QBF ψi−1 in S by removing and adding clauses and variables. In incremental QBF solving
based on QCDCL, clauses and cubes that were learned when solving the previous QBF
ψi−1 may be reused in order to speed up the solving process of the current QBF ψi and any
forthcoming QBF in S. The set of learned clauses and cubes which can be reused depends on
the actual modifications of the previous QBF ψi−1 to obtain the current ψi . An approach to
incremental QBF solving was first presented in the context of bounded model checking [38].
For our experiments on conformant planning based on incremental QBF solving, we rely
on our general-purpose incremental QBF solver DepQBF [34, 35].

A novel feature of DepQBF is incremental preprocessing by QBCE. In our approach,
QBCE is carried out in incremental fashion when solving the current QBF ψi . Thereby,
clauses which are blocked in the previously solved QBF ψi−1 may still be blocked in
the current QBF ψi . Such blocked clauses are ignored when applying QBCE to ψi ,
thus avoiding redundant checks when searching for blocking literals. Clauses which are
blocked in ψi−1 but not in ψi must be restored in a backtracking phase. If a clause is
blocked in ψi then it is also blocked if other clauses are only deleted from ψi . Hence
only adding clauses to ψi may turn clauses which have been formerly blocked in ψi

into nonblocked ones. In general, incremental QBCE may result in smaller computa-
tional overhead compared to its nonincremental application, where always all clauses in
a QBF are considered. We illustrate our approach to incremental QBCE by the following
example.

Example 8 Consider the satisfiable QBF ψ from Example 5 with prefix Q̂ :=
∃x1, x2∀y3∃x4 and clauses Ci :

C1 = (y3 ∨ x̄4) C3 = (x1 ∨ y3 ∨ x̄4) C5 = (x̄1 ∨ ȳ3 ∨ x̄4)

C2 = (ȳ3 ∨ x4) C4 = (x2 ∨ ȳ3 ∨ x4)

6Dynamic QBCE is part of DepQBF version 5.0 or later.
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We construct the sequence S = 〈ψ0, ψ1, ψ2〉 by successively adding clauses Ci and apply
QBCE incrementally to ψi as follows. Let ψ0 := Q̂.C2 ∧C4 = Q̂.(ȳ3 ∨x4)∧(x2 ∨ ȳ3 ∨x4),
where x4 ∈ C2 and x2 ∈ C4 are blocking literals (x2 ∈ C4 is identified as blocking literal
before x4 ∈ C2). By adding C1 and C3 to ψ0, we obtain ψ1 := Q̂.C2 ∧ C4 ∧ C1 ∧ C3 =
Q̂.C2 ∧ C4 ∧ (y3 ∨ x̄4) ∧ (x1 ∨ y3 ∨ x̄4), where x̄4 ∈ C1 and x̄4 ∈ C3 are blocking literals.
The blocked clause C2 with blocking literal x4 ∈ C2 must be checked again when QBCE
is applied to ψ1 since the literal x̄4 occurs in both added clauses C1 and C3. However, the
blocked clause C4 does not have to be checked again because the negation of its blocking
literal x2 neither occurs in C1 nor in C3. All clauses are blocked in ψ1. Finally, by adding C5
to ψ1 we obtain ψ2 := Q̂.C2 ∧C4 ∧C1 ∧C3 ∧C5 = Q̂.C2 ∧C4 ∧C1 ∧C3 ∧ (x̄1 ∨ ȳ3 ∨ x̄4),
where x̄1 ∈ C5 is a blocking literal. Only C2 with blocking literal x4 has to be checked
again during QBCE since x̄4 ∈ C5. Like before, C4 does not have to be checked again.

From the perspective of a user, our implementation of incremental solving and incre-
mental QBCE in DepQBF is a black box. A related approach to incremental preprocessing
has been presented in the context of SAT solving [40]. With DepQBF, no user interaction is
necessary to control incremental applications of QBCE. This is in contrast to incremental
preprocessing based on don’t touch variables [39, 46]. These variables must not be affected
by preprocessing, e.g., the solver must not eliminate them. Either the user is responsible to
declare variables as don’t touch variables via the solver API or the solver determines them
by itself according to certain criteria. With incremental preprocessing based on don’t touch
variables, the effects of preprocessing never have to be undone in a backtracking phase.
However, don’t touch variables restrict the potential benefits when preprocessing the cur-
rent QBF ψi since certain parts of ψi are locked. In our approach, however, incremental
QBCE is applied to the entire QBF ψi , with the need to backtrack some of its effects when
tackling the next QBF ψi+1 .

