
BIT Numerical Mathematics (2022) 62:1765–1787
https://doi.org/10.1007/s10543-022-00930-2

Solving large linear least squares problems with linear
equality constraints

Jennifer Scott1,2 ·Miroslav Tůma3

Received: 24 June 2021 / Accepted: 14 June 2022 / Published online: 5 July 2022
© The Author(s) 2022

Abstract
We consider the problem of solving large-scale linear least squares problems that
have one or more linear constraints that must be satisfied exactly.While some classical
approaches are theoretically well founded, they can face difficulties when thematrix of
constraints contains dense rows or if an algorithmic transformation used in the solution
process results in a modified problem that is much denser than the original one. We
propose modifications with an emphasis on requiring that the constraints be satisfied
with a small residual. We examine combining the null-space method with our recently
developed algorithm for computing a null-space basis matrix for a “wide” matrix. We
further show that a direct elimination approach enhanced by careful pivoting can be
effective in transforming the problem to an unconstrained sparse-dense least squares
problem that can be solved with existing direct or iterative methods. We also present
a number of solution variants that employ an augmented system formulation, which
can be attractive for solving a sequence of related problems. Numerical experiments
on problems coming from practical applications are used throughout to demonstrate
the effectiveness of the different approaches.

Communicated by Michiel E. Hochstenbach.

J. Scott was partially supported by the EPSRC Grant EP/W009676/1. M. Tůma was supported by project
GACR-12719S of the Grant Agency of the Czech Republic.

B Jennifer Scott
jennifer.scott@stfc.ac.uk

Miroslav Tůma
mirektuma@karlin.mff.cuni.cz

1 STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK

2 School of Mathematical, Physical and Computational Sciences, University of Reading, Reading
RG6 6AQ, UK

3 Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,
Sokolovska, 49/83, 186 75 Praha 8, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-022-00930-2&domain=pdf
http://orcid.org/0000-0003-2130-1091

1766 J. Scott, M. Tůma

Keywords Sparse matrices · Linear least squares problems · Linear equality
constraints · Null space method

Mathematics Subject Classification 65F05 · 65F08 · 65F20 · 65F50

1 Introduction

Our interest lies in efficient and robust methods for solving large-scale linear least
squares problems with linear equality constraints. We assume that A ∈ R

m×n and
C ∈ R

p×n , with m > n � p. We further assume that A is large and sparse and C
represents a few, possibly dense, linear constraints. Given b ∈ R

m and d ∈ R
p, the

least squares problem with equality constraints (the LSE problem) is

min
x∈Rn

‖A x − b‖22 (1.1)

s.t. C x = d. (1.2)

A solution exists if and only if (1.2) is consistent. For simplicity, we assume that C
has full row rank (although the proposed approaches can be made more general). In
this case, (1.2) is consistent for any d. A solution to the LSE problem (1.1)–(1.2) is
unique if and only ifN (A) ∩N (C) = {0}, where for any matrix B,N (B) denotes
its null space. This is equivalent to the extended matrix

A =
(
A
C

)
(1.3)

having full column rank. In the case of non-uniqueness, there is a unique minimum-
norm solution.

LSE problems arise in a variety of practical applications, including scattered data
approximation [13], fitting curves to data [16], surface fitting problems [35], real-time
signal processing, and control and communication leading to recursive problems [50],
as well as nonlinear least squares problems and least squares problems with inequality
constraints. For example, in fitting curves to data, equality constraints may arise from
the need to interpolate some data or from a requirement for adjacent fitted curves to
match with continuity of the curves and possibly of some derivatives. Motivations
for LSE problems together with solution strategies are summarized in the research
monographs [7, 8, 29].

Classical approaches for solving LSE problems derive an equivalent unconstrained
linear least squares (LS) problem of lower dimension. There are two standard ways to
perform this reduction: the null-space approach [21, 29] and themethod of direct elim-
ination [10], both of which, with suitable implementation, offer good numerical stabil-
ity. These methods, termed constraint substitution methods, consider the constraints
(1.2) as the primarydata and substitute from them into theLSproblem (1.1). The former
performs a substitution using a null-space basis ofC obtained from aQR factorization,
while the latter is based on substituting an expression for selected solution components
from the constraints into (1.1). This can be done using a QR factorization of C [7, 10].

123

Solving large linear least squares… 1767

If there are a large number of constraints, a pivoted LU factorization might also be an
option [31]. Other solution methods, which may be regarded as complementary to the
constraint substitution approaches, reverse the direction of the substitution, substitut-
ing from theLSproblem into the constraints. This involves the use of an augmented sys-
tem and include aLagrangemultiplier formulation [22], updating procedures that force
the constraints to be satisfied a posteriori [6, 7], and a weighting approach [5, 36, 46],

Solving large-scale LS problems is typically much harder than solving systems of
linear algebraic equations, in part because key issues such as ill-conditioning or dense
structures within an otherwise sparse problem can vary significantly between different
problem classes. Consequently, we do not expect that there will be a single method
that is optimal for all LSE problems, and having a range of approaches available that
target different problems is important. Ourmain objective is to revisit classical solution
strategies and to propose new ideas and modifications that enable large-scale systems
to be solved, with an emphasis first on the possibility that the constraints may be
dense, and second on requiring that the constraints be tightly satisfied. In Sects. 2 and
3, we consider the null-spacemethod and the direct elimination approach, respectively.
We review the methods and show how they can be used for large-scale problems. In
Sect. 4, we present complementary solution approaches within an augmented system
framework. This allows us to treat the constraints and the least squares part of the
problem using a single extended system of equations or via a global updating scheme.
Both direct and iterative methods are discussed.

Much of the published literature related to LSE problems lacks numerical results.
For instance, Björck [6] remarks “no attempt has yet been made to implement the
(general updating LSE) algorithm”, and as far as we are aware, attempts remain absent.
We assume this is because implementing the algorithms is far from straightforward.
While it is not the intention here to offer a full general comparison of the different
approaches, throughout our study we use numerical experiments on problems arising
from real applications to highlight key features that may make a method attractive (or
unsuitable) for particular problems and to illustrate the effectiveness of the different
approaches. Our key findings and recommendations are summarized in Sect. 5.

We end this introduction by describing our test environment. The test matrices are
taken from the SuiteSparse Matrix Collection [15] and comprise a subset of those
used by Gould and Scott in their study of numerical methods for solving large-scale
LS problems [20]. If necessary, the matrix is transposed to give an overdetermined
system. Basic information on our test set is given in Table 1.

