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Abstract
Dynamic stochastic optimization models provide a powerful tool to represent 
sequential decision-making processes. Typically, these models use statistical predic-
tive methods to capture the structure of the underlying stochastic process without 
taking into consideration estimation errors and model misspecification. In this con-
text, we propose a data-driven prescriptive analytics framework aiming to integrate 
the machine learning and dynamic optimization machinery in a consistent and effi-
cient way to build a bridge from data to decisions. The proposed framework tackles 
a relevant class of dynamic decision problems comprising many important practical 
applications. The basic building blocks of our proposed framework are: (1) a Hid-
den Markov Model as a predictive (machine learning) method to represent uncer-
tainty; and (2) a distributionally robust dynamic optimization model as a prescrip-
tive method that takes into account estimation errors associated with the predictive 
model and allows for control of the risk associated with decisions. Moreover, we 
present an evaluation framework to assess out-of-sample performance in rolling 
horizon schemes. A complete case study on dynamic asset allocation illustrates the 
proposed framework showing superior out-of-sample performance against selected 
benchmarks. The numerical results show the practical importance and applicability 
of the proposed framework since it extracts valuable information from data to obtain 
robustified decisions with an empirical certificate of out-of-sample performance 
evaluation.
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1  Introduction

Dynamic stochastic optimization models have a long history in operations 
research, with applications in many different areas. Such models represent a 
sequential decision-making process whereby information is revealed in stages, 
and decisions are made based on the information available up to that point. There 
are multiple ways to solve dynamic stochastic optimization models. The choice 
for a particular approach depends, of course, on the structure of the problem 
under study. Whatever the solution method being used, an assumption often made 
in the literature is that the distribution of the underlying stochastic process repre-
senting the uncertainty is known, perhaps by fitting a distribution (or moments) 
to available data, or by constructing a scenario tree from subjective probabilities, 
or by postulating a model according to the type of problem as in the case of finan-
cial models based on stochastic differential equations, to name a few examples. In 
some cases, even more sophisticated simulators can be used as long as they can 
generate random samples that accurately characterizes uncertainty.

Our goal in this paper is to depart from the common assumption of known 
distributions and to model the uncertainty directly from the data. This is accom-
plished by applying a machine learning approach to the problem. More specifi-
cally, we use a Hidden Markov Model (HMM) to learn the structure of the data. 
The HMM can indeed be viewed as a machine learning method in that it classifies 
the data according to unobservable states, and then estimates the transition prob-
abilities between each pair of states. Since each (unobservable) state corresponds 
to situations where the underlying stochastic process behaves similarly, it is rea-
sonable to assume that, conditionally on the state of the HMM, the process has a 
certain distribution—typically, a mixture of Gaussian distributions whereby the 
parameters are estimated from the data. We refer the reader to [33] for a com-
prehensive tutorial on HMM. In a sense, our paper complements the work of [5], 
who also present a data-driven approach for a class of dynamic stochastic opti-
mization problems but based on different machine learning techniques. While 
that work allows explicitly for the presence of features in the data, it requires the 
data to be independent and identically distributed, whereas in our case we are 
more interested in the situation where there is correlation which is captured by 
the HMM.

Although HMMs have been studied for decades, it appears that their use in the 
context of optimization models is limited. In the case of dynamic convex stochas-
tic optimization models, the resulting structure of the HMM allows us to employ 
a variation of the now well-established Stochastic dual dynamic programming 
algorithm (SDDP) to solve such problems. The SDDP method was proposed in 
the seminal paper of [27] for problems where the uncertainty is stagewise inde-
pendent but it was later extended to the case where there is Markovian depend-
ence, although such models require the user to input the transition probability 
matrices; see, for instance, [22, 24, 31]. In a nutshell, the algorithm consists of 
alternating forward and backward steps: the forward step generates a sample path 
of the process to obtain a corresponding sequence of solutions, and the backward 
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step successively approximates the value function in each period by linear cuts. 
SDDP has two particularly attractive features: first, it can solve large-scale sto-
chastic dynamic problems, and second, it provides a policy rather than just a 
numerical solution. Such features are accomplished through the development of 
a sequence piecewise-linear value function approximations in each stage. Once 
the approximations are built, one can evaluate the optimal policy for an arbitrary 
realization of the stochastic process by solving a sequence of linear programs. 
Models that use SDDP as a solution technique have indeed become very popu-
lar in the literature, with applications in many areas such as energy, finance and 
transportation.

One drawback of HMMs, however, is that since the probabilities of transition 
between pairs of states are estimated from the data, the solutions of the optimiza-
tion model that uses such transition probabilities will be very much dependent on 
the observed data, leading to a problem of overfitting. Such dependence may then 
lead to poor out-of-sample performance of the resulting policies due to estima-
tion errors and model misspecification. We prevent such phenomenon from hap-
pening by employing a distributionally robust optimization (DRO) approach that 
allows for variations in the estimated transition probability matrix of the HMM. 
Our DRO model leads to tractable formulations that do not increase the compu-
tational complexity of the model; moreover, they can be solved by a variation of 
the SDDP.

The concern about out-of-sample performance is, unfortunately, often overlooked 
in the stochastic optimization literature, particularly in the case of dynamic mod-
els—oftentimes the user simply implements the first-stage decision given by the 
model and then re-solves the model in every period in order to obtain new decisions. 
As we discuss in the paper, such procedure can be expensive and wasteful, as it dis-
cards the value function approximations obtained in previous steps of a rolling hori-
zon scheme. To counter that effect, we propose an extra step in the out-of-sample 
evaluation that allows for an improvement of the current value function approxima-
tions for updated values of the previous decisions (initial conditions of the current 
problem). Such feature makes the policies generated by the algorithm easier to use 
and quicker to evaluate.

We illustrate our ideas with a dynamic asset allocation problem. Such prob-
lem consists of decision processes under uncertainty with complex characteristics 
embedding the investor’s risk tolerance, transaction cost, and price dynamics. By 
building upon previous work, we propose a Data-Driven DRO approach that esti-
mates an HMM for the return process and allows for ambiguity in the transition 
probability matrix with the thrust to enhance out-of-sample performance. In the 
numerical tests, we provide a comprehensive sensitivity analysis of the robustness 
and risk-aversion parameters, and execute the robustness tuning procedure to select 
the appropriate robustness level. The results obtained for a hold-out testing dataset 
show that the resulting portfolio can yield excellent results, with enhanced out-of-
sample performance over selected benchmarks, including the equal-weight-alloca-
tion strategy, which has been shown to be optimal under certain assumptions [16, 
25] with a competitive out-of-sample (empirical) performance [9].

In summary, the contributions of this paper are the following: 
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1.	 We consider a class of dynamic stochastic optimization problems with risk-
aversion and, rather than specifying a distribution for the data as typical in the 
literature, we apply a machine learning approach—namely, a Hidden Markov 
Model—to learn the structure of the data, and incorporate that information into 
an optimization model;

2.	 To account for the estimation and misspecification errors resulting from the HMM 
estimation procedure, and to avoid excessive dependence of the model on the 
data, we propose a distributionally robust optimization approach to the problem 
whereby ambiguity is allowed in the Markov transition probability matrix esti-
mated by the HMM;

3.	 By building from some ingredients from the literature, we present a variation of 
the SDDP algorithm that can solve the DRO problem mentioned in (2). Moreover, 
we provide deterministic lower and upper bounds and prove that the gap between 
lower and upper bounds becomes zero after a finite number of iterations. While 
we present the methodology in the context of the DRO problem, the approach 
can be easily adapted to other settings such as the standard SDDP, or the SDDP 
with nested risk measures that can be linearized, such as CV@R.

4.	 We propose a rolling-horizon scheme for out-of-sample evaluation of the poli-
cies generated by the algorithm that make such policies easier to use and quicker 
to evaluate for a fixed robustness level; Also, we propose a robustness tuning 
procedure as a series of out-of-sample evaluation steps, whereby the robustness 
level with best out-of-sample performance is selected.

5.	 A case study for an asset allocation problem is presented, demonstrating the 
benefits of the proposed approach over a benchmark from the literature. For 
this application, we propose an alternative novel deterministic lower-bound that 
exploits the structure of the problem.

2 � A data‑driven prescriptive analytics framework

We start by presenting a data-driven prescriptive analytics framework that integrates 
all the machine learning and optimization machinery in a consistent and efficient 
way to build a bridge from data to decisions. The basic building blocks of our pro-
posed framework are (1) a predictive (machine learning) method to represent uncer-
tainty, and (2) a prescriptive (optimization) model that takes into account estimation 
errors associated with the predictive model and allows for control of the risk associ-
ated with decisions. In our context, the predictive model is a Hidden Markov Model, 
and the prescriptive model is a distributionally robust dynamic optimization model 
with risk-based constraints that induces a (parameterized) level of robustness over 
the HMM transition probabilities given that they might be polluted with estimation 
errors.

In what follows, we describe these building blocks in more detail. Before that, 
however, we establish the notation for the dynamic stochastic optimization prob-
lem of interest. We consider a filtered probability space (�,F,ℙ) , where F = FT 
and F0 ⊆ … ⊆ FT . The input is represented by a stochastic process {�t} with values 
in ℝm such that the sigma-algebra generated by {�s,Ks}

t
s=0

 is contained in Ft , and 
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a Markov chain {Kt} with unobservable states such that the following assumption 
holds:

Assumption 1  The process {Kt} is a hidden time-homogeneous Markov chain with 
finite state-space K.

In other words, we assume that the state given by Kt can not be observed or 
directly measured by the decision maker, but it respects the Markov property

where transition probability matrix P does not change over time.

Assumption 2  The process {�t} is an observable time-dependent vector-valued sto-
chastic process that directly affects the performance of the underlying prescriptive 
model. The distribution of each �t depends only on t and on the current (unobserv-
able) state of the Markov chain {Kt}.

Assumptions  1 and 2 are basic for HMMs and allow for modeling different 
“states” of the system. For instance, in the financial model discussed in Sect.  5, 
the process {�t} corresponds to the financial returns of each asset. A typical HMM 
estimation would reveal that the Markov states correspond to the market being in a 
“bull”, “regular”, or “bear” state1. It is important to stress that such states are unob-
servable to the user—rather, they are learned directly from the data. In the finan-
cial example, we never observe directly the state of the market, but we can use the 
sequence of historical asset returns to estimate the transition probability matrix and 
the probability distribution of future returns conditioned to each Markov state.

Assumption 2 also implies that, conditionally on each given (unobservable) state 
of the Markov chain {Kt} , the underlying stochastic process {�t} is stagewise inde-
pendent. That is,

The feasibility set in each time period consists of Ft-adapted solutions �t ∈ ℝ
n 

such that �t ∈ Xt(�t−1, �t) , where the set Xt(�t−1, �t) is given by linear inequalities 
which may involve �t−1 and �t . We will detail the formulation of the model shortly.

2.1 � Predictive method: the hidden Markov model framework

Following standard practice in the literature, given historical data of the underlying 
stochastic process {�t} , the database is split into three parts: training, validation and 

P
(
Kt = k, |Kt−1 = j,Kt−2 = i,…

)
= P

(
Kt = k, |Kt−1 = j

)
= Pjk,

P
(
�t ∈ A, �t+1 ∈ B |Kt = j, Kt+1 = k

)
=

P
(
�t ∈ A |Kt = j

)
P
(
�t+1 ∈ B |Kt+1 = k

)
.

1  A bull market refers to high returns while a bear market is associated low returns; the regular state 
indicates indicates that the market is neither in a bear nor in a bull state
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test datasets. The training data are used to estimate the parameters of the HMM; for 
instance, the standard EM (expectation-maximization) algorithm [26] can be used to 
estimate means, variances, and covariances from data, as well as the nominal transi-
tion probability matrix. The validation data are used to tune some parameters of the 
optimization model, as described later in the paper. The final algorithm, with the 
tuned parameters, is then applied to the testing data.

