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Abstract
Proof requires a dialogue between agents to clarify obscure inference steps, fill gaps,
or reveal implicit assumptions in a purported proof. Hence, argumentation is an inte-
gral component of the discovery process for mathematical proofs. This work presents
how argumentation theories can be applied to describe specific informal features in
the development of proof-events. The concept of proof-event was coined by Goguen
who described mathematical proof as a public social event that takes place in space
and time. This new meta-methodological concept is designed to cover not only “tradi-
tional” formal proofs but all kinds of proofs and inference steps, including incomplete
or purported proofs. Our approach attempts tomake proof-eventsmore comprehensive
to express the complete trajectory of a mathematical proof-event until the ultimate val-
idation of the proving outcome. Thus, we advance an extended version of proof-event
calculus which is built on argumentation theories designed to capture the internal and
external structure of collaborativemathematical practice and highlight the relationship
between proof, human reasoning, and cognitive processes. In addition, another area
in which argumentation can make a significant contribution is dealing with the defea-
sible knowledge of the Web which is a product of its open and ubiquitous nature. This
approach seems to be sufficient for the presentation of Web-based proving processes
as manifested in the case of the Mini-Polymath 4 project.
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1 Introduction

Proof is the heart of mathematics. Mathematical cognition is commonly presented
as a procedure that leads to “truth” by applying logical rules of inference. However,
proofs are needed everywhere, not just in mathematics. They are also needed in phys-
ical sciences, computer science, philosophy, legal argumentation, political debates,
and elsewhere. Proofs cannot always be adequately captured by traditional formal
mathematical proofs (Stefaneas and Vandoulakis 2012), since mathematical discov-
ery is a more complicated process with many obstacles and dead-ends that need to
be dealt with. Our goal is to present a model of mathematical discovery that depicts
the connection between formal mathematics and its informal social and cognitive
aspects. Our emphasis in this paper is on the exchange of arguments and counterar-
guments during Web proving. Web proving can restructure the way we understand
mathematical practices, since it can be used to facilitate proving as a multi-agent col-
lective activity involving people from different backgrounds, expertise, and thinking
styles (Vandoulakis 2020).

In philosophy, events can be considered as objects in time or instantiations of prop-
erties in objects. Theories of events have been proposed by Donald Davidson (1967)
and John Lemmon (1967) using a causal criterion and a spatiotemporal criterion,
respectively. To define an event, two events are the same, if and only if they have
the same cause and effect, according to the causal criterion, and if and only if they
occur in the same space at the same time, according to the spatiotemporal criterion.
Goguen (2001) introduced the concept of proof-events that can describe mathematical
proof as a public social event that takes place in space and time. This paper claims
that proving practices can be expressed as a particular type of Goguen’s proof-events
as presented in (Vandoulakis and Stefaneas 2015b). Proof-events have informal social
and historical components, prover-interpreter interaction, collaboration, consent, and
validation (Stefaneas and Vandoulakis 2012). Proof-events can be extended in the
form of a dialogue between agents that use arguments and counterarguments to check
the validity of the steps of a purported proof, by linking concepts from mathematical
proving and argumentation reasoning (Sect. 2).

We present a model that indicates the relationship between proof-events and logic-
based argumentation theories, combining them to study informal and formal aspects of
provingmore adequately (Sect. 3).Argumentation is a potent reasoning tool that allows
contributors in the dialogue to argue and counterargue, assert and refute, validate and
invalidate steps of mathematical reasoning that aim to solve a posed problem. This
leads to a deeper understanding of the often contradictory visions, perspectives, and
problem-solving strategies of the contributors to a proof that ultimately concludes in
their agreement and consensus (Hunter 2007). This model, named Argumentation-
based Proof-Event Calculus (APEC), can be used in collaborative mathematical
environments where argumentation among mathematicians can be used to motivate
creativity and discovery or to elucidate obscure points of a purported proof. APEC
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facilitates the formalization of interactive argument schemes to describe a mathemat-
ical problem-solving activity that faces eventual contradictions and dead-ends.

Our approach is novel because we use argumentation theory techniques to build a
bridge between a formal proof and the informal social interaction aspects involved
in the search for proof. Various researchers have shown that the role of argumenta-
tion is crucial in mathematics (Aberdein 2009; Hunter 2007; Alcolea Banegas 1998;
Pedemonte 2008) by adapting argumentationmodels, such as Toulmin’s (1958)model,
and comparing themwith the structural components of proof. However, there has been
criticism that sometimes the argument structure of Toulmin’s model does not take into
account the exchange of ideas between participants and thereby the justification is
partial and ambiguous (Pedemonte and Balacheff 2016). Our goal in this paper is to
supplement the concept of proof-events with “argument moves” of the participants
that either support or attack an assumption. This is done in the wider framework of
proof-events that takes into consideration not only formally validated proofs, but also
informal thinking that include trials, choice of strategies, and/or possible validation or
rejection of parts of a purported proof by the agents.

Pedemonte and Balacheff (2016) suggested the so-called ck¢-enriched Toulmin
model that captures the internal characteristics of the argument-proof structure. Nev-
ertheless, we also wanted to express the external procedures in the practice of various
participants. The APEC system can represent the complete information and sequence
of steps in the evolution of mathematical practice which is modeled in the form of
logic-based dialogues (informal external procedures) with argument moves, temporal
predicates, and validation levels of argumentation (Sect. 4). At the final stage, proof
maybe accepted as completed, i.e. as a valid formal proof understood and recognized as
true by all relevant agents. This approach enables us to examine the interplay between
proof, human reasoning, cognitive processes and creativity in the mathematicians’
practice more deeply.

Several studies highlight the educational aspects of argumentation and proof (Pede-
monte 2008, 2007; Stylianides 2007; Krummheuer 2015; Inglis et al. 2007; Knipping
and Reid 2019) and student interaction in the classroom. Even though our model can
also be implemented for concept-learning and problem-solving for the sake of stu-
dents, in this paper we focus on modeling a broader perspective of the collaborative
discovery process in the practice of real mathematical communities. This context can
be applied to the communication between mathematicians in a research environment
where collaboration between them is essential and can lead to significant results, such
as the case of mathematical practice in crowd-sourcing collaborative environments
(Sect. 5). Online dialogues can be used as a rich source of argumentation repositories
as this is in its purest form and provides information on how argumentation works in
real-life dialogues (Vassiliades et al. 2021). To demonstrate the presented approach,
this paper formalizes the Mini-Polymath 4 project, which employs Web-based inter-
actions as part of a proving practice (see the case study in Subsection 5.1).

Thus, the objectives of this paper are:

1. to examine from a social, scientific, and cognitive perspective the common nature
of arguments and proof-events and to show the relationship between the process
of advancing an argument and advancing a proof;
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2. to develop an APEC model to represent the “proving” procedure with argument
schemes, highlighting key elements such as agent contributions (argumentmoves),
sequences of proof-events (temporal predicates), and validation progress (levels
of argumentation);

3. to show the impact of the (possibly virtual) mathematical environment on the
development of arguments to attain proof; and

4. to illustrate the usability of the proposed approach in the case of theMini-Polymath
4.Wechoose this problembecause it is anoriginal, real, online collaborative project
employing Web-based interactions as part of proving practices.

The paper is structured into six sections. Section2 briefly describes the theoreti-
cal background of proof-events and argumentation. Section3 surveys the perspective
leading to the development of a model for the formalization of mathematical prac-
tice as a dialogical collaborative process. Section4 outlines the APEC formalization of
proof-events in terms of argumentation theory. Section5 highlights the APECmodel’s
usability and expressiveness as an abstract theoretical framework with real-life dia-
logues from the Mini-Polymath 4 project. Section6 concludes with the overview of
this paper. Appendix 1 includes the detailed modeling of the dialogues from Mini-
Polymath 4.