The problems in the top half of the table contain rows that are identified as dense
by Algorithm 1 of [42] (with the density parameter set to 0.05). These rows are taken
to form the constraint matrix C and all other rows form A. For the other problems, we
form A by removing the 20 densest rows of the SuiteSparsematrix; some or all of these
rows are used to formC (and the rest are discarded). Table 1 reports data for p = 5 and
20 (denoted, for example, by deter_5 and deter_20, respectively). Although the densest
rows are not necessarily very dense, we make this choice because it corresponds to
the typical situation in which the constraints couple many of the solution components
together. For some of our test examples, splitting the supplied matrix into a sparse part
and a dense part results in the sparse part A containing a small number of null columns
(at most 7 such columns for our test examples). For the purpose of our experiments,

123

1768 J. Scott, M. Tůma

Table 1 Statistics for our test set. m, n and nnz(A) are, respectively, the row and column counts and the
number of entries in the matrixA given by (1.3). dratio is the ratio of the nonzero counts of the densest row
to the sparsest row of A . † indicates at least one column was removed to ensure there are no null columns
in A

Identifier m n nnz(A) dratio ‖x‖2 ‖r‖2
lp_fit2p 13,525 3,000 50,284 3,000 1.69×101 1.10×102

sc205-2r† 62,423 35,212 123,237 1,602 8.76×101 2.04×102

scagr7-2b† 13,847 9,742 35,884 1,792 1.11×102 6.07×101

scagr7-2r† 46,679 32,846 120,140 6,048 1.82×102 1.13×102

scrs8-2r† 27,691 14,357 58,429 2,051 8.57×101 1.46×102

sctap1-2b 33,858 15,390 99,454 771 1.46×102 1.72×102

sctap1-2r 63,426 28,830 186,366 1,443 1.65×102 2.07×102

south31 36,321 18,425 112,328 17,520 2.75×101 1.88×102

testbig 31,223 17,613 61,639 802 6.40×101 1.44×102

deter3_20 21,777 7,647 44,547 73 1.59×103 1.22×102

deter3_5 21,762 7,647 43,807 73 1.57×103 1.22×102

fxm4_6_20 47,185 22,400 265,442 24 5.00×102 9.60×101

fxm4_6_5 47,170 22,400 265,141 24 5.33×102 9.59×101

gemat1_20 10,595 4,929 47,369 22 3.17×104 8.59×101

gemat1_5 10,580 4,929 47,339 28 2.44×104 8.19×101

stormg2-8_20 11,322 4,393 28,553 21 2.83×101 7.97×101

stormg2-8_5 11,307 4,393 28,273 21 3.97×101 7.78×101

we remove the corresponding columns from the extended matrix (1.3) (the data in
Table 1 is for the modified problem). In all our tests, we check that the norms of the
computed solution x and least squares residual r = b − A x are consistent with the
values given in Table 1.

In our experiments, we prescale the extended matrix A given by (1.3) by normal-
izing each of its columns. That is, we replace A by AD , where D is the diagonal
matrix with entries Di i satisfying Di i = 1/‖A ei‖2 (ei denotes the i-th unit vector).
The entries of AD are at most one in absolute value. The vectors b and d are set to
be vectors of 1’s (so that ‖b‖2 and ‖d‖2 are O(1)).

For the substitution approaches described in Sects. 2 and 3, we have developed pro-
totype Fortran codes; in Sect. 4, the augmented systemmethods are implemented using
the SuiteSparseQR package of Davis [14] and Fortran software from the HSL math-
ematical software library [26]. The prototype codes are not optimised for efficiency
and so computational times are not reported. Developing library quality implementa-
tions is far from trivial and is outside the scope of the current study, which focuses
rather on determining which approaches are sufficiently promising for sophisticated
implementations to be considered in the future.

123

Solving large linear least squares… 1769

Notation All norms are 2-norms and in the rest of the paper, to simplify the notation,
‖.‖2 is denoted by ‖.‖. I is used to denote the identitymatrix of appropriate dimension.
The entries of any matrix B are (B)i, j and its columns are denoted by b1, b2, The
null space of B isN (B) and Z is used to denote a matrix whose columns form a basis
for the null space (i.e., Z satisfies B Z = 0). Permutation matrices are denoted by P
(possibly with a subscript). The normal matrix for (1.1) is H = AT A.

2 The null-space approach

The null-space approach is a standard technique for solving least squares problems.
It is based on constructing a matrix Z ∈ R

n×(n−p) such that its columns form a basis
forN (C). Any x ∈ R

n satisfying the constraints can be written in the form

x = x1 + Z x2, (2.1)

where x1 ∈ R
n is a particular solution of the underdetermined system C x1 = d.

The minimum-norm solution can be obtained from the QR factorization of C , that
is, C PC = QC

(
RC 0

)
, where the permutation PC ∈ R

n×n represents the pivoting,
RC ∈ R

p×p is an upper triangular matrix and QC ∈ R
p×p is an orthogonal matrix.

x1 is then given by

x1 = PC

(
R−1
C QT

C d
0

)
.

Substituting (2.1) into (1.1) gives the transformed LS problem

min
x2

‖A Z x2 − (b − A x1)‖2 . (2.2)

The method is summarized as Algorithm 1.

Algorithm 1 Null-space method for solving the LSE problem (1.1)-(1.2) with C of
full row rank.
1: Find x1 ∈ R

n such that C x1 = d.
2: Construct Z ∈ R

n×(n−p) of full column rank such that C Z = 0.
3: Solve the normal equations ZT H Z x2 = (A Z)T (b− A x1) corresponding to (2.2)

� Here H = AT A.
4: Set x = x1 + Z x2.

In the 1970s, the null-space method was developed and discussed by a number of
authors, including in relation to quadratic programming [21, 29, 39, 45]. These and
subsequent contributions formulate the approach via the orthogonal null-space basis

123

1770 J. Scott, M. Tůma

obtained, for example, from the QR factorization of CT given by

CT = Q

(
R
0

)
,

where Q ∈ R
n×n is an orthogonal matrix. Z is equal to the last n− p columns of Q and

consequently is dense. Note that although it is possible to store Q implicitly using, for
example, Householder transformations, the memory demands and implied operation
counts are generally too high. Our interest is in large LS problems and therefore it
may not be practical to solve the (n − p) × (n − p) system in Step 3 if Z is dense.
To make the approach feasible for large problems we can exploit our recent work [44]
on constructing sparse null-space bases of “wide” matrices such as C that have many
more columns than rows and may include some dense rows.

Scott and Tůma [44] propose a number of ways to construct sparse Z . In our
experiments, we employ Algorithm 3 from Section 3 of [44]. This algorithm first
computes a QR factorization ofC with column pivoting. The chosen pivots correspond
to p columns of R. Then each of the remaining n− p columns of C induces a column
z ∈ Z that is computed independently of the other columns as follows. While in the
trivial case of a zero column the corresponding z contains a single nonzero entry,
for any nonzero column c ∈ C a linearly dependent set involving other columns of
C is constructed. The smallest such set is called a circuit; circuits play an important
role in the problem of the sparsest null-space basis [12]. The coefficients of the linear
combination of c and other columns of C that sum to zero are the row entries of
the column z ∈ Z corresponding to c. The linearly dependent sets are found using a
partial pivoted QR factorization of C (with at most p steps) that involves the column
c. To obtain Z with a narrow bandwidth so that ZT H Z is sparse when H is sparse, a
pivoting threshold θ ∈ [0, 1] is employed in these partial QR factorizations. The role
of θ is to balance the locality of the dependent sets (combining columns of C whose
indices are close to c) with the stability of a QR factorization with column pivoting
(which maximizes the absolute values of the diagonal entries of R). Small values of
θ result in Z having a narrow bandwidth.

