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Abstract In this paper, we propose a novel method for
human–robot collaboration, where the robot physical
behaviour is adapted online to the human motor fatigue.
The robot starts as a follower and imitates the human. As
the collaborative task is performed under the human lead,
the robot gradually learns the parameters and trajectories
related to the task execution. In themeantime, the robot mon-
itors the human fatigue during the task production. When a
predefined level of fatigue is indicated, the robot uses the
learnt skill to take over physically demanding aspects of the
task and lets the human recover some of the strength. The
human remains present to perform aspects of collaborative
task that the robot cannot fully take over and maintains the
overall supervision. The robot adaptation system is based
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on the Dynamical Movement Primitives, Locally Weighted
Regression and Adaptive Frequency Oscillators. The esti-
mation of the human motor fatigue is carried out using a
proposed online model, which is based on the human muscle
activity measured by the electromyography. We demonstrate
the proposed approach with experiments on real-world co-
manipulation tasks: material sawing and surface polishing.
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1 Introduction

Human–robot collaboration is one of the key enablers for a
successful integration of robots in human daily lives. Its field
of application ranges fromhousehold and industrial activities
using well-performing robotic platform such as humanoids
(Tsagarakis et al. 2017; Kaneko et al. 2008; Albu-Schäffer
et al. 2007), to augmentation of human body capabilities
through exoskeleton systems (Fleischer and Hommel 2008;
Peternel et al. 2016).

One of themain challenges to achieve a seamless and intu-
itive human–robot collaboration is to make the robot capable
of reading the intention and objective of the human partner
in on-line manner to appropriately assist him/her in given
tasks. This signifies that the robot must communicate with
the human counterpart through the detection and processing
of the sensory data.

A common approach to establish such a communication
channel is built on the use of force sensors mounted at the
robot’s side to measure the interaction forces between the
two agents (Ikeura and Inooka 1995; Kosuge and Kaza-
mura 1997; Tsumugiwa et al. 2002; Evrard et al. 2009;
Gribovskaya et al. 2011; Ikemoto et al. 2012; Peternel and
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Babič 2013; Donner and Buss 2016), providing a simple tool
for the monitoring of the energy flow between the human and
the robot.Alternatively, human-inducedposition changes can
be directly read by the robots encoders (Peternel et al. 2014)
to warn the robot control framework about the kinematic
variations of the system in contact. Other common sensory
systems are based on visual feedback (Agravante et al. 2014)
and reading human auditory commands (Medina et al. 2012),
creating an intuitive communication channel from the human
standpoint.

While the above-mentioned approaches can be very effi-
cient to control the collaborative behaviour of the robot, they
have several drawbacks. For example, if the human and the
robot simultaneously interact with an unpredictable environ-
ment, irregular and noisy interaction forces will be induced
into force sensor readings (Peternel et al. 2014). In this case, it
is difficult to distinguishwhich force components are coming
from the human and which are coming from the interaction
with the environment. In addition, some important properties
of the human behaviour cannot be read by either of the above-
mentionedmethods; one of such property is the impedance of
the human limb which plays a key role in achieving a stable
contact with the uncertain environment (Burdet et al. 2001).

To overcome the disadvantages of the classical human–
robot interfaces, we recently proposed an interface for
human–robot co-manipulation control (Peternel et al. 2017)
[based on tele-impedance principle (Ajoudani 2016)] where
the intentionof the cooperating humanpartner is read through
the acquiredmuscle activity signals and his/her limbdynamic
manipulability measure. This interface enables the robot to
directly read the motor function of the human arm, as well
as its mechanical properties such as stiffness.

As an alternative to the direct intention recognition, the
robot can use human demonstrations (Evrard et al. 2009;
Lee and Ott 2011; Peternel et al. 2014; Ben Amor et al. 2014;
Rozo et al. 2015; Maeda et al. 2017) or gradual adaptation to
human behaviour (Peternel et al. 2016) to learn elementary
skills of the collaborative task. However, compared to the
methods that are based on real-time intention recognition
interfaces, off-line learning approaches fail to demonstrate
the adaptability to state variations, while on-line adaptation
can be relatively slow.