2 Theoretical Background

Discovery, creativity, communication, and systematization are some elements that
proof serves in mathematics (Villiers 1990), but often proof is perceived mainly as a
method for persuasion (Weber 2010). Goguen’s (2001) broader concept of proof-event
or proving (understood as a public locatable and dateable social event concerning a
communicated purported proof of a posed problem) is designed to embrace any prov-
ing activity, including faulty, vague, disputed, or incomplete proofs. Vandoulakis and
Stefaneas (2015a) described proof-events as activities of a multi-agent system that
incorporates the history of these activities in the form of sequences of proof-events.
Our purpose is to bridge the gap between formal and informal mathematical pro-
cedures by costructing a model that is closely related to the way proving actually
unfolds. The comparison between proof and argumentation is based on the percep-
tion that proof (including incomplete or even false proofs, valid or invalid inference
steps, ideas, etc.) can be regarded as a specific kind of argumentative discourse in
mathematics (Pedemonte 2007).

The concept of proof as a dialogue and an activity that agents engage in is
explored in (Dutilh Novaes 2020), where a dialogical account of mathematical proof
is advanced to produce explanatory persuasion. The author develops a triadic concep-
tual scheme, consisting of the “producer” (the prover), the “receiver” (sceptic), and
the “explanation itself” (the proof). In this scheme, the sceptic is mostly considered
“silenced” (Dutilh Novaes 2018, p. 91), while our intention was to focus equally on
the moves and counterarguments generated by the other side in order to understand the
whole mathematical practice more deeply and highlight the value of the opposite side
in the proving process. Another study that focuses on the agents that produce the proofs
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is presented in (Hamami andMorris 2020). In the approach adopted in this work, each
mathematical step corresponds to a proof activity and the formal mathematical proof
is a report of the corresponding proof activities. The plan of a mathematical proof
is conceived as the plan of the agents who carried out the respective proof activity.
Generally, the above-mentioned studies provide similar approaches of multi-agent
mathematical discourse, but from a more philosophical perspective. We also attempt
to provide a formal framework through a logic-based calculus to express the informal
dialogues and the steps taken in mathematical practice.

Logic-based systems for examining and assessing arguments have been broadly
applied, generating various formalmethods forargumentation-based reasoning (Arieli
andStraber 2015).Argumentation theories can be used as a naturalmethodofmodeling
non-monotonic reasoning, properly expressing its defeasible nature. A starting point
of this paper is Pollock’s (1987; 1992) approach to logical argumentation, which pre-
sented one of the first non-monotonic logics with concepts of argument and defeat. He
also introduced defeasible reasoningwhere arguments are conceptualized as chains of
reasoning that may lead to a conclusion, whereas additional information may destroy
the chain of reasoning. The formalization developed in the present work is mainly a
sequence-based realisation (Modgil and Prakken 2013) of Dung’s abstract argumen-
tation framework (1995), applying Pollock’s (1987) view of defeasible reasoning with
the basic structure of Toulmin’s model (1958) for the representation of an argument.
The present paper aims to gain from, build on, and integrate the above approaches in a
way that also uses insights from other works, such as Kakas and Michael (2016), pro-
viding an abstract, theoretical exploration of logical argumentation applied principally
to mathematical proving.

Argumentation is a tool of cognition that can formalize the science of common
sense reasoning (Almpani et al. 2022). Many researchers tried to show that the pro-
cedure by which mathematicians evaluate reasoning is similar to argumentation, for
example by adapting Toulmin’s (1958) argumentation model.1 to mathematical exam-
ples. Aberdein (2009; 2013; 2021) highlighted the use of arguments in mathematical
conversations and practices. Pedemonte (2008; 2016; 2007) implemented the ck¢-
enriched Toulmin model to indicate connections between argumentation and proof.
Götz Krummheuer (2015) introduced the analysis of collective argumentation and
participation using Toulmin’s theory for the development of an interaction theory of
mathematics learning. Christine Knipping and David Reid (2019) built on Toulmin’s
theory to compare and describe global argumentation structures and local argumen-
tation aiming for a deeper understanding of proving processes in the classroom.
In (Inglis et al. 2007), the full Toulmin scheme is implemented through three dif-
ferent warrant-types to model a wider range of argumentation. Metaxas et al. (2016)
presented methodologies to study the mathematical practice in a class involved in
argumentative activities by integrating Toulmin’s model and argumentation schemes.

Other approaches also indicate the connection between mathematical reasoning
and argumentation. Eric Krabbe (2013) presented informal mathematical proofs as
arguments, applying the “pragma-dialectical” theory enriched by the theory of strate-

1 In Toulmin’ s model, an argument is constituted by six interrelated components: claim, data, warrant,
backing, rebuttal, and qualifier The first three elements are considered the substantial elements of applied
arguments, whereas the last three are not always necessary.

123

Global Philosophy (2023) 33:33 Page 5 of  28 33



gic maneuvering to identify the four stages of critical discussion in the proving
process: confrontation, opening, argumentation, concluding stage (Krabbe 2008).
Aberdein (2021) highlighted the connection of mathematical reasoning with tools
developed by the informal logician DouglasWalton to express argumentation schemes
as a taxonomy of argumentation steps, and dialogues as a contextualisation of formal-
ity through mathematical arguments. Lakatos’ “Proofs and Refutations” (1976) is
also an enduring classic that highlights the role of dialogue between agents (a teacher
and some students) at proof attempts as well as critiques of these attempts. Deep
disagreement (Aberdein 2021), controversy and acceptance in mathematical practice
and philosophy can be also expressed through conversation in the concept of social
constructionism (Ernest 2023). Studies in the discovery of mathematics have also used
the concept of “collective argumentation” to particularly examine the mathematical
characteristics of dialogues, as various mathematicians/agents work together to prove
a claim (Conner et al. 2014).

Related studies that analyze original mathematical dialogues from the perspective
of argumentation are:

a. the so-called “mixed-initiative collaborative proving” in (Pease et al. 2017), a way
of formalizing social aspects of proofs by interpreting the informal logic of a
Lakatos-based mathematical discovery;

b. the analysis of Mini-Polymath 3 by Alison Pease & Ursula Martin (2012); and
c. the modeling of mathematical dialogues with the Inference Anchoring Theory +

Content (IATC) framework by Corneli et al. (2019).

The approach in (Pease et al. 2017) implements many different predicates trying to
provide a well-defined formal presentation. On the other hand, the study in (Pease and
Martin 2012) uses a simple typology of comments categorized as concepts, examples,
conjectures, or proofs, and it can be usedmainly as a description of online collaborative
mathematics rather than a formal representation. The work in (Corneli et al. 2019)
uses predicates that are descriptive of the procedure and can be interpreted in widely
different and subjective ways (it is not easy to define concepts such as, e.g., “helpful,”
“beautiful,” “goal,” “strategy,” etc.).

All these studies emphasize the relationship and continuity between reasoning
in argumentation and in proving. Our approach attempts to elucidate this intrin-
sic relationship by modeling the argumentative dialogue between justifications and
explanations offered by mathematicians during their proving activity. We choose a
different approach through the more general meta-methodological framework, which
involves the theory of proof-events that incorporates both proofs and arguments. We
do not attempt to tag an interpretation or a description in the procedure steps, but to
depict the complete proving practice and its social interactions as formally as possible.
Furthermore, our approach highlights explicitly the argument moves that the agents
implement, as well as the sequence of the steps, not only in a “temporal” manner
(with the temporal predicates) but also in a “progressive” manner (with the levels of
argumentation) until the ultimately validated or invalidated outcome.
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3 Towards aModel for Formalizing Reasoning and Collaborative
Proving

According to Lockhart (2008), “Mathematics is not in the ‘truth’ but in the expla-
nation, the argument.” Argumentation-based proof-events can be used to advance
mathematical dialogue inwhich all participants collaborate to critically examine posed
problems and enhance thinking abilities such as problem solving, interpretation, per-
suasion, and creativity. Hence, the goal of mathematics interaction is no longer the
cultivation of individual problem-solving skills, but the development of “collaborative
problem-solving capacities” (Vandoulakis 2020).