Our first results are for problems deter3 and gemat1. As discussed in the Introduc-
tion, we form the constraint matrixC by taking the p = 2, 5, 10, 20 densest rows ofA .
The sparse block A is the same for each case. In Fig. 1, we plot the number of entries
nnz(ZT H Z) in ZT H Z and the norm of the constraints residual ‖rc‖ = ‖d − C x‖.
As expected, nnz(ZT H Z) increases with θ , and this increase grows with p. This is
illustrated further by the results in Table 2. We see that, independently of the choice of
θ , for some problems (including lp_fit2p and sctap1-2r) the constraints are not tightly
satisfied. This demonstrates an inherent limitation of the null-space approach of [44]
that focuses on constructing the columns of Z so as to keep ZT H Z sparse but does
not result in Z having orthogonal columns.

The matrix ZT H Z in Step 3 of Algorithm 1 is symmetric positive definite. In the
above experiments, we employ the sparse direct solver HSL_MA87 [23] (combined
with an approximate minimum degree ordering). However, for large problems, the
memory demands mean it may not be possible to use a direct method; this is illustrated
by problem south31 with θ = 1. If a preconditioned iterative solver is used instead,

123

Solving large linear least squares… 1771

0 0.2 0.4 0.6 0.8 1

threshold parameter

0

1

2

3

4

5
ZT H

Z
105

0 0.2 0.4 0.6 0.8 1

threshold parameter

0

0.2

0.4

0.6

0.8

1

1.2

co
ns

tra
in

t r
es

id
ua

l

10-8

0 0.2 0.4 0.6 0.8 1

threshold parameter

3

4

5

6

7

8

9

10

11

ZT H
Z

104

0 0.2 0.4 0.6 0.8 1

threshold parameter

10-14

10-12

10-10

10-8

10-6

10-4

co
ns

tra
in

t r
es

id
ua

l

Fig. 1 The number of entries in ZT H Z (left) and the constraints residual ‖rc‖ (right) for problem deter3
(top) and gemat1 (bottom) as the threshold pivoting parameter θ used in the computation of the null-space
basis increases from 0.1 to 1. The four curves correspond to p = 2 (black dotted line), 5 (blue full line), 10
(red dashed line) and 20 (green dash-dotted line). Observe that using a small θ can improve the sparsity of
ZT H Z . For deter3, the constraint residuals are small for all the tested θ and for gemat1, they are satisfactory
for θ > 0.2 (colour figure online)

not only are the solver memory requirements much less but explicitly forming the
potentially ill-conditioned normal matrix H can be avoided and because Z only needs
to be applied implicitly, the need for sparsity can be relaxed. Currently, finding a good
preconditioner for use in this case remains an open problem [32].

If a sequence of LSE problems is to be solved with the same set of constraints
but different A, the null-space basis can be reused, substantially reducing the work
required. But if the constraints are changed, then Z will also change. In [44], we
present a strategy that allows Z to be updated when a row (or block of rows) is added
to C .

3 Themethod of direct elimination

The second method we look at is direct elimination [29]. The basic idea is to express
the dependency of p selected components of the vector x on the remaining n − p

123

1772 J. Scott, M. Tůma

Table 2 The density of ZT H Z (that is, nnz(ZT H Z)/(n − p)2) and constraint residual ‖rc‖ for two
values of the threshold pivoting parameter θ used in the computation of the null-space basis. ‡ indicates
insufficient memory for the sparse direct solver HSL_MA87

Identifier p θ = 1 θ = 0.1

Density ‖rc‖ Density ‖rc‖

lp_fit2p 25 0.47 4.14×10−5 0.11 3.07×10−5

sc205-2r 8 0.03 5.25×10−8 0.0002 7.58×10−11

scagr7-2b 7 0.03 1.27×10−8 0.0007 2.79×10−8

scrs8-2c 22 0.31 3.60×10−11 0.23 2.02×10−11

sctap1-2b 34 0.05 3.67×10−6 0.002 4.37×10−7

sctap1-2r 34 0.05 2.76×10−3 0.02 1.83×10−4

south31 5 0.20 ‡ 0.02 3.26×10−7

testbig 8 0.03 2.53×10−11 0.0002 2.90×10−11

deter3_20 20 0.008 2.58×10−9 0.0004 1.09×10−8

deter3_5 5 0.001 6.39×10−10 0.0004 4.89×10−9

fxm4_6_20 20 0.0006 5.43×10−6 0.0006 6.67×10−7

fxm4_6_5 5 0.0005 7.80×10−11 0.0005 1.10×10−11

gemat1_20 20 0.004 1.10×10−9 0.003 2.40×10−9

gemat1_5 5 0.002 2.24×10−10 0.001 1.00×10−11

stormg2-8_20 20 0.003 7.44×10−9 0.002 7.23×10−9

stormg2-8_5 5 0.002 1.13×10−10 0.002 8.16×10−11

components and to substitute this into the LS problem (1.1). Here we propose how to
choose the p components so as to retain sparsity in the transformed problem.

Consider the constraints (1.2). The method starts by permuting and splitting the
solution components as follows:

C x = C Pc y = (
C1 C2

) (
y1
y2

)
= d,

where Pc ∈ R
n×n is a permutation matrix chosen so that C1 ∈ R

p×p is nonsingular.
Let A Pc = (

A1 A2
)
be a conformal partitioning of APc. Substituting the expression

y1 = C−1
1 (d − C2 y2) (3.1)

into (1.1) gives the transformed LS problem

min
y2

∥∥∥AT y2 − (b − A1 C
−1
1 d)

∥∥∥2 , (3.2)

123

Solving large linear least squares… 1773

Fig. 2 Example of the transformation in the direct elimination approach. Here m = 9, p = 3, n = 7.
The depicted matrices (from the left) represent the transformation AT = A2 − A1 C

−1
1 C2. The matrix

C−1
1 C2 ∈ R

p×n is depicted as fully dense

with the transformed matrix

AT = A2 − A1 C
−1
1 C2 ∈ R

m×(n−p). (3.3)

Note that if C1 is irreducible, the transformation combines all the rows of C2. If C is
composed of dense rows then AT has more dense rows than A. We thus seek to add as
few row patterns as possible replicating the (possibly) dense pattern of C within AT .
If both A and C are sparse, the substitution leads to a sparse LS problem. We have the
following straightforward result.

Lemma 3.1 Let A ∈ R
m×n be sparse. Let m > n > p and assume a conformal

column splitting induced by the permutation Pc is such that C Pc = (
C1 C2

)
and

A Pc = (
A1 A2

)
with C1 ∈ R

p×p nonsingular and A1 ∈ R
m×p. Define the index set

Occupied = {i | (A1)i,k �= 0 for some k, 1 ≤ k ≤ p}.

Then the number of dense rows in AT given by (3.3) is at most the number of entries
in Occupied.

Proof The result follows directly from the transformation. Assuming the rows of
C−1
1 C2 are dense, the substitution step (3.1) of the direct elimination implies a dense

row k in AT only if there is a nonzero in the k-th row of A1. 	

A simple example is given in Fig. 2. Here we ignore cancellation of nonzeros during

arithmetic operations. We see that the pattern of AT satisfies Lemma 3.1. Note that,
although in this example C−1

1 C2 is shown as dense, it need not be fully dense and the
number of entries in Occupied represents an upper bound on the number of dense
rows in AT .