In general, the HMM parameters estimated from data are the transition prob-
abilities p̂j(k) = P

(
Kt+1 = k||Kt = j

)
,∀t = 0,… , T − 1 , and the coefficients � 

associated with conditional density function p(�t||Kt = k ;�) . As the name sug-
gests, the expectation-maximization (EM) estimation algorithm is an iterative pro-
cedure composed by two steps. Given initial values for p̂ and � , the expectation 
step computes the probability of occurrence of Markov state j at time t given the 
uncertainty-realization trajectory �[1,T] = {�1,… , �T} and the coefficients � , i.e., 
P(Kt = j||�1,… , �T ;�),∀t = 1,… , T , j ∈ K . Then, the maximization step updates 
the values of the transition probability p̂ and the coefficients � in order to maximize 
the likelihood of the observed data under the assumed hidden Markov structure. 
These two steps are repeated until a desired level of convergence is achieved.

Once the parameters are estimated, the HMM can then be used to classify the 
current state j of the Markov chain and therefore the (conditional) distribution of 
stochastic process {�t} , which due to Assumption 2 depends only on j. The current 
state classification is obtained by conducting statistical inference of the current state 
given all information so far. More specifically, we obtain from the HMM parameters 
the quantity P

(
Kt = k||�t, �t−1,… , �1

)
,∀k ∈ K, hereinafter referred to as the poste-

rior probability of state k at time t, which is defined as

where p(�t, �t−1,… , �1,Kt = k) is the joint probability density function evaluated at 
the observed sample path and the current Markov state being k. This joint probabil-
ity density function is obtained by an iterative procedure called the HMM forward 
pass, see [6]. Now, we can classify the current state

as the most probable Markov state given all available information at time t.

2.2 � Basic prescriptive method: risk‑constrained dynamic stochastic programming

In addition to the aforementioned constraints �t ∈ Xt(�t−1, �t) , we also consider risk-
based constraints in our optimization model. The introduction of such constraints 
allows us to control the risk associated with decisions. The incorporation of risk 
control in dynamic stochastic optimization models has been the subject of consider-
able work in the literature since issues such as time consistency must be taken into 
account; see, e.g., [37, 42] for discussions. Following [37], “a policy is time consist-
ent if and only if the future planned decisions are actually going to be implemented.” 

(1)P
�
Kt = k���t, �t−1,… , �1

�
∶=

p(Kt = k, �t, �t−1,… , �1)∑
j∈K p(Kt = j, �t, �t−1,… , �1)

,

(2)k∗
t
∈ argmax

k∈K

P
(
Kt = k||�t, �t−1,… , �1

)
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As we shall see shortly, our risk-constrained model satisfies time consistency as it 
can be formulated in a recursive manner. This dynamic stochastic programming 
model will then be extended to a distributionally robust dynamic model in Sect. 2.3.

Before describing the risk-constrained dynamic model, we briefly recall the 
notion of Conditional Value-at-Risk ( CV@R ) risk measure defined in [35]. Given a 
random variable Z representing some quantity such that larger values are less favora-
ble (for instance, losses), we write CV@R�[Z] = min�∈ℝ

{
�+ 1

1−�
�
[
(Z − �)+

]}
.

This risk measure is concentrated on the right tail of the distribution of Z. When 
the random variable of interest is such that larger values are more favorable, then 
it is more appropriate to refer to acceptability functionals rather than to risk meas-
ures (see, e.g., [36]). We call this variable of interest “wealth” and denote it by W. 
Also, we denote by ��[W] the acceptability functional corresponding to CV@R , i.e., 
��[W] ∶= −CV@R1−�[−W] , which can be written as (we omit the subscript � as it 
is fixed throughout the paper)2

We return now to our model. In each period t, given a feasible solution �t ∈ ℝ
n 

we define a function gt(�t, �t+1) to represent the “wealth” resulting from the deci-
sion �t . Note that gt depends on the random variable �t+1 which has not been real-
ized yet at time t, but it does not depend on future values �t+2,… , �T . To simplify 
the notation, let Wt+1 ∶= gt(�t, �t+1) . Then, we apply the acceptability functional � 
defined in (3) to Wt+1 conditionally on the current state j of the HMM, resulting in 
the quantity

Note that the expectation in (4) and hereinafter is associated with the subse-
quent random variable �t+1 . With this notation, the risk-based constraint can then be 
expressed as

Finally, in each period t, given a feasible solution �t ∈ ℝ
n and a realization of 

�t , a reward of ft(�t, �t) is accrued. For each state j of the HMM, the optimization 
model is then written as

(3)�[W] = max
z∈ℝ

{
z −

1

�
𝔼
[
(z −W)+

]}
.

(4)𝜙�̂j

[
Wt+1

]
∶= max

z∈ℝ

{
z −

1

𝛼

∑

k∈K

𝔼
[(
z −Wt+1

)
+
||Kt+1 = k

]
p̂j(k)

}
.

𝜙�̂j

[
gt(�t, �t+1)

]
≥ 0.

(5)Q
j

0
∶= max

�0∈X0

f0(�0) +
∑

k∈K

�
[
Qk

1

(
�0, �1

)||K1 = k
]
p̂j(k)

2  Because of the direct one-to-one relationship between � and CV@R1−� , in the paper we will often 
refer to � as “CV@R”, with the meaning understood from the context.
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where X0 represents linear constraints on �0 and, for each t = 1,… , T − 1 and for 
each state j of the HMM,

The final-stage function QT is defined as

Equations (5)–(9) define the risk-averse dynamic stochastic optimization we 
would like to solve. It is crucial to notice that, since the risk function is applied 
only locally in each period through the constraints 𝜙�̂j

[
gt(�t, �t+1)

]
≥ 0 , time con-

sistency is ensured (see [46])—after all, the problem still has a nested form, 
which is a necessary condition for time-consistency (see, e.g., [19, 42]). Such 
constraints could be used, for example, to provide a convex approximation of 
probabilistic constraints of the form ℙ

(
gt(�t, �t+1) ≤ 0

)
≤ �.

Observe that the policy resulting from solving the above recursive formula-
tion requires the decision-maker to know the current state in each period, which 
contradicts the fact that such states are hidden. One way to circumvent this issue 
would be to consider the Markov posterior probabilities as state variables of the 
dynamic stochastic program; however, it would lead to a non-convex problem, 
which is generally intractable. In particular, the recent work by [10] considers 
a similar problem class with no risk constraints. The authors explore the saddle 
function structure and provide an efficient solution algorithm for that problem 
class. However, the solution methodology proposed by the authors is not suitable 
for our risk-constrained dynamic stochastic optimization, nor do they consider a 
DRO formulation. As discussed in Sect. 4, we circumvent that problem by apply-
ing a rolling horizon scheme and propose two alternative ways of using HMM 
posterior probability given in Eq. (1) to obtain the first-stage decisions: (i) by 
using the HMM classification techniques, i.e., by taking the most likely Markov 
state given by Eq. (2) to determine the current Markov state; and (ii) by modify-
ing the first-stage problem by replacing the transition probability (conditioned to 
knowing the current state) with the posterior probability (1), which is a function 
only of historical return realizations.

We will make the following assumptions for the remainder of the paper (for con-
venience we set gT ≡ 0):

Assumption 3  For any t = 0,… , T  and any realization of �1,… , �t+1 , the functions 
ft(⋅, �t) and gt(⋅, �t+1) are affine.

(6)s.t. 𝜙�̂j

[
g0(�0, �1)

]
≥ 0.

(7)
Q

j

t(�t−1, �t) ∶=

max
�t∈Xt(�t−1,�t)

ft(�t, �t) +
∑

k∈K

�
[
Qk

t+1

(
�t, �t+1

)||Kt+1 = k
]
p̂j(k)

(8)s.t. 𝜙�̂j

[
gt(�t, �t+1)

]
≥ 0.

(9)Q
j

T
(�T−1, �T ) ∶= max

�T∈XT (�T−1,�T )
fT (�T , �T ).
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Assumption 3 can be relaxed; for example, to the case where ft and gt are defined 
as the minimum of affine functions. Nevertheless, we keep the linear assumption for 
simplicity.

Assumption 4  For any t = 1,… , T  , the set Xt(�t−1, �t) is non-empty for any �t−1 
feasible in stage t − 1 , i.e., the problem has relatively complete recourse. The set 
Xt(�t−1, �t) consists of vectors �t ∈ ℝ

n satisfying linear inequalities of the form 
�t�t = �t − �t�t−1 with �t ≥ 0, where �t = {�t, �t,�t} . Also, the set X0 has the 
form {�0 ∈ ℝ

N
+
|�0�0 = �0}.

Assumption 4 imposes a polyhedral structure on the set Xt(�t−1, �t) , which will be 
useful in the developments that follow.

2.3 � Extended prescriptive method: a data‑driven distributionally robust dynamic 
model

The HMM approach described in Sect.  2.1 has the advantage of learning directly 
from the data. However, HMM estimated probabilities are very sensitive to changes 
in the training data. Such sensitivity may cause considerable instability in the opti-
mization model, with similar observed data leading to different performances of 
the corresponding optimal solutions. Moreover, poorly estimated probabilities will 
likely lead to poor out-of-sample performance of the solutions proposed by the 
model. As stated in Sect. 1, our primary goal is to provide a data-driven approach 
for dynamic stochastic optimization problems which performs well out of sample. 
Therefore, it is critical to address this estimation shortcoming.

Our approach to circumvent the estimation issue is to use a distributionally 
robust optimization (DRO) model for the problem. The idea of DRO is to construct 
an ambiguity set for the distributions of the random variables of the problem and 
then to optimize the worst-case within the ambiguity set. DRO problems have long 
been studied in the literature (albeit with a different terminology), starting from the 
seminal work of [39], then followed by [48] and later by [41, 43] and [17]. Much of 
the recent literature on this topic focuses on ways of constructing the ambiguity set 
(call it P ) that ensure tractability of the resulting problem. For example, in [8] the 
authors define P as the set of distributions that have a given mean and covariance 
matrix. Another popular approach is to define P as the set of distributions that are 
not “too far” from some reference distribution. Of course, such a notion requires 
defining an appropriate way to measure the “distance” between distributions3. Sev-
eral such distances exist, for instance, the Kantorovich and Wasserstein distances, 
the Kullback–Leibler divergence, and Chi-squared distance (and more generally phi-
divergences), among others. This is a growing field with substantial current activity; 
we refer to [3, 4, 25, 28, 34] for some of the work in this area. The benefit of using 

3  Note that here we use “distance” as an abuse of terminology, since in some of these cases the function 
is not symmetric, i.e., d(P,Q) ≠ d(Q,P).
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DRO—under certain settings—to improve out-of-sample performance can be for-
mally demonstrated; see [47].

Some recent works in the literature are directly related to the present paper as 
they also study DRO models for multistage stochastic programs: in [32] and [12], 
the authors use ambiguity sets differing in terms of the probability metrics used—
respectively �2 and Wasserstein distances—and in both cases an adaptation of 
SDDP is provided to solve the resulting problem. These works robustify the opti-
mal policy against the ambiguity over the nominal stagewise independent probabil-
ity distribution but neglect to consider the dynamics of the data-generating process. 
Our work, on the other hand, allows for time dependence through the structure ren-
dered by the HMM, and also robustifies the optimal policy against ambiguity over 
the estimated transition matrix. Dealing with ambiguity only in the transition matrix 
is helpful since the number of points in the support (which is the number of states 
in the HMM) is small and thus the dimension of the DRO model is not very large. 
Moreover, we provide deterministic both lower and upper bounds for the objective 
function, as discussed in the subsequent sections, whereas those aforementioned 
works only provide lower bounds (for minimization problems).