Some of the questions that we address are:

1. The relationship between informal proving and formal proof in real mathematical
practice and communication.

2. The relationship between argumentative and mathematical proving activities.
3. The relationship between the contributions ofworkingmathematicians and amath-

ematical proof as a final output.

Cognitive science has shown (Mercier and Sperber 2011) that the dialogical nature
of argumentation is similar to human reasoning in proving. Humans conducting rea-
soning do not necessarily follow the rules of “logic” (Kakas et al. 1992). They may
change their mind concerning a previous conclusion on a matter if they are confronted
with additional information. Their knowledge can be incomplete and inconsistent and,
therefore, new data can invalidate any conclusions drawn (Kakas and Michael 2016).
However, it is often the case that a proof output presented in its pure form overshadows
the informal and social aspects of the proving process that led to it (Hanna 2014).
Argumentation-based approaches can help their integration within wider frameworks
of human reasoning— such as dialogue, debate, validation, and proving— especially
in dynamic environments such as real-life mathematical environments. The model
can depict the dialogues between prover(s) and interpreter(s) in a multi-agent system,
expressing both the internal structure of their arguments, and therefore their cognitive
thinking, as well as the external social interactions with the argumentation moves.

We investigate mathematical proof steps as argumentation-based proof-events to
elucidate the creative characteristics of argumentation that are important in proving,
such as negotiation, collaboration, and fruitful mistakes. This approach enables us
to examine the kinds of reasoning agents may use in their interaction and how the
dialectical activity may influence them to generate new arguments as they move from
the assumptions of a problem to its proof (Conner et al. 2014). Argumentation allows
the contributors to engage in dialogue in the course of their problem-solving activity to
test alternative proving strategies, check a suggested argument or idea or a (part of a)
purported proof until they ultimately reach agreement (Hunter 2007). This perspective
can reshape mathematical discovery into an interactive, negotiable, social process.

Although a new proof is usually attributed to the problem solver, the outcome
is the joint efforts of different agents each of whom has different past experiences,
background knowledge, proving skills, and vision of the problem (Trninic et al. 2018).
Take, for instance, Fermat’s Last Theoremwhichmathematicians had been attempting
to prove for over three centuries, until it was finally proved byAndrewWiles (Almpani
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et al. 2017) in 1994 (after 357years). Thus,Wiles’ proofwas the outcomeof the creative
efforts of many generations of mathematicians and their suggested proofs, which
sometimes contained deficiencies and flaws (Almpani and Stefaneas 2017).We suggest
a model for mathematics learning, where problem-solving is viewed as a collaborative
discovery proof-event (Almpani 2022; Stefaneas et al. 2015). The system represents,
in different levels of proof-events, all the history of discovery and formalizes it in
the form of collaborative argumentative contributions that includes trials, conflicts,
and possible validation or termination of parts of purported proofs (Almpani et al.
2019). In the final step, the formal proof is checked, understood, and confirmed by the
relevant mathematical community and recognized as valid.

Why is a calculus for an argumentative model necessary? There is a gap in the
literature about tools that can provide formal — computationally explicit — input
that can manage the variety of procedures normally involved in constructing proofs,
especially when they contain informal mathematical dialogues with hypotheses, argu-
ments, counterexamples, etc. (Corneli et al. 2019).

Our contribution concerns the elaboration of an analytic framework that provides
a tool to describe and assess mathematical proving based on formal structure, agent
contributions, argumentation reasoning, and sequence of arguments. The above fea-
tures constitute different categories of argumentation frameworks (Clark and Sampson
2008) integrated in one framework. The developed calculus bases the foundations of
the justification on a core structure of premises-warrants-conclusion. Then, it proceeds
with the number and the kind of argument moves (supporting or attacking) necessary
to build the different levels of argumentation. The levels of argumentation can progress
from unjustified claims (lower levels) to incontrovertibly valid proofs (higher levels).
Therefore, one can track the progress in creativity, rigor, and validity of arguments
offered by mathematicians (who can be either human agents or intelligent software
agents) and include the informal steps in a formal analytical framework.

This type of proof-theoretical approach applied in formal argumentation frame-
works can have noticeable advantages (Kakas and Michael 2016). For instance, a
well-studied argument-based calculus may be implemented for analyzing or gener-
ating arguments in a semi-automated or automated way (Kakas and Moraitis 2003),
or combined with Web crowd-sourcing environments for creating human–machine
hybrid teams (Pease et al. 2020).

4 Argumentation-Based Proof-Event Calculus (APEC)

In this section, we present the model of the described approach, the Argumentation-
based Proof-Event Calculus (APEC).

Comparison of the fundamental elements of argumentation theory and proof-events
shows similarities in structure, sequence, and the agents (Almpani 2022).

1. Arguments and proof-events have three common fundamental components: a set
of premises for a task or problem (i.e., data in arguments and premises in proof-
events), a method of reasoning (i.e., warrant in arguments and inference rules in
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Fig. 1 APEC diagram

proof-events), and a conclusion (i.e., claim in arguments and conclusion in proof-
events).

2. What is set to be proved emerges out of the history of proof-events, which is rep-
resented by sequences of proof-events (i.e., fluents (Stefaneas and Vandoulakis
2015)) or by sequences of arguments and counterarguments in the course of argu-
mentation.

3. Argumentation involves agents or groups of agents, enacting the roles of supporter
and opponent of an argument (Kakas and Moraitis 2003), enabling its adoption as
a technology for multi-agent systems development. Similarly, proof-events neces-
sitate the existence of at least two agents: a prover (the agent providing the proof)
and an interpreter (the agent checking the validity of the proof) (Vandoulakis and
Stefaneas 2015a).

Based on the above, our approach suggests that proving and arguing can be viewed
as the functioning of a multi-agent system, the agents of which may take on different
roles: the role of prover or supporter and/or the role of interpreter or opponent. These
agents generate sequences of proof-events that incorporate the exchange of arguments
and counterarguments between the agents participating in the proving. The concepts
from argumentation and proof-event theories integrated into the APEC model are
presented in Fig. 1.

The basic concepts and definitions of the APEC model are described through
argumentation-based proof-events with argument moves, temporal predicates, and
levels of argumentation as presented below.

Definition 1 Argumentation-based proof-event
An argumentation-based proof-event e can be represented as a communicated argu-
ment 〈Φ, c〉 (Pollock 1992) designated by the pair e〈Φ, c〉 as e = 〈communicate〈Φ,

c〉, w〉, whereΦ represents the premises of the argument based on the available data,c
is the claim that refers to the conclusion of a particular problem communicated by the
agent, and w are the inference rules or warrant2 that leads from Φ to c, so that3:

– Φ � �⊥
– Φ � c

2 Since in this work we draw an analogy between argumentation and proving, a warrant is an assumption
that links the data to the claim, in the same way that inference rules link the premises to the conclusion in
a mathematical proof. There can be different warrants leading to the same claim, as in mathematics there
can be different inferences rules that lead to the same conclusion (proof), e.g., the different proofs of the
Pythagorean Theorem.
3 The symbol � represents logical consequence (entailment), meaning that a valid logical argument is one
in which the conclusion is a consequence of (entailed from) one or more premises.
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– There is no Φ ′ ⊂ Φ such that Φ ′ � c

where:
claim c: the statement/conclusion communicated by the agent,
data Φ: the premises as the ground of the claim,
warrant w: the inference rules that connect the data to the claim.
Counterarguments are represented by the corresponding pair e∗〈Ψ , β〉, where Ψ is
the premises on which the claim β of the counterargument is based.

Argumentation may require chains or trees of reasoning, where claims are used
in the assumptions to obtain further claims (Besnard and Hunter 2007), so that a
proof-event could be an atomic argument or a sequence of arguments. Sequences of
proof-events expressed with fluents in the calculus of proof-events (Stefaneas and
Vandoulakis 2015) describe their temporal history and the interactions of the agents
participating in the proof-event and, henceforth, they are useful for depicting logical
arguments and counterarguments.

