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Abstract
In 1998 a long-lost proposal for an election law by Gottlob Frege (1848–1925) was 
rediscovered in the Thüringer Universitäts- und Landesbibliothek in Jena, Germany. 
The method that Frege proposed for the election of representatives of a constitu-
ency features a remarkable concern for the representation of minorities. Its core 
idea is that votes cast for unelected candidates are carried over to the next election, 
while elected candidates incur a cost of winning. We prove that this sensitivity to 
past elections guarantees a proportional representation of political opinions in the 
long run. We find that through a slight modification of Frege’s original method 
even stronger proportionality guarantees can be achieved. This modified version of 
Frege’s method also provides a novel solution to the apportionment problem, which 
is distinct from all of the best-known apportionment methods, while still possessing 
noteworthy proportionality properties.

Keywords Elections · Representative democracy · Proportionality · Proportional 
representation · Apportionment · Gottlob Frege (1848–1925)

1 Introduction

In the summer of 1998 a surprising discovery was made in the Thüringer Univer-
sitäts- und Landesbibliothek (ThULB) in Jena. Hidden among the legacy of the Ger-
man politician Clemens von Delbrück (1856–1921), Uwe Dathe, curator at ThULB, 
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found a typescript titled Vorschläge für ein Wahlgesetz, which translates to ‘Pro-
posals for a Voting Law’. The author of the typescript turned out to be no one less 
than Gottlob Frege (1848–1925), the illustrious logician and recipient of the letter 
in which Bertrand Russell expounds his famous paradox. Although the typescript is 
undated, circumstantial evidence points to 1918 as the almost certain year of compo-
sition. The manuscript was finally published in the original German in the year 2000 
(Gabriel and Dathe 2000), accompanied by an extensive and excellent introduction 
by Dathe and Kienzler (2000). The original typescript has been made digitally avail-
able by the Thüringer Universitäts- und Landesbibliothek in Jena (Frege 1918).

The discovery of Frege’s proposal was surprising and remarkable. Regarding it 
merely as a historical curiosity, however, would not do justice to its originality and 
perspective. Rather, we feel that some of its underlying ideas shed a fresh light on 
modern discussions on how to elect representatives to political assemblies. In par-
ticular, Frege takes a highly original temporal point of view, where the votes cast for 
unelected candidates in an election are carried over to the next election. He further-
more proposes a rudimentary system of how votes can be delegated from candidate 
to candidate. In this paper, we conduct a mathematical analysis of Frege’s proposal 
and can prove that, even from the standpoint of modern social choice and apportion-
ment theory, it fares remarkably well. In the following, we present Frege’s proposal 
in detail and outline our findings.

1.1  Structure and Content of Frege’s Proposal

Frege’s typescript consists of four main parts and, in its original form, is presented 
on 24 numbered printed pages and is appended by two fold-out tables, Tafel I and 
Tafel II. In the following, the page numbering refers to Frege’s proposal as published 
in the year 2000 (Frege 2000), whereas the bracketed numbers refer to the sheets of 
the original typescript from 1918 (Frege 1918).

In a preliminary note (Vorbemerkung) (p. 297, [1]–[3]), Frege sketches the gen-
eral constitutional provisions of his proposal. He presumes a division of the elector-
ate in constituencies, with the voters in each constituency delegating an elected rep-
resentative to an electoral body like the German Reichstag (p. 297, [1]). This is very 
much in line with constitutional law in Imperial Germany (1871–1918), where the 
representatives of the constituencies were elected by absolute majority and where, 
in case none of the candidates succeeded in securing an absolute majority, a run-off 
took place between the two candidates with the highest number of votes.1 In this 
part, he moreover specifies restrictions on active and passive suffrage as he consid-
ered them appropriate.

The most original aspects of Frege’s election law are to be found in the sec-
ond part (pp. 297–299, [2]–[4]) of the manuscript. In eleven articles numbered §5 

1 The succeeding Weimar Republic (1918–1933) adopted a voting system based on proportional repre-
sentation, where multiple representatives were elected in each of a smaller number of constituencies of a 
considerably larger size than was usual in Imperial Germany.
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through §15, Frege presents the voting method by means of which the representative 
of a constituency is chosen.

Finally, Frege makes a short concluding remark (Schlussbemerkung, p.  299, 
[4]–[5]) concerning the use of referenda to settle political disputes, which is fol-
lowed by an extensive discussion elucidating the various aspects of his voting law 
(Erläuterungen, pp. 299–311, [5]–[24]). The two tables appended by Frege illus-
trate his voting method by means of two examples he constructed for the purpose 
(pp. 312–313).