In the following, we present a case study of QBF-based conformant planning. Our goal
is to evaluate incremental and nonincremental variants of QBF solving in a common appli-
cation framework to allow for a fair comparison. To this end we first discuss conformant
planning and two types of benchmarks we use in the experimental analysis.

3 Conformant planning and benchmark domains

A conformant planning problem consists of a set of state variables over a specified domain,
a set of actions (each action with a precondition and an effect), an initial state where some
values of the variables may be unknown, and a specification of the goal. The task is to find
a sequence of actions, i.e., a plan, that leads from the initial state to a state where the goal
specification is satisfied. The plan has to reach the goal for all possible values of unknown
variables, i.e., it has to be fail-safe. This problem can nicely be encoded into QBFs, e.g., by
building upon the encodings by Rintanen [43]. Conformant planning naturally arises, e.g.,
in repair and therapy planning [47], where a plan needs to succeed even if some obstacles
arise.

The length of a plan is the number of actions in the plan. As one is usually looking
for short plans, the following strategy is used. Starting at a lower bound k on the minimal
plan length, we iteratively increment the plan length k until a plan is found or a limit on
the plan length is reached. This strategy is readily supported by an incremental QBF solver
because a large number of clauses remains untouched when moving from length k to k + 1.
Furthermore, this strategy always leads to optimal plans with respect to the plan length.
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Fig. 1 Architecture of the planning tool

The two benchmark types we consider in our case study are called “Dungeon”. These
benchmarks are inspired by adventure computer-games and were first presented at the QBF
workshop 2013 [28]. In this setting a player wants to defeat monsters living in a dungeon.
Each monster requires a certain configuration of items to be defeated. In the beginning,
the player picks at most one item from each pool of items. In addition, the player can
exchange several items for one more powerful item if she holds all necessary “ingredients”.
Eventually, the player enters the dungeon. When entering the dungeon, the player is forced
to pick additional items. The dilemma is that the player does not know which items she will
get, i.e., the additional items are represented by variables with unknown values in the initial
state. It might also happen that the new items turn out to be obstructive given the previously
chosen item configuration. The goal is to pick items such that irrespective of the additional
items the player defeats at least one monster.

We consider two variants of the Dungeon benchmark. In variant v0 the player is only
allowed to enter the dungeon once, thus has to pick the items and build more powerful items
in advance. In contrast, in variant v1 the player might attempt fighting the monsters several
times and pick/build further items in between if the player was unsuccessful.

Despite the simple concept, these benchmarks are well suited for our case study. First,
they capture the full hardness of �2P -complete problems. Second, it is natural to reinterpret
the game setting as a configuration or maintenance problem.

4 QBF planning tool

We briefly describe our planning tool that takes planning instances as input and encodes
them as a sequence of QBFs. This tool generates a plan of minimal length for a given
conformant planning instance with uncertainty in the initial state (if it exists).

Figure 1 illustrates the architecture of our planning tool which was used for the exper-
iments. The tool takes a planning instance given in PDDL (Planning Domain Definition
Language) format as input. PDDL is a format to represent planning problems and has been
used in the international planning competitions.7 After parsing the input, the grounder ana-
lyzes the given planning instance and calculates a lower bound � on the plan length. Starting
with a plan length of k = �, the grounder then grounds only relevant parts of the instance,
i.e., the grounder systematically eliminates variables from the PDDL instance. In a next step,
the QBF encoder takes the ground representation as input and transforms it into a QBF that
is satisfiable if and only if the planning problem has a plan of length k. The encoding which
is used for this transformation to QBFs builds upon the ∃∀∃-encoding described in the work
of Rintanen [43]. We decided to employ the ∃∀∃-encoding rather than a ∃∀-encoding as this
gives a more natural encoding and simplifies the PCNF transformation. Since in this work
we focus on a comparison of the incremental and nonincremental approach, we do not go

7http://www.icaps-conference.org/index.php/Main/Competitions.

http://www.icaps-conference.org/index.php/Main/Competitions
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into the details of the encoding. After the transformation into a QBF, the QBF encoder then
invokes a QBF solver on the generated QBF. If the generated QBF is satisfiable, our system
extracts the optimal plan from the assignment of the leftmost ∃-block. If the QBF is unsat-
isfiable, the plan length k is incremented, additional relevant parts of the problem may need
grounding, and the subsequent QBF is passed to the solver. Below, we give an overview of
the features and optimizations of our planning tool. Notice that in this simplified picture,
preprocessing a QBF is considered to be part of QBF solving.