Definition 2 Fluent of argumentation-based proof-events
A fluent f is a formula of the form e1, e2, . . . , en → e, n ∈ N, where e1〈Φ1, c1〉,
e2〈Φ2, c2〉, . . . , en〈Φn, cn〉 is a finite, possibly empty, sequence of argumentation-
based proof-events, where the conclusion of the proof-event ei is the claim ci , i.e.,
concl(ei ) ≡ ci , for some c1, c2, . . . , cn →c (Vreeswijk 1997). Accordingly, the
meaning of the finite substantial components of the argument (Toulmin 1958) —
which are abbreviated by corresponding prefixes — are defined as follows for the
notion of a fluent:

claim: concl(e) = concl(e1)∩concl(e2)∩ . . .∩concl(en) ≡ c = c1∩c2∩ . . .∩cn
data: prem(e) = prem(e1)∪ prem(e2)∪ . . .∪ prem(en) ≡ Φ1 ∪Φ2 ∪ . . .∪Φn

warrant: in f rul(e) = in f rul(e1) ∪ in f rul(e2) ∪ . . . ∪ in f rul(en) ≡ w = w1 ∪
w2 ∪ . . . ∪ wn

A fluent contains all the necessary arguments/proving steps required to prove the
desired conclusion. Therefore, the conclusion of the initial proof-event e can include
the conclusions of the proof-events en contained in the fluent. For example, a proof
may presuppose the proof of some of its subsections. Every contributing step in this
procedure can be contained in a fluent. By this, we do not only mean completely
correct steps, but also incomplete or faulty steps that can act as a starting point for
another proving step.

However, the steps that an individual agent performs to accomplish a mathematical
proof may overlap with the steps attempted or already performed by other agents. In
the course of a proof, there can be various inference steps, such as attempts, impasses,
confirmed or unconfirmed steps, false suggestions or implicit assumptions, intuitive
ideas, intentions, etc. In this paper, the term argument moves is reserved for specific,
active tactics or strategies among which a prover can choose to support their claim
or attack an opponent’s claim. Five fundamental relations are used that indicate links
and conflicts in a sequence of proof-events. The argument moves — performed in a
sequence of proof-events — can provide support (equivalent, elaboration) or attack
(rebutting, undercutting, undermining) to the claim.
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Given a claim c and an argument communicated during the proof-event e, possible
argument moves, which provide support for c (Haggith 1996) or attack (Pollock 1992)
are:

1. Equivalent(e1, e2): A proof-event e1 is equivalent4 to a proof-event e2 for a claim
c (i.e., c1 = c2 = c).

2. Elaboration(e, S): A proof-event e can have a set of inference rules S which
elaborate or embellish upon c.

3. Rebutting(e∗, e): A counterargument e∗ which attacks a claim c of e.
4. Undermining(e∗, e): A counterargument e∗ which attacks a premise of e.
5. Undercutting(e∗, e): A counterargument e∗ which attacks a warrant of e.

Argument moves that support the claim:Aproof-event e〈Φ, c〉 is equivalent to a proof-
event e′〈Φ ′, c′〉, whenever it has the same premises and the same conclusion (although
they may have different warrants). Thus, equivalent proof-events can have different
ways of proving. For instance, numerous proofs have been offered for the Pythagorean
Theorem, including a geometrical proof by Euclid and an algebraic proof by James
Abram Garfield. Thus,

Equivalent(e, e′) : e〈Φ, c〉 = e′〈Φ ′, c′〉,

when Φ = Φ ′, c = c′ (and it might be w �= w′).
A proof-event e〈Φ, c〉, can have a set of inference rules S of e′ which elaborate or

embellish upon e, if and only if Φ ∪ S � c. Thus,

Elaboration(e, e′) : sent(e) ∩ sent(Se′) → concl(e). (1)

These moves are used for backing our claim and supporting our proof, therefore:

support(e, e′) → Equivalent(e, e′) ∪ Elaboration(e, e′).

Counterargument moves that attack the claim: A counterargument communicated
during the proof-event e∗〈Φ,β〉 rebuts (attacks) the conclusion of an argument com-
municated during the proof-event e〈Φ, c〉, if and only if � β ↔ ¬c. Thus,

Rebutting(e∗, e) : rebut(e∗, e) → ¬concl(e).

A counterargument communicated during the proof-event e∗〈Φ,β〉 undermines
(attacks) some of the premises (defeasible inference) of the argument communicated
during the proof-event e〈Φ, c〉, if and only if� β ↔ ¬(∩Wi ), for somew1, . . . , wn ⊂
W . Thus,

Undermining(e∗, e) : undermin(e∗, e) → ¬prem(e).

4 In the equivalent argumentation move, both proof-events e1 and e2 can be supported, since being equiv-
alent means that they support the same conclusion in a problem based on the same data with different
warrants. Therefore, they strengthen the validity of the conclusion. However, for convenience, we consider
that e2 proof-event supports e1 (since it appears “second”).
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A counterargument communicated during the proof-event e∗〈Φ,β〉 undercuts
(attacks) some of the inference rules (defeasible inference) of the argument com-
municated during the proof-event e〈Φ, c〉, if and only if � β ↔ ¬(∩Φi ), for some
Φ1, . . . , Φn ⊂ Φ. Thus,

Undercutting(e∗, e) : undercut(e∗, e) → ¬in f Rul(e).

Given an argument communicated during the proof-event e〈Φ, c〉, a counter-
argument communicated during the proof-event e∗〈Φ,β〉 attacks the argument
communicated during the proof-event e, if and only if e∗ rebuts e or e∗ undercuts
e. Therefore:

attack(e∗, e) → Rebutting(e∗, e) ∪Undercutting(e∗, e) ∪Undermining(e∗, e)

The above-mentioned operators are combined with temporal predicates: Happens
(e, t), I ni tiates(e, f , t), T erminates(e, f , t), ActiveAt(e, f , t),Clipped(e, f , t).
The purpose of using the language of event calculus in describing proof-events is to
express the progress of the fluents in combination with the exchange of arguments
between the agents. Hence, they are formalized as in the following relations (Almpani
2022).

Happens(e, t0), which means that a proof-event e occurs at time t0.

I ni tiates(e, f , t1) : happens(e, t0) → ¬attack(e∗, t1) ∪ support(e, t1), at time t1,

which means that, if a proof-event e occurs at time t0, then there are no counterargu-
ments e∗ that attack the validity of the outcome of the proof-event and there is adequate
support for our claim at the specific time t1.

Clipped(e1, f , t2) : ∃e1, e∗1, t1, t2, t[Happens(e, t1) ∩ (t1 ≤ t < t2) ∩ attack(e∗1, t)]
∩[�e2(Happens(e2, t2) → ¬attack(e∗1, t))], for t1 ≤ t < t2

which means that a proof-event clips when there is a terminating proof-event e∗
1

between t1 and t2 and there is no proof-event e2 that attacks the counterargument
e∗
1 attacking the proof-event e1.

T erminates(e, f , t1) : ∃e, e∗, t1([attack(e∗, t1) → ¬conc(e) ∪ ¬prem(e) ∪ ¬sent(e)]
∩[�e2, t2(Happens(e2, t2) → ¬attack(e∗, t1))], with t1 < t2

which means that a fluent terminates when there is a counterargument attacking the
sequence and there is no proof-event e2 that Happens in time t2, with t1 < t2, to
defend the claim. The termination of a sequence of proof-events may be caused by
the indication of the falsity of the problem (there are counterarguments that attack the
conclusion of the proof-event), or the undecidability of the problem (there is a lack
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of adequate warrants to prove the desideratum), or the inefficiency of the required
information (there is a lack of Premises).

ActiveAt(e, f , tn+1) : Happens(ten+1, tn+1) → ¬attack(e∗n, tn) ∪ support(e∗n, tn),
for every n ∈ N , tn+1 > tn

which means that a fluent is active, if there is an argument to support the claim for
every counterargument attacking the claim. Thismeans that for every counterargument
e∗〈Ψi , βi 〉, i = 1, . . . , n, n ∈ N, there is a proof-event en+1(Φn+1, cn+1), which
Happens(en+1, tn+1) and defeats the attack of the counterargument e∗

n〈Ψn, βn〉, for
tn+1 > tn .