1.2  Political Views Underlying Frege’s Proposal

Frege’s proposal for a voting law displays a remarkable juxtaposition of highly con-
servative and nationalistic views with classical liberal ideals. Frege’s conservative 
views are most clearly manifested in his proposal to restrict the right to vote to mar-
ried men without criminal convictions (“unbescholten”), who have performed mili-
tary service, and who received no state support (“Almosen”) in the previous year 
(197, [1]–[2]). He explicitly declined women’s suffrage on grounds that the husband 
be the head of the family, the alleged political unit of German society as he saw 
it (311,  [23]–[24]). To put this into perspective, it should be noted that women’s 
suffrage was made law on November 30 of the same year that Frege presumably 
wrote his proposal, with the first German women casting their votes for the Wahl zur 
Deutschen Nationalversammlung on January 19, 1919.

The deep conservatism inherent in these considerations2 is in quite some contrast 
with the more liberal ideals underlying his voting method. According to Frege him-
self, the voting method constitutes the fundamental thought of his voting law and 
can largely be considered independently of his ideas about suffrage (197, [1]). In this 
paper, we will concentrate on the mathematical aspects of Frege’s voting method, 
and leave the other parts of his proposal largely uncommented.

Frege’s voting method is based on the classical liberal notion that the voters 
in a constituency should be represented by an elected representative in a national 
assembly or parliament while upholding the ideal of one-person-one-vote. Frege’s 
main concern is to guarantee that no voters’ votes are lost in the election process 
(197, [1]; 308–9, [19]–[20]) by ensuring that even political minorities should send 
the constituency’s representative from their midst at some point in time. Failing to 
do so is a problem that is notoriously inherent in electoral systems where representa-
tives are elected in single-member constituencies by majoritarian or first-past-the-
post methods, that is, systems where the voters indicate a single candidate on their 
ballot, and the candidate occurring on most ballots is elected as representative of the 
constituency. Arguably, any vote cast on a minority candidate serves the voter, and 
the candidate, just as well as had the voter not participated in the election, and can 
consequently be considered lost (Erläuterungen, 303, [10]).

2 Later in his life, Frege’s conservatism and nationalism would give way to more extreme views on the 
political far right, in particular a strong antisemitic position, as witnessed by his diary entries from 1924 
(Gabriel and Kienzler 1994; Mendelsohn 1996).
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1.3  Frege’s Core Idea: Elections as a Process Over Time

Frege’s solution to the problem of votes for non-winning candidates being lost dur-
ing elections is to acknowledge the fact that elections take place repeatedly over 
time. He sees the election of representatives not so much as a one-shot event, but 
rather as a series of connected and interdependent events proceeding in rounds. In 
his proposal, elections are held every five years (§6, 298,  [2]), where voters sub-
mit a (plurality) ballot, indicating a single candidate, just as it was law in Germany 
between 1871 and 1918. He proposes, however, that the representative of a constitu-
ency should not be elected on the basis of the votes received in the current election 
alone, but also on those cast in previous elections. More precisely, every candidate 
has a voting score (“Stimmenzahl”), which, after initially being set to zero (§5,§7, 
297–8,  [2]), is increased by the number of votes received in each election. Frege 
makes a crucial proviso for the incumbent representative of the constituency: on the 
Friday before the election, the incumbent’s voting score is decreased by the integer 
part of the average voting score of all candidates (§14, 299,  [4]). The votes thus 
subtracted, Frege argues, have served their purpose and cannot be considered lost 
(Vorbemerkung, 197, [2]). We suggest that they can be viewed as the cost of winning 
that the elected representative incurs. The candidate with the highest voting score 
after the election is then elected as representative for the next five years. Possible 
ties are broken on the basis of age and, in case of an equal number of days lived, by 
lot (§13, 299, [4]).

With Frege’s voting method, candidates that only attract minor support among 
the electorate keep accumulating votes over time, and at some point will be elected 
as representative. Thus, also minority opinions are guaranteed to be represented in 
elected political assemblies, which complies with Frege’s guiding principle that no 
votes should be lost. Should his voting law be adopted, Frege anticipates the lively 
participation of all voters in the elections (Erläuterungen, 303–4,  [11]), a concern 
that has also attracted attention in social choice theory (Fishburn and Brams 1983; 
Moulin 1988).

To the same end, Frege arranges for the installation of a maximum of twenty-five 
choice candidates (“Erlesene”) as those candidates in a constituency with maximal 
voting score (§8, 298, [2]). The representative is chosen among these choice candi-
dates and non-choice candidates need to transfer their votes to one of the choice can-
didates. This is to ensure that the votes cast on non-choice candidates are not lost or 
too much scattered to be of any effect. Frege claims that the number of twenty-five 
choice candidates should suffice for all non-choice candidates to find a politically 
like-minded choice candidate to transfer their votes to (Erläuterungen,  303,  [10]). 
Frege also provisions for the transfer of votes from a choice candidate to a deputy 
should the former die or otherwise lose his status as a choice candidate (§11, 298, 
[3]). In what follows, however, we will not make this distinction between choice and 
non-choice candidates.