Since grounding the planning instance can cause an exponential blow-up in the size of
the input, we have implemented a dynamic grounding algorithm. This algorithm uses ideas
from the concept of the planning graph [7] to only ground actions that are relevant for
a certain plan length. With this optimization, we are able to make the grounding process
feasible. Although the planning tool provides several methods to compute lower bounds on
the plan length, in our experiments we always started with plan length k := 0 to allow for a
better comparison of the incremental and nonincremental approach.

Our incremental QBF solver DepQBF is written in C whereas the planning tool is written
in Java. To integrate DepQBF in our tool and to employ its features for incremental solving,
we implemented a Java interface for DepQBF, called DepQBF4J.8 This way, DepQBF can
be integrated into arbitrary Java applications and its API functions can then be called via the
Java Native Interface (JNI).

In our planning tool, the use of DepQBF’s API is crucial for incremental solving, because
we have to avoid writing the generated QBFs to a file. Instead, we add and modify the QBFs
to be solved directly via the API of DepQBF. The API provides push and pop functions to
add and remove frames, i.e., sets of clauses, in a stack-based manner. The CNF part of a
QBF is represented as a stack of frames.

Given a planning instance, the workflow starts with plan length k = 0. The QBF ψk

for plan length k can be encoded naturally in an incremental fashion by maintaining two
frames f0 and f1 of clauses: clauses which encode the goal state are added to f1. All other
clauses are added to f0. If ψk is unsatisfiable, then f1 is deleted by a pop operation, i.e., the
clauses encoding the goal state of plan length k are removed. The plan length is increased
by one and additional clauses encoding the possible state transitions from plan length k to
k + 1 are added to f0. The clauses encoding the goal state for plan length k + 1 are added
to a new f1. Note that in the workflow clauses are added to f0, but this frame is never
deleted.

The workflow terminates if (1) the QBF ψk is satisfiable, indicating that the instance has
a plan with optimal length k, or (2) ψk is unsatisfiable and k + 1 exceeds a user-defined
upper bound, indicating that the instance does not have a plan of length k or smaller, or
(3) the time or memory limits are exceeded. In cases (1) and (2), we consider the planning
instance as solved. For the experimental evaluation, we impose an upper bound of 200 on
the plan length.

The Dungeon benchmark captures the full hardness of problems on the second level of
the polynomial hierarchy. Therefore, as shown in the following section, already instances
with moderate plan length might be hard for QBF solvers as well as for planning-specific
solvers [28]. We considered an upper bound of 200 of the plan length to be sufficient to
show the difference between the incremental and the nonincremental QBF-based approach.
The hardness is due to the highly combinatorial nature of the Dungeon instances, which also
applies to configuration and maintenance problems. Further, configuration and maintenance

8DepQBF4J is part of the release of DepQBF version 3.03 or later.



Conformant planning as a case study of incremental QBF solving 35

problems can be encoded easily into conformant planning as the Dungeon benchmark is
essentially a configuration problem.

Our planning tool can also be combined with any nonincremental QBF solver (support-
ing QDIMACS as input format) to determine a plan of minimal length in a nonincremental
fashion. This is done by writing the QBFs which correspond to the plan lengths k = 0, 1, . . .

under consideration to separate files and solving them with a standalone QBF solver.

5 Experimental evaluation

We evaluate the incremental workflow described in the previous section using planning
instances from the Dungeon benchmark. The purpose of our experimental analysis is to
compare incremental and nonincremental QBF solving including incremental and nonincre-
mental variants of pre- and inprocessing by QBCE in the context of conformant planning.
Thereby, we provide the first empirical study of incremental QBF solving in the plan-
ning domain. In addition to QBF-based bounded model checking [37, 38], our results
independently motivate the use of incremental QBF solving in other application domains.

Apart from DepQBF, which is based on QCDCL, in our study we also consider the
nonincremental QBF solvers Nenofex [33] and RAReQS [23], which are based on variable
expansion. As outlined in Section 2.1, variable expansion is a state-of-the-art approach to
QBF solving next to QCDCL. For a comprehensive comparison to incremental QCDCL-
based QBF solving as implemented in DepQBF, it would be interesting to also consider an
incremental application of variable expansion. However, we are not aware of incremental
expansion-based QBF solvers which we could have included in our experimental study. In
general, it is unclear how to implement incremental expansion efficiently in a solver.

From the Dungeon benchmark described in Section 3, we selected 144 planning instances
from each variant v0 and v1, resulting in 288 planning instances. Given a planning instance,
we allowed 900 seconds wall clock time and 7 GB of memory for the entire workflow,
which includes grounding, QBF encoding and QBF solving. All experiments reported were
run on AMD Opteron 6238, 2.6 GHz, 64-bit Linux.