From the above-mentioned, it concludes that:

Happens(e, t1) ∩ I ni tiates(e, f , t1) ∩ (t1 < t2) ∩ ¬attack(e∗, t2) → ActiveAt(e, f , t2),

which means that a fluent remains active at time t2, if a proof-event e has taken place
at time t1, with t1 < t2 and has not been terminated at a time point between t1 and t2.

Consequently,

∀i ≤ n[ActiveAt(e, f , ti ) ∩ (ti < tn) ∩ ¬T erminates(e, f , ti )] → Valid(e, f , tn),

at time tn, i = 1, . . . , n, n ∈ N

which means that a fluent could be considered valid at time tn , if it is active and there
is no counterarguments to terminate it at time ti for every i = 1, . . . , n, n ∈ N.

To sumup, the following is a list containing all the aforementionedAPECpredicates
that constitute the core syntax of APEC:

– Structural Components:

– prem(e): The premises Φ of the proof-event e.
– concl(e): The claim c of the proof-event e.
– in f Rul(e): The warrant w of the proof-event e.

– Argumentative Moves:

– Elaboration(e, e′): Statement S of e′ elaborates proof-event e.
– Equivalent(e, e′): Proof-event e is equivalent with proof-event e′.
– Rebutting(e∗, e): Proof-event e∗ rebuts proof-event e.
– Undercutting(e∗, e): Proof-event e∗ undercuts proof-event e.
– Undermining(e∗, e): Proof-event e∗ undermines proof-event e.

– Reasoning:

– Support(e, e′): Statements e′ that support e.
– Attack(e∗, e): Statements e∗ that attack e.

– Temporal Predicates:

– Happens(e, t): Proof-event e starts to happen at time t .
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– I ni tiates(e, f , t): The fluent f of e initiates at time t .
– Clipped(e, f , t): The fluent f of e clipped at time t .
– T erminates(e, f , t): The fluent f of e terminates from e∗.
– ActiveAt(e, f , t): The fluent f of e is active at time t .
– Valid(e, f , t): The fluent f of e is valid at time t .

To be able to present not only the temporal process but also the validation progress
of the argumentation-based proof-events more clearly and explicitly, we integrated the
approach in (Kakas et al. 1992). In this paper, the argumentation framework is built
in terms of logic programming rules expressing a preponderance relation among the
arguments, presenting levels of argumentation:

Object-level arguments, which represent the possible decisions or actions in a
specific domain.
First-level priority arguments, which express justifications on the object-level
arguments to resolve possible conflicts.
Higher-order priority arguments, which are used to deal with potential conflicts
between priority arguments of the previous level until all conflicts are resolved
and the outcome is considered valid.

The same levels can be applied in mathematical proofs to understand the history of
proof-events, starting from the statement of a problem until its validation or rejection
and including all the attempts and failures (Vandoulakis and Stefaneas 2015a).

5 Implementation of the APEC in Online Collaborative Mathematics

According to Vandoulakis (2020), the Web as a collaborative medium may transform
the way we experience proving practices, as it allows for contribution by agents with
different backgrounds, knowledge, skills, and styles of thinking. Web technologies
have a specific semantic structure that links opinions and arguments in a dialogue
based mainly on natural linguistic models of argumentation (i.e., models that perceive
argumentation as a language activity) (Bex et al. 2013a). However, Web methods
do not always reflect the semantic structure of mathematical argumentative aspects
explicitly enough or in depth (Rahwan 2008). They often cannot capture different types
of mathematical arguments and counterarguments and are presented with difficulties
in finding and evaluating arguments and their relationships (Bex et al. 2013b). There is
a need for new frameworks, tools, and systems engineered into the Web to encourage
dialogue, facilitate multi-agent collaboration, and promote a new online collective
thinking.

Our work attempts to add to this repository of Argument Web tools by providing
a semantic calculus specialized in the reasoning that takes place in mathematical
practices. We believe that the reasoning that takes place in mathematical dialogues
described by a machine-processable and semantically-rich argumentative structure is
important to the Web vision.

One of the difficulties in the investigation of mathematical practice is that there is
limited knowledge of the real process of mathematical proving and of the interaction
between mathematicians during proving (Pease et al. 2019). To study mathematical
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proving, we need sufficient information to capture the real-life process of mathemati-
cal discovery, not only the final product of the proof communicated in the publications.
This information should provide grounds for explanations of the mathematical dis-
covery, historical facts about the efforts undertaken by the contributors (alone and
in cooperation), and data about the shaping of views and attitudes to proving out-
comes (Pease andMartin 2012).Unlike traditionalmodes of communication, oneof the
Web’s key features — and one that facilitates mathematical practice — is its open and
ubiquitous nature, sinceWeb-based communication enables interaction in multi-agent
systems (Vandoulakis 2020). In addition, Web-based interactivity enables collabora-
tive problem-solving, throughwhich proof for a particular problem is achieved through
spontaneously generated and exchanged arguments and counterarguments. Therefore,
a source of information that can provide evidence about the mathematical proving
practice presents itself in the form of Web-based crowd-sourcing projects.

Data sets of online collaborativemathematical practice can provide uswith original,
rich, and valuable information about the real process ofmathematical discovery (Pease
et al. 2020). Online blogs and forums with informal mathematical dialogues, such
as Polymath, Mini-Polymaths, MathOverflow, Tricki.org, Math.Stackexchange, etc.,
reveal some of the hidden aspects in the evolution of mathematical proving over a
period of time (Pease et al. 2019). Crowd-sourcing is a procedure similar to open
sourcing where the work may be undertaken by an individual or a crowd basis, raising
the number of possible contributors-provers, thus possibly gaining a deeper vision
of the problem. The use of the Web as a means of crowd-sourcing and collaborative
search for proof (Vandoulakis 2020) dates back to projects such as Tatami and Kumo
by Goguen (Goguen 1999), and Tricki and Polymath by Timothy Gowers (Stefaneas
et al. 2015). Tatami is a Web-based cooperative software system that consists of a
proof assistant (Vandoulakis 2020). Kumo is a proof assistant for first-order hidden
logic, which also develops websites that document its proofs (Stefaneas and Van-
doulakis 2012). Tricki involves the creation of a large repository of articles useful
for mathematical problem solving with the aim of assisting in mathematical proving
practice (Gowers and Nielsen 2009). In Polymath, a mathematical problem was for-
mulated, and the entire mathematical community was invited to collaborate openly to
suggest ideas, approaches, comments, and pieces of proof in order to find an alternative
proof (Stefaneas et al. 2015).

Polymath projects can be considered as one of the first fully documented accounts
of how a mathematical problem was solved (Gowers 2009). In Polymath, contributors
were encouraged to view themselves as part of a collaborative team created ad hoc to
solve a posed problem and share their ideas even if they were “obvious,” incomplete,
or faulty, as others might be able to check and correct them and discard what is useless.
This form of networked brainstorming allows for tapping the full potential of various
and complementary mathematical skills of the participants, thus leading to better and
quicker results (Stefaneas et al. 2015).

In the next section, we discuss how the resources of online collaborative mathemat-
ics can be applied to support formulating and answering questions about mathematical
proving. The data set we use are excerpts from the comments5 of the Mini-Polymath

5 https://polymathprojects.org/2012/07/12/minipolymath4-project-imo-2012-q3.
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4 project, which allow us to integrate the arguments exchanged into dialogues repre-
sented in proof-events sequences. Some of the questions we try to highlight with this
case study are:

– What knowledge can we obtain from the dialogues of online crowd-sourcing
projects?

– How can the study of these projects be used to understand mathematical practice?
and

– How can we present them in a systematic, illustrative, and explanatory way?

Although the dataset is not extensive, it is sufficient for our model.

5.1 The APEC Formalization of Mini-Polymath 4

In theMini-Polymath 4 project, the participants contribute to the solution of a problem
from the 2012 International Mathematical Olympiad, titled “The liar’s guessing game
(LGG)” (see also Appendix 1).