Lemma 3.1 implies that the LSE problem is transformed to a LS problem (3.2) that
has some dense rows, which we refer to as a sparse-dense LS problem. Consequently,
existing methods for sparse-dense LS problems can be used, including those recently

123

1774 J. Scott, M. Tůma

proposed in [40, 41, 43] (see also the recent direct LS solverHSL_MA85 from theHSL
library). A straightforward algorithmic implication of the lemma is that the permuting
and splitting of C cannot be separated from considering the sparsity pattern of A
because the splitting also determines A1 and A2. Thuswewant to permute the columns
of C to allow a sufficiently well-conditioned factorization of C1 while limiting the
number of entries in Occupied and hence the number of dense rows in AT . The
approach outlined in Algorithm 2 is one way to achieve this. There is an important
difference between the pivoting used in Algorithm 3 of [44] (which we used in the
previous section) and that of Algorithm 2 below. The former modifies the column
pivoting that is considered as standard for QR factorizations by employing a threshold
parameter θ that ensures Z is banded and the transformed normal matrix ZT H Z
retains sparsity. The choice of θ aims to balance the stability of the factorization
with the sparsity of Z . The threshold parameter τ ∈ (0, 1] used in Algorithm 2 also
guarantees the pivots in theQR factorization ofC are sufficiently large but the selection
of the candidate pivots is balanced with limiting the fill-in in the transformed matrix
AT . A crucial role is played by the set of rows held in Occupied that potentially cause
fill-in in AT . The use of different notation for the threshold parameters emphasises
the difference between the two QR-based approaches and the distinct roles of the two
thresholds.

Algorithm 2 Assume C = (c1, . . . , cn) ∈ R
p×n (p < n) has full row rank. Compute

C1 ∈ R
p×p and the column permutation Pc ∈ R

n×n for the direct elimination method
for solving the LSE problem (1.1)–(1.2). Pc is determined by a QR factorization with
threshold pivoting; τ ∈ (0, 1] is the threshold pivoting parameter.

1: Initialise: Occupied = ∅, S = ∅, and w j = ‖c j‖2, j = 1, . . . , n. Define En =
{1, 2, . . . , n}.

2: for l = 1, ..., p
3: Find jmax = argmax j∈En

{w j | j ∈ En \ S}.
4: Define Eτ = { j ∈ En \ S | w j ≥ τw jmax }.
5: Find k ∈ En \ S such that k = argmin j∈Eτ

|{i | (A)i, j �= 0} \ Occupied|.
6: For j ∈ En \ S set c j ← c j − qTk c j qk , where qk = ck/‖ck‖.
7: For j ∈ En \ S set w j ← w j − (qTk c j)

2.
8: Update S ← S ∪ {k}.
9: Update Occupied ← Occupied ∪ {i | (A)i,k �= 0}.
10: end for
11: Set Pc to permute the columns of C with indices in S to obtain C1.

Observe that the pivoting strategy inAlgorithm 2 considersC and A simultaneously
and will not select a column as the pivot column if this column in A is dense (as it
would lead to AT being dense). While we do not discuss the implementation details,
we remark that care is needed to ensure efficiency. For example, the QR factorization
with pivoting of a wide matrix is relatively cheap but it may be necessary to store the

123

Solving large linear least squares… 1775

Fig. 3 The number of dense rows in the transformed matrix AT as the parameter τ increases from 0.05 to
1 for problems deter3 (left) and gemat1 (right). The four curves correspond to p = 2 (black dotted line), 5
(blue full line), 10 (red dashed line) and 20 (green dash-dotted line) (colour figure online)

squares of the column norms using a heap, which is why we emphasize their role in
the algorithm by using the explicit notation wi for these norms.

The effects of increasing the pivoting parameter τ on the number of dense rows in
AT are illustrated in Fig. 3 for problems deter3 and gemat1; results for the full test
set are given in Table 3. The dense rows of the transformed matrix AT are determined
using Algorithm 1 of [42] and to solve the transformed LS problem (3.2) we use the
sparse-dense preconditioned iterative approach of [40].

This computes a Cholesky factorization of the normal matrix corresponding to the
sparse part of AT and uses it as a preconditioner within a conjugate gradient (CG)
method; the CG convergence tolerance that measures the relative decrease of the
transformed residual ‖AT

T r‖/‖r‖ is set to 10−11. For the problems in the top half of
the table for which the rows of C are much denser than those of A (recall Table 1),
reducing τ leads to only a small reduction in the number ndense of dense rows in
AT . However, when the constraints are not dense (the problems in the lower half of
the table), ndense can be significantly decreased by choosing τ < 1, although if τ is
too small, the matrix C1 computed by Algorithm 2 can become highly ill-conditioned
and AT close to being singular. In our experiments we occasionally observed this for
τ < 10−5.

By comparing the pairs of problems in the lower half of the table (such as deter3_20
and deter3_5) and considering the plots in Fig. 3, we see that increasing the number
p of constraints can lead to a sharp increase in ndense (even if these constraints are
relatively sparse), which can result in the transformed problem being hard to solve.
The constraints are very well satisfied in all the test cases, making this an attractive
approach if a good sparse-dense LS solver is available and the number of dense rows
in the transformed problem is not too large. Furthermore, it can be used, without
modification, if the matrix A contains a (small) number of dense rows. However, for a
sequence of problems, if A and/or C changes then, because direct elimination couples
the two matrices, the computation must be completely restarted.

123

1776 J. Scott, M. Tůma

Table 3 The number (ndense) of dense rows in AT and norm of the constraints residual ‖rc‖ for two values
of the pivoting parameter τ

Identifier p τ = 1 τ = 0.1

ndense ‖rc‖ ndense ‖rc‖

lp_fit2p 25 115 8.12×10−12 100 6.77×10−11

sc205-2r 8 9 3.32×10−14 7 6.13×10−14

scagr7-2b 7 14 4.03×10−13 6 1.48×10−13

scrs8-2c 22 16 6.80×10−14 16 1.25×10−13

sctap1-2b 34 72 7.60×10−13 63 1.31×10−12

sctap1-2r 34 66 1.90×10−13 57 1.40×10−13

south31 5 20 2.57×10−15 16 3.45×10−14

testbig 8 9 4.09×10−15 8 1.06×10−14

deter3_20 20 72 8.02×10−14 33 5.75×10−14

deter3_5 5 15 8.02×10−14 7 1.53×10−13

fxm4_6_20 20 113 2.07×10−14 80 5.70×10−14

fxm4_6_5 5 50 7.81×10−16 14 9.13×10−16

gemat1_20 20 284 8.95×10−15 147 1.64×10−14

gemat1_5 5 142 9.77×10−14 17 4.61×10−14

stormg2-8_20 20 136 5.30×10−14 94 2.29×10−15

stormg2-8_5 5 61 3.28×10−15 35 1.50×10−14

4 Approaches described via augmented systems

We now focus on complementary approaches that are based on substitution from the
unconstrained least squares problem into the constraints. A useful way to describe this
is via the augmented (or saddle-point) system

(
H CT

C 0

) (
x
λ

)
=

(
AT b
d

)
, H = AT A. (4.1)

Here λ ∈ R
p is a vector of additional variables that are often called Lagrange mul-

tipliers [18, 22]. The solution x of (4.1) solves the LSE problem. Using (4.1) can be
particularly useful ifC is dense and p is small. As we see in the following discussions,
this is because the work involved in the proposed algorithms that depends upon p is
effectively independent of the density of C . Observe that because (4.1) has a zero
(2, 2) block, the augmented system can be also used to give an alternative derivation
of the null-space approach of Algorithm 1. For if Z is such that C Z = 0 and x1 is a
particular solution of the second equation of (4.1) so that Cx1 = d (steps 1 and 2 of

123

Solving large linear least squares… 1777

Algorithm 1), then if x = x1 + x̂ , (4.1) becomes

(
H CT

C 0

) (
x̂
λ

)
=

(
AT (b − A x1)

0

)
.