The common aspect of most previously proposed human–
robot cooperation methods is the assumption that the human
partner has a constant level of physical endurance. Such
assumption is justified in simplistic tasks that require small
physical effort or short execution time. However, other rough
andmore dynamic interaction scenarios can affect the human
performance.While in (Peternel et al. 2016) the human effort
is minimised due to the nature of the method, the fatigue
was not estimated or monitored. Unlike a sturdy humanoid
robot, the human partner is prone to the physical fatigue; a
subject-dependent phenomenon that can affect his/her phys-

ical interaction capabilities rapidly and unpredictably (De
Luca 1984). In such a case, the robot should be able to
recognise the human fatigue and adapt its behaviour to offer
additional physical support in the given task. As a result,
the human partner should then only supervise the task on a
cognitive level and produce less physical effort.

Extensive studies of human physical fatigue has been con-
ducted in fields of neuroscience and physiology (De Luca
1984; Giat et al. 1993; Ding et al. 2000; Liu et al. 2002;
Enoka and Duchateau 2008; Ma et al. 2009). However,
human fatigue has not been well-studied in human–robot
collaboration scenario. In a recent study, Sadrfaridpour et
al. (Sadrfaridpour et al. 2016) used a model-based human
muscle fatigue estimation (Ma et al. 2009) to adjust the
working speed of collaboration in a component assembly
task. The task of the robot was to pick the necessary parts
and place them near the human, who then sequentially per-
formed the assembly alone.Nevertheless, thismethod did not
address direct physical human–robot interaction or simul-
taneous co-manipulation (i.e. human and robot were not
physically coupled with a tool/object while performing the
task). In addition, robot behaviour did not change beyond
adaptation of the execution speed.

To go beyond the state-of-the-art and overcome the above-
mentioned limitations, we propose a novel human–robot
co-manipulation method that enables the robot to adapt and
modulate the delivered physical assistance as a function of
the human fatigue. The robot governs its behaviour by hybrid
force/impedance controller (Peternel et al. 2017), while a
machine-learning based shared control between the human
and the robot is established. The robot begins as a follower
and imitates the human leader to facilitate the cooperative
task execution. At the same time, the robot gradually learns
the task parameters from the human lead. When the robot
detects the human fatigue in an online manner, it uses the
learnt skill to take over the control of the physically demand-
ing task aspects. On the other hand, the human counterpart
remains in the control of cognitively complex aspects and the
ones which cannot be completely produced by the robot on
its own due to the collaborative nature of the task.

We propose a new model to estimate the human fatigue
inspired by the dynamical response of an RC circuit. This
model has a similar dynamics to the previously proposed
models based on the human muscle force (Ma et al. 2009).
The main difference is that our model estimates the fatigue
based on the observed muscle activity obtained from the
electromyography (EMG). One advantage of muscle activ-
ity based model is that it can also provide the information of
effort that comes from muscle co-contraction, which cannot
be observed through the measured force at the endpoint or
measured torque in the joint. Another advantage is that force
measurement is not required on the human side.
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Fig. 1 The proposed human–robot co-manipulation framework for
robot adaptation to human fatigue. The robot is controlled by a hybrid
force/impedance controller. The muscle activity interface provides the
robot controller with information about human motor behaviour to
achieve an appropriate reciprocal behaviour in different phases of the
task. The human fatigue estimation system provides the robot with the
state of the human physical endurance. The learning system allows
the robot to acquire skill of the task execution during the cooperation
with the human partner and then replicate it when the human fatigue is
detected

We demonstrate the proposed approach with experiments
on KUKALightweight Robot equipped with a Pisa/IIT Soft-
hand (see Fig. 1 for the setup). We validated our methods
on two cooperative tasks: human–robot wood sawing and
robot-assisted surface polishing.

The preliminary study was presented at 2016 IEEE-RAS
International Conference on Humanoid Robots (Peternel
et al. 2016). In this paper, we extended the human fatigue
model to include recovery when the effort is reduced. We
have further extended the previous work with novel experi-
mental results, includingmulti-subject analysis of themethod
and validation on a new human–robot collaborative task. In
addition, the article provides a more detailed description of
the underlying concepts and techniques.