The APEC model formalizes mathematical practice based on four core contexts
(also indicated by the corresponding colours as follows):

Argumentation-based proof-events and their structural components that can be
linked to the relevant sentences of the participants’ discourse.
Argument moves and reasoning that indicate interactions between proof-events
(and their agents accordingly).
Temporal predicates that indicate the progress of the practice over time andwhether
certain proof events are active or not.
Levels of argumentation that indicate the progress of the proof in terms of justifi-
cation.

The first two contexts connect the formal modeling of the calculus with the infor-
mal elements of the agents’ discourse and activities, and the latter two designate the
progress of the proving in terms of time and validation.

We aim to present the dialogue and exchange of arguments in which the contrib-
utors were engaged through the comments functionality of the Polymath Webpage
by constructing an APEC model, focusing on the proving activity of the first part of
the conclusion cLGG1 from the LGG problem. The second part cLGG2 of the LGG
problem can be modeled similarly.

The course of arguments exchange in this argumentation-based proof-event
sequence is illustrated in the flow chart in Fig. 2. In this illustration the orange circles
depict the argumentation-based proof-events, where the central one concerning the
proof of LGG is denoted as e_LGG (e_LGG1 and e_LGG2 are the two conclusions
of LGG), while the rest of the proof-events are denoted as e_{number}, where the
number is the numbering of the related Mini-Polymath comment. The arrows depict
the flow of the proof-event sequence. Labels also indicate the argument moves (green
labels), the temporal predicates (blue labels) and the levels of argumentation (black
labels) in the corresponding part of the sequence.
Object-level arguments:
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Fig. 2 Illustration of Mini-Polymath 4 through APEC model

In the object-level arguments, we have the possible initial available data and repre-
sentations of arguments that can be used by the agents related to a specific domain
problem that they attempt to address. Each agent may interpret and use this data differ-
ently, based on their personal perspective and background knowledge. In the use case
presented, there is the LGG problem as the initial proof-event (eLiarGuessingGame) and
two claims that need to be proved, so we have:
eLiarGuessingGame = eLGG1〈Φ, c1〉 ∩ eLGG2〈Φ, c2〉
where:
Φ = 〈The liar’s guessing game.〉
c1 = 〈 If n ≥ 2k then B can guarantee a win.〉
c2 = 〈For all sufficiently large k, there exists an integer n ≥ 1.99k such that B cannot
guarantee a win.〉
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The Polymath aims to create the warrant of the aforementioned proof-events, as
the result of collective fluents.6 This initiates the proving:

Happens(eLGG , f0, t1) → I ni tiates(eLGG1 , f0, t1) ∪ I ni tiates(eLGG2 , f0, t1)

First-level and second-level priority arguments included initial comments, attempts,
and justifications of previous arguments that are not described in detail here (for the
modeling of these levels see Appendix 1).

Third-level Priority Arguments:
At this level, we have counterarguments and attacking moves on some comments and
ideas of the previous levels. The proof-events are enumerated based on the numbering
of the Polymath 4 comments.7

In some cases, a proof-event can be implied or assumed (correctly or faultily) from
the available data, such as in the following example:

e7 = 〈Φ7, c7〉 = 〈Φ7: B cannot guarantee the win, c7: it can be “always win” for A〉
(This proof-event is implied from the initial description of the problem.)

With counterargument e∗
7, the option that “player A can always win” was terminated.

e∗
7 = 〈Φ∗

7 , c∗
7〉 = 〈Φ∗

7 : Since there is a possibility that B would win the game simply
by guessing, c∗

7: there is no “always win” for A〉
Rebutting(e∗

7, e7) : rebut(e∗
7, e7) → ¬concl(e7) and

attack(e∗
7, e7) → Rebutting(e∗

7, e7), where
e∗
7 attacks concl(e7) = 〈“always win” for A〉.
T erminates(e7, f3, tL3) → attack(e∗

7, e7)

Argument e8 adds an observation on the warrant of eLGG1 .
e8 = 〈Φ8, c8〉 = 〈Φ8: For the first part, proving for n = 2k suffices. The first approach
that comes to my mind is to induct on k, c8: cLGG1〉 with warrant w8 = 〈 proving for
n = 2k〉.
With counterargument e∗

9, the related proof-event was attacked and terminated as
unconstructive.
e9 = 〈Φ9, c9〉= 〈Φ9: B can as well ask questions in “rounds” of k + 1 questions, c9:
then, each round is guaranteed to have at least 1 correct answer〉
e∗
9 = 〈Φ9, c9〉 with in f Rul(e∗

9)= 〈While this is true, it is not very constructive [. . . ]〉
Undermining(e∗

9, e9) : Undermin(e∗
9, e9) → ¬prem(e9) and

attack(e∗
9, e9) → Rebutting(e∗

9, e9)
Thus,

6 At each level, the fluent is numbered with the corresponding level of argumentation, i.e., at first-level we
have the fluent f1.
7 Another option is to number them by the agent’s name (or both), depending on the information that we
want to stress.
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T erminates(e9, f3, tL3) → attack(e∗
9, e9)

Fourth-level Priority arguments:

At the fourth level, ideas and efforts yield some productive results thanks to fruitful
(but not yet complete) cooperation, as the proving discovery progresses towards higher
levels.

e10 = 〈Φ10, c10〉=〈Φ10: So for k = 0 any version of binary search works, c10: The
next step should be to find the strategy for k = 1, n = 2〉,
where ¬in f Rul(e10), since the contributor claims “I first thought I have found the
strategy, but it doesn’t work.”

Another prover named Mihai Nica elaborates in this proof-event with some useful
lemmas that help proof-event e10 to progress, and finally the contribution of these
comments adds a valuable input in the final proving of the first conclusion eLGG1 .

e10a = 〈Φ10a , c10a 〉=〈Φ10a : I am working on this case too. Here player A can never
tell two lies in a row. Here is a little observation I have made. Let Q1, and Q2 be
questions that player B can ask, and I will use the notation like [. . . ], c10a : Here is a
cute little lemma: If B asks Q1 Q2 Q1, then A must give the same answer for Q1 both
times it is asked, or else tell the truth for Q2〉.
e10b = 〈Φ10b , c10b 〉=〈Φ10b : Let Q1,Q2 be questions. If player B asks the sequence of
questions Q1 Q2 Q1 Q1 and gets answers A1 A2 A3 A4 (each Ai is either an L (lie) or
a T(truth)), c10b : By the last lemma for the sequence of questions Q1 Q2 Q1, player
B knows that either A2=T or the answers to the first three questions are LTL, TLT, or
TTT [. . . ]. I think the second lemma can be used to make a binary search by making
Q1 = half the numbers, Q2= the other half of the numbers〉.
support(e10, e10a ) → Elaborate(e10, Se10a ),
support(e10, e10b ) → Elaborate(e10, Se10b )
where:
prem(Se10a )=〈If B asks Q1 Q2 Q1, then A must give the same answer for Q1 both
times it is asked [. . . ]〉
prem(Se10b )=〈If player B asks the sequence of questions [. . . ] then player A is forced
to reveal [. . . ]〉
I ni tiates(e10, f4, tL4) → support(e10, e10a ) ∪ support(e10, e10b )

(continues for comments 11–15)

Higher-order Priority Arguments:

At the higher level, we have the justification and the proof of LGG’s first conclusion
cLGG1 , as the outcome of collective argumentation-based proof-events.
e16 = 〈Φ16, c16〉, where Φ16= prem(e16) = 〈 We can assume N = 2k + 1, n = 2k

[. . . ]. Then we can keep asking if b1 is 1, there are two possibilities.〉
c16 = conc(e16) = conc(e16a ) ∪ conc(e16b ), where:
conc(e16a ) = 〈 k + 1 times we get the answer NO, then we exclude the number 10... 0
〉
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conc(e16b )= 〈There is a YES answer. Then we stop asking about b1 and ask b2 =
1, b3 = 1, . . . , bk+1 = 1. After we are done we can exclude the number [. . . ].〉
We have several proof-events in comment 16 that add in the proving discourse, either
by supplementing claims of previous agents or by questioning some incomplete claims.
We can see that it is a live procedure where each comment comes to fill a piece of the
“proving puzzle” until its ultimate completion. In this proof puzzle, it often happens
that even the attempt to add a “wrong piece” can contribute to the process, since
something that does not work was tried, and it can now be safely excluded as an
option.