5.1 Incremental and nonincremental solving

In a first step, we compare the performance of incremental and nonincremental QBF solv-
ing in the planning workflow. To this end, we used incremental and nonincremental variants
of our QBF solver DepQBF, referred to as incDepQBF and DepQBF, respectively. For
nonincremental solving, we called the standalone solver DepQBF by system calls from our
planning tool. Thereby, we generated the QBF encoding of a particular planning instance
and wrote it to a file on the hard disk. DepQBF then reads the QBF from the file. For incre-
mental solving, we called incDepQBF through its API via the DepQBF4J interface. This
way, the QBF encoding is directly added to incDepQBF by its API within the planning tool
(as outlined in the previous section), and no files are written. The solvers incDepQBF and
DepQBF have the same codebase. Therefore, differences in their performance are due to
whether incremental solving is applied or not.

In a next step, to evaluate the impact of QBCE on the performance of the planning
workflow, we combined both incDepQBF and DepQBF with preprocessing, inprocessing,
and the dynamic variant of QBCE [32]. These combinations result in eight configurations
of DepQBF shown in the leftmost column of Table 1. Note that applications of QBCE in
incDepQBF are always incremental in the sense that redundant work in QBCE is avoided in
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Table 1 Overall statistics for the planning workflows implementing incremental and nonincremental QBF
solving by incDepQBF and DepQBF, respectively. Both incDepQBF and DepQBF were tested with and
without QBCE for preprocessing (-pre), inprocessing (-inp) and applied dynamically in QCDCL (-dyn) [32],
respectively. The columns show the total time for the planning workflow on all 288 instances (including
time outs), total solved planning instances, solved instances where a plan was found and where no plan with
length 200 or shorter exists, total solved QBFs in the workflow on all solved and unsolved planning instances
(TS-QBFs) and on those planning instances which were not solved (US-QBFs) when using any variant
of DepQBF shown in the table. Lines are sorted by numbers of total solved planning instances (column
“Solved”)

288 Planning Instances (Dungeon Benchmark: v0 and v1)

Time Solved Plan found No plan TS-QBFs US-QBFs

Incremental QBCE:

incDepQBF-inp: 101,060 181 165 16 5020 1148

incDepQBF-pre: 101,347 180 164 16 4948 1108

incDepQBF-dyn: 100,756 180 163 17 5111 1098

Nonincremental QBCE:

DepQBF-inp: 103,330 179 166 13 4433 995

DepQBF-pre: 103,804 178 165 13 4427 990

DepQBF-dyn: 104,585 177 164 13 4440 1020

No QBCE:

incDepQBF: 103,643 176 163 13 3923 679

DepQBF: 112,648 165 162 3 2146 677

a sequence of incremental solver runs as illustrated by Example 8. In contrast to that, appli-
cations of QBCE in DepQBF are nonincremental, where QBCE is always carried out from
scratch on each QBF to be solved.

DepQBF comes with an optional advanced analysis of variable dependencies in terms
of dependency schemes [44]. Dependency schemes are binary relations over the set of vari-
ables in a QBF expressing independence of variables. Independence of variables allows to
relax the linear prefix ordering given by the quantifier prefix of a QBF. This way, QCDCL
may benefit from increased freedom in assigning variables. It is an open problem how to
efficiently combine dependency schemes with incremental solving. To allow for a fair com-
parison, we disabled advanced dependency schemes in all variants of (inc)DepQBF. Instead,
we used the linear ordering of the quantifier prefix of the QBFs.

The statistics in Table 1 illustrate that incremental QBF solving by incDepQBF outper-
forms nonincremental solving by DepQBF in the planning workflow in terms of solved
planning instances and solved QBFs in the planning workflow (section at the bottom of
Table 1). Each of the 165 planning instances solved by DepQBF was also solved by incDe-
pQBF. The application of QBCE increases the numbers of solved planning instances and
solved QBFs in both incDepQBF and DepQBF. Note that the numbers of solved QBFs
(columns TS-QBFs and US-QBFs) provides a more fine grain performance measure than
the numbers of solved planning instances. The benefits of QBCE are reflected by the rank-
ing of the solvers in Table 1 by the numbers of solved planning instances, where incremental
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Fig. 2 Related to Tables 1 and 4. Sorted run times of the planning workflow with incremental QBF solving
by incDepQBF and nonincremental solving by various solvers, including combinations of QBF solvers with
QBCE (-pre, -inp, -dyn) and preprocessing by Bloqqer (-B)

solving with incremental QBCE appears in the section at the top, nonincremental solv-
ing with nonincremental QBCE appears in the middle and solving without QBCE appears
at the bottom. As illustrated in the plot shown in Fig. 2, the run times of the variants of
(inc)DepQBF are close to each other, except for nonincremental solving by DepQBF.