2 Methods

The proposed method is described by block scheme in
Fig. 1. We controlled the motion of the robot by a hybrid
force/impedance controller that uses information about the
human intention provided by amuscle activity based human–
robot interface (Peternel et al. 2017).We estimated fatigue of
the collaborating human partner by a model that was based
on the human muscular effort measured by the EMG. The
robot learned the physical behaviour (reference trajectories)
during the initial stages of collaborative task execution. We
usedDynamicalMovement Primitives (DMPs) (Ijspeert et al.
2003) to encode the robot motion trajectories, which were
learnt online by Locally Weighted Regression (Schaal and
Atkeson 1998). The robot used Adaptive Frequency Oscilla-

tors (Petrič et al. 2011) to estimate the desired task execution
speed and to control the phase and frequency of the learnt
DMPs.

2.1 Robot control through human intention interface

The task frame force was controlled at the robot joint-torque
level

M(q)q̈ + C(q, q̇)q̇ + g(q) + JT Fint = τ , (1)

where Fint is the Cartesian space interaction force/torque
acting from the robot on the environment, q are joint angles,
τ are joint torques, J is robot Jacobian matrix, M is mass
matrix, C is centrifugal and Coriolis matrix and g is gravity
vector.

A hybrid force/impedance controller was implemented to
govern the robot motion and force behaviour andwas defined
as

Fint = F f or + Fimp, (2)

where the term F f or is related to the force task and performs
force control in predefined axes and term Fimp is related to
impedance controlled axes.

The force tasks were controlled by a PI controller

F f or = K F
P eF + K F

I

∫
eFdt, (3)

eF = SF
(
Fd − Fa

)
, (4)

where K F
P and K F

I are the gains of the PI controller,1 eF is
the error signal and Fa and Fd are actual and desired end-
effector force values. Diagonal matrix SF is used to select
the axes in which force controller is applied.

The impedance term was defined as

Fimp = K
(
xd − xa

) + D
(
ẋd − ẋa

)
, (5)

where xa is actual and xd is reference pose of the robot
end-effector, and K and D are robot virtual stiffness and
damping matrices in Cartesian space. Stiffness matrix was
controlled by recently proposed interface (Peternel et al.
2017), while damping matrix was obtained by double diag-
onalisation design (Albu-Schäffer et al. 2013).

In the sawing experimental task, the robot controlled the
stiffness in different phases of the collaborative task by the
estimated human intention. The two cooperating agents had
to produce reciprocal/inverse behaviour in each phase. For

1 When the robot interacts with the rough environment the force mea-
surement can be noisy (Peternel et al. 2014, 2017). Therefore, we did
not use derivative term in the controller to avoid stability issues.
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example, if the human pulled the saw, the robot had to com-
mand a low stiffness to comply with the motion. In the
opposite case, when the saw reached the human’s end, the
robot had to became stiff to pull the saw back to the ref-
erence position at the robot’s end. The Cartesian stiffness
matrix was defined as (Peternel et al. 2017)

K = K const + SK
(
1 − kr

)
, (6)

where SK is a diagonalmatrix that is used to select the axes in
which the stiffness should be modulated (in our case sawing
motion axis), K const is matrix that is used to set constant
stiffness for the other axes and kr is robot stiffnessmodulation
parameter defined as (Peternel et al. 2017)

kr = c′
h(kmax − kmin) + kmin, (7)

where c′
h = a · ch is scaled human-estimated stiffness index

ch from the intention interface (c′
h ∈ [0, 1] and ch ∈ [0, 1])

and kmax and kmin are maximum and minimum controllable
robot stiffness range.

Estimation of human stiffness trend was defined as
(Ajoudani et al. 2014)

ch = b1
1 − e−b2(A1+A2)

1 + e−b2(A1+A2)
, (8)

where A1 and A2 are muscle activation levels of dominant
muscles acting on the shoulder joint. In our experiments
we used posterior deltoid (PD) and anterior deltoid (AD)
muscles. The measurement of antagonistic muscles enables
detection of both pulling and pushing actions. Parameter b1
defines the maximum amplitude of mapping and b2 defines
the shape of mapping. Parameter a determines the task-
related operational range of mapping. Parameters b1 =
20, b2 = 0.05 and a = 12 determine the mapping between
muscle activations and human stiffness trend, andwere deter-
mined experimentally as in (Peternel et al. 2017).