Given the objectives of Frege’s voting method, a key issue is how often a can-
didate can be expected to be elected as representative given his support in the con-
stituency. Even though Frege does not seem to pursue proportional representation 
(“Proportionswahl”) as a political aim in itself, he states without formal proof that: 
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“If the strengths of political directions in a constituency remain the same over a pro-
longed period of time, then the number of times during which each of these direc-
tions is represented by the representative of the constituency will behave approxi-
mately proportionally to these strengths” (Frege 2000, p. 302, [8]).3 The main goal 
of our paper is to investigate in a mathematically rigorous manner whether Frege’s 
claim can be vindicated.

1.4  Contributions of This Paper

Frege’s intended audience presumably being politicians rather than academ-
ics, Frege neither provided a formal definition nor a formal analysis of his voting 
method. We aim to fill this gap and, in Sect.  2, start by formulating his proposal 
in the precise mathematical framework of modern social choice theory. We first 
observe that Frege’s method fails to be proportional in the strict sense even under 
the assumption that the voters’ number and preferences remain constant over time: 
examples are easily found in which at some point a candidate is elected more often 
(and another less often) than would be justified by the number of votes he received 
as a proportion of the total of votes cast (Example 2). We show, however, that this 
failure of proportionality can be attributed to the peculiarity of Frege’s method that 
the cost of being chosen representative varies over time. Even more, the variation of 
this cost creates a massive, disproportional advantage for strong candidates who pay 
a lower cost than minority candidates.

In Sect. 3, we can nevertheless prove that the cost of winning will converge and 
stabilize at the number of voters after a finite number of elections–provided that the 
size of the constituency remains constant (Lemma 1). Frege appears to have been 
aware of this phenomenon, as he now and then speaks of a stable state (“Dauerzu-
stand”) in this context (302, [8]). This convergence of the cost of winning can take 
a very long time, as is also indicated by the two examples Frege himself constructed 
to illustrate his procedure (Erläuterungen, 300–301, [5]–[7]; Tafel I and Tafel II). In 
both of the examples, the cost of winning can be shown to stabilize only after 184 
elections. As Frege proposes that elections are held every five years, this process 
will take 920 years.

As soon as the cost of winning has stabilized, however, the behaviour of Frege’s 
voting method becomes more favorable. We can show that, as time proceeds, the 
proportion of times a candidate is chosen will converge towards the proportion of 
the candidate’s support in the electorate. In other words, Frege’s method achieves 
proportionality in the limit (Theorem 1). Again, this result requires that the size of 
the electorate remains constant and that the average number of votes each candidate 
receives converges. In this context, it is interesting that Frege explicitly expresses 
the desirability of constituencies being of about equal size and their composition 
changing as little as possible (Vorbemerkung, 197,  [1]). If instead the size of the 

3 The original German reads: “Wenn die Richtungen in einem Wahlkreise längere Zeit hindurch diesel-
ben Stärken behalten, werden sich die Zeiten, während deren die einzelnen durch den Abgeordneten des 
Wahlkreises vertreten werden, annähernd wie diese Stärken verhalten”. Translation by the authors.
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electorate is not assumed to be constant but can grow over time, we give an example 
showing that this convergence to proportionality does no longer hold (Example 3).

The problems that come with the long initialisation phase before the cost of win-
ning stabilizes suggest a modified version of Frege’s voting method which we pre-
sent in Sect. 4. For this modified version, the number of votes cast for each candidate 
is normalized to lie between 0 and 1, and the cost of winning is invariably 1. The lat-
ter stipulation intuitively corresponds to the cost of winning being equal to the num-
ber of voters. The modified version of Frege’s voting method is well-behaved imme-
diately and has stronger proportionality guarantees over time than Frege’s original 
method. In particular, we prove that, at any point in time, the number of times each 
candidate has been chosen lies within a bounded margin from his or her propor-
tional share of votes aggregated up to that time (Theorems 3, 4).

Frege’s original method was conceived for the election of a single representative 
in a constituency and rests on the liberal principle of voting for individual candi-
dates (“Persönlichkeitswahl”) instead of a party-list system (“Listenwahl”). That is, 
the method should guarantee fair representation of citizens’ opinions in parliament 
rather than reflect the strength of political parties. Accordingly, it would be inappro-
priate to represent Frege as making a case for proportional representation as such. 
Nevertheless, the modified Frege method, as proposed in this paper, can naturally 
be interpreted as an apportionment method as is commonly used for assigning seats 
to parties in a political assembly in systems of proportional representation. This 
apportionment method, which we introduce in Sect.  5 and refer to as the Frege’s 
apportionment method, assigns to each political party as many seats as the number 
of times it would be elected as representative if the modified Frege method were run 
for so many times as there are seats in the assembly (parliament) while keeping the 
electorate fixed.