The second equation in this system is equivalent to finding x2 such that x̂ = Z x2.
Substituting this into the first equation H Z x2 + CT λ = AT (b − A x1). Hence
ZT H Zx2 = (A Z)T (b − A x1), as in Algorithm 1.

4.1 Direct use of Lagrangemultipliers

Algorithm 3 presents a straightforward updating scheme for solving the LSE problem
using Lagrange multipliers and (4.1). Any appropriate direct or iterative method can
be used for Step 1, which is usually the most expensive part of the computation.

Algorithm 3 Straightforward updating approach based on Lagrange multipliers for
solving the LSE problem (1.1)-(1.2) with C having full row rank

1: Solve the sparse unconstrained LS problem miny ‖A y − b‖2
2: Solve H J = CT for J ∈ R

n×p.
3: Set Y = C J .
4: Solve Yλ = C y − d for λ. � Note that Y ∈ R

p×p is symmetric positive definite.
5: Set x = y − Jλ.

There is no dependence onC so the solution y does not need to be recomputedwhen
C changes. The method used to solve the system with a block of p right-hand sides in
Step 2 can be chosen to exploit Step 1. For example, a sparse Cholesky factorization
of H may be computed in Step 1 and the factors reused in Step 2. Using existing
sparse LS solvers (and a dense linear solver for the p × p at Step 4), Algorithm 3
is straightforward to implement and the solution y of the unconstrained LS problem
obtained from Step 1 can be compared with that of the LSE computed in Step 5.

As discussed by Golub [17] and Heath [22], a numerically superior direct method
that avoids both forming the potentially ill-conditioned normal matrix H and comput-
ing the multipliers λ can be derived using a QR factorization of A. Following [43], we
obtain Algorithm 4. Here P is a permutation matrix chosen to ensure sparsity of the
R factor. Note that, unless b (and hence f) changes, the Q factor need not be retained
and the R factor can be reused if the constraints change but A is fixed.

Results for Algorithm 4 presented in Table 4 confirm that the computed solution
is such that the norm of the constraints residual ‖rc‖ = ‖d − C x‖ is small. We
omit results for problems such as deter_5 that have p = 5 constraints because they are
similar (with ‖rc‖ typically smaller than for the corresponding problemswith p = 20).

123

1778 J. Scott, M. Tůma

Algorithm 4 QR algorithm with updating for solving the LSE problem (1.1)–(1.2)
with C having full row rank

1: Compute the QR factorization
(
A P b

)
= Q

(
R f

0 g

)
using a sparse QR solver.

2: Solve R PT y = f for y.
3: Solve P RT K T = CT for KT ∈ R

n×p.
4: Compute the minimum-norm solution of K u = d − C y. � Use QR factorization

of KT

5: Solve R PT z = u for z.
6: Set x = y + z.

Table 4 Norm of the constraint residuals ‖rc‖ for QR with updating (Algorithm 4)

Identifier ‖rc‖ Identifier ‖rc‖ Identifier ‖rc‖

lp_fit2p 4.49×10−11 sctap1-2b 4.42×10−11 deter3_20 1.26×10−12

sc205-2r 4.30×10−10 sctap1-2r 7.62×10−11 fxm4_6_20 8.49×10−14

scagr7-2b 1.36×10−11 south31 4.50×10−13 gemat1_20 2.94×10−12

scagr7-2r 2.18×10−11 testbig 8.43×10−11 stormg2-8_20 2.44×10−12

scrs8-2r 8.63×10−11

4.2 An extended augmented system approach

An equivalent formulation of (4.1) is given by the 3-block saddle-point system (the
first order optimality conditions)

Aaug y = baug,

where

Aaug =
⎛
⎝ I 0 A

0 0 C
AT CT 0

⎞
⎠ , y =

⎛
⎝ r

−λ

x

⎞
⎠ , baug =

⎛
⎝b
d
0

⎞
⎠ . (4.2)

Applying the analysis of Section 5 of [43] to this problem yields Algorithm 5. In exact
arithmetic, the main difference between the work required by Algorithms 4 and 5 is
that the former involves an additional solve with RPT . For both algorithms, K is
independent of b and d.

123

Solving large linear least squares… 1779

Algorithm 5 Solve the LS problem (1.1)–(1.2) with C having full row rank using the
3-block augmented system (4.2)

1: Compute the sparse QR factorization
(
AP b

)
= Q

(
R f

0 g

)
.

2: Solve P RT K T = CT for KT ∈ R
n×p.

3: Compute the minimum-norm solution of K u = d − K f . � Use QR factorization
of KT

4: Solve R PT x = f + u for x .

4.3 Augmented regularized normal equations

The next approach weights the constraints and uses a regularization parameter within
an augmented system formulation and then aims to balance these two modifications.
Consider the weighted least squares problem (WLS)

min
x

∥∥Aγ xγ − bγ

∥∥2 with Aγ =
(

A
γ C

)
, bγ =

(
b

γ d

)
, (4.3)

for some large γ (γ � 1). Let xLSE be the solution of the LSE problem (1.1)–(1.2).
Then because

lim
γ→∞ xγ = xLSE ,

the WLS problem can be used to solve the LSE problem approximately [28]. An
obvious solution method is to solve the normal equations for (4.3):

Hγ x = AT
γ Aγ x = (AT A + γ 2 CTC) x = AT b + γ 2 CT d = AT

γ bγ .

The appeal is that no special methods are required: software for solving standard
normal equations can be used. However, for very large values of γ , the normal matrix
Hγ becomes extremely ill-conditioned; this is discussed in Section 4 of [9], where it
is shown that the method of normal equations can break down if γ > ε−1/2 (ε is the
machine precision). Furthermore, if C contains dense rows then Hγ will be dense.

Another possibility is to use the regularized normal equations

(Hγ + ω2 I) x = AT
γ bγ , (4.4)

where ω > 0 is a regularization parameter [49]. Solving (4.4) is equivalent to solving
the (m + p + n) × (m + p + n) augmented regularized normal equations

A (ω, γ)

(
y
x

)
=

(
bγ

0

)
, A (ω, γ) =

(
ωI Aγ

AT
γ −ωI

)
, (4.5)

123

1780 J. Scott, M. Tůma

where y = ω−1(bγ − Aγ x) ∈ R
m+p. The spectral condition number of (4.5) is

cond(A (ω, γ)) =
√
cond(Hγ + ω2 I)

and Saunders [38] shows that cond(A (ω, γ)) ≈ ‖Aγ ‖/ω regardless of the condition
of Aγ . Thus using (4.5) potentially gives a significantly more accurate approximation
to the pseudo solution x = A+

γ bγ (where (.)+ denotes the Moore-Penrose pseudoin-
verse of a matrix) compared to the approximation provided by solving (4.4). In [48],
the parameters are set to ω = 10−q and γ = 10q , where

q = min{k : 10−2k ≤ ν−t }.