Incremental solving performs particularly well on instances for which no plan exists.
Considering the 13 instances solved using incDepQBF which do not have a plan (Table 1),
on average the total workflow took 83.35 seconds and incDepQBF spent 35,729 assign-
ments and 135 backtracks per solved QBF. Tables 2 and 3 show an in-depth comparison
of DepQBF, incDepQBF, and incDepQBF-inp with QBCE for inprocessing on com-
monly solved planning instances. Incremental solving with QBCE for inprocessing by
incDepQBF-inp results in shorter times, fewer backtracks and assignments than incre-
mental solving without QBCE (Table 3). Incremental solving without QBCE outperforms
nonincremental solving except on the instances from the set Dungeon-v1 (Table 2).

The different calling principles of incDepQBF (by the API) and DepQBF (by system
calls) may have some influence on the overall run time of the workflow, depending on
the underlying hardware and operating system. In general, the use of the API avoids I/O
overhead in terms of hard disk accesses and thus might save run time. Due to the timeout of
900 seconds and the relatively small number of QBF solver calls in the workflow (at most
201, for plan length 0 up to the upper bound of 200), we expect that the influence of the
calling principle on the overall time statistics in Table 1 and Fig. 2 is only marginal. The
number of backtracks and assignments as shown in Tables 2 and 3 independently illustrate
the benefits of incremental solving and QBCE.

Let Pi , i ∈ N, denote the set of planning instances where a plan of length i was found
using both incDepQBF and DepQBF without QBCE. Figure 3 shows how the number of
backtracks evolves if the plan length is increased. On the instances in Pk , which have a plan
with optimal length k, we observed peaks in the number of backtracks by incDepQBF as
well as DepQBF on those QBFs which correspond to the plan length k − 1. Thus empiri-
cally the final unsatisfiable QBF for plan length k−1 is harder to solve than the QBF for the
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Table 2 Total, average, and median number of assignments (a, a, and ã, respectively), backtracks (b, b, b̃),
and workflow time (t , t, t̃) for planning instances from Dungeon-v0 (left) and Dungeon-v1 (right) where
both workflows using DepQBF and incDepQBF found the optimal plan. On the set Dungeon-v0, incremental
solving by incDepQBF results in shorter times and fewer backtracks and assignments than nonincremental
solving by DepQBF

Dungeon-v0 (81 solved instances) Dungeon-v1 (81 solved instances)

DepQBF incDepQBF DepQBF incDepQBF

Total:

a: 149,436,140 122,233,046 93,707,457 126,344,508

b: 1,472,156 1,237,384 777,630 1,083,059

t : 951.22 686.75 515.32 581.92

Per instance:

a: 1,844,890 1,509,049 1,156,882 1,559,808

b: 18,174 15,276 9,600 13,371

t : 11.74 8.47 6.36 7.18

ã: 1,388 1,391 1,553 1,499

b̃: 13 11 15 15

t̃ : 1.25 0.65 1.29 0.59

Per solved QBF:

a: 549,397 449,386 349,654 471,434

b: 5,412 4,549 2,901 4,041

t : 3.49 2.52 1.92 2.17

ã: 828 833 805 806

b̃: 1 1 1 1

t̃ : 1.25 0.65 1.29 0.59

optimal plan length k or for shorter plan lengths. Figure 3 (right plot) shows notable excep-
tions. For P6, the number of backtracks by DepQBF increases in contrast to incDepQBF.
For P5 and P7, incDepQBF spent more backtracks than DepQBF. We attribute this differ-
ence to the heuristics in (inc)DepQBF. The same QBFs has to be solved by incDepQBF and
DepQBF in one run of the workflow. However, the heuristics in incDepQBF might be neg-
atively influenced by previously solved QBFs. We made similar observations on instances
not solved with either incDepQBF or DepQBF where DepQBF reached a longer plan length
than incDepQBF within the given time limit.