Muscle activity for each muscle was measured by EMG
using Delsys TrignoWireless system.We processed (filtered
and rectified) and normalised the EMG signals using maxi-
mal voluntary contraction (MVC). Themapping between the
processed EMG and muscle activation level was defined as

0 ≤ Ai (t) = EMGi (t)

MVCi
≤ 1, (9)

where Ai ismuscle activation level for eachmuscle i, EMG(t)
is processed EMG signal and MVC is EMG signal under
maximal voluntary contraction (MVC).

2.2 Human fatigue estimation

Several models for estimation of human muscle fatigue can
be found in literature (Giat et al. 1993; Ding et al. 2000;
Liu et al. 2002; Ma et al. 2009). These models mostly rely
on complex and time-consuming biomechanical systems,
offline calibration andmuscle forcemeasurements. Although
such models can provide a very accurate estimate of human
muscle capacity in terms of fatigue, the underlying complex-
ity can severely limit their application in practical daily-life
robotics applications. To simplify the subject-dependent cal-
ibration procedures, we propose a novel fatigue model by
observing muscle activity of the dominant involved muscles.
In comparison to the use of expensive force sensors to indi-
cate muscle fatigue, we explore the use of lightweight and
wearable EMG electrodes that do not interfere with the task.

Several well-known EMG-based methods for estimating
human muscle fatigue already exist in the literature. These
methods are based on observing changes of EMG signal in
frequency domain; such as mean amplitude and frequency of
the spectrum (DeLuca 1984).While this approach is straight-
forward for sustained constantmuscular effort, the estimation
can be difficult in dynamical tasks, such as collaborative saw-
ing, where the effort is rapidly changing. To avoid this issue,
we directly integrate the muscle activity value obtained from
the EMG signal to estimate the fatigue.

Our human fatigue model was inspired by RC circuit
dynamics. The fatigue of a certain muscle increases accord-
ing to the first-order dynamics based on the current effort of
the muscle, which is estimated through EMG, and the capac-
ity of themuscle in terms of endurance,which is specific to an
individual muscle. We defined the muscle fatigue estimation
model with the following first-order system of differential
equations

dVi (t)

dt
=

{(
1 − Vi (t)

)Gi (t)
CFi

if Ai (t) ≥ Ath

−Vi (t)
R

CFi
if Ai (t) < Ath

, (10)

Gi (t) = Ai (t), (11)

where Vi ∈ [0 1] represents the fatigue index, Gi is parame-
ter that represents the current effort dynamics,CFi is fatigue-
related capacity of the given muscle i and R is recovery rate.
The recovery rate defines how fast themuscle can recover the
strength after the fatigue. We selected a conservative value
R = 0.5 for our experiments. Alternatively, the recovery rate
can be obtained from the literature (Ma et al. 2010). Muscle
activity threshold Ath determines the use of either fatigue or
recovery mode. Parameters CFi and R encode human mus-
cle specifics in terms of fatigue and recovery and should be
tuned based on the individual subject andmuscles used in the
given task. The higher the parameter CF is, the more effort
G over time it takes for the fatigue to take effect.
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Model in (10) incorporates fatigue and recovery, which
correspond to charging and discharging of fatigue index Vi ,
respectively. The fatigue is induced when muscles activity
Ai is detected beyond some threshold Ath . When muscle
activity is reduced, below the threshold Ath , the recovery is
modelled by gradually reducing the value of fatigue index Vi .

Our model behaviour corresponds well to fatigue dynam-
ics observed/modelled in human studies (Ma et al. 2009),
where they used force measurement as the effort estimation.
Their model exhibits exponential response over time subject
to the level of muscle effort

Fc(t) = FMVCe
− ∫

k
Fload (t)
FMVC

dt
, (12)

where Fc(t) is the force production capacity of the muscle,
which is related to fatigue, FMVC is muscle force at MVC,
Fload is load force on the muscle related to the effort and k is
a time constant. By deriving from (10), a similar exponential
response can be observed in our model

V (t) = 1 − e
− ∫ G(t)

CF
dt

. (13)

Model in (Ma et al. 2009) deals with the force production
capacity with respect to force at MVC, which exponentially
decays under muscle effort. Force production capacity has
essentially a reversed relation to fatigue, i.e. the fatigue low-
ers the force capacity.On the other hand, ourmodel dealswith
fatigue directly and therefore the fatigue exhibits growth sub-
ject to the level ofmuscle effort.While the twomodels exhibit
similar response in terms of fatigue, they operate with differ-
ent muscle effort estimation variables, i.e. force and muscle
activity. Nevertheless, the muscle activity is related to the
muscle force and the relation is proportional within a certain
operation range (Hogan 1984).