Here t-bit floating-point arithmetic with base ν is used.
Rewriting (4.5) using (4.3) and a conformal partitioning of y gives

⎛
⎝ωI 0 A

0 ωI γC
AT γCT −ωI

⎞
⎠

⎛
⎝ys
yc
x

⎞
⎠ =

⎛
⎝ b

γ d
0

⎞
⎠ . (4.6)

This system can be solved as in [43] using a modified version of Algorithm 5. Or,
eliminating ys and setting ωγ = 1, yields

(−H(ω) CT

C ω2 I

) (
x
yc

)
=

(−AT b
d

)
, H(ω) = AT A + ω2 I . (4.7)

We can solve this system using a QR factorization of

(
A

ωI

)
and modifying Algo-

rithm4.Or, ignoring the block structure, we can treat it as a sparse symmetric indefinite
linear system and compute an LDLT factorization (with L unit lower triangular and
D block diagonal with blocks of size 1 and 2) using a sparse direct solver such as
HSL_MA97 [24] that incorporates pivoting for stability with a sparsity-preserving
ordering. This factorization would have to be recomputed for each new set of con-
straints. Alternatively, a block signed Cholesky factorization of (4.7) can be used, that
is,

(−H(ω) CT

C ω2 I

)
=

(
L
B Lω

) (−I
I

) (
LT BT

LT
ω

)
,

where

H(ω) = L LT , L BT = −CT and S = ω2 I + B BT = Lω LT
ω.

We then obtain Algorithm 6. Note that B need not be computed explicitly. Rather, the
Schur complement S may be computed using ω2 I + C L−T L−1CT , and w = B z
may be computed by solving L v = z and then setting w = −C v, and w = −BT yc
may be obtained by solving Lw = CT yc.

123

Solving large linear least squares… 1781

Algorithm 6 Given ω > 0, solve the augmented system (4.7) using Cholesky factor-
izations.

1: Compute the sparse Cholesky factorization H(ω) = L LT .
2: Solve L z = AT b.
3: Solve L BT = −CT .
4: Form the symmetric positive definite Schur complement S = ω2 I + B BT and

factorize it S = Lω LT
ω .

5: Solve Lω v = d + B z then solve LT
ω y = v.

6: Solve LT x = z − BT yc.

Results for Algorithm 6 for three of our test problems using a range of values of ω

are given in Table 5. Note that here ‖rc‖ is computed using rc = d −C x (rather than
using rc = ω ∗ yc). We see that, provided ω is sufficiently small, the values of ‖x‖
and ‖r‖ are consistent with those given in Table 1.

By replacing the Cholesky factorization of H(ω) by an incomplete factorization
H(ω) ≈ L̃ L̃T , we can obtain a preconditioner for solving (4.7). In particular, the
right-preconditioned system is

(−H(ω) CT

C ω2 I

)
M−1

(
w

wc

)
=

(−AT b
d

)
, M

(
x
yc

)
=

(
w

wc

)
, (4.8)

and we can take the preconditioner in factored form to be

M =
(
L̃
B̃ I

) (−I
S̃d

)(
L̃T B̃T

I

)
, (4.9)

with

L̃ B̃T = −CT and S̃ = ω2 I + B̃ B̃T .

As the preconditioner (4.9) is indefinite, it needs to be used with a general non-
symmetric iterative method such as GMRES [37]. A positive definite preconditioner
for use with MINRES [33] can be obtained by replacing −I in (4.9) by I . MIN-
RES has the important advantage of only requiring three vectors of length equal to
the size of the linear system. GMRES results are included in Table 5. The GMRES
convergence tolerance is taken to be 10−11. We see that the GMRES iteration count
is essentially independent of ω. We also ran MINRES with the same settings. For
problems sctap1-2r, south31 and deter3_20 with ω = 10−5 the counts were 17, 772
and 56 (approximately twice the GMRES counts). This would be of more interest if
all counts were higher.

Our findings in Sect. 4 suggest that, if we require the constraints to be solved with
a small residual, then an augmented system based approach combined with a QR
factorization performs better (in terms of ‖rc‖) than combining it with regularization

123

1782 J. Scott, M. Tůma

Table 5 Results for the augmented regularized normal equations approach (Algorithm 6) for problems
sctap1-2r, south31, and deter3_20 using a range of values of ω. iters is the number of preconditioned
GMRES iterations. The computed ‖x‖ and ‖r‖ are consistent for both approaches

Identifier ω ‖x‖ ‖r‖ Algorithm 6 GMRES

‖rc‖ iters ‖rc‖

sctap1-2r 1.0 × 10−2 1.44×102 1.91×102 5.07×10−1 6 5.07×10−1

1.0 × 10−3 1.65×102 2.07×102 7.38×10−3 6 7.38×10−3

1.0 × 10−4 1.65×102 2.07×102 7.42×10−5 6 7.42×10−5

1.0 × 10−5 1.65×102 2.07×102 7.71×10−7 6 7.42×10−7

1.0 × 10−6 1.65×102 2.07×102 1.15×10−7 2 7.42×10−9

1.0 × 10−7 1.65×102 2.07×102 1.08×10−7 6 7.42×10−11

1.0 × 10−8 1.65×102 2.07×102 1.20×10−7 6 7.64×10−13

1.0 × 10−9 1.65×102 2.07×102 1.29×10−7 6 4.09×10−13

south31 1.0 × 10−2 2.75×101 1.88×102 8.34×10−5 311 8.34×10−5

1.0 × 10−3 2.75×101 1.88×102 8.34×10−7 337 7.34×10−7

1.0 × 10−4 2.75×101 1.88×102 8.34×10−9 352 8.34×10−9

1.0 × 10−5 2.75×101 1.88×102 8.31×10−11 354 8.85×10−11

1.0 × 10−6 2.75×101 1.88×102 1.02×10−12 354 1.06×10−11

1.0 × 10−7 2.75×101 1.88×102 1.84×10−13 354 1.07×10−11

1.0 × 10−8 2.75×101 1.88×102 1.29×10−13 354 1.07×10−11

1.0 × 10−9 2.75×101 1.88×102 6.77×10−14 354 1.08×10−11

deter3_20 1.0 × 10−2 1.22×103 1.23×102 6.88×10−4 34 6.88×10−4

1.0 × 10−3 1.58×103 1.22×102 6.83×10−6 36 6.83×10−6

1.0 × 10−4 1.59×103 1.22×102 6.83×10−8 36 6.83×10−8

1.0 × 10−5 1.59×103 1.22×102 6.83×10−10 36 6.83×10−10

1.0 × 10−6 1.59×103 1.22×102 6.93×10−12 36 6.72×10−12

1.0 × 10−7 1.59×103 1.22×102 1.14×10−12 36 1.11×10−12

1.0 × 10−8 1.59×103 1.22×102 1.43×10−12 36 1.04×10−12

1.0 × 10−9 1.59×103 1.22×102 1.35×10−12 36 1.37×10−12

and a Cholesky factorization. Unfortunately, QR factorizations are more expensive
and while strategies for computing incomplete orthogonal factorizations for use in
building preconditioners have been proposed (see, for instance, [2–4, 27, 30, 34,
47]), the only available software is the MIQR package of Li and Saad [30] (probably
because developing high quality implementations is non-trivial). In their study of
preconditioners for LS problems, Gould and Scott [19, 20] found that MIQR generally