5.2 Impact of preprocessing

The results of QBF solver evaluations carried out in the context of QBFEVAL9 and the
(previously mentioned) QBF Gallery have shown empirically that preprocessing is vital
when solving QBFs from many application domains. To analyze the impact of prepro-
cessing on the planning workflow, we combined the preprocessor Bloqqer [6] with the

9http://www.qbflib.org/index eval.php.

http://www.qbflib.org/index_eval.php
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Table 3 Like Table 2 but comparing incDepQBF and incDepQBF-inp, the variant of DepQBF which
solved the largest number of planning instances according to the results in Table 1. Incremental solving by
incDepQBF-inp with incremental QBCE for inprocessing outperforms incDepQBF without QBCE in terms
of time and numbers of assignments and backtracks on both sets Dungeon-v0 (left) and Dungeon-v1

Dungeon-v0 (81 solved instances) Dungeon-v1 (82 solved instances)

incDepQBF incDepQBF-inp incDepQBF incDepQBF-inp

Total:

a: 122,233,046 82,109,291 164,131,257 100,010,912

b: 1,237,384 889,450 1,459,655 1,023,084

t : 686.75 558.09 818.63 661.20

Per instance:

a: 1,509,049 1,013,694 2,001,600 1,219,645

b: 15,276 10,980 17,800 12,476

t : 8.47 6.89 9.98 8.06

ã: 1,391 1,332 1,641 1,356

b̃: 11 4 15 5

t̃ : 0.65 0.64 0.61 0.60

Per solved QBF:

a: 449,386 301,872 596,840 363,676

b: 4,549 3,270 5,307 3,720

t : 2.52 2.05 2.97 2.40

ã: 833 755 828 748

b̃: 1 0 1 0

t̃ : 0.65 0.64 0.61 0.60

nonincremental variant of DepQBF. Bloqqer implements QBCE and more advanced tech-
niques like variable expansion. In addition to DepQBF, we also integrated Nenofex [33]
and RAReQS [23] in the planning workflow, which are based on variable expansion as out-
lined in Section 2.1. We selected these two solvers because in the experimental results of
the QBF Gallery events expansion-based solvers performed well on QBFs generated from
the Dungeon benchmark10 and from other planning11 benchmarks.

Our implementation of QBCE amounts to partial preprocessing in DepQBF and
incDepQBF, which is in contrast to full preprocessing as provided by Bloqqer. In order to
extract plans for planning instances solved by (inc)DepQBF with QBCE, it is necessary
to reconstruct partial certificates as illustrated in Example 6. Full preprocessing, however,
requires to either declare certain variables as don’t touch variables [39, 46], which may
limit the effects of preprocessing, or to combine preprocessing with the extraction of full
certificates [19, 22]. To focus on the impact of preprocessing on the planning workflow, in
the experiments reported in the following, we ignore the extraction of plans from solved
planning instances.

10http://www.kr.tuwien.ac.at/events/qbfgallery2013/sc apps/conf planning dungeon.html.
11http://www.kr.tuwien.ac.at/events/qbfgallery2013/sc apps/planning CTE.html.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/sc_apps/conf_planning_dungeon.html
http://www.kr.tuwien.ac.at/events/qbfgallery2013/sc_apps/planning_CTE.html
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Fig. 3 Related to Table 2. The data points on the lines “inc5” (dashed) and “noninc5” (solid) show the total
numbers of backtracks spent by incDepQBF and DepQBF on the QBFs corresponding to the plan lengths
i = 0, . . . , 5 for all instances in P5. The data points for P6 and P7 were computed similarly for the plan
lengths i = 0, . . . , 6 and i = 0, . . . , 7, respectively, and are shown on the lines “inc6”, “noninc6” and “inc7”,
“noninc7”

Table 4 shows the performance of the planning workflow when using nonincremental
solving with and without preprocessing by Bloqqer. The same limits for wall clock time and
memory as for Table 1 were used (900 seconds, 7 GB). Note that while columns TS-QBFs,
i.e., the total number of solved QBFs in solved and unsolved planning instances, in Tables 1
and 4 are comparable, columns US-QBFs are not since these statistics are computed based
on those planning instances which were not solved by any solver shown in the respective
table. Figure 2 shows the sorted run times of the workflow related to Table 4. To integrate
Bloqqer into the workflow, we preprocess the current QBF and write the preprocessed for-
mula to a file on the hard disk. The nonincremental solvers then read the file and solve the
preprocessed formula.

Interestingly, both Nenofex and RAReQS perform considerably worse in terms of solved
planning instances and solved QBFs (columns TS-QBFs and US-QBFs) if Bloqqer is
applied prior to solving (section at the bottom of Table 4). The application of Bloqqer is
beneficial for DepQBF only (line DepQBF-B), which solves more planning instances (177)
and more QBFs than DepQBF without Bloqqer (166). The number of instances solved by

Table 4 Related to Table 1 (same column labels) and Fig. 2. Performance of the planning workflow with
nonincremental QBF solving by DepQBF, Nenofex and RAReQS. The latter two are based on variable expan-
sion. Lines are sorted by numbers of total solved planning instances. All solvers were tested with (-B) and
without preprocessing by Bloqqer