We can show that Frege’s apportionment method is not mathematically equiva-
lent to any of the methods that are common in the literature. In particular, we dem-
onstrate that it differs from the Adams method, the D’Hondt (or Jefferson) method, 
the quota method, the Sainte-Laguë (or Webster) method, the largest remainder 
method, and the Huntington–Hill method. Analysing its compliance with the cus-
tomary axioms for apportionment, we prove that Frege’s apportionment method sat-
isfies house monotonicity and upper quota but fails population monotonicity. Lower 
quota is only satisfied if the number of candidates is at most three (Theorem 5). As 
an apportionment method, it therefore behaves surprisingly well, especially given 
the fact that it was not designed as one. Only the quota method by Balinski and 
Young (1975) satisfies all of the axioms mentioned above that are also satisfied by 
Frege’s method. The quota method, however, is notoriously biased against small 
parties. Frege’s method fares considerably better in this respect, as suggested by a 
numerical experiment in which we compare the number of votes per representative 
of the largest party and the number of votes per representative of the smallest party 
(Sect. 5.3). The conclusion seems to be fair that Frege’s apportionment method is an 
interesting and novel addition to the apportionment literature.

Further discussions of Frege’s proposals follow at the end of the paper in Sect. 6. 
So as not to interrupt the flow of the argument, mathematical proofs are deferred to 
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the “Appendix”. An open-source Python implementation of Frege’s voting rule and 
our modified version is available online (Harrenstein et al. 2020).

1.5  Related Work

Frege’s voting method is difficult to compare with other voting rules due to its tem-
poral nature, a feature that voting rules typically do not possess. Thus, we only 
briefly review some works in social choice theory that combine voting and a tem-
poral structure. Formalisms such as iterative voting (Meir 2017) and dynamic social 
choice (Tennenholtz 2004; Boutilier and Procaccia 2012; Parkes and Procaccia 
2013) consider voting scenarios with changing (dynamic) preferences. In contrast to 
Frege’s proposal, these essentially concern a single election where preferences are 
updated over time. In particular, they are not concerned with proportional outcomes 
over time.

Another line of work (Conitzer et al. 2017; Freeman et al. 2017; Lackner 2020) is 
concerned with repeating elections, similar to Frege’s proposal. These works, how-
ever, focus on fairness towards voters and discuss mechanisms that guarantee a fair 
distribution of utility among voters over time. From this point of view, these works 
can be viewed as an orthogonal approach to the one of Frege, where all emphasis is 
put on fairness towards candidates and individual voters are not taken into account. 
We return in Sect. 6 to this partial disregard of voters’ current preferences.

Finally, the storable votes method (Casella 2005, 2012) is a voting rule based on 
plurality voting. In each election, voters can decide to either cast a vote or to transfer 
their vote weight to future elections. If a voter decides to cast a vote, she can spend 
all, some, or none of her stored weight from previous elections. This rule vaguely 
resembles Frege’ proposal as it allows minority candidates to win at some point, 
however only if they have supporters that strategically act to their benefit. This kind 
of strategic voting is not required with Frege’s proposal; Frege even made his pro-
posal with the intention of reducing strategic voting.

2  Mathematical Formulation of Frege’s Voting Method

Frege couched his voting law in legal terms, and also his subsequent discussions are 
mathematically informal. In this section we provide a mathematical formulation of 
Frege’s voting law, where we concentrate on the voting mechanism Frege proposed. 
In particular we focus on the way candidates accumulate votes over the course of 
multiple elections and whether this leads to a fair (proportional) representation of 
opinions over time. We will make the simplifying assumption that candidates remain 
the same over time, but we do allow voters to change their number, their identity, 
and opinion as to their most preferred candidate, unless stated otherwise. In par-
ticular, we will disregard Frege’s distinction between choice candidates (“Erlesene”) 
and non-choice candidates, and the delegation mechanism it enables. Thus, in our 
analysis, every candidate accumulates votes.
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Let C be a set of m ≥ 2 candidates. Voting proceeds in rounds over time, meaning 
that at every point in time t ≥ 1 an election takes place and a new representa-
tive repr(t) is chosen. We have nt denote the number of voters participating in the 
election at time t. In every election, the voters submit their preferences by means of 
plurality ballots, that is, for every t ≥ 1 , the voters specify their most preferred can-
didate only. We denote by �t

j
 the plurality score of candidate j at time t, that is, the 

number of voters that put j on their ballot at time t. Since every and only participat-
ing voters cast votes on candidates, we thus have nt =

∑
j∈C �

t
j
 . We speak of a fixed 

electorate if the number of voters and the candidates’ plurality scores remain con-
stant over time, that is, if nt = n and �t

j
= �j for all j ∈ C and t ≥ 1.

In each round t of the election process, an aggregate score �t
j
 is calculated for 

every candidate j on the basis of the scores obtained at the time of the election ( �t
j
 ) 

and the scores obtained in past elections. The candidate which obtains the maximal 
aggregate score at time  t is chosen as representative  for round  t, that is, 
repr(t) = argmaxj∈C�

t
j
 . In case of a tie, the candidate that is lexicographically first is 

chosen. This is equivalent to assuming a fixed tie-breaking order, for instance, by 
breaking ties in favour of the oldest candidate, as suggested by Frege himself. For-
mally, we define the aggregate score �t

j
 of a candidate  j at time  t inductively such 

that, for every t ≥ 1,

The term 
�

1

m
⋅
∑

k∈C �
t
k

�
 can be seen as the cost of winning the election at time t, as it 

is later subtracted from the aggregate score of the winning candidate. Note that this 
number is chosen in such a way that the aggregate scores of all candidates are guar-
anteed to remain non-negative at all times. Furthermore, observe that the aggregate 
scores at time t are used to elect the representative at time t and consequently only 
include the costs of winning of previous rounds and not of time t.