In our DRO model, Eqs. (7)–(8) are replaced with the following:

and Eqs. (5) and (6) are also replaced accordingly. In the above model, Pj is the 
ambiguity set for the distribution of the next state of the Markov chain, conditionally 
on the current state j, and is defined as

where d(�j, �̂j) measures the total variation distance between �j and �̂j (recall that �̂j 
is the vector of state-j probabilities estimated for the Markov chain), i.e.,

In the above formulation, the parameter � controls the level of ambiguity allowed 
in the model—a value of � = 0 indicates that the estimated probabilities can be fully 
trusted, whereas a value of � = 1 ignores the estimated probabilities and simply 
optimizes with respect to the worst-case state of the HMM. Note that the use of 
ambiguity sets in the DRO formulation addresses model misspecification and esti-
mation errors in the HMM transition probabilities, whereas the use of CV@R aims 
at measuring the risk of losses with respect to the scenarios. Therefore, there is no 
redundancy in using both techniques.

(10)

Q
j

t(�t−1,�t) =

max
�t∈Xt(�t−1,�t)

ft(�t, �t) +

{
min
�j∈ Pj

∑

k∈K

�
[
Qk

t+1

(
�t, �t+1

)||Kt+1 = k
]
pj(k)

}

(11)s.t.

{
min
�j∈ Pj

��j

[
gt(�t, �t+1)

] }
≥ 0

(12)Pj =
{
�j ∈ ℝ

|K||||�
⊤�j = 1, d(�j, �̂j) ≤ 𝛥, �j ≥ 0

}
,

(13)d(�j, �̂j) ∶= (1∕2) �⊤|�j − �̂j|.
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The use of a distributionally robust model for the transition probabilities of the 
Markov chain affects both the objective function and the CV@R constraint—note that 
the expression min

�j∈ Pj

{⋅} appears in both places. Using the same worst-case probability 

distribution for both the objective function and the CV@R constraint makes the separa-
tion between the inner and outer problems impossible [28]. Nevertheless, if we allow 
for two separated worst-case probability distributions (one for the objective function 
and other for the constraint), the problem becomes more tractable. This “separation” 
can be conceptually motivated by the idea that the objective function is a “worst case” 
expectation while the risk constraint must be feasible for any transition probability in 
the ambiguity set, i.e., ��j

[
gt(�t, �t+1)

]
≥ 0, ∀�j ∈ Pj. For convenience, we will use 

the same ambiguity set for both the objective function and the constraint, however, one 
could use different sets (for instance, defined with different �s ) to allow for different 
levels of robustness in each expression. Observe also that, while other probability dis-
tance functions could be used instead of the total variation distance in (13), the choice 
for the total variation is natural in this setting where there are only a finite number of 
Markov states. Moreover, as we shall see later, with the total variation distance the 
model can be efficiently solved because the robust counterpart is a linear optimization 
problem.

3 � Solution methodology

In this section we propose an efficient way to solve the data-driven distributionally 
robust dynamic model: we develop a computationally tractable dual reformulation, and 
then we adapt the stochastic dual dynamic programming (SDDP) algorithm to suit the 
proposed model. Significant modifications are needed in SDDP. In particular, we high-
light the development of a deterministic lower bound (for a maximization problem), 
which, while related to results recently proposed in the literature, is a novel result with 
a practical appeal. In the following subsections we describe these steps in detail.

3.1 � A tractable dual reformulation

In this section, we present a tractable formulation of (10)–(11) based on the dual of the 
inner minimization problems in those equations. Consider initially the inner problem 
in (10). For a fixed �t ∈ Xt(�t−1, �t) , the dual formulation of the inner problem (10) is

By using a similar approach it is possible to construct a dual formulation to write 
(11) in a more tractable manner. Note that from (4) we can write

(14)

max
�−,�+,𝜆,𝜂

∑

k∈K

p̂j(k)(𝜃
+
k
− 𝜃−

k
) − 𝜂 − 2𝛥𝜆

s.t. − 𝜃−
k
+ 𝜃+

k
− 𝜂 ≤ �

[
Qk

t+1

(
�t, �t+1

)||Kt+1 = k
]
, ∀k ∈ K

𝜃−
k
+ 𝜃+

k
− 𝜆 = 0, ∀k ∈ K

�−,�+, 𝜆 ≥ 0.
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The function h is concave in z and linear in �j . Thus, given that Pj is compact, we 
can deduce from Sion’s minimax theorem [45] that 
min�j∈Pj

maxz∈ℝ h(z, �j) = maxz∈ℝ min�j∈Pj
h(z,�j) and hence it follows that for any 

given z, min�j∈Pj
h(z, �j) can be written as

By writing the dual of (15) analogously to (14), it follows that the left-hand side 
of (11) can be written as the optimization problem

Finally, by merging (14) with the outer maximization problem, adding the ine-
qualities and variables of (16), and imposing that the objective function of (16) is 
non-negative, we obtain the single-level reformulation of (10)–(11):

��j

[
gt(�t, �t+1)

]
= max

z∈ℝ

{
h(z,�j) ∶= z −

1

�

∑

k∈K

𝔼
[(
z − gt(�t, �t+1)

)
+
||Kt+1 = k

]
pj(k)

}
.

(15)

min
�j≥0,�

z −
1

𝛼
�
[(
z − gt(�t, �t+1)

)
+
||Kt+1 = k

]
pj(k)

s.t. pj(k) − ek ≤ p̂j(k), ∀k ∈ K ∶ �𝜃−
k

pj(k) + ek ≥ p̂j(k), ∀k ∈ K ∶ �𝜃+
k∑

k∈K

ek ≤ 2𝛥 ∶ �𝜆

∑

k∈K

pj(k) = 1 ∶ �𝜂

(16)

max
z,��

−
,��

+
,�𝜆,�𝜂

z +
∑

k∈K

p̂j(k)(
�𝜃+
k
− �𝜃−

k
) − �𝜂 − 2𝛥�𝜆

s.t. − �𝜃−
k
+ �𝜃+

k
− �𝜂 ≤ −

1

𝛼
�
[(
z − gt(�t, �t+1)

)
+
||Kt+1 = k

]
, ∀k ∈ K

�𝜃−
k
+ �𝜃+

k
− �𝜆 = 0, ∀k ∈ K

��
−
, ��

+
, �𝜆 ≥ 0.

(17)

Q
j

t(�t−1, �t) =

max
�t, z,�

−,�+, 𝜆,

𝜂, ��
−
, ��

+
, �𝜆, �𝜂

ft(�t, �t) +
∑

k∈K

p̂j(k)(𝜃
+
k
− 𝜃−

k
) − 𝜂 − 2𝛥𝜆

(18)s.t. z +
∑

k∈K

p̂j(k)(
�𝜃+
k
− �𝜃−

k
) − �𝜂 − 2𝛥�𝜆 ≥ 0

(19)− �̃−
k
+ �̃+

k
− �̃ +

1

�
�
[(
z − gt(�t, �t+1)

)
+
||Kt+1 = k

]
≤ 0, ∀k ∈ K
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Problem (17)–(24) is a multistage stochastic program, which is convex under 
Assumptions 3 and 4. It provides a conceptually tractable reformulation of (10)–(11). 
The word “conceptually” refers to the fact that such model cannot be directly imple-
mented, for two reasons: first, inequalities (19) and (20) involve expectations and 
second, inequality (20) involves the unknown value function Qk

t+1

(
�t, �t+1

)
 . The first 

difficulty can be dealt with employing sample average approximations. The second 
difficulty appears more daunting due to the curse of dimensionality. For instance, 
when no assumptions are made about the input process {�t} there is a vast number 
of possible outcomes at each stage and the number of scenarios grows exponentially 
with the number of stages. As we shall see in Sect. 3.2, however, under Assumption 
2 we can adapt the SDDP method to our setting, which allows us to approximate the 
value function Qk

t+1

(
�t, �t+1

)
 by piecewise-linear functions and so standard optimi-

zation methods can be used to solve the problem.
We can construct a sample average approximation of problem (17)–(24), which 

allows us to replace the expectations in (19) and (20) with averages of random 
realizations sampled from the “true” distributions. First, for each state k ∈ K of the 
Markov chain, we draw i.i.d. samples from the conditional distribution of �t+1 given 
Kt+1 = k . We denote those samples by {�k

t+1
(s)}s∈Sk

 . Next, define the probability 
qk(s) of scenario s conditional on state k of the Markov chain as

For instance, if the sample is generated via a Monte Carlo simulation or 
Latin Hypercube Sampling, then we would define equally probable scenarios 
qk(s) = 1∕|Sk| , conditionally on the Markov state Kt+1 = k . However, qk(s) might be 
defined differently if other technique, such as importance sampling, is used. Moreo-
ver, we introduce variables yks for each k ∈ K and each s ∈ Sk in order to linearize 
the “plus” function in (19). Finally, the expected value function in (20) is expressed 
as

(20)− �−
k
+ �+

k
− � − �

[
Qk

t+1

(
�t, �t+1

)||Kt+1 = k
]
≤ 0, ∀k ∈ K

(21)�−
k
+ �+

k
− � = 0, ∀k ∈ K

(22)�̃−
k
+ �̃+

k
− �̃ = 0, ∀k ∈ K

(23)�−,�+, �̃
−
, �̃

+
, �, �̃ ≥ 0

(24)�t ∈ Xt(�t−1, �t).

qk(s) ∶= ℙ
(
�t+1 = �k

t+1
(s)||Kt+1 = k

)
.

(25)Qk
t+1

(�t) ∶=
∑

s∈Sk

Qk
t+1

(�t, �
k
t+1

(s)) qk(s).
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3.2 � Modified stochastic dual dynamic programming algorithm

With a sample approximation of model (17) –(24) at hand, the only remaining issue 
is dealing with the value function in constraint (20). As discussed earlier, we adapt 
the SDDP method for this purpose. The SDDP algorithm is mainly characterized 
by two steps: a forward-in-time simulation and a backward-in-time recursion. The 
forward step generates trial solutions that are later used in the backward step to 
construct cutting-plane approximations of the future value function. When there is 
Markovian dependency, the forward step must generate (i) a path of states of the 
Markov chain and (ii) sample paths of the process {�t} conditionally on each sam-
pled state of the Markov chain. Then, trial solutions are created by solving the prob-
lem with the current value function approximations at each stage using the sampled 
processes. It is important to mention here that, in our context, the forward steps are 
generated using the nominal transition probability matrix given by the HMM; as we 
shall see in Sect. 3.4, such a property is crucial to prove convergence of the method. 
The backward step uses trial solutions and goes in the opposite time direction, from 
t = T  to t = 1 , adding cuts to improve the outer approximation of the value func-
tion. In the context of a maximization problem, we can obtain a deterministic upper 
bound using the outer approximation generated by the SDDP backward procedure.

We remark that model (17)–(24) is not in the standard form of problems solved 
by SDDP since the value function appears in the constraint (20) rather in the objec-
tive function as customary in the literature. A similar situation arises in the model 
studied by [31], albeit in a somewhat different context since that paper deals with 
nested risk measures. Thus, for the sake of completeness, we detail the steps and 
show how to construct an upper (i.e., outer) approximation for the value function. In 
Sect. 3.3 we will discuss how to construct a lower (inner) approximation.

Suppose we are in iteration � of the algorithm. Consider the sample approxima-
tion of problem (17)–(24) with constraint (20) replaced with an upper approximation 
Q

j,�

t+1
(�t) given by linear inequalities, and denote the optimal value of the approxi-

mated problem by Q̃j,�
t (�t−1, �t) . We will detail shortly how to construct Q

j,�

t+1
(�t) . 