We estimated the parameter CF for each muscle (PD and
AD) by a preliminary experiment. In this experiment, we
instructed the human to produce a reference muscle activity
Are f by exerting muscle force until he/she could not endure
it any more.2 We measured the time Tend that the human
could endure each reference effort Gref (in our experiment
we used two reference efforts: 0.2 and 0.5). We obtained the
fatigue capacity CF for each reference by using the subject-
dependant endurance time Tend and an assumption that full
capacity is reached at V = 0.993 (corresponding to five time
constants)

CF = − Gref · Tend
log(1 − 0.993)

. (14)

2 Note that this fatigue estimation procedure is subject-dependant. The
subject was asked to endure the effort until task production became
uncomfortable due to the muscle fatigue.

The final parameter CF for a specific muscle was obtained
by an average value of CF for each reference.3

In the proposed approach, the robot takes over the pro-
duction of the specified task aspect when either of Vi reaches
some predetermined threshold Vth . At that point, the tra-
jectory learning stopped and the robot repeated the learnt
behaviour according to the estimated execution speed. The
human partner could then partially relax and recover some of
the physical strength, while he/she continued to perform the
collaborative aspects that the robot cannot take over by itself.
Examples include: stabilisation of the saw movements at the
human end in the cooperative sawing, positioning of polish-
ing spot in cooperative polishing task, high-level decisions
such as pausing and resuming the task execution, and chang-
ing the task coordinates as described in (Peternel et al. 2017).

2.3 Robot adaptation

We used periodic DMPs (Ijspeert et al. 2003) to encode the
robot behaviour that was learnt from the collaboration with
the human. The DMP is based on the dynamics of second-
order system

ż = Ω (α (β (−y) − z) + f ) , (15)

ẏ = Ωz, (16)

where y is the encoded trajectory, f is the term thatmodulates
the trajectory shape, α = 8 and β = 2 are positive constants
and Ω is the execution frequency.

The desired motion trajectory shape fd was approximated
by

fd = ẍd
Ω2 − α

(
β (−xd) − ẋd

Ω

)
. (17)

where xd , ẋd and ẍd are the robot motion that we wish to
learn and its derivatives. The desired trajectory shape fd was
used to build a nonlinear shape function f in (15) defined as
(Ijspeert et al. 2003)

f (φ) =
∑N

i=1 ψi (φ)wi∑N
i=1 ψi (φ)

, (18)

where w are weights used to determine shape of trajectory
and ψi (φ) are Gaussian kernels uniformly distributed across
the phase space φ. Kernels were defined as

ψi (φ) = eh(cos(φ−ci )−1). (19)

3 MVC calibration should be ideally performed every time the elec-
trodes are reattached.However, the calibration of endurance time related
parameter should theoretically be reusable if no drastic changes are
made (e.g., muscle endurance may improve through physical training,
etc.).
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Fig. 2 Experimental setup for collaborative surface polishing. The
arrows show the robot base frame

where h determines the width, ci centres and N number of
Gaussian kernels. We selected N = 25 in our experiments.

Each weight wi of kernel ψi was updated using recursive
least squares method (Schaal and Atkeson 1998)

wi (t + 1) = wi (t) + ψi Pi (t + 1)rer (t), (20)

er (t) = fd(t) − wi (t)r , (21)

Pi (t + 1) = 1

λ

(
Pi (t) − Pi (t)2r2

λ
ψi

+ Pi (t)r2

)
, (22)

where λ is forgetting factor that controls the forgetting rate
of older data and was set to 0.995 for our experiments. Initial
setting of parameters was r = 1, wi (0) = 0 and Pi (0) = 1
for i = 1, 2, . . . , N .