Example 1 Consider a fixed electorate with three candidates and ten voters, and let 
the corresponding plurality scores of candidates a, b, and c be 5, 3, and 2, respec-
tively. Table 1 depicts the values of �t

j
 for t = 1,… , 10 . Maximum aggregate scores 

of each round are printed in bold.
At time 1, candidate a is chosen, because a has a maximum aggregate score of 5. 

At time 2, each candidate keeps the votes he had obtained at time 1 plus the votes 
obtained at time 2, which we assumed to be the same as at time 1. Thus for candi-
dates b and c the aggregate scores at  time 2 are 3 + 3 = 6 and 2 + 2 = 4 , respec-
tively. The cost of winning incurred by candidate a at time 1 amounts to 3 = ⌊10∕3⌋ , 
which has to be subtracted from the number of votes candidate a received at time 1 
and time 2. Accordingly, candidate a’s aggregate score �2

a
 at time 2 is calculated as 

5 + 5 − 3 = 7 . Hence, at time 2, candidate a again has the highest aggregate score 

�1
j
= �1

j

�t+1
j

=

�
�t
j
+ �t+1

j
−
�

1

m
⋅
∑

k∈C �
t
k

�
if repr(t) = j,

�t
j
+ �t+1

j
otherwise.
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and is elected representative another time. The cost of winning at time 2, however, 
has increased to 5, and at time 3, it is candidate b who has the maximum aggregate 
score and is elected representative, this time at a cost of 7. And so on. Note that the 
cost of winning increases over time, starting with 3 and increasing to 10, the number 
of voters. Once the cost of winning has reached 10—indicated in the table by the 
dashed line—it stabilizes and remains constant at all subsequent time steps.

The increasing cost 
�

1

m
⋅
∑

k∈C �
t
k

�
 of winning, as we saw in Example 1, suggests 

an unfairness inherent in Frege’s voting method. Early winners, that is, those candi-
dates with the highest plurality scores, incur lower costs for being elected than those 
candidates that win later. This makes it advantageous to win early in the election 
process, creating a positive bias towards strong candidates and accordingly consti-
tutes a disadvantage for minority candidates. This is also reflected in these candi-
dates being elected more often than would seem to be justified by the proportion of 
the electorate that supports them. This phenomenon is all the more remarkable as it 
was Frege’s intention to also strengthen minority opinions (Frege 2000, Erläuterun-
gen, 306, [15]; Gabriel and Dathe 2000, p. 292). How extreme this distortion can be 
is illustrated by the following example.

Example 2 Let us consider a scenario that highlights the unfairness introduced by 
increasing costs (Table 2). We have a fixed electorate with 6 candidates and 10 vot-
ers. The corresponding plurality scores  �j of the candidates  a through  f are 
1,  1,  1,  1,  1, and  5, respectively. The table below depicts the values of �t

j
 for 

t = 1,… , 10 and j ∈ C . Ties occur in rows with more than one element printed in 

Table 1  A simple example of Frege’s method (Example 1)

Maximum aggregate scores are printed in bold

Time t �t

a
�t

b
�t

c
Representative

�
1

3
⋅
∑

k∈C �
t

k

�

1 5 3 2 a 3
2 7 6 4 a 5
3 7 9 6 b 7
4 12 5 8 a 8
5 9 8 10 c 9
6 14 11 3 a 9
7 10 14 5 b 9
8 15 8 7 a 10
9 10 11 9 b 10
10 15 4 11 a 10
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bold. We assume that ties are broken in alphabetical order and thus always to the 
disadvantage of f.

After ten rounds, candidate f has been chosen eight times, candidates a and b have 
been chosen once, and candidates c, d and e not at all. This shows that Frege’s vot-
ing method does not select representatives in a proportional fashion: in ten rounds it 
would be possible to perfectly reflect the distribution of votes, that is, by choosing 
candidate f five times and all other candidates once.

At this point, we would like to make a minor remark concerning Frege’s use of 
the floor function in the definition of the cost of winning as 

�
1

m
⋅
∑

k∈C �
t
k

�
 in his vot-

ing method (cf. �t+1
j

 , as defined above).4 This was most likely motivated by consid-
erations of numerical simplicity, but, for our purposes, does not have a significant 
mathematical effect. Replacing the term 

�
1

m
⋅
∑

k∈C �
t
k

�
 with 1

m
⋅
∑

k∈C �
t
k
 does not 

help to resolve any of the issues identified in Example 2.
In Example 1, we also saw that after time 7, the cost of winning stabilizes at 10. 