288 Planning Instances (Dungeon Benchmark: v0 and v1)

Time Solved Plan found No plan TS-QBFs US-QBFs

No Bloqqer:

RAReQS: 60,566 234 213 21 9124 3484

Nenofex: 73,268 220 205 15 9002 3620

DepQBF: 113,020 166 163 3 2146 373

Bloqqer:

RAReQS-B: 71,864 219 213 6 7295 2554

Nenofex-B: 78,848 209 203 6 7241 2669

DepQBF-B: 103,465 177 171 6 4967 1173
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the nonincremental variant of DepQBF as shown in Tables 1 and 4 differs by one. That is
due to different calling principles of the solvers. For the experiments shown in Table 1, the
formulas to be solved are directly added to a solver via its API. In contrast to that, for Table 4
the formulas are first written to hard disk and then read by the solvers. Although Bloqqer
is beneficial for DepQBF (DepQBF-B), the incremental variants of incDepQBF including
QBCE (section on top of Table 1) solve more planning instances and more QBFs (columns
TS-QBFs) than DepQBF with Bloqqer (except for incDepQBF-pre).

It would be interesting to apply the preprocessing techniques implemented in Bloqqer in
an incremental way similar to our implementation of incremental QBCE (cf. Example 8).
For example, incremental applications of variable expansion may considerably improve
the performance of the planning workflow and combine the strengths of expansion-based
solvers such as Nenofex and RAReQS and incremental solvers such as incDepQBF.

5.3 Comparison to heuristic approaches

Although our focus is on a comparison of nonincremental and incremental QBF solving,
we report on additional experiments with the heuristic planning tools ConformantFF [21]
and T0 [42]. In contrast to our implemented QBF-based approach to conformant planning,
heuristic tools do not guarantee to find a plan with the optimal (i.e., shortest) length. In
practical settings, plans with optimal length are often desirable. Moreover, the QBF-based
approach allows to verify the nonexistence of a plan with respect to a given upper bound
on the plan length. Given these differences between our QBF-based approach and heuris-
tic approaches, a comparison by run times and numbers of solved instances only is not
appropriate.

Related to Table 1, ConformantFF solved 169 planning instances, where it found a
plan for 144 instances and for 25 instances concluded that no plan exists (with a length
shorter than our considered upper bound of 200). Considering the 124 instances where
both incDepQBF and ConformantFF found a plan, for 42 instances the optimal plan found
by incDepQBF was strictly shorter than the plan found by ConformantFF. On these 124
instances, the average (median) length of the plan found by incDepQBF was 2.06 (1),
compared to an average (median) length of 3.45 (1) by ConformantFF.

Due to technical problems, we were not able to run the experiments with T012 on the
same system as the experiments with (inc)DepQBF and ConformantFF. Hence the results
by T0 reported in the following are actually incomparable to Table 1. However, we include
them here to allow for a basic comparison of the plan lengths.

Using the same time and memory limits as for incDepQBF and ConformantFF, T0 solved
206 planning instances, where it found a plan for 203 instances and concluded that no plan
exists (with a length shorter than the upper bound of 200) for three instances. Given the 156
instances where both incDepQBF and T0 found a plan, for 56 instances the optimal plan
found by incDepQBF was strictly shorter than the plan found by T0. On the 156 instances,
the average (median) length of the plan found by incDepQBF was 2.25 (1), compared to an
average (median) length of 3.08 (2) by T0.

From the 13 instances solved by incDepQBF for which no plan exists (Table 1), none
was solved using T0 and 12 were solved using ConformantFF.

Our experiments confirm that the QBF-based approach to conformant planning finds
optimal plans in contrast to the plans found by the heuristic approaches implemented in

12Experiments with T0 were run on AMD Opteron 6176 SE, 2.3 GHz, 64-bit Linux.
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ConformantFF and T0. Moreover, as (inc)DepQBF and other search-based QBF solvers
rely on Q-resolution [27] as a proof system underlying QCDCL, these solvers allow to
independently explain and verify the nonexistence of a plan (of a particular length) for an
instance P of conformant planning. To this end, the unsatisfiability of the QBF encodings
arising from the planning workflow when applied to P can be verified based on Q-resolution
proofs and Herbrand function countermodels [41, 49]. This is an appealing property of the
QBF-based approach. In practical applications, it may be interesting to have an explanation
of the nonexistence of a plan in addition to the mere answer that no plan exists.

The exact QBF-based approach to conformant planning can be combined with heuris-
tic approaches in a portfolio-style system, for example, to benefit from their individual
strengths. Thereby, the two approaches are applied in parallel and independently from each
other. This way, modern multi-core hardware can naturally be exploited.