support(e16, e16a ) → equivalent(e16, e16a ), where
w16a =〈Another way (which seems to solve the first question). We ask the sequence of
question Qi : “Does bi = 1?” in a row. That makes k + 1 questions [. . . ]. We have
excluded a possibility, which by the reduction of comment 15 is enough.〉
Rebutting(e∗

16b
, e16a ) : rebut(e∗

16b
, e16a ) → ¬concl(e16a ), where

e∗
16b

=〈Which number will you exclude in that case? (It might not be in the range)〉,
and
attack(e∗

16b
, e16a ) → Rebutting(e∗

16b
, e16a )

ActiveAt(e16a , fn, tLn ) → support(e16a , e16c ) ∪ support(e16a , e16d ), with
support(e16a , e16c ) → Elaborate(e16a , Se16c ), and
support(e16a , e16d ) → Elaborate(e16a , Se10d ), where
e16c = 〈Φ16c , c16c 〉=〈Φ16c : When c1 = 1, c16c : then the number might be out of the
range.〉
e16d = 〈Φ16d , c16d 〉=〈Φ16d : I’m not sure I totally understand your argument, but your
argument lead me towards the following: Let Bi be the subset of {0, · · · , N − 1} with
0 as the i th digit in their binary expansion [. . . ], c16d : So x cannot be si and we have
the required win. On the other hand, if A always says that x = si for any i , [. . . ] and
B wins.〉
Valid(eLGG1 , fn, tLn ) → support(e16, e16c )∪support(e16, e16d )∩¬attack(e∗

16, e16)

The Mini-Polymath example illustrates the agents’ contribution in the process of
proving. The information we obtain from this type of project indicates that the char-
acteristics and quality of dialogues can affect mathematical thinking and practice.
Firstly, the central aim of proving itself is to convince the rest of the community about
the justification and the validity of one’s approach and outcomes. Moreover, all agents
contributed significantly to the procedure, since various people had to participate in
reaching their common goal, which was the proof of the LGG problem (in Fig. 3, the
warrant is justified based on the contributions of all participants).

Crowd-sourced mathematics is valuable in the study of mathematical practice,
revealing the way that mathematicians think and debate. Proving, at least at its incep-
tion phase, can be understood as an inquiry implemented by exchange of ideas: a
collaborative dialogue between mathematicians with the common aim of solving an
open problem, which none of the participants in the conversation has specifically pre-
determined (Aberdein 2021). Such exchange of arguments can definitely be found
in mathematics, at least in the context of mathematical discovery. At the end of the
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Fig. 3 Illustration of argumentation-based proof-event eLGG

sequence of proof-events, the agent who takes on the role of the administrator has an
overview of the entire participation “history” of each prover-agent to the sequence
of proof-events, so that he/she can analyse the overall contribution of each agent and
integrate them into the final proof.

Additionally, in these types of collaborating environments, the participants might
have less fear of committing mistakes, and therefore different solutions can be tried
out and corrected. Argumentation is more efficient in interactive contexts as it permits
counterarguments to be addressed and stronger arguments to surface, and tools such
as the APEC model can provide considerable aid in this procedure. It can be applied
by provers and interpreters to identify and distinguish arguable elements on others’
positions, but also on their own thinking. The design and implementation of such
learning environments can enhance the development of meta-cognitive activity and
creativity in mathematics (Nadjafikhah et al. 2012).

To sum up, the historical road-map of proving in Mini-Polymath 4 can be expe-
rienced as a cooperative activity, connecting people with different backgrounds,
perspectives, and interests. At each point of the proving trajectory our APEC frame-
work illustrates the current state of the formal and informal reasoning in proving. This
creates a link between:

– the informal and social aspect in the natural mathematical dialogue during the
discovery of a proof; and

– the formal and computational aspect of abstract argumentation reasoning and
semantics in a proof.

The APEC framework adds an additional dimension and performs a significant role
in making these connections sufficiently detailed in a systematic and explainable way,
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demonstrating the applicability of argumentation techniques to mathematical proving
and thinking.

6 Conclusions

In this paper, we introduced the Argumentation-based Proof-Event Calculus (APEC)
based on Toulmin’s, Pollock’s, Dung’s, and Kakas’ argumentation theories that extend
the proof-event calculus with the integration of arguments. Our main aim was to
develop a new approach in which theories and techniques from argumentation theory
can be applied to bridge the gap between formal proving and human reasoning. We
illustrated how proving and arguing, as processes, have many common aspects from a
social and a cognitive point of view. We presented a calculus defining argumentation-
based proof-events, argument moves, and temporal predicates and we analysed them
in terms of levels of argumentation. This enables us to model conflicting arguments
or unresolved moves, similarities and contradictions in multi-agent dialogues, the
social collaboration between provers and interpreters, the controversy of previously
accepted proofs, and so on. These aspects are often unseen or ignored in traditional
mathematical models.

The original contribution of the present paper is that this calculus is formal, practi-
cal, and has the expressive power to represent real mathematical proving, as shown in
the case of Mini-Polymath 4. We suggested a model for multi-agent proving, where
problem-solving is implemented as a collaborative discovery proof-event. The model
provided the analysis of the step-by-step components (argumentation-based proof-
events) of mathematical practice, distinguishing the process of searching for proof
(informal proving) from the final product of this process (formal proof). The combi-
nation of proof-events-based theory and logic-based argumentation makes it possible
to dive into the micro-structure of the proving process, which allows us to also track
the informal aspects of conveying mathematical information at all steps of proving,
as well as in the external structure of proving, highlighting the social roles and the
interactions of the contributors. Thus, Web-based mathematical problem-solving is
strengthened by structured and semantically rich argumentative dialogues and can
serve the development of collective mathematical knowledge through online multi-
agent practices (as in the presented case of Mini-Polymath 4), transforming the way
we understand mathematical proving.
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A The detailed dialogue and formalization of Mini-Polymath

“The liar’s guessing game is a game played between two players A and B. The rules
of the game depend on two positive integers k and n which are known to both players.
At the start of the game, A chooses two integers x and N with 1 ≤ x ≤ N . Player
A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows. Each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in a
previous question), and asking A whether x belongs to S. Player B may ask as many
such questions as he wishes. After each question, player A must immediately answer
it with yes or no, but is allowed to lie as many times as she wishes; the only restriction
is that, among any k + 1 consecutive answers, at least one answer must be truthful.
After B has asked as many questions as he wants, he must specify a set X of at most
n positive integers. If x belongs to X , then B wins; otherwise, he loses.”