Then, we have, for t = T − 1 to t = 0,

(26)

�Q
j,𝜈
t (�t−1, �t) ∶=

max
�t, z, �,�

−
,�+

, 𝜆,

𝜂, ��
−
, ��

+
, �𝜆, �𝜂, �

ft(�t, �t) +
∑

k∈K

p̂j(k)(𝜃
+
k
− 𝜃−

k
) − 𝜂 − 2𝛥𝜆

(27)s.t. z +
∑

k∈K

p̂j(k)(
�𝜃+
k
− �𝜃−

k
) − �𝜂 − 2𝛥�𝜆 ≥ 0

(28)− �̃−
k
+ �̃+

k
− �̃ +

∑

s∈Sk

yks
qk(s)

�
≤ 0, ∀k ∈ K
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For t = T  we have, at all iterations � , the simpler problem

Note that Q̃j,�

T
(�T−1, �T ) = Q

j

T
(�T−1, �T ) , i.e., there is no approximation in the last 

stage.
It is important to clarify the role of the auxiliary variable � introduced in the 

problem, which appears in constraints (33), (34), (37), and (38). This variable is just 
a generic artifact to obtain a subgradient4 of the function Q̃j,�

t (�t−1, �t) with respect 
to �t−1 . From (33) and (37) we see that this subgradient is given by the dual variable 
�
j

t(�t) . Let �̂𝜈
t
 be the optimal solution of (26)–(35) (and (36)–(38) in the case t = T  ) 

generated by the forward step in iteration � for stage t.
In the backward step, we solve (26)–(35) (and (36)–(38) in the case t = T  ) for each 

j ∈ K and each scenario �jt = �
j

t(s) , s ∈ Sj , with �t−1 = �̂𝜈
t−1

 . Let � j,�
t,s ∶= �

j

t(�t(s)) 
denote the corresponding dual variable obtained from (33) (and from (37) in the 
case t = T  ). Then, we construct the Benders cut

(29)− �−
k
+ �+

k
− � −Q

k,�

t+1
(�t) ≤ 0, ∀k ∈ K

(30)�−
k
+ �+

k
− � = 0, ∀k ∈ K

(31)�̃−
k
+ �̃+

k
− �̃ = 0, ∀k ∈ K

(32)z − gt(�t, �
k
t+1

(s)) − yks ≤ 0, ∀k ∈ K,∀s ∈ Sk

(33)� = �t−1 ∶ �
j

t(�t)

(34)�t ∈ Xt(�, �t)

(35)�−,�+, �̃
−
, �̃

+
, �, �, �̃ ≥ 0.

(36)Q̃
j,�

T
(�T−1, �T ) ∶= max

�T , �
fT (�T , �T )

(37)s.t. � = �T−1 ∶ �
j

T
(�T )

(38)�T ∈ XT (�, �T ).

(39)�
j,𝜈
t (�t−1) ∶=

�Q
j,𝜈

t
(�̂𝜈

t−1
) +

(
𝜋

j,𝜈

t

)⊤

(�t−1 − �̂𝜈
t−1

)

4  In reality, it is a supergradient since the function is concave, but we will call it a subgradient as this 
terminology is more common in the literature.
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for the function Q̃
j,�

t
(⋅) ∶=

∑
s∈Sj

Q̃
j,�
t (⋅, �t+1(s)) qj(s) , using the average dual decision 

vector �
j,�

t
=
∑

s∈Sj
�

j,�
t,s qj(s) . As discussed earlier, �

j,�
t,s  is a subgradient of 

Q̃
j,�
t (⋅, �t+1(s)) at �̂𝜈

t−1
 and thus it follows that �j,�

t (�t−1) ≥ Q̃
j,�

t
(�t−1) for all �t−1 . More-

over, since the function Q k
t+1

(�t) in (20) is replaced with the upper approximation 
Q

k,�

t+1
(�t) in (29), it follows that Q̃j,�

t (�t−1, �t+1(s)) ≥ Q
j

t(�t−1, �t+1(s)) for all s ∈ Sj and 
thus Q̃

j,�

t
(�t−1) ≥ Q

j

t (�t−1).
We then update the upper approximation of the value function (so it can be used 

in period t − 1 ) as

so we see that Q
k,�

t
(�t−1) ≥ Q̃

j,�

t
(�t−1) ≥ Q

j

t (�t−1) for all �t−1 . It follows that when 
we solve (26)–(35) in period t − 1 , by using (40) in constraint (29) we have the 
equivalent to the set of linear constraints

Therefore, the outer approximation of the SAA problem can be represented as 
model (26)–(35), with constraint (29) replaced with inequalities (41). Note also that, 
because of Assumption 4, the constraints given by (34) are linear in ( �t, �) . Thus, 
since ft(⋅, �t) and gt(⋅, �t+1) are linear by Assumption 3, model (26)–(35) is just a 
linear program.

3.3 � Deterministic lower bound

For standard SDDP applications, one can obtain a statistical lower bound by evaluat-
ing the current policy via Monte Carlo simulation and compute an estimator of the 
objective function, see details in [40]. However, it is not practical to obtain a sta-
tistical objective function assessment within the distributionally robust framework 
(10)–(11). The issue here is that, in order to evaluate the objective function in (10), 
we would need to know the optimal worst-case transition probability matrix in the 
corresponding inner problem, but this is not possible since we only have an approxi-
mation of value function Qk

t+1
 . Thus, if we simulate scenarios using any (suboptimal) 

transition probability matrix, the statistical evaluation of the objective function will 
not be a valid lower bound.

Our approach is to explore an extended inner approximation of Qk
t+1

(⋅) to con-
struct a valid lower bound to problem (17)–(24). The standard inner approximation 
method uses a convex combination of evaluated trial points instead of the Benders 
cuts (outer approximation). This approach was first proposed by [29] who ensured 
the feasibility of the convex combination by pre-evaluating all vertices of the uncer-
tainty support, e.g., a multidimensional hypercube. The contribution by [29] not-
withstanding, the approach proposed in that work is not efficient in practice since 
the number of vertices grows exponentially with the uncertainty dimension.

Consider the expected value function Qj

t+1
(�t) defined in (25), and suppose that 

in iteration � of the algorithm we have a concave lower (inner) approximation 

(40)Q
k,�

t
(�t−1) ∶= min

i=1,…,�
�
k,i
t
(�t−1), ∀k ∈ K,

(41)−�−
k
+ �+

k
− � − �

k,i

t+1
(�t) ≤ 0, ∀k ∈ K, ∀i = 1,… , �.



703

1 3

A data‑driven approach for a class of stochastic dynamic…

Qj,�

t+1
(⋅) for Qj

t+1
(⋅) given by linear inequalities. Let {�̂i

t
}i=1,…,𝜈 denote the solutions 

obtained for each time t ∈ {1,… , T} from the previous � forward steps of the 
algorithm. As in the case of the outer approximation discussed in Sect. 3.2, the 
algorithm goes backwards in time, from t = T  until t = 0 , and Qj,�

t
 is constructed 

from Qj,�

t+1
 . For t = T  we set Qj,�

T
(�T−1) ∶=

∑
s∈Sj

Q
j

T
(�T−1, �

j

T
(s)) qj(s) in all itera-

tions � , where Qj

T
(⋅) is defined in (9). Let R denote the set of points satisfying 

constraint (11), and define, for t < T ,

and Q̂
j,𝜈

t
(�t−1) ∶=

∑
s∈Sj

Q̂
j,𝜈
t (�t−1, �t(s))qj(s) . Note that, since Qj,�

t+1
(⋅) is piecewise-lin-

ear concave, it follows from Assumptions 3 and 4 that Q̂j,�
t (⋅, �t) and Q̂

j,�

t
(⋅) are also 

piecewise-linear concave. Moreover, since Qj,�

t+1
(⋅) is a lower bound for Qj

t+1
(⋅) , by 

comparing (10)–(11) and (42) we see that Q̂j,�
t (�t−1, �t) ≤ Q

j

t(�t−1, �t) and thus it fol-
lows that

Consider now the function Qj,�

t
(�t−1) defined as

where L is a Lipschitz constant for Qj

t(⋅) under the 1-norm. Proposition 5 shows that 
Qj,�

t
(⋅) is indeed a valid lower bound for Qj

t+1
(⋅).

Proposition 5  The function Qj,�

t
(⋅)  defined in (44) is a piecewise-linear concave 

lower bound for Qj

t(⋅), whenever L is a Lipschitz constant for Qj

t(⋅) under the 1-norm.

Proof  For t = T  we have Qj,�

T
(�T−1) = Q

j

T
(�T−1) by definition and so the statement 

is true. Suppose t < T  . Define now a function Q
j

t
(�t−1) similarly to (44), but with 

the function Q̂
j,�

t
 replaced by the true value function Qj

t . From (43), it is clear that 
Qj,�

t
(�t−1) ≤ Q

j

t
(�t−1) . Thus, it suffices to show that Q

j

t
(⋅) is lower bound for Qj

t+1
(⋅) . 

Let (�∗, �∗
�

) be an optimal solution to problem defining Q
j

t
(�t−1) . Define the quantity 

�∗
��

∶=
∑𝜈

i=1
𝜇∗
i
�̂i
t−1

 , so we see that �t−1 = �∗
�

+ �∗
�� . Since Qj

t(⋅) is concave, we have 
that

(42)Q̂
j,�
t (�t−1, �t) ∶= max

�t∈Xt(�t−1,�t)∩R
ft(�t, �t) +

{
min
�j∈ Pj

∑

k∈K

Qk,�

t+1
(�t) pj(k)

}

(43)Q̂
j,𝜈

t
(�t−1) ≤ Q

j

t(�t−1).

(44)

Qj,𝜈

t
(�t−1) = max

��,�

𝜈�

i=1

𝜇i
�Q
j,𝜈

t
(�̂i

t−1
) − L ‖��‖1

s.t.

𝜈�

i=1

𝜇i�̂
i
t−1

+ �� = �t−1

𝜈�

i=1

𝜇i = 1

� ≥ 0
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where ��t−1 is any subgradient of Qj

t(⋅) at �t−1 . It follows from the right-most inequal-
ity in (45) that

The inequality in (46) is an application of the Cauchy–Schwarz inequality, whereas 
the inequality in (47) follows from the well-known fact that ‖�‖2 ≤ ‖�‖1 for any 
vector � . Inequality (48) follows from the assumption that L is a Lipschitz constant 
for Qj

t(⋅) under the 1-norm and therefore the 1-norm of any subgradient of Qj

t(⋅) 
is bounded above by L. Finally, the inequality in (49) follows from the left-most 
inequality in (45), and (50) is the definition of Q

j

t
(�t−1).

Consider again the function Qj,�

t
(�t−1) defined in (44). As discussed earlier the 

function Q̂
j,�

t
(⋅) is piecewise-linear concave, and the function −L‖�‖1 is piecewise-

linear concave as well. It follows that the function Qj,�

t
(�t−1) defined in (44) is also 

piecewise-linear concave. 	� ◻

Problem (44) enhances the formulation proposed by [29] in that it allows for 
the evaluation of the lower bound function at points that are not in the convex 
hull of the points previously generated by the algorithm, thereby avoiding the 
enumeration of the vertices of the uncertainty support as proposed in that work. 
Moreover, it is important to observe that the approach can be easily adapted to 
other settings such as the standard SDDP, or the SDDP with nested risk measures 
that can be linearized, such as CV@R . In the case of nested risk measures, the 
difficulty to obtain valid lower and upper bounds has long been recognized in the 
literature (see, e.g., [31, 44]).