123

Solving large linear least squares… 1783

Table 6 Convergence results for
problems sctap1-2r with
ω = 1.0 × 10−8 and
stormg2-8_20 with
ω = 1.0 × 10−6. tol and iters
are the convergence tolerance
and the iteration count for
GMRES

tol Sctap1-2r Stormg2-8_20

iters ‖rc‖ iters ‖rc‖

1.0 × 10−6 2 1.669×10−6 130 1.423×10−7

1.0 × 10−7 3 6.046×10−8 134 5.364×10−9

1.0 × 10−8 3 6.046×10−8 141 1.434×10−9

1.0 × 10−9 4 1.897×10−8 146 1.246×10−10

1.0 × 10−10 4 1.897×10−8 149 9.067×10−11

1.0 × 10−11 6 7.642×10−13 156 1.314×10−10

1.0 × 10−12 6 7.642×10−13 161 5.220×10−11

1.0 × 10−13 6 7.642×10−13 190 4.972×10−12

1.0 × 10−14 7 9.136×10−13 217 4.974×10−12

performed less well than incomplete Cholesky factorization preconditioners and so is
not considered here.

We have made the implicit assumption that A is sparse. However, it is straightfor-
ward to extend the augmented system-based approaches to the more general case that
A contains rows that are dense. For example, if A is permuted and partitioned as

A =
(
A1
A2

)
,

where A1 is sparse and A2 is dense, then using a conformal partitioning of ys and of
b, (4.7) can be replaced by the augmented system

(−H1(ω) CT
d

Cd ω2 I

) (
x
yd

)
=

(−AT
1 b1
d

)

with

H1(ω) = AT
1 A1 + ω2 I , yd =

(
yc
y2

)
, Cd =

(
C

ω A2

)
, d =

(
d

ω b2

)
.

Finally, we remark that, if we use the 3-block form (4.6) then we can follow [43],
which in turn generalises the work of Carson, Higham and Pranesh [11], and obtain an
augmented system approach with multi-precision refinement. This has the potential
to reduce the computational cost in terms of time and/or memory, thus allowing larger
problems to be solved.

123

1784 J. Scott, M. Tůma

5 Conclusions

We have considered a number of approaches for solving large-scale LSE problems in
which the constraints may be dense. Our main findings can be summarized as follows:

– The classical null-space method relies on computing a null-space basis matrix Z
for the “wide” constraint matrix C such that ZT AT A Z is sparse. In recent work
[44], we proposed how this can be achieved using a method based on a QR fac-
torization of C with threshold pivoting. This is not straightforward to implement.
Furthermore, our numerical experiments show that, in some cases, the norm ‖rc‖
of the constraints residual can be larger than for other approaches considered in
this study. Thus, although in some contexts null-space approaches are popular, we
do not recommend the strategy of [44] for LSE problems.

– The direct elimination approach couples the constraint matrix and the LS matrix,
leading to a sparse-dense transformed least squares problem. Existing direct or
iterative methods can be used to solve the transformed problem and our exper-
iments found the computed constraint residuals are small. The approach can be
used for problems for which A (as well as C) contains a small number of dense
rows. A weakness is that, if solving a sequence of problems in which either A orC
is fixed, the coupling of the two blocks in the solution process means that it must
be restarted. Furthermore, the number of dense rows in the transformed problem
can be relatively large, making it expensive to solve.

– There are several options for using an augmented system formulation. This can
be solved using standard building blocks, such as a sparse QR factorization, a
sparse symmetric indefinite linear solver, or a block sparse Cholesky factoriza-
tion. An attraction of each of these is that existing “black box” solvers can be
exploited, thereby greatly reducing the effort required in developing robust and
efficient implementations. The augmented system formulation can be generalised
to handle dense rows in A and offers the potential formixed-precision computation.
Moreover, an incomplete Cholesky factorization can be used as a preconditioner
with a Krylov subspace solver.

– In the case of a series of LSE problems in which only the constraints change, both
the null-space and direct elimination approaches have the disadvantage that the
computation must be redone for each new set of constraints. For the augmented
system approaches, a significant amount of work can be reused from the first
problem in the sequence when solving subsequent problems.

Finally, we observe that there is a lack of iterative methods and preconditioners that
can be used to extend the size of LSE problems that can be solved.We have shown that
using an incomplete factorization within a block factorization of an augmented system
can be effective, but most current incomplete factorizations that result in efficient
preconditioners are serial in nature and not able to tackle extremely large problems (but
see [1, 25] for novel approaches that are designed to exploit parallelism). Addressing
the lack of iterative approaches is a challenging subject for future work.

Acknowledgements We are grateful to Professor Michael Saunders and an anonymous reviewer for their
constructive comments that have led to many improvements in the presentation of this paper.

123

Solving large linear least squares… 1785

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anzt, H., Chow, E., Dongarra, J.: ParILUT-a new parallel threshold ILU factorization. SIAM J. on
Scientific Computing 40(4), C503–C519 (2018)

2. Bai, Z.-Z., Duff, I.S.,Wathen, A.J.: A class of incomplete orthogonal factorizationmethods. I:Methods
and theories. BIT Numer. Math. 41(1), 53–70 (2001)

3. Bai, Z.-Z., Duff, Iain S., Yin, J.-F.: Numerical study on incomplete orthogonal factorization precondi-
tioners. J. Comput. Appl. Math. 226(1), 22–41 (2009)

4. Bai, Z.-Z., Yin, J.-F.: Modified incomplete orthogonal factorization methods using Givens rotations.
Computing 86(1), 53–69 (2009)

5. Barlow, J.L., Handy, S.L.: The direct solution of weighted and equality constrained least-squares
problems. SIAM J. on Scientific Computing 9(4), 704–716 (1988)

6. Björck, Å.: A general updating algorithm for constrained linear least squares problems. SIAM J. on
Scientific and Statistical Computing 5(2), 394–402 (1984)

7. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
8. Björck, Å.: Numerical Methods in Matrix Computations, volume 59 of Texts in Applied Mathematics.