Phase and frequency of the learnt DMP were controlled
by an adaptive oscillator (see (Petrič et al. 2011) for details
on adaptive oscillators). The adaptive oscillator outputs the
phase and frequency estimation of some input signal. Param-
eters of adaptive oscillator were set the same as in (Peternel
et al. 2016). The estimation was done based on the actual
robot motion xa (input signal) that enabled the human to
alter the execution speed during the compliant phase of the
robot motion (Peternel et al. 2014).

3 Experiments

To validate the proposed method we conducted experiments
on two collaborative tasks: wood sawing and surface pol-
ishing. Experimental setup for wood sawing is shown in
Fig. 1. Experimental setup for surface polishing is shown
is Fig. 2. Four male subjects participated in the experiments
(29.0±3.6years old). Each subject performed the prelimi-
nary calibration of the fatigue estimation model individually
as described in Sect. 2.2.

In the experiments we observed the PD and AD muscles
that actuate the human shoulder joint. Since these muscle

contribute to control of arm endpoint through synergetic acti-
vation of other muscles (Turvey 2007), they give a simplified
estimation of overall arm behaviour. The estimated fatigue
threshold, in which the robot takes over some aspects of the
task performance to reduce the human effort, was set to 30%
for both muscles and for both experimental tasks. Consider-
ing that the selected tasks are dynamically quite demanding,
we used relatively low threshold with the intention to keep
the human at a good force production capacity. Muscle activ-
ity threshold Ath for triggering the recovery mode was set
to 0.1. These thresholds can be adapted if different tasks,
conditions or preference require so.

3.1 Sawing

To produce the two-person sawing in a smooth manner, the
robot had to remain compliant while the human was pulling
the saw. In this manner, the compliant behaviour of the robot
ensured the effort of the humanwas not obstructed.When the
saw reached the human end of themotion, the human stopped
the effort and became compliant. At that instance, the robot
detected this human motor function through the intention
interface and started pulling the saw towards its own end.
This behaviour then periodically repeated to cooperatively
execute the given task.

The sawing motion was aligned with the robot base frame
x-axis (see Fig. 1). The robot controlled the sawing motion
indirectly by impedance controller through stiffness modula-
tion based on the information from the humanmuscle activity
interface (6). The controllable stiffness range of the robot in
x-axis was set to kmax = 1500 N/m and kmin = 75 N/m.
The contact force between the saw blade with the beam of
wood was maintained in z-axis by the force controller. The
reference contact force was set to −5 N. The beam of wood
was aligned with y-axis in which the robot was compliant
(k = 0 N/m) in order to let the human guide it to the desired
incision location along the beam.

For the video of the experiment please refer to the accom-
panying Online Resource 1. The results of the experiment
for one subject are shown in Fig. 3. The first graph shows the
motion of the saw blade in the sawing axis (x-axis). Initially,
the robot had a fixed position reference at its own end of
the saw motion and simply followed the human lead. When
the human was stiff to pull the saw (see muscle activity in
the second graph), the robot reciprocally remained compli-
ant (see robot end-effector stiffness in the fourth graph), and
vice-versa.

The robot used the proposed model to estimate the col-
laborating human’s fatigue (see the third graph). When the
estimated fatigue reached the predefined level, the robot
increased the stiffness and used the learnt sawing motion
trajectory to take over this physically demanding aspect of
the task and offloaded the human partner. The task was exe-
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Fig. 3 Results of cooperative sawing experiment for one subject. The
first plot shows the motion of the robot end-effector in the sawing axis
(x-axis), where blue line is reference and red line actual motion. The
second graph shows the human deltoid muscle activity as measured
by EMG sensors on anterior (AD) and posterior (PD) fibres. Threshold

Ath is marked by dotted black line. The third graph shows the estimated
human fatigue for each muscle (blue and red lines) and corresponding
thresholds Vth (dotted black line). The fourth graph shows robot stiff-
ness in the sawing axis. The fifth graph shows the estimated frequency
of task execution (Color figure online)

Fig. 4 Results of cooperative sawing experiments for other subjects. The first row graphs show the robot motion, the second row graphs show
muscle activity and the third row graphs show estimated fatigue

cuted with the frequency estimated from the human lead (see
the fifth graph). The human could then relax to recover some
of the strength, while supervising cognitive aspects and pro-
ducing physical aspects of the task that the robot cannot fully
take over (e.g., stabilisation of the saw at the human’s end).