We must also mention that the dual formulation of problem (44) can be written 
as

(45)
𝜈∑

i=1

𝜇∗
i
Q

j

t(�̂
i
t−1

) ≤ Q
j

t(�
∗�� ) ≤ Q

j

t(�t−1) + 𝜁⊤
�t−1

(�∗
��

− �t−1),

(46)

Q
j

t(�t−1) ≥ Q
j

t(�
∗�� ) − 𝜁⊤

�t−1
(�∗

��

− �t−1)

≥ Q
j

t(�
∗�� ) − �𝜁⊤

�t−1
(�∗

��

− �t−1)�

≥ Q
j

t(�
∗�� ) − ‖𝜁�t−1‖2 ‖(�

∗�� − �t−1)‖2

(47)≥ Q
j

t(�
∗�� ) − ‖��t−1‖1 ‖(�

∗�� − �t−1)‖1

(48)≥ Q
j

t(�
∗�� ) − L ‖�∗�‖1

(49)≥

𝜈�

i=1

𝜇∗
i
Q

j

t(�̂
i
t−1

) − L ‖�∗�‖1

(50)= Q
j

t
(�t−1).
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which corresponds to the lower bound function proposed by [1] (translated into 
the context of maximization problems). However, we argue that the primal formu-
lation (44) facilitates the interpretation of the Lipschitz constant L since the deci-
sion variable �′ can be interpreted as a slack vector which has nonzero components 
whenever �t−1 does not belong to the convex hull of {�̂i

t−1
}i=1,…,𝜈 . The slack vector 

�′ then appears in the objective function with a sufficiently large penalty L. Such an 
approach opens the possibility of using other types of penalization of the slack vari-
able �′ , which could be problem-dependent but provide tighter bounds. For instance, 
we explore the specific structure of the dynamic asset allocation problem presented 
in Sect. 5 to propose a modified lower bound with a proper penalization of the slack 
variable that does not require computing a Lipschitz constant. Finally, in order for 
the present paper to be self-contained we have chosen to provide a proof of Proposi-
tion 5 from first principles, applying different proof techniques than those used by 
[1, 2].

We close this section by noting that Q̂j,�
t (�t−1, �t) in (42) can be computed as 

the solution of a linear program, similarly to (26)–(35) but with Q
j,�

t
(�t−1) in (29) 

replaced with Qj,�

t
(�t−1) . For more details about the deterministic lower and upper 

bounds algorithms see Appendix 1.

3.4 � Convergence

We establish now the convergence of our proposed approach. The following theorem 
shows that the gap between the deterministic upper and lower bounds becomes zero 
after finitely many iterations.

Theorem 6  Consider the modified SDDP algorithm described in Sect. 3.2, with the 
upper bound Q

k,�

t+1
(�t) defined in (40). Consider the lower bound Qk,�

t+1
(�t) defined in 

(44)). Suppose that the the transition probability matrix obtained from HMM is irre-
ducible. Then, at some iteration �, we have Q

k,𝜈

t+1
(�̂𝜈

t
) = Qk,𝜈

t+1
(�̂𝜈

t
) for some feasible 

solution {�̂𝜈
t
}t=0…,T.

Proof  The convergence of the outer approximation follows from the standard proof 
of convergence of the standard SDDP presented by [30]. In that paper, the authors 
show that the optimal solutions of the outer approximations converge to an opti-
mal solution of the original problem in finitely many iterations, assuming that every 
scenario in the problem is eventually sampled in the forward pass. In our context, 
it follows from Assumptions 3 and 4 that the objective function of the “true” discre-
tized problem is concave piecewise linear, which is the setting in [30]. Thus, if the 
transition probability matrix obtained from HMM is irreducible, then it is possible 

(51)

Qj,𝜈

t
(�t−1) = min

𝜓 ,�
𝜓 + �⊤�t−1

s.t. 𝜓 + �⊤�̂i
t−1

≥ �Q
j,𝜈

t
(�̂i

t−1
), ∀i = 1,… , 𝜈

‖�‖∞ ≤ L,
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to generate any scenario with nonzero probability and hence the proof of [30] can be 
applied.

For the inner approximation we can use an inductive step backwards from t = T  
to t = 1 . Suppose that, at some iteration � , an optimal solution {�̂𝜈

t
}t=0,…,T of the 

outer problem is also an optimal solution of the original problem—as discussed 
above, one such solution is guaranteed to be found based on the arguments of [30]. 
That is, we have that Q

j,𝜈

t
(�̂𝜈

t−1
) = Q

j

t(�̂
𝜈
t−1

) , t = T ,… , 1 . We will show by induc-
tion that Qj,𝜈

t
(�̂𝜈

t−1
) = Q

j

t(�̂
𝜈
t−1

) , t = T ,… , 1 , which immediately implies that the gap 
between upper and lower bounds is equal to zero.

As discussed in the proof of Proposition 5, for t = T  we have 
Qj,�

T
(�T−1) = Q

j

T
(�T−1) for all �T−1 , so in particular the equality holds at �T−1 = �̂𝜈

T−1
 . 

Suppose now that it holds for t + 1 ≤ T  . That is, we have Qj,�

t+1
(�t) = Q

j

t+1
(�t) for 

�t = �̂𝜈
t
 and, from Proposition  5, Qj,�

t+1
(�t) ≤ Q

j

t+1
(�t) for �t ≠ �̂𝜈

t
 . It follows that �̂𝜈

t
 

is a maximizer of the problem in (42) when Q̂j,�
t (⋅, �t) is calculated at �t−1 = �̂𝜈

t−1
 and 

thus we have that �Q
j,𝜈

t
(�̂𝜈

t−1
) = Q

j

t(�̂
𝜈
t−1

) . Hence, when calculating Qk,�

t
(⋅) at �̂𝜈

t−1
 , by 

concavity of Qj

t(⋅) the maximization problem in (44) puts weight �� = 1 and thus we 
have Qj,𝜈

t
(�̂𝜈

t−1
) = Q

j

t(�̂
𝜈
t−1

) . 	�  ◻

4 � Assessing out‑of‑sample performance in a rolling horizon scheme

Most SDDP applications use a rolling horizon scheme to mitigate the end-effect of 
the terminal time stage. One way to interpret this usage is that the actual problem 
has an infinite horizon and is approximated by a finite horizon model with many 
time stages such that the “end of the world” has a small influence on the first stage 
decision. This is the case for long term energy planning, portfolio selection and 
asset-liability management problems, to name a few. In this section, we establish 
a generic out-of-sample evaluation framework and develop an acceleration scheme 
for the particular case of time-homogeneous models where the parameters of the 
problem (i.e. the functions ft(�t, �t) = f (�t, �t) and gt(�t, �t) = g(�t, �t) , and the coef-
ficients in the set Xt ) do not depend on the time period.

The framework for the rolling horizon scheme in a general setting can be 
described as follows. Consider a implementation horizon of length H and let 
t1,… , tH denote the times at which the model is solved and the corresponding first-
stage optimal solution is implemented5. A suitable way to emulate the actual deci-
sion making process is to concatenate five steps for a given time t ∈ {t1,… , tH} : (i) 
the HMM parameters are estimated via the EM (expectation-maximization) algo-
rithm using as input the sequence of observed uncertainty realization (�1,… , �t) ; 
(ii) an SAA version of the problem is generated as in Sect. 3.2; (iii) a Markov state 
classification is performed. A simple classification method can be described as fol-
lows: consider the state with highest posterior probability of occurrence given the 

5  Such setting assumes that the problem data (i.e. coefficients and distributions) is available at the time 
periods from t1 to tH + T .
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historical path of the process {�t} ; then, use that state as the initial one, cf. Eq. (2)
An easy classification method is to use as initial state the one with highest posterior 
probability of occurrence given the historical path of the process {�t} , see (2). In 
step (iv), the SDDP algorithm for the problem with T stages is run until convergence 
(according to Algorithm 1) for problem (17)–(24) assuming a given previous imple-
mented decision �t−1 and the current uncertainty realization �t . Note that, in step 
(iv), the SDDP policy is obtained assuming observed Markov states with the current 
state defined by the HMM classification. In step (v), the first-stage decision �t is 
implemented, the time t is updated and we go to step (i). Note that this procedure is 
computationally intensive since a SDDP is run until convergence for each time step 
of the simulation. Finally, for the implementation of optimal policy �t in step (v) it is 
necessary to use a method—step (iii)— to infer the initial state of the Markov chain 
(recall that such states are not observable).

For the time-homogeneous case, it is appropriate to use only the first stage prob-
lem to implement every decision in the rolling horizon scheme. This is motivated 
by the fact that the problem structure does not depend on the period. In this context, 
we propose a relatively fast evaluation framework that is divided into two parts: esti-
mation and sampling, and out-of-sample evaluation. In the estimation and sampling 
part, the training dataset is used as input for the EM algorithm to estimate the HMM 
parameters, i.e., nominal transition probabilities and conditional probability distri-
butions of the uncertain vector. Those conditional distributions are sampled using 
Latin Hypercube Sampling (LHS)—which typically performs better than Monte 
Carlo sampling method, as shown in [18]—to construct the SAA scenario tree. For 
an out-of-sample evaluation, a rolling horizon scheme is used over the testing data-
set to simulate historical (out-of-sample) performance. In essence, we follow three 
steps for a given time  t: (i) the Markov state classification is performed using (2); 
(ii) a SDDP is run until convergence (again, according to Algorithm 1) for problem 
(26)–(35) assuming an observable Markov chain with the current state defined by 
the HMM classifier constructed in the training phase, a given previous stage deci-
sion �t−1 and the current uncertainty realization �t ; (iii) the first stage decision �t is 
implemented, the time t is updated and we go to step (i). Note that the steps are very 
similar to the initial decision process laid out earlier; however, in the out-of-sample 
evaluation, we do not re-estimate the parameters of the HMM, nor do we generate a 
new SAA version of the model. Thus, the convergence of SDDP in step (ii) should 
be much faster as it can use the value function approximations constructed in the 
previous steps as described below.

Given that HMM parameters are fixed, the value function for each state and 
period remains the same and can be reused over the rolling horizon scheme. How-
ever, the value function might not be well approximated given the updated value of 
the initial condition �t−1 . Therefore, we use the current approximation of the value 
function of the first stage to perform a convergence test using deterministic upper 
and lower bounds (see Appendix 1) to evaluate the gap given the updated initial con-
dition. If the gap is not sufficiently small, we restart the SDDP algorithm to improve 
the value function until it achieves a satisfactory gap. Once the algorithm converges, 
a current first-stage solution is obtained and implemented. The whole procedure is 
now repeated one-step ahead, given the previous optimal decision and the currently 
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observed uncertainty realization. The whole evaluation process iterates until it 
reaches the last period to be simulated. This process is described in Fig. 1 assuming 
a fixed value for �.

Determining an appropriate value of � a priori is difficult in general. Some papers 
in the DRO literature compute the level of ambiguity based on the number of data 
points (see, e.g., [7, 25]). However, this type of procedure assumes that the data 
points are independent and identically distributed (i.i.d.), an assumption that is likely 
not to hold in the settings we are considering in the present paper. In our approach, 
the HMM approximates the dynamics of the stochastic process and the ambiguity 
set accounts not only for estimation errors (which go to zero with the number of data 
points), but also for model misspecification. We suggest choosing � via a robust-
ness tuning procedure that selects the value of � (among a relatively small number 
of candidates) with the best out-of-sample performance. For that, we split our data 
in: training, validation and testing datasets. In this context, the robustness tuning is 

Fig. 1   Flowchart for backtesting using distributionally robust SDDP framework
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a series of out-of-sample evaluation steps in the the validation dataset followed by 
a final out-of-sample evaluation step in the testing (hold-out) dataset. This is indeed 
the approach we used in the case study presented in the next section.