Springer, Cham (2015)
9. Björck, Å., Duff, I.S.: A direct method for the solution of sparse linear least squares problems. Linear

Algebra Appl. 34, 43–67 (1980)
10. Björck, Å., Golub, G.: ALGOL Programming, Contribution No. 22: Iterative refinement of linear least

square solutions by Householder transformation. BIT Numer. Math. 7, 322–337 (1967)
11. Carson, E., Higham, N., Pranesh, S.: Three-precision GMRES-based iterative refinement for least

squares problems. SIAM J. on Scientific Computing 42(6), A4063–A4083 (2020)
12. Coleman, T.F., Pothen, A.: The null space problem. I. Complexity. SIAM J. on Algebraic and Discrete

Methods 7(4), 527–537 (1986)
13. Damm, T., Stahl, D.: Linear least squares problems with additional constraints and an application to

scattered data approximation. Linear Algebra Appl. 439(4), 933–943 (2013)
14. Davis, T.A.: Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR

factorization. ACM Transactions on Mathematical Software 38(1), 8:1-8:22 (2011)
15. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Transactions on Mathe-

matical Software 38(1), 1–28 (2011)
16. Farebrother, R.W.: Visualizing Statistical Models and Concepts, volume 166 of Statistics: Textbooks

and Monographs. Marcel Dekker, Inc., New York (2002)
17. Golub, G.H.: Numerical methods for solving least squares problems. Numer. Math. 7, 206–216 (1965)
18. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press,

Baltimore and London (1996)
19. Gould, N.I.M., Scott, J.A.: The state-of-the-art of preconditioners for sparse linear least squares prob-

lems: the complete results. Technical Report RAL-TR-2015-009, Rutherford Appleton Laboratory
(2015)

20. Gould, N.I.M., Scott, J.A.: The state-of-the-art of preconditioners for sparse linear least squares prob-
lems. ACM Transactions on Mathematical Software 43(4), 36:1–35 (2017)

21. Hanson, R.J., Lawson, C.L.: Extensions and applications of the Householder algorithm for solving
linear least squares problems. Math. Comput. 23, 787–812 (1969)

22. Heath, M.T.: Some extensions of an algorithm for sparse linear least squares problems. SIAM J. on
Scientific and Statistical Computing 3(2), 223–237 (1982)

123

http://creativecommons.org/licenses/by/4.0/

1786 J. Scott, M. Tůma

23. Hogg, J.D., Reid, J.K., Scott, J.A.: Design of a multicore sparse Cholesky factorization using DAGs.
SIAM J. on Scientific Computing 32, 3627–3649 (2010)

24. Hogg, J.D., Scott, J.A.: New parallel sparse direct solvers for multicore archiectures. Algorithms 6,
702–725 (2013)

25. Hook, J., Scott, J., Tisseur, F., Hogg, J.: A max-plus approach to incomplete Cholesky factorization
preconditioners. SIAM J. on Scientific Computing 40(4), A1987–A2004 (2018)

26. HSL. A collection of Fortran codes for large-scale scientific computation (2018). http://www.hsl.rl.ac.
uk

27. Jennings, A., Ajiz, M.A.: Incomplete methods for solving AT Ax = b. SIAM J. on Scientific and
Statistical Computing 5(4), 978–987 (1984)

28. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Inc., Englewood Cliffs,
N.J. (1974). Prentice-Hall Series in Automatic Computation

29. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems, volume 15 of Classics in Applied
Mathematics. SIAM, Philadelphia (1995). Revised reprint of the 1974 original

30. Li, N., Saad, Y.: MIQR: A multilevel incomplete QR preconditioner for large sparse least-squares
problems. SIAM J. on Matrix Analysis and Applications 28(2), 524–550 (2006)

31. Murtagh, B.A., Saunders, M.A.: MINOS 5.51 “User’s Guide”. Technical Report SOL-83-20, Systems
Optimization Laboratory, Dept. of Operations Research, Stanford Univ. (2003)

32. Nash, S.G., Sofer, A.: Preconditioning reducedmatrices. SIAM J. onMatrix Analysis and Applications
17(1), 47–68 (1996)

33. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. on
Numerical Analysis 12(4), 617–629 (1975)

34. Papadopoulus, A.T., Duff, I.S., Wathen, A.J.: A class of incomplete orthogonal factorization methods.
II: Implementation and results. BIT Numer. Math. 45(1), 159–179 (2005)

35. Pisinger, G., Zimmermann, A.: Bivariate least squares approximation with linear constraints. BIT
Numer. Math. 47(2), 427–439 (2007)

36. Powell, M.J.D., Reid, J.K.: On applying Householder transformations to linear least squares problems.
In: Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software,
pages 122–126. North-Holland, Amsterdam (1969)

37. Saad, Y., Schultz, M.H.: GMRES: A generalizedminimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. on Scientific and Statistical Computing 7, 856–869 (1986)

38. Saunders, M.A.: Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numer. Math.
35(4), 588–604 (1995)

39. Schittkowski, K., Stoer, J.: A factorization method for the solution of constrained linear least squares
problems allowing subsequent data changes. Numerische Mathematik 31(4), 431–463 (1978/79)

40. Scott, J.A., Tůma, M.: Solving mixed sparse-dense linear least-squares problems by preconditioned
iterative methods. SIAM J on Scientific Computing 39(6), A2422–A2437 (2017)

41. Scott, J.A., Tůma, M.: A Schur complement approach to preconditioning sparse least-squares prob-
lems with some dense rows. Numerical Algorithms 79(4), 1147–1168 (2018). https://doi.org/10.1007/
s11075-018-0478-2

42. Scott, J.A., Tůma, M.: Strengths and limitations of stretching for least-squares problems with some
dense rows. ACM Transactions on Mathematical Software 47(1), 1:1-25 (2021)

43. Scott, J.A., Tůma, M.: A computational study of using black-box QR solvers for large-scale sparse-
dense linear least squares problems.ACMTransactions onMathematical Software 48(1), 5:1-24 (2022)

44. Scott, J.A., Tůma, M.: A null-space approach for large-scale symmetric saddle point systems with a
small and non zero (2,2) block. Numerical Algorithms, 2022. published online

45. Stoer, J.: On the numerical solution of constrained least-squares problems. SIAM J. on Numerical
Analysis 8, 382–411 (1971)

46. Van Loan, C.: On the method of weighting for equality-constrained least-squares problems. SIAM J.
on Numerical Analysis 22(5), 851–864 (1985)

47. Wang,X., Gallivan,K.A., Bramley, R.: CIMGS: an incomplete orthogonal factorization preconditioner.
SIAM J. on Scientific Computing 18(2), 516–536 (1997)

48. Zhdanov, A.I.: The method of augmented regularized normal equations. Comput. Math. Math. Phys.
52(2), 194–197 (2012)

123

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://doi.org/10.1007/s11075-018-0478-2
https://doi.org/10.1007/s11075-018-0478-2

Solving large linear least squares… 1787

49. Zhdanov, A.I., Gogoleva, S.Y.: Solving least squares problems with equality constraints based on
augmented regularized normal equations. Applied Mathematics E-Notes 15, 218–224 (2015)

50. Zhu, Y., Li, X.R.: Recursive least squares with linear constraints. Commun. Inf. Syst. 7(3), 287–311
(2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Solving large linear least squares problems with linear equality constraints
	Abstract
	1 Introduction
	2 The null-space approach
	3 The method of direct elimination
	4 Approaches described via augmented systems
	4.1 Direct use of Lagrange multipliers
	4.2 An extended augmented system approach
	4.3 Augmented regularized normal equations

	5 Conclusions
	Acknowledgements
	References