By observing the third graph we can see the evident
decrease of human muscle activity after the robot adapts its

physical behaviour to reduce the human effort. When the
human exerted the muscular effort, the estimated fatigue
gradually increased according to the fatigue model (10).
After the robot took the lead and the human could relax,
the estimated fatigue started to gradually reduce according
to the recovery model (10). The same can be observed in
Fig. 4, where results of experiments on the rest of subjects
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are presented. On average, the muscle activity in the initial
stagewas 19.2±11.2%.4 After the robot tookover the perfor-
mance of the physically demanding aspect of the sawing task,
the human muscle activity was on average for 6.0±2.7%.

When the fatigue reaches the lower threshold, the robot
can either give the control partially back to the human, or
continue to execute the task with the learnt skill. In the for-
mer case, the method can revert to the initial collaboration
stage [i.e. behaviour described by (6)] where the robot can
repeat the learning to adapt to any potentially changed human
behaviour.

3.2 Polishing

The cooperative polishingwas performed by the human hold-
ing the polishing machine together with the robot. The robot
compensated theweight of themachine the entire time, while
the human was controlling the position of the polishing on
the surface. Initially, the human guided the machine toward
the desired surface and established the contact. Then he/she
started to produce the force perpendicularly to the surface in
order to establish an appropriate friction force vector for the
polishing action. Unlike the sawing task, this is non-periodic
task and frequency estimation system was not required.

The force production direction was aligned with the robot
base frame x-axis. The robot used force controller in this axis
and the reference forcewas learnt from the humanonline. The
surface was aligned with y–z plane of the robot base frame.
The robot was compliant in this plane (k = 0 N/m) in order
to allow the human to select and change the location of the
polishing.5

For the video of the experiment please refer to the accom-
panying Online Resource 1. The results of the experiment
for one subject are shown in Fig. 5. By observing the first
graph we can see that the measured force increased when the
human guided the tool to the surface and started to perform
the task. As a result of this, human muscle activity increased
(see the second graph). While the human exerted the force
necessary to produce the friction for the surface polishing, the
estimated fatigue gradually increased (see the third graph).
During this time, the robot learnt the desired force from the
cooperating human. In the learning process the robot used
an average of measured force in 5 s time window. When the
estimated fatigue reached the predefined threshold, the robot

4 The value represents the mean and standard deviation of data from all
subjects across the measured samples in the given stage of the experi-
ment.
5 If required, the proposed human–robot interface could be extended
to include voice command that can be used by the human to indicate
to the robot to increase the stiffness in the y–z plane to maintain some
desired position. However, the information flow rate of voice command
is much lower compared to that of muscle activity interface (7) and
could therefore be used only for auxiliary robot stiffness control.

Fig. 5 Results of cooperative polishing experiment for one subject.
The first graph shows the reference (blue line) and measured (red line)
force perpendicular to the surface (x-axis). The second graph shows
the human muscle activity. The third graph shows the estimated human
fatigue for each muscle. The fourth graph shows the measured robot
end-effector position in the plane of the surface (y–z plane) (Color
figure online)

used the learnt force as a reference and took over the control
of the force production task.

While the robot performed the force production task, the
human could partially relax to recover the strength. In the
meantime, the human remained in the control of the cognitive
aspects, such as overall task supervision and choosing the
location of polishing action in y–z plane. We can see how the
human was changing the position of the task production in
the surface plane by observing the fourth graph.

The results for the other subjects are shown in Fig. 6.
The average human muscle activity in the initial stage was
17.2±1.7%. After the robot took over the execution of
the physically demanding force production task aspect, the
human muscle activity was on average 4.6±1.1%.

4 Discussion

We proposed a new method for adaptation of robot phys-
ical behaviour based on human muscle fatigue estima-
tion for human–robot co-manipulation tasks. We validated
the proposed method experimentally with challenging co-
manipulation tasks. The main aim of robot adaptation was
to reduce some effort of the human partner after the robot
estimated the human fatigue level beyond the predefined
threshold. The robot started as a follower with a minimal
knowledge of the task and gradually obtained the skill of the
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Fig. 6 Results of cooperative polishing experiments for other subjects. The first row graphs show the robot motion, the second row graphs show
muscle activity and the third row graphs show estimated fatigue

task while performing it collaboratively with the human part-
ner. When fatigue threshold was reached, the robot used the
obtained skill to take over the aspect of the task that it could
perform by itself. On the other hand, the human continued
to perform the aspects of the task that are of collaborative
nature and cannot be performed by a single agent (i.e. stabil-
isation of human’s end of the saw). Additionally, the human
controlled the cognitive aspects of the task during the entire
experiment.