5 � Case study: a risk‑constrained dynamic asset allocation model

In this section, we illustrate an application of the framework laid out in the previ-
ous sections to an asset allocation problem. The model learns the asset returns from 
the data and solves a dynamic optimization problem where the goal is to maximize 
the expected final wealth, taking into account the transaction costs in each period. 
Other papers use learning approaches for this problem; for example, a regret-opti-
mization approach is applied in [21] to find the best (single-period) portfolio choice 
using historical data as input. We build upon the work of [46], which allows us to 
use their results as a benchmark since that paper does not deal with out-of-sample 
performance. In Sect. 5.1, we recap the stochastic model for asset returns while in 
Sect.  5.2, we present an equivalent formulation for the risk constrained dynamic 
asset allocation model proposed by [46].

5.1 � The HMM learning methodology for asset returns

The uncertain returns �� are represented by a Hidden Markov Model (HMM). In 
the context of the financial market, HMM methodology is frequently used to model 
asset returns [13, 14, 23]. Such paradigm postulates that the probability distribution 
of asset returns depends only on the current state of the market that evolve accord-
ing to a discrete-time finite-state Markov Chain. Such states, however, cannot be 
observed, hence the need for a Hidden Markov Model. Conditionally on each state, 
the log-returns are independent and identically distributed, with distribution given 
by a multivariate Gaussian whose parameters are estimated from data. This mod-
eling choice is suitable for financial time series since it empirically reproduces most 
of the stylized facts for asset return series [38]. As before, we denote by Kt the (ran-
dom) Markov state at time t, by K the set of states of the Markov chain and by P̂ 
the corresponding estimated transition matrix with dimension |K| × |K| , with p̂j(k) 
denoting the probability to transition from state j to state k.

5.2 � A CV@R‑constrained dynamic asset allocation model

The model proposed in [46] is a multistage stochastic program that maximizes, in 
each stage, the future value function that represents the conditional expectation of 
the terminal wealth, subject to a CV@R constraint. Using the notation defined in 
(5)–(9), that model can be written as follows. Given an initial wealth W0 and the sto-
chastic return process �t , we denote �t = (� + � t) and solve, for each possible initial 
state j, the problem
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where �̃ is the vector containing the transaction cost rate for each asset, and Qj

t (for 
t = 1,… , T − 1 ) is defined recursively as

while the end-of-horizon function Qj

T
(�T−1, �T ) = �⊤

T
�T−1, defines the terminal 

wealth.
In particular, we assume a risk-free asset indexed by i = 0 with null return, i.e., 

P(r0,t = 0) = 1 and, consequently, P(�0,t = 1) = 1 , for all t ∈ {1,… , T} . We only 
assume positive transaction cost rates for the risky assets by defining �̃ = (0, �)⊤ . 
Moreover, to simplify the discussion below we assume that all risky assets have 
the same transaction cost rate c, so we have � = (c, c,… , c)⊤ . In this context, the 
set Xt(�t−1, �t) is defined as

where x0,t refers to a risk-free asset (cash) allocation while xi,t for i > 0 refers to risky 
asset allocations.

From (57), we see that the allocations �t ∈ Xt(�t−1, �t) satisfy the equation

that is, the amount of money available at time t is the return of the investment made 
at time t − 1 , minus the transaction costs of assets that were bought ( �t ) and sold ( �t
).

A few words about the above model are in order. First, notice that the objective 
functions in (52) and (55) maximize the expected future value of the allocation in 
each period, where the expectation is taken with respect to both the returns and 
the Markov states. Constraint (54) reflects the fact that the transaction costs are 
incurred before the returns are realized; thus, assuming that the initial wealth W0 
is in cash, the initial allocation �⊤�0 plus the corresponding purchase costs must 
be equal to that amount. This constraint is generalized to an arbitrary time period 
t by means of the set Xt(�t−1, �t) defined in (57), which accounts for the transac-
tion costs resulting from both purchases and sales of assets (note that bi,t and di,t 

(52)Q
j

0
∶= max

�0∈ℝ
N+1
+

∑

k∈K

𝔼
[
Qk

1

(
�0, �1

)||Kt+1 = k
]
p̂j(k)

(53)s.t. 𝜙�̂j

[
�⊤
1
�0
]
≥ (1 − 𝛾)W0

(54)(� + �̃)⊤�0 = W0

(55)Q
j

t(�t−1, �t) = max
�t∈Xt(�t−1,�t)

∑

k∈K

�
[
Qk

t+1

(
�t, �t+1

)||Kt+1 = k
]
p̂j(k)

(56)s.t. 𝜙�̂j

[
�⊤
t+1

�t
]
≥ (1 − 𝛾)

(
�⊤
t
�t−1

)
,

(57)
{
�t ∈ ℝ

N+1
+

||∃�t, �t ∈ ℝ
N
+
∶
x0,t + (� + �)⊤�t − (� − �)⊤�t = x0,t−1
xi,t − bi,t + di,t = 𝜉i,t xi,t−1, ∀i ∈ A.

}

(58)�⊤�t = �⊤
t
�t−1 − �⊤(�t + �t),
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are never simultaneously positive as nothing is gained from buying and selling 
the same asset in a given time period).

Note that in problem (55)–(56) the values of �t and �t−1 are given. Thus, the 
wealth Wt = �⊤

t
�t−1—prior to discounting transaction costs, cf. (58)—in period t is 

just a constant and hence by the translation-invariant property of coherent risk meas-
ures we have that CV@R1−𝛼

[
Wt −Wt+1

]
= Wt + CV@R1−𝛼

[
−Wt+1

]
= Wt − 𝜙�̂j

[Wt+1] . It fol-
lows that constraint (56) can be written as CV@R1−�

[
Wt −Wt+1

]
≤ �Wt . That is, 

the constraint limits the loss between periods t and t + 1 to a percentage of the 
wealth at time t (note that constraint (53) applies the same idea at t = 0 ). The param-
eter � can then be interpreted as the level of risk-aversion of the decision-maker: at 
one extreme ( � = 0 ) we have CV@R1−�

[
Wt −Wt+1

]
≤ 0 which in particular implies 

that P(Wt+1 < wt |Wt = wt) ≤ 𝛼 , i.e., the probability of a loss between periods t and 
t + 1 must be very low; at the other extreme ( � = 1 ) we do not impose any risk con-
straints and so when there are no transaction costs the optimal portfolio will invest 
only in the asset(s) with highest expected return at each time t (“all eggs in the same 
basket”).

5.3 � A novel lower bound for the dynamic asset allocation problem

Motivated by the primal inner-approximation presented in Sect. 3.3, we use the par-
ticular structure of the dynamic asset allocation problem to propose a novel upper 
bound exploring a convex combination of pre-evaluated points and a proper penalty 
function for values outside the associated convex hull. With this result at hand, we 
use the standard SDDP upper bound (outer approximation) to efficiently compute a 
deterministic optimality gap. Throughout this section the function Qj

t+1

(
�t, �t+1

)
 cor-

responds to the DRO version of problem (52)–(56), defined as in (10)–(11) and its 
equivalent formulation (17)-(24). Recall also the expected value function Qk

t+1
(�t) 

defined in (25).
As shown in [46], the asset allocation problem (52)–(56) has relatively complete 

recourse whenever � ≥ c . Indeed, if the maximum allowed loss � is at least the trans-
action cost rate, it is always feasible to sell all risky assets and adopt a risk-free 
strategy with null return: xo,t = Wt , and xi,t = 0, ∀i ∈ A . Moreover, this feasible and 
simple strategy has a straightforward value function since the objective function, 
i.e., the terminal wealth WT , is equal to the current wealth ( Wt = �⊤

t
�t−1 ) minus the 

total transaction cost of selling the risky assets ( �⊤(�t + �t) ), where di,t = �i,t xi,t−1 
and bi,t = 0 for every i ∈ A . This is shown formally in Proposition 7 below.

Proposition 7  Suppose that the parameter � that appears on the right-
hand side of (53) satisfies � ≥ c, where c is the transaction cost rate. Then, 
Q

j

t(�t−1, �t) ≥ (1 − c) �⊤
t
�t−1  for all Markov states j.

Proof  Consider a fixed time period t. As the previous allocation vector �t−1 and the 
realization �t are given as parameters of Qj

t , we let Wt = �⊤
t
�t−1 denote the wealth 

right before buying and selling decisions at time t. Now, define the risk-free (sub-
optimal) policy where all risky assets are sold at time t and the risk-free investment 
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(with zero return) is held until the end of the horizon T. We use the superscript nota-
tion �rft , �

rf

t  and �rft  to denote the values of these decision variables under the risk-
free policy. Formally, the risk-free policy amounts to imposing that drf

i,t
= �i,t xi,t−1 , 

b
rf

i,t
= 0 for every i ∈ A , and also �rf� = �

rf
� = � for all � = t + 1,… , T  . Using (58), 

the amount of money invested in the risk-free asset after buying and selling decisions 
at t is given by xrf

0,t
= �⊤�

rf

t = �⊤
t
�t−1 − �⊤(�

rf

t + �
rf

t ) = �⊤
t
�t−1 − c

∑
i∈A 𝜉i,t xi,t−1.

Since the risk-free asset has null return (i.e., r0,t+1 = 0 and, con-
sequently, �0,t+1 = 1 ), the subsequent wealths can be calculated as 
W𝜏 = �⊤

𝜏
�
rf

𝜏−1
= x

rf

0,𝜏−1
= x

rf

0,t
,∀𝜏 ∈ {t + 1,… , T} . Therefore, we have the terminal 

wealth WT = x
rf

0,t
= �⊤

t
�t−1 − c

∑
i∈A 𝜉i,t xi,t−1, which corresponds to the objective 

value of the risk-free (suboptimal) policy. Hence,

	�  ◻

Similarly to the developments in Sect. 3.3, at iteration � of the algorithm we 
construct a concave lower (inner) approximation Qk,�

t+1
(⋅) for Qk

t+1
(⋅) given by lin-

ear inequalities. We then define the function �Qj

t

(
�̂i
t−1

, �t
)
 as in (42) and compute 

its expectation �Q
j

t
(�̂i

t−1
) = �

[
�Q
j

t

(
�̂i
t−1

, �t
)||Kt = j

]
.

Recall that {�̂i
t−1

}i=1,…,𝜈 denote the solutions obtained from the previous itera-
tions of the algorithm. We add an initial point �̂0

t
= � for all t. Since �̂0

t
= � cor-

responds to having no wealth at all, it is clear that �Q
j,𝜈

t
(�̂0

t−1
) ∶= Q

j

t(�̂
0
t−1

) = 0 for 
every iteration � , every time stage t and every Markov state j. We now devise a 
novel lower bound for the asset allocation problem.

Proposition 8  Let �t,j = �
[
�t
||Kt = j

]
 denote the conditional expectations of the 

returns. Suppose � ≥ c . Then, the function

is a lower bound for Qj

t(�t−1).

Proof  First, note that problem (59) is always feasible. Indeed, given that 
�Q
j,𝜈

t
(�̂0

t−1
) = 0 , the solution �0 = 1 and �� = �t−1 recovers the lower bound in Propo-

sition 7. Then, for any feasible �0,… ,�� and �′ , we have that

Q
j

t(�t−1, �t) ≥ �⊤
t
�t−1 − c

(
∑

i∈A

𝜉i,t xi,t−1

)
≥ (1 − c) �⊤

t
�t−1.

(59)

Qj,𝜈

t
(�t−1) ∶= max

��,�

𝜈∑

i=0

𝜇i
�Q
j,𝜈

t
(�̂i

t−1
) + (1 − c) �

⊤

t,j
��

s.t.