After this time, therefore, candidates no longer gain an advantage by being elected 
earlier rather than later, at least not with respect to the cost of winning. This phe-
nomenon is not specific to Example 1; also in Example 2 the cost of winning will 
stabilize at time 17, when it reaches a cost of 10. Rather, as long as the size of the 
electorate remains constant, the convergence of the cost of winning to the number 
of voters will hold generally (Lemma 1, below). Under further conditions on how 
the opinions in the electorate evolve over time, moreover, the unfairness caused by 
the varying costs of winning in the initial phase will taper off and result in a propor-
tional representation in the long run. We formally prove this in the next section.

Table 2  The unfairness of increasing costs: candidate f wins unproportionally often (Example 2)

Maximum aggregate scores of each round are printed in bold

Time t a b c d e f Representative
�
1

6
⋅
∑

k∈C �
t

k

�

1 1 1 1 1 1 5 f 1
2 2 2 2 2 2 9 f 3
3 3 3 3 3 3 11 f 4
4 4 4 4 4 4 12 f 5
5 5 5 5 5 5 12 f 6
6 6 6 6 6 6 11 f 6
7 7 7 7 7 7 10 f 7
8 8 8 8 8 8 8 a 8
9 1 9 9 9 9 13 f 8
10 2 10 10 10 10 10 b 8

4 Frege writes: “A remainder that is smaller than the number of choice candidates of a constituency, is 
left disregarded” (“Ein Rest, der kleiner als die Anzahl der Erlesenen des Wahlkreises ist, bleibt dabei 
unberücksichtigt”) (§14, 299, [4], English translation by the authors).
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The unfairness towards minority candidates caused by the increasing costs of 
winning suggests a variation of Frege’s method where the cost of winning is stipu-
lated to be constant from the outset. We introduce the modified Frege method in 
Sect. 4 and show that it not only guarantees proportionality in the long run, but also 
has stronger proportionality properties, which we will make formally precise.

3  Proportionality Guarantees for Frege’s Method

In the previous section we saw how the cost of winning converges as long as the 
number of voters is fixed. We now make this observation mathematically precise. 
The proof of this lemma as well as all further proofs can be found in the “Appendix”.

Lemma 1 Assume that the number of voters is fixed, that is, nt = n for all t ≥ 1 . Then 
the function a(t) =

∑
k∈C �

t
k
 is monotonically increasing. Moreover, there exists a 

positive number t0 such that a(t) = n ⋅ m for all t ≥ t0.

This convergence process of the cost of winning (which is ⌊ a(t)

m
⌋ ) to the number of 

voters can take quite a long time: In Frege’s proposal, he provided two explanatory 
examples with n = 1000 and m = 25 . With these parameters, Frege’s voting method 
reaches a constant cost of winning at time t0 = 184 . As Frege proposes that elections 
are held every five years, this would amount to 920 years.

Let us continue by specifying in which sense Frege’s voting method violates even 
a most basic form of proportionality, as noted in Example 2. In what follows, let �j(t) 
denote the number of times candidate  j is chosen as representative up until time t, 
that is, �j(t) = |{s ≤ t ∶ repr(s) = j}| . Under the assumption of a fixed electorate, 
after t rounds, each candidate  j should ideally win t ⋅ �j

n
 times, that is, the number 

of rounds multiplied by the proportion of the electorate that supports candidate j. If 
t ⋅

�j

n
 is an integer for all j, a perfectly proportional outcome is possible. This obser-

vation gives rise to the following definition.

Definition 1 A fixed electorate with plurality scores (�j)j∈C has integral quotas at 
time  t if t ⋅ �j

n
 is integral for all candidates  j. We say that an (infinite) sequence of 

chosen representatives (repr(1), repr(2),…) satisfies variable integral quota if for 
any time t ≥ 1 at which the electorate has integral quotas, it holds that

Example  2 shows that Frege’s method cannot guarantee this property: a 
sequence of representatives chosen by Frege’s method may violate variable inte-
gral quota. Note that variable integral quota applies to rather few electorates, 
namely only fixed electorates considered at time points when a perfectly propor-
tional outcomes is possible. Hence, we consider variable integral quota as a weak 
and very basic form of proportionality. However, the following theorem shows 

�j(t) = t ⋅
�j

n
for every j ∈ C.
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under which conditions �j(t)
t

 will converge to �j
n
 . Thus, Frege’s method provides a 

form of proportionality in the long run.

Theorem 1 If we assume a fixed electorate, that is, nt = n and �t
j
= �j for all t ≥ 1 , 

the following holds for Frege’s voting method:

If nt = n and for all t ≥ 1 and for all j ∈ C there is some �∗
j
∈ [0, 1] such that

then the following holds for all candidates j ∈ C:

The following proposition shows that, for a fixed electorate, proportionality is 
not only guaranteed in the limit but eventually also within (finite) intervals.