6 Conclusion

We presented a case study of incremental QBF solving based on a workflow to incre-
mentally encode planning problems with uncertainty in the initial state into sequences of
QBFs. Thereby, we focused on the general-purpose QBF solver DepQBF. The incremen-
tal approach avoids some redundancy when encoding and solving the QBFs. First, parts of
the QBF encodings for shorter plan lengths can be reused in the encodings for longer plan
lengths. Second, the incremental QBF solver benefits from information that was learned
from previously solved QBFs. Compared to heuristic approaches, the QBF-based approach
has the advantage that it always finds the shortest plan and that it allows to verify the
nonexistence of a plan of a certain length by Q-resolution proofs.

To be able to compare our approach with other QBF solvers we have integrated the
expansion-based QBF solvers Nenofex and RAReQS as well as the QBF preprocessor Blo-
qqer into our planning tool. Further, we have implemented pre- and inprocessing techniques
based on QBCE in DepQBF. In our experiments, we also considered a novel dynamic
application of QBCE in QCDCL-based QBF solvers [32].

We provided the first empirical study of incremental QBF solving in the context of
planning. Furthermore, for the first time we reported on experiments with incremental
QBCE as an inprocessing technique. Our experimental results show that in the planning
workflow incremental QBF solving with incremental QBCE as implemented in our solver
DepQBF outperforms incremental QBF solving without QBCE, which in turn outperforms
nonincremental QBF solving using DepQBF. These performance results manifest in terms
of solved planning instances and statistics like the number of backtracks, assignments, and
run time of the workflow.

The expansion-based solvers Nenofex and RAReQS result in the best overall perfor-
mance of the workflow. These solvers are nonincremental. From a proof complexity point
of view, variable expansion is different from Q-resolution, which is applied in QCDCL. On
certain classes of QBFs, variable expansion allows for proofs which are exponentially more
compact than any Q-resolution proof, and vice versa [4, 24]. Hence solvers based on vari-
able expansion and Q-resolution have individual strengths depending on the QBFs to be
solved. Despite the good performance of expansion-based solvers on the planning bench-
marks, in general it is necessary to further improve QCDCL-based solving as an approach
which is orthogonal to variable expansion with respect to proof complexity. For example,
as shown by our results using the planning instances, full preprocessing using Bloqqer is
beneficial for nonincremental solving by DepQBF but harmful for Nenofex and RAReQS.
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To improve QCDCL-based solving, an incremental variant of variable expansion could be
combined with incremental solving as a pre- or inprocessing technique.

The results of our empirical study motivate the use of incremental QBF solving in appli-
cations other than planning. In our planning tool, we successively create formulas which
encode the existence of a plan. This is similar to QBF encodings of reachability problems
like BMC [39] where the existence of a path from an initial state to a goal state is encoded.
Therefore, the basic workflow as implemented in our planning tool can also be applied to
solve reachability problems like BMC.

We implemented the Java interface DepQBF4J to integrate the solver DepQBF in our
planning tool. This interface is extensible and can be combined with arbitrary Java appli-
cations. From the perspective of the user, our implementation of incremental solving by
DepQBF including QBCE is a black box, which facilitates the integration of DepQBF in
other applications. In DepQBF, QBCE is carried out entirely inside the solver. This is in
contrast to incremental preprocessing based on don’t touch variables [39, 46].

Our experiments revealed that keeping learned information in incremental QBF solving
might be harmful if the heuristics of the solver are negatively influenced. Our observations
merit a closer look on these heuristics when used in incremental solving. In general, the
integration of additional QBF preprocessing techniques into an incremental QBF solver is
highly desirable since this could further improve the performance of QBF-based workflows.

Acknowledgments Open access funding provided by TU Wien. Supported by the Austrian Science Fund
(FWF) under grants S11409-N23, P25518-N23, and Y698 and the German Research Foundation (DFG)
under grant ER 738/2-1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for incremental SAT solving with assump-
tions: Application to MUS extraction. In: Proc. SAT 2013, LNCS, vol. 7962, pp. 309–317. Springer
(2013)

2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des.
41(1), 45–65 (2012)

3. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in
the presence of incompleteness. Artif. Intell. 122(1-2), 241–267 (2000)

4. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proc.
STACS 2015, LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

5. Biere, A.: Resolve and expand. In: Proc. SAT 2004, LNCS, vol. 3542, pp. 59–70. Springer (2004)
6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Proc. CADE 2011, LNCS, vol.

6803, pp. 101–115. Springer (2011)
7. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1-2), 281–300

(1997)
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