𝜈∑

i=0

𝜇i�̂
i
t−1

+ �� = �t−1

𝜈∑

i=0

𝜇i = 1

�, �� ≥ 0.
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The inequality (60) holds since Q̂
j,𝜈

t
(𝐱̂i

t−1
) ≤ Q

j,𝜈
t (𝐱̂i

t−1
) , and (1 − c) �

⊤

t,j
�� ≤ Q

j

t(�
�) , 

according to Proposition 7. Additionally, we use concavity to ensure inequality (61) 
while (62) is guaranteed since Qj

t is positively homogeneous (proof in Appendix 3), 
and therefore superadditive. 	�  ◻

5.4 � Numerical results

To analyze how our approach behaves in practice, we test the model with realistic 
data. The data sets used in the experiments come from Kenneth R. French data set6. 
The stocks from NYSE, AMEX, and NASDAQ are represented by capitalization-
weighted indexes for each industry sector. We use monthly data of five industrial 
portfolios (“Cnsmr”, “Manuf”, “HiTec”, “Hlth” and “Other”). For simplicity, we use 
excess returns, i.e., the incremental return over the risk-free asset. This way, the risk-
free asset presents r0,t = 0,∀t = 1,… , T .

The framework was implemented in Julia language 0.6, using JuMP [11] and 
CPLEX 12.7.1.0 to solve linear programming problems. All experiments were con-
ducted on Intel Xeon E5-2680 2.7 GHz with 128GB RAM machine, while reported 
computational times are associated with single-core usage. The hmmlearn 
0.2.07 library was used to construct the return distributions assuming that, con-
ditional to each Markov state, log (excess) returns follow multivariate Gaussian 
distributions.

5.4.1 � Results for the predictive model

The training dataset comprises 444 months8 (prior to January 2007), while the data-
set for historical simulation uses 96 months (from January 2007 to Setember 2014) 
to validate the proposed framework. Following [46], we select three Markov states9 
and, conditional to each state, 750 return realizations obtained using Latin Hyper-
cube Sampling of multivariate Gaussian distributions to construct the Sample Aver-
age Approximations of the problem. All simulations start with $1 in the risk-free 

(60)
𝜈∑

i=0

𝜇iQ̂
j,𝜈

t
(𝐱̂i

t−1
) + (1 − c)�

⊤

t,j
𝐱� ≤

𝜈∑

i=0

𝜇iQ
j

t(𝐱̂
i
t−1

) +Q
j

t(𝐱
�)

(61)≤ Q
j

t

(
𝜈∑

i=0

𝜇i �̂
i
t−1

)
+Q

j

t(�
�)

(62)≤ Q
j

t(�t−1).

6  http://​mba.​tuck.​dartm​outh.​edu/​pages/​facul​ty/​ken.​french/​datal​ibrary.​html.
7  https://​github.​com/​hmmle​arn/​hmmle​arn.
8  The HMM training uses as much data as possible to represent a variety of market situations.
9  In this particular instance we use the results of [46], but in general a cross-validation procedure could 
be used.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
https://github.com/hmmlearn/hmmlearn
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asset, therefore if the strategy ends the simulation with  $2 it implies an accumu-
lated excess return of 100%. Figure  2 illustrates the posterior probability of each 
Markov state as in (1), and the solid line indicates the simulated wealth of the equal-
weighted portfolio (as a proxy for the general behavior of the market) with cumula-
tive return on the right axis.

Fig. 2   Markov states and equal-weight portfolio wealth

Table 1   Markov transition 
matrix in percentage

Kt�Kt+1 1 2 3

1 69.28 28.58 2.14
2 58.23 40.66 1.11
3 0.77 8.79 90.44

Table 2   Mean percentage (standard-deviation in parenthesis) of asset returns conditional to each Markov 
state

State Cnsmr Manuf HiTec Hlth Other

1 1.17 (0.14) 1.13 (0.10) 0.91 (0.12) 1.29 (0.13) 1.21 (0.14)
2 1.86 (0.20) 1.81 (0.15) 2.08 (0.18) 1.29 (0.16) 1.94 (0.19)
3 − 1.24 (0.51) − 0.93 (0.39) − 1.81 (0.46) − 0.81 (0.35) − 1.60 (0.50)
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A closer look at the Markov transition matrix Table 1, the individual asset returns 
and the corresponding standard deviations in Table 2, in conjunction with Fig.  2, 
allows us to infer how HMM is classifying the historical data and how to interpret 
the states. State 1 has low positive returns and a low probability of transitioning to 
state 3. State 2 has a high probability of transitioning to state 1, it also has higher 
returns than state 1, and it has more volatility. State 3 has negative returns, is almost 
absorbent with 90% chance to transition to itself, and has almost no probability of 
transition to state 1. Therefore, states 2 and 3 can be seen as bull and bear states, 
respectively. It is more difficult to infer the role of state 1. It seems to be a less 
volatile regular state since it is the most probable state during the whole simulation 
(Fig. 2).

5.4.2 � Results for the prescriptive model

As discussed in Sect. 4, we implemented the algorithm in a rolling-horizon fashion. 
The horizon (number of periods) in each problem is T = 16 months with monthly 
decisions. To illustrate the convergence of the deterministic lower and upper bounds 
established in Theorem 6—with the lower bound calculated as in Proposition 7—
Fig.  3 depicts the value of the bounds for an arbitrary run of the algorithm with 
� = 0.3 and � = 0.07 for a maximum of 5000 iterations. In this example the final 
values of the deterministic lower and upper bounds were respectively 0.003388 and 
0.003393, corresponding to an optimality gap of 0.1457%. In practice, we fixed an 
optimality relative gap of 1% as a stopping criterion. The time to converge the SDDP 
algorithm for the 1% gap was almost 3 hours for each period (or month). However, 
by applying the accelerated rolling-horizon procedure described in Sect. 4 that uses 
value function approximations constructed in the previous steps, from the second 
iteration onward the algorithm took less than 30 min per period.

For the out-of-sample evaluation described in Sect. 4, we start with an estimated 
HMM, an SAA of the original problem, and the output of the algorithm after run-
ning until convergence—comprising a first stage problem and set of T future value 

Fig. 3   Deterministic lower and upper bounds for � = 0.3 and � = 0.07 starting from iteration 100
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functions. We shall denote the periods of the testing dataset t ∈ {t1,… , tH} and 
define Rt =

Wt−Wt−1

Wt−1

 the portfolio percentage profit given by the proposed strategy at 
time t (recall that Wt ∶= �⊤

t
�∗
t−1

 is the corresponding wealth, prior to discounting 
transaction costs, cf. (58)). It is important to reiterate that the implemented decisions 
�∗
t
 are obtained as the first stage solution of a T-stage problem given the current 

(inferred) Markov state—the most probable state given all information available up 
to t, cf. (2). In order to compare the out-of-sample performance of the different mod-
els, we use the “ex-post” average return of the portfolio strategy, R̂EP ∶=

1

H

∑H

t=1
Rt , 

and the “ex-post” CV@R of the returns, defined as −𝜙̂EP , where 
𝜙̂EP = maxz∈ℝ

�
z −

1

H𝛼

∑
t∈{t1,…,tH}

(z − Rt)+

�
 following the expression in (4). Note 

that a comparison of the ex-post CV@R with the parameter � can be interpreted as 
an out-of-sample evaluation of constraint (56), since as remarked earlier, that con-
straint can be written as CV@R1−�

[
Wt −Wt+1

]
≤ �Wt , i.e., −𝜙�̂j

[
Rt+1

]
≤ 𝛾 . Despite 

the differences with the ex-ante counterparts, ex-post metrics are widely used, espe-
cially within the context of financial markets.

For a better assessment of out-of-sample performance, several experiments were 
done with different combinations of � and � . This can be viewed as a cross-vali-
dation procedure. It is important to stress the difference between these parameters. 
The former quantifies the decision-maker level of risk aversion (cf. (56)), whereas 
the latter establishes the confidence in the estimated distribution (cf. (12)). In this 
context, � restricts the possible decisions, however even if the risk restriction is met, 
the confidence (or lack thereof) in the estimated probabilities ( ̂� ) will still impact the 
optimal portfolio decision.

(a) (b)

(c)

Fig. 4   Allocation for different � values with � equal to 0.01, 0.05 and 0.1
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We illustrate the compound effect of the ambiguity aversion ( � ) and the risk aver-
sion ( � ) coefficients over the optimal allocation. The effect of these coefficients can 
be seen in Fig. 4, where we present the optimal portfolio on a particular date as a 
function of � for a few values of � . We see, for example, that for a low value of �
—i.e., a more risk-averse decision-maker—the optimal portfolio is less sensitive to 
variations in � , as the optimal portfolio puts a high percentage on the risk-free asset 
regardless of the value of � . For a slightly less risk-averse decision-maker ( � = 0.05 ) 
the optimal portfolio is diversified, with the components changing according to � . 
Note that for values of � larger than 0.35, the ambiguity set includes all distributions 
and so the min-max problem will always assume the worst possible state, so it is not 
surprising that the optimal portfolio from that value of � on puts everything on the 

(a)

(b)

Fig. 5   Allocation during the simulation for � values 0.00 and 0.20 with � = 0.07
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risk-free asset. With � = 0.1 , we essentially have a risk-neutral decision-maker, and 
so for most values of � , the optimal portfolio consists only of the asset with the larg-
est expected return, though that asset changes based on the level of confidence on 
the parameters of the HMM given by �.

To further analyze this distinction between the parameters and how the Markov 
state impacts the final portfolio we show the portfolio allocation during the simula-
tion for specific � and � values. This comparison is depicted in Fig. 5 where we pre-
sent the allocation policy for two � values, 0.0 and 0.2, with � = 0.07 for the whole 
simulation period. The choice for � = 0.07 is because it is the ex-post CV@R corre-
sponding to the equal-weight portfolio. The left axis shows the allocation in percent-
age of each asset, and the right axis shows the wealth for our DRO model and the 
equal-weight portfolio for comparison purposes. Some observations can be made: 
first, notice that during the period between 2008 and 2009 (which corresponds to the 
subprime crisis) the optimal portfolios for both values of � learn from the HMM that 
the market is in a bear state (cf. Fig. 2) and thus allocate almost everything into the 
risk-free asset. Second, while the equal-weight portfolio clearly dominates the port-
folio for the case � = 0 , it is outperformed by the robustified portfolio with � = 0.2 
as the latter strategy yields better protection during the “bear” times and provides 
good diversification and good returns during the remaining periods.

The risk-return curves for different values of � and � are shown in Fig. 6. Natu-
rally, for portfolios with the same risk, the ones with more returns are preferred. 
Whereas, for portfolios with the same returns, the ones with less risk are pre-
ferred. In the figure, each line corresponds to one value of � , whereas each dot 
corresponds to one value of � . We see that the efficient frontier consists of portfo-
lios corresponding to � around 0.25–0.3, regardless of � . This, it appears—based 
on these experiments—that the right choice for � ensures good performance 
regardless of the decision-maker risk tolerance. The use of � , however, is still 
important for sensitivity purposes, as we can see that lower values of � combined 
with high values of � can yield portfolios with inferior performance. Notice also 
that, as remarked earlier, values of � above 0.35 lead to excessive robustness as 

Fig. 6   Out-of-sample monthly average return and CV@R
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there is no trust in the HMM parameters, and thus the optimal portfolio consists 
only of the risk-free asset. That is, it is important to collect sufficient data, so one 
has some confidence in the HMM parameters, but it is better not to trust such 
parameters blindly.

As shown by other authors [9, 16, 25], the equal-weight portfolio is a good 
benchmark strategy to compare with as it has competitive out-of-sample perfor-
mance, especially when the model faces extreme uncertainty or when the transac-
tion costs are high. In Fig. 6, we see that the equal-weight portfolio is dominated 
by most strategies. It confirms the superior out-of-sample performance of our 
proposed model, except in the cases where the ex-post CV@R is high, although 
that can only occur when the pre-specified risk tolerance � is high, so the deci-
sion-maker is nearly risk-neutral.