Proposition 1 If we assume a fixed electorate with n voters, there exists a time t∗ ≥ 1 
and a period length P ∈ ℕ such that, for all t ≥ t∗ and all j ∈ C,

If we do not assume a fixed number of voters, proportionality cannot be guar-
anteed even as t → ∞ . To see this, consider the following example.

Example 3 We consider a scenario with two candidates, a and b. For t = 1 , there are 
three voters and �1

a
= 2 , �1

b
= 1 . In every following round the number of voters is 

doubled and the ratio �t
a
∕�t

b
 remains the same, namely 2. We thus have �t

a
= 2t and 

�t
b
= 2t−1 . As we will see, candidate b never wins despite receiving one third of the 

votes.
In order to see this, let us prove that 𝜎t

a
> 𝜎t

b
 for all t ≥ 1 by induction over t. The 

basis is clearly fulfilled since 𝜎1
a
= 𝜋1

a
= 2 > 1 = 𝜋1

b
= 𝜎1

b
 . For the induction step, we 

assume that 𝜎s
a
> 𝜎s

b
 for all s ≤ t , that is, candidate a has always won so far. We thus 

have:

Since 𝜎t
a
> 𝜎t

b
 , it follows:

lim
t→∞

�j(t)

t
=

�j

n
.

lim
t→∞

∑t

s=1
�s
j

t
= �∗

j
,

lim
t→∞

�j(t)

t
=

�∗
j

n
.

�j(t + P) − �j(t)

P
=

�j

n
.

�t+1
a

= �t
a
+ 2t+1 −

⌊
�t
a
+ �t

b

2

⌋
and �t+1

b
= �t

b
+ 2t.
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Moreover, since b has not been chosen so far,

We thus have:

Thus, candidate b will never be chosen as representative.

In conclusion, Frege’s method is not proportional for arbitrary time intervals, but 
converges to proportional outcomes if the size of the electorate is fixed.

4  The Modified Frege Method

The examples in Sect. 2 and the results of Sect. 3 point to an increasing cost of win-
ning as the reason for Frege’s original method failing a reasonable form of propor-
tionality in the initial phase before the cost of winning has stabilized. This observa-
tion suggests that a natural variation of Frege’s original method, for which the cost 
of winning is stipulated to be constant, might do better. We thus introduce the fol-
lowing modification of Frege’s method, which we will refer to as the modified Frege 
method. In the formal definition of the modified Frege method, we abstract from the 
size of the electorate and accordingly use normalized plurality scores pt

j
 for candi-

dates j and times t ≥ 1:

where nt denotes the total number of voters at time t. The aggregate scores for the 
modified Frege method are defined as follows, where we use Latin letters to denote 
variables instead of Greek ones as in the definition of Frege’s original method:

One may wonder why the number 1 is subtracted from the winning candidate. The 
reason is that this choice ensures that the sum 

∑
j∈C s

t
j
 of aggregated scores is invari-

ably 1 for all times  t. Hence, this stipulation intuitively corresponds to the cost of 

⌊
𝜎t
a
+ 𝜎t

b

2

⌋
≤

𝜎t
a
+ 𝜎t

b

2
< 𝜎t

a
.

�t+1
b

=

t+1∑

s=1

�s
b
=

t+1∑

s=1

2s−1 = 2t+1 − 1.

𝜎t+1
a

= 𝜎t
a
+ 2t+1 −

⌊
𝜎t
a
+ 𝜎t

b

2

⌋
> 𝜎t

a
+ 2t+1 − 𝜎t

a
= 2t+1 > 𝜎t+1

b
.

pt
j
=

�t
j

nt
,

s1
j
= p1

j

st+1
j

=

{
st
j
+ pt+1

j
− 1 if repr(t) = j,

st
j
+ pt+1

j
otherwise.
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winning being equal to the number of voters, as it is eventually the case for Frege’s 
original method (cf.  Lemma  1). A potential disadvantage of the modified Frege 
method is that aggregated scores may become negative; we will further discuss this 
issue at the end of the paper in Sect. 6.

Example 4 Let us now reconsider Example  2 for the modified Frege method, as 
depicted in Table 3. The normalized plurality scores for candidates a through f are 
0.1, 0.1, 0.1, 0.1, 0.1, and 0.5, respectively. We now see that this method produces 
a proportional outcome: candidate  f wins five times and all other candidates once, 
which is exactly in accordance with the candidates’ proportional share of the votes.

The modified Frege method enjoys a number of proportionality properties that 
are stronger than the ones that can be proven for Frege’s original method. In the fol-
lowing, let rj(t) denote the number of times candidate j is chosen as representative 
up to time t, that is rj(t) = |{s ≤ t ∶ repr(s) = j}| . First, we show that a similar state-
ment to Theorem 1 holds for the modified Frege method:

Theorem 2 If we assume that pt
j
= pj for all t ≥ 1 , the following holds for the modi-

fied Frege method:

If the normalized plurality scores pt
j
 are not fixed but for all j ∈ C there is some 

p∗
j
∈ [0, 1] such that

lim
t→∞

rj(t)

t
= pj.