The method helps to considerably reduce the human mus-
cular effort in collaborative task performance. When the
robot takes over the execution of physically demanding
aspects of the task, the human can partially relax and recover
the strength. While a considerable amount of effort can be
reduced due to the robot’s assistance, themuscle activitymay
not be zero, since the human may still require to make some
effort to ensure the collaborative task is performed. The exact
human physical requirement is task-dependent.

In the current setup the robot continued to learnt the
behaviour until the fatigue reaches the threshold Vth = 30%.
However, the human performance can degrade with fatigue
and the robot can potentially learn suboptimal behaviour. If
higher thresholds Vth are used, it is reasonable to consider
to stop learning before the fatigue reaches such a thresh-
old in order to sample the human at its peak performance.
Alternatively, the learning process can be weighted so that
data sampled at lower human fatigue has more impact on the
learnt robot behaviour. Furthermore, the method could be
upgraded to incorporate more complex shared control sys-
tems (Dragan and Srinivasa 2013; Nikolaidis et al. 2016;
Peternel et al. 2016) to facilitate a continuous co-adaptation
based on fatigue and current state of robot skill.

To give the robot an estimation of the human muscle
fatigue level, we proposed a new fatigue model based on the
measured human EMG signals. More complex models with
more complicated calibration procedures and muscle force
measurements might givemore precise estimation. However,
this kind of complexity can hinder the application of such sys-

tem in real-world scenarios, therefore the trade-off between
complexity and applicability should be considered.

Initially, we tried using the median frequency of power
density spectrum of measured EMG signal to estimate the
human muscle fatigue. It has been shown that the median
frequency of power density spectrumdecreases and its ampli-
tude increases as a result of muscle fatigue (De Luca 1984).
While this kind of estimation was good in case of constant
muscle contraction as observed in (De Luca 1984), in case of
sawing task the observed estimation was unpredictable and
inconsistent. This can probably be attributed to rapid changes
in muscle activation amplitude that are required due to the
dynamic nature of the selected co-manipulation task. Such
changes probably affected the dynamics of observed median
frequency. In addition, in such case it is difficult to deter-
mine the appropriate sampling window to track the median
frequency changes throughout the task execution.

The main advantage of the proposed fatigue model is its
easy application and low complexity. Compared to other low-
complexity models that are based on force measurement (Ma
et al. 2009), our model does not require force sensors. While
measuring arm force at the endpoint or joint torque can be
straightforward, it can only measure the combined contri-
bution of the entire arm or joint. On the other hand, EMG
can be placed to individual muscles and effort can be esti-
mated separately. However, if muscle force can be directly
measured, the effort estimation might be better since EMG
measurement is subject to a certain amount of noise. The
main limitation of the proposed fatigue model compared to
more complex models (Giat et al. 1993; Ding et al. 2000; Liu
et al. 2002) is limited precision. For example, more precise
models include representation of muscle activity on a fibre
level. In such a model the muscle fibres are split into there
groups (active, fatigued and resting units) and their func-
tion is considered separately (Liu et al. 2002). However, the
precision and complexity may limit the model application
compared to less complex models.
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The proposed method could be applied in industry to
prevent productivity and health issues related to overwork
and physical fatigue. The estimated fatigue could be used to
pull any particular worker from the production line when a
certain level of fatigue is estimated. Such procedures could
potentially be effective in reducing negative socioeconomic
impacts associated with excessive workload and injuries at
workplace and maintain good productivity of workers.

The scope of this paper was to introduce and experi-
mentally validate the proposed human–robot collaboration
method. Our current goal was to devise easy-to-use and easy-
to-calibrate human fatigue model that can be applicable in
practical human–robot collaboration tasks. In future, we will
consider a more detailed study of the fatigue model from
biomechanical perspective.
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