Finally, in order to assess the effect of � on the quality of the portfolio, we 
need to use a metric that summarizes risk and return. The ICV@R [15] was 
inspired by the Sharpe ratio in that it measures return by unit of risk. It is com-
puted as the ratio between the average return R̂EP and the deviation between the 
average return and the average tail 𝜙̂EP [20], that is, ICV@R ∶=

R̂EP

R̂EP−𝜙̂EP

.

Figure 7 depicts the values of the ICV@R index for various values of � and � . 
We see that the ICV@R function is in most cases monotonically non-decreasing 
for � ≤ 0.325 regardless of the value of � , which suggests again that in order to 
have better out-of-sample performance one should use higher (but not too high) 
� values. Moreover, we see again that values of � around 0.25–0.325 yield the 
highest values of ICV@R (and thus the best portfolios according to this crite-
rion) regardless of the value of � . The figure also shows that the equal-weight 
portfolio is dominated by our distributionally robust approach for all cases with 
� ∈ [0.125, 0.325].

Fig. 7   Out-of-sample ICV@R and � for each �
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5.5 � Testing procedure

As a final step in our case study, we applied the algorithm to testing (hold-out) data 
using a suitable robustness level � = 0.3 chosen according to the out-of-sample per-
formances in the validation procedure (see Fig. 6). The testing data comprises the 
period from May-2019 to April-2020. The choice of the testing period was due to 
two goals: first, we wanted to leave some space between the validation data and the 
testing data to avoid any contamination; second, since we wanted to fully test the 
capacity of the model to react to adverse situations, we deliberately chose a period 
when the market suffered huge losses, as it was the case in March 2020 which coin-
cided with the explosion of the COVID-19 pandemics. The risk aversion parameter 

Fig. 8   Out-of-sample May-2019 to April-2020 allocation for HMM-DRO policy with � = 0.3

Fig. 9   Out-of-sample May-2019 to April-2020 performance comparison among policies and states of the 
HMM
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was set to � = 0.07 , a value comparable to the equal-weight portfolio risk. Figure 8 
depicts the optimal allocation strategy found by the algorithm for the model with 
� = 0.3 . We see that the model invested on a mix of Health (“Hlth”) and risk-free 
assets for most of the year, except at the beginning and at the end of this testing 
period where it anticipated a potential downturn and consequently moved the alloca-
tion to 100% risk-free assets.

Figure 9 depicts two pieces of information related to the testing period. In the 
figure, the labels on the horizontal axis correspond to the situation at the end of each 
month. The shaded areas indicate the posterior probability of each Markov state as 
in (1), following the left vertical axis. We see that for the most of the testing period 
the HMM classified the market overwhelmingly as a mix of “regular” and “bull” 
states, until March 2020 when it turned the classification into a “bear” state as the 
COVID-19 crisis expanded worldwide. Such behavior suggests that the HMM was 
effective in learning the states of the market directly from the data.

The other piece of information displayed in Fig. 9 is a comparison among a num-
ber of policies, as it shows the accumulated monthly return (following the right 
vertical axis) during the testing period for (1) the HMM-based policy with � = 0 ; 
(2) the HMM-DRO-based policy with � = 0.3 ; (3) the policy that is obtained using 
an SDDP model with no HMM; and (4) the passive equal-weight strategy. We see 
that the strategy given by our HMM-DRO approach outperformed the equal-weight 
strategy for most of the year, except for the last month when the equal weight-strat-
egy recovered more quickly from the downturn in March and benefited from the 
market rebound in April 2020. Moreover, the HMM-DRO policy outperformed the 
pure-HMM and the no-HMM ones. We see that although the pure-HMM and no-
HMM policies performed reasonably well up to the point where the crisis started, 
after that point both policies suffered huge losses and never recovered. In contrast, 
the robust policy with � = 0.3 was able to weather the effects of the crisis much bet-
ter. The graph also shows the merits of the HMM approach: indeed, the no-HMM 
policy had the worst performance of all for most of the period. Overall, the analysis 
suggests that, by using the HMM to learn about the different states of the market and 
by taking into account the estimation errors of the HMM, the proposed approach 
can indeed yield competitive performance during normal times and provide better 
protection during downturns.

6 � Conclusions

The evolution of computing power, new theoretical results, and the development 
of specialized software tools have made stochastic dynamic optimization models 
widely applicable in recent years. In our opinion, however, the increase in the 
utilization of such models has not been accompanied by a similar development in 
the treatment of data. For most applications reported in the literature, some form 
for the underlying stochastic process {�t} is assumed (after some study of avail-
able data), the problem is solved, and the optimal solution given by the model is 
implemented. Our goal is in this paper is to bring this practice closer to a new 
reality of data-driven problems, where information can be inferred automatically 
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from the data via some machine learning technique, and an independent valida-
tion procedure is applied in order to evaluate the decisions yielded by the model.

To accomplish our goal, we have presented a framework for data-driven dis-
tributionally robust dynamic decision models with a particular structure that is 
applicable in many different contexts. Our approach combines a Hidden Markov 
Model (HMM) as the predictive engine with a dynamic Distributionally Robust 
Optimization (DRO) model as the prescriptive methodology. Notwithstanding the 
HMM flexibility to approximately capture the dynamics of a variety of stochas-
tic processes, it is subject to estimation errors as well as model misspecification. 
Therefore, a distributionally robust dynamic optimization model is a suitable 
choice to embody the uncertainty dynamics represented by the HMM and at the 
same time to robustify decisions against the uncertainty over the HMM parame-
ters. We have provided a tractable reformulation of the optimization problem and 
shown that we can adapt the well-known Stochastic Dual Dynamic Programming 
(SDDP) algorithm to solve the proposed model. Along the way, we have devel-
oped a deterministic lower bound (for a maximization problem), which, although 
related to recent literature, is a novel result that can be generalized to other multi-
stage problems. Moreover, the bound has a practical appeal by allowing for user-
defined simple policies evaluations to improve computational tractability and 
solution efficiency, especially when taken together with the deterministic upper 
bound provided by SDDP.

For a fixed robustness level, we have presented an evaluation framework to 
assess the out-of-sample performance of the optimal policies yielded by the 
model in a rolling horizon scheme. We have also introduced an acceleration 
scheme in case of computationally intensive problems, which is applicable when 
the problem structure does not depend on the time period. A robustness tuning 
procedure was proposed as a series of out-of-sample evaluation steps, whereby 
the robustness level with the best out-of-sample performance is selected. We 
have illustrated the power and flexibility of the proposed data-driven prescrip-
tive analytics framework with a complete case study on dynamic asset allocation. 
The numerical results show superior out-of-sample performance against selected 
benchmarks on a hold-out testing dataset. The case study reiterates the practi-
cal importance and applicability of the proposed framework since it emulates the 
actual decision process of a dynamic asset allocation problem, extracting valu-
able information from data to obtain robust decisions with an empirical certificate 
of suitable out-of-sample performance.

While the case study focuses on one type of problem (dynamic asset alloca-
tion), we believe that the framework presented in the paper can be useful in other 
contexts as well. For example, in long-term energy planning—a type of problem 
for which SDDP has been extensively used—the stochastic input process (e.g., 
water inflows, solar radiation) could be inferred directly from the data, using 
machine learning techniques as described in this paper. We believe that the pre-
sented work raises important questions for future development on the integration 
of machine learning methods and dynamic optimization under uncertainty, and 
hope it will stimulate further research in this area.
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Appendix 1: Algorithms

In this section, we present detailed information about the SDDP implementation. 
The first algorithm (Algorithm 1) describes the central part of our distributionally 
robust SDDP, followed by the descriptions of the forward (Algorithm 2), backward 
(Algorithm 3) steps, and deterministic lower bound evaluation (Algorithm 4).

Forward step (Algorithm 2) consists of finding trial points {�̂t}Tt=1 using current 
subproblems {Q

j

t
,Qj

t
}T ,K
t=1,k=1

 . Notice that, inside the subproblems, both in forward 
and backward algorithms, it is only used the outer approximation of the future value 
function {Q

j

t
}T
t=1,k∈K

 . The procedure to update the inner approximation is described 
in (Algorithm 4).

Backward step (Algorithm  3) updates the current outer approximation of the 
future value function inside the subproblems.
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Unlike the backward step, which is a Benders decomposition, in the deterministic 
lower bound algorithm we update the model using the column generation method. 
The method adds variables, at each iteration, to the outer approximation of the 
future value function {Qj

t
}T
t=1,k∈K

 . To facilitate the understanding of the lower bound 
construction, we present model (63)–(75), which is similar to the problem (26)-(35) 
with �j

t(�
��) = −�⊤��� . However, here we are using the lower approximation of the 

future value function describes in Sect. 3.3.

(63)

Qj

t
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+
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k
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k
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Appendix 2: Implementation remarks

The convergence of SDDP may be rather slow when using models that admit the 
wealth at the last stage. This can also lead to numerical instability. To have bet-
ter performance, we evaluate the immediate return and transactional costs and take 
them into account at each stage decision, making it easy to estimate the immediate 
influence of the current decision in the objective function.

(69)
∑

i∈It

��
i
𝐱̂i
t
− 𝐱� = 0

(70)
∑

i∈ It

��
i
= 1

(71)�−
k
+ �+

k
− � = 0, ∀k ∈ K

(72)�̃−
k
+ �̃+

k
− �̃ = 0, ∀k ∈ K

(73)z − gt(�t, �
k
t+1

(s)) − yks ≤ 0, ∀k ∈ K, ∀s ∈ Sk

(74)�t ∈ Xt(�t−1, �t)

(75)�−,�+, �̃
−
, �̃

+
, �, �, �̃,��, ��, ��� ≥ 0.
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It is straightforward that the model with immediate returns is equivalent to the one 
that considers only the wealth in the last stage, see [46] for more details. Below is the 
complete distributionally robust optimization model with immediate returns and trans-
actional costs on the objective function is detailed

Appendix 3: Positively homogeneous proof for DRO dynamic asset 
allocation

Let us define the DRO dynamic asset allocation

where the end-of-horizon function Qj

T
(�T−1, �T ) = �⊤

T
�T−1, defines the terminal 

wealth. We also define the set Xt(�t−1, �t) is defined as

Proposition 9  The function Qj

t(�t−1, �t) is positively homogeneous with respect to 
�t−1.

(76)
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�t,�
−
,�+

, ��
−
, ��

+
, �, �t, �t, 𝜆, �𝜆 ≥ 0.

Q
j

t(�t−1, �t) = max
�t∈Xt(�t−1,�t)

{
min
�j∈ Pj

∑

k∈K

�
[
Qk

t+1

(
�t, �t+1

)||Kt+1 = k
]
p̂j(k)

}

s.t. 𝜙�̂j

[
�⊤
t+1

�t
]
≥ (1 − 𝛾)

(
�⊤
t
�t−1

)
, ∀�j ∈ Pj,

{
�t ∈ ℝ

N+1
+

||∃�t, �t ∈ ℝ
N
+
∶
x0,t + (� + �)⊤�t − (� − �)⊤�t = x0,t−1
xi,t − bi,t + di,t = 𝜉i,t xi,t−1, ∀i ∈ A

}
.
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Proof  Let 𝜐 > 0 denote a positive constant. Let us also define �̃t = � �t and 
�̃t−1 = � �t−1 . First note that if, and only if, �̃t ∈ Xt(�̃t−1, �t) , then �t ∈ Xt(�t−1, �t) . 
Moreover, if, and only if, 𝜙�̂j

[
�⊤
t+1

��t
]
≥ (1 − 𝛾)

(
�⊤
t
��t−1

)
 , then 

𝜙�̂j

[
�⊤
t+1

�t
]
≥ (1 − 𝛾)

(
�⊤
t
�t−1

)
 , for any �j ∈ Pj . Also, for t = T  , we have that

Employing the inductive hypothesis Qj

t+1
(�̃t, �t+1) = �Q

j

t+1
(�t, �t+1) , we have that
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