Object level arguments (the statement of the problem):
eLiarGuessingGame = eLGG1〈Φ, c1〉 ∩ eLGG2〈Φ, c2〉, where:
Φ = 〈The liar’s guessing game.〉
c1 = 〈If n ≥ 2k then B can guarantee a win.〉
c2 = 〈For all sufficiently large k, there exists an integer n ≥ 1.99k such that B cannot
guarantee a win.〉
Happens(eLGG , f0, t1) → I ni tiates(eLGG , f0, t1)

First-level priority arguments (First attempts):
Support(eLGG1, e3) → Elaboration(eLGG1, e3)
Support(eLGG1, e4) → Elaboration(eLGG1, e4)
e3 = 〈Φ, c1 >, with
in f Rul(e3) = 〈The fact that player A has to choose the number N at the beginning of
the game is intriguing. The number of possibilities for x is originally N , so it would
seem like large N would make the game harder for B. I suspect that B can counteract
the difficulty by asking many more questions for large N than small N .〉
e4 = 〈Φ, c1〉, with
in f Rul(e4) = 〈 Ramsey Theory 〉.
Second-level Arguments (Induction):
e6 = 〈Φ, c1〉, with
in f Rul(e6) = 〈Induction with respect to N .〉
I ni tiates(e6, f2, t6) → support(e6, tL2)

support(e6, tL2) → Equiv(e6, e12) ∪ Elab(e6, Se6a ) ∪ Elab(e6, Se6c )
Elab(e6, Se6a ) = 〈It seems tome that if we could ask a series of questions to guarantee
that x falls inside, say, [0, N/2], then we could reduce to a previous case, but once we
find such a series of questions we more or less have solved the problem.〉
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Elab(e6, Se6c ) =〈 It suffices to prove it for N = n + 1. See comment 12 (i.e. e12).〉
Third-level Arguments (Guessing answers of B):
e7 = 〈Φ7, c7〉 = 〈Φ7:B cannot guarantee the win, c7: it can be “always win” for A〉
(this proof-event can be implied from the problem.)
e∗
7 = 〈Φ∗

7 , c∗
7〉 = 〈Φ∗

7 : Since there is a possibility that B would win the game simply
by guessing, c∗

7:there is no “always win” for A〉
Rebutting(e∗

7, e7) : rebut(e∗
7, e7) → ¬concl(e7) and

attack(e∗
7, e7) → Rebutting(e∗

7, e7), where
concl(e7) = 〈“always win” for A〉.
T erminates(e7, f3, tL3) → attack(e∗

7, e7)
Argument e8 adds an observation on the warrant of eLGG1 .
e8 = 〈Φ8, c8〉 = 〈Φ8: For the first part, proving for n = 2k suffices. The first approach
that comes to my mind is to induct on k, c8: cLGG1 〉 with warrant w8 = 〈 proving for
n = 2k 〉
e9 = 〈Φ9, c9〉= 〈Φ9: B can as well ask questions in “rounds” of k + 1 questions, c9:
then, each round is guaranteed to have at least 1 correct answer〉
e∗
9 = 〈Φ9, c9〉, with in f Rul(e∗

9)= 〈While this is true, it is not very constructive.
Player A can just answer about half truth and half lies, making this strategy hard to
implement.〉
Undermining(e∗

9, e9) : Undermin(e∗
9, e9) → ¬prem(e9) and

attack(e∗
9, e9) → rebut(e∗

9, e9)
Thus, T erminates(e9, f3, tL3) → attack(e∗

7, e7)

Fourth-level arguments (proof for k = 1):
e10 = 〈Φ10, c10〉=〈Φ10: So for k = 0 any version of binary search works, c10: The
next step should be to find the strategy for k = 1, n = 2〉, where
¬in f Rul(e10), since the contributor claims “I first thought I have found the strategy,
but it doesn’t work.”
e10a = 〈Φ10a , c10a 〉=〈Φ10a : I am working on this case too. Here player A can never
tell two lies in a row. Here is a little observation I have made. Let Q1, and Q2 be
questions that player B can ask, and I will use the notation like:
Q’s: Q1 Q2... A’s: L T... To denote that we asked Q1, then Q2 and we received a lie
and a truth respectively (of course, B doesn’t know which),
c10a : Here is a cute little lemma: If B asks Q1 Q2 Q1, then A must give the same
answer for Q1 both times it is asked, or else tell the truth for Q2. Proof: There are
5 possible ways A can answer. LTL, LTT, TLT, TTL, TTT. From here we see that if
the answers to Q1 are different, then the only possibilities are LTT and TTL, in either
case the answer to Q2 must be true.〉.
e10b = 〈Φ10b , c10b 〉=〈Φ10b : Let Q1,Q2 be questions. If player B asks the sequence of
questions Q1 Q2 Q1 Q1 and gets answers A1 A2 A3 A4 (each Ai is either an L (lie)
or a T(truth)) [. . . ], c10b : Then player A is forced to reveal one of the following pieces
of information to player B. (i.e. player B will know which of them is true.): i) A2 =
T, ii) A3 = A4 = T, iii) A2 = A4. By the last lemma for the sequence of questions Q1
Q2 Q1, player B knows that either A2=T or the answers to the first three questions
are LTL, TLT, or TTT [. . . ]. I think the second lemma can be used to make a binary
search by making Q1 = half the numbers, Q2= the other half of the numbers〉.
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support(e10, e10a ) → Elaborate(e10, Se10a ),
support(e10, e10b ) → Elaborate(e10, Se10b )
prem(Se10a )=〈If Player B asks the same question twice in a row and the answer is the
same both times, then it must have been true both times〉
prem(Se10b )=〈“Let Q1,Q2 be questions. If player B asks the sequence of questions
Q1 Q2 Q1 Q1 and gets answers A1A2A3A4 (each Ai is either an L (lie) or a T (truth)).
Then player A is forced to reveal one of the following pieces of information to player
B. (i.e,. player B will know which of them is true.”)〉
I ni tiates(e10, f4, tL4) → support(e10, e10a ) ∪ support(e10, e10b )

(continues for comments 11–15)

Higher-lever Arguments (proof of LGG1):
e16 = 〈Φ16, c16〉, where
Φ16 = prem(e16)=〈 We can assume N = 2k + 1, n = 2k . It means that x has at most
k + 1 binary digits (k + 1 digits only for n = 2k): x = b1b2 . . . bk+1. Then we can
keep asking if b1 is 1, there are two possibilities.
c16 = conc(e16) = conc(e16a) ∪ conc(e16b), where
conc(e16a) = 〈 k+1 times we get the answer NO, then we exclude the number 10…0
〉
conc(e16b) =〈There is a YES answer. Then we stop asking about b1 and ask b2 =
1, b3 = 1 . . . bk+1 = 1.〉 After we are done we can exclude the number for which all
the last k + 1 answers would have been lies whose first digit is 0 (because of the YES
answer).〉
support(e16, e16a) → equivalent(e16, e16a), where
e16a =〈Another way (which seems to solve the first question). We ask the sequence of
question Qi : “Does bi = 1?” in a row. That makes k+1 questions. Then wemust have
at least one of the digits right. In particular, let y = c1 . . . ck+1 be such that ci = 0 if
the answer to Ai is Yes, and ci = 1 if the answer to Ai is No. Then x �= y. We have
excluded a possibility, which by the reduction of comment 15 is enough.〉
Rebutting(e∗

16b
, e16a ) : rebut(e∗

16b
, e16a ) → ¬concl(e16a ), where

e∗
16b=〈Which number will you exclude in that case? (It might not be in the range)〉,
and
attack(e∗

16b
, e16a ) → Rebutting(e∗

16b
, e16a )

ActiveAt(e16a , fn, tLn ) → support(e16a , e16c ) ∪ support(e16a , e16d ), with
support(e16a , e16c ) → Elaborate(e16a , Se16c ), and
support(e16a , e16d ) → Elaborate(e16a , Se10d ), where
e16c=〈When c1 = 1, then the number might be out of the range.〉
e16d=〈I’m not sure I totally understand your argument, but your argument lead me
towards the following:
Let Bi be the subset of {0, · · · , N −1} with 0 as the i th digit in their binary expansion
(note we’re leaving out one member).
Let B ask B1, · · · , Bk in that order, and let bi be 0 if A says yes to Bi and 1 else. Then
let si be the number with binary expansion a0a1 · · · aia′

i+1 · · · a′
k where a

′
j = 1 − a j .

Now ask {s0}, · · · , {sk} in order.
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Suppose A answers at least once that x �= si , and pick the first such instance
of this. Then if x = si , A will have lied for the last k + 1 questions, i.e.
Bi , Bi+1, · · · , Bk, {s0}, · · · , {si }. So x cannot be si and we have the required win.
On the other hand, if A always says that x = si for any i , then if x was the one
member we didn’t manipulate, A lied k+1 times (all {si } questions). So if A says that
x = si for all i , then the one member we didn’t manipulate is actually not x , so we’ve
discarded one member, and B wins.〉
Valid(eLGG1 , fn, tLn ) → support(e16, e16c )∪support(e16, e16d )∩¬attack(e∗

16, e16)
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