Table 3  Example illustrating the modified Frege method (Example 4)

Maximum aggregate scores of each round are printed in bold

Time a b c d e f Representative

1 0.1 0.1 0.1 0.1 0.1 0.5 f
2 0.2 0.2 0.2 0.2 0.2 0.0 a
3 – 0.7 0.3 0.3 0.3 0.3 0.5 f
4 – 0.6 0.4 0.4 0.4 0.4 0.0 b
5 – 0.5 – 0.5 0.5 0.5 0.5 0.5 c
6 – 0.4 – 0.4 – 0.4 0.6 0.6 1.0 f
7 – 0.3 – 0.3 – 0.3 0.7 0.7 0.5 d
8 – 0.2 – 0.2 – 0.2 – 0.2 0.8 1.0 f
9 – 0.1 – 0.1 – 0.1 – 0.1 0.9 0.5 e

10 0.0 0.0 0.0 0.0 0.0 1.0 f
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then the following holds for all candidates j ∈ C:

Theorem 2 provides a proportionality guarantee for the modified Frege method 
in the long run. Note that Theorem 2 does not require the number of voters to be 
fixed, in contrast to the analogous result for Frege’s original method where this 
assumption is necessary (cf. Theorem  1 and Example  3). We will now aim for 
much stronger guarantees, namely guarantees that hold for arbitrary time inter-
vals. We strengthen the definition of variable integral quota (Definition 1) to hold 
for arbitrary electorates, inspired by the lower and upper quota axioms in the 
apportionment setting (cf. Sect. 5).

Definition 2 For all candidates j ∈ C , let p1
j
, p2

j
,… be an infinite sequence of nor-

malized plurality scores. We say that an (infinite) sequence of chosen representatives 
repr(1), repr(2),… satisfies variable upper quota if for any time t ≥ 1 it holds that

and it satisfies variable lower quota if for any time t ≥ 1 it holds that

Note that both variable upper and lower quota imply variable integral quota: in 
case of integral quotas any deviation from a proportional distribution would also 
violate variable upper and lower quota. In the following we say that the modified 
Frege method satisfies variable lower or upper quota if any sequence of winners 
produced by this method satisfies the corresponding axiom.

Theorem 3 The modified Frege method satisfies variable upper quota.

As a consequence, the modified Frege method also satisfies variable integral 
quota. By contrast, it violates variable lower quota, as the following example 
illustrates.

Example 5 Let us consider a fixed electorate with six candidates and 2750 vot-
ers. The plurality scores are 1001, 1000, 206, 182, 181, and 180, respectively. For 
increased readability, the corresponding normalized plurality scores are obtained by 
dividing these numbers by 2750 in Table 4.

lim
t→∞

∑t

s=1
ps
j

t
= p∗

j
,

lim
t→∞

rj(t)

t
= lim

t→∞

∑t

s=1
ps
j

t
= p∗

j
.

rj(t) ≤

⌈
t∑

s=1

ps
j

⌉
for every j ∈ C,

rj(t) ≥

⌊
t∑

s=1

ps
j

⌋
for every j ∈ C.
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The variable lower and upper quota of candidate b at round 11 is 11⋅1000
2750

= 4 , but 
candidate b has been chosen only 3 times, that is, rb(11) = 3 . Similar examples can be 
found for m = 4 (for instance, with plurality scores of 1001, 1000, 115, and 26, and 
for t = 30 ) and m = 5 (for instance, with plurality scores of 1001, 1000, 300, 107, 
and 92 and for t = 15).

We can nevertheless show that the violations of variable lower quota by the 
modified Frege method are not too severe. This is in particular the case for elec-
torates with few candidates, as the following theorem shows.

Theorem  4 For m ∈ {2, 3} , the modified Frege method satisfies variable lower 
quota. For m ≥ 4 , we have rj(t) ≥

�∑t

s=1
ps
j

�
−
�
m−3

2

�
 for every candidate j and time 

t ≥ 1.

The following example shows, however, that variable lower quota violations 
can still be arbitrarily large. Yet, this construction requires a number of candi-
dates that is exponential in the size of the violation. Thus, it may still be possible 
to strengthen the bounds of Theorem 4 for the cases in which m ≥ 6 . (Example 5 
shows that Theorem 4 is optimal for m = 4 and m = 5.)

Example 6 We define a variable electorate with candidates C = {1,… ,m} and 
nt = m − t + 1 voters for t ∈ {1,… ,m} . At time t, we have plurality scores of

The corresponding normalized plurality scores are

�t
j
= 0 for j ∈ {1,… , t − 1},

�t
j
= 1 for j ∈ {t,… ,m}.

Table 4  The modified Frege method violates lower quota (Example 5)

For increased readability, the aggregate scores st
j
 are multiplied by 2750. Maximum aggregate scores of 

each round are printed in bold

Time a b c d e f Representative

1 1001 1000 206 182 181 180 a
2 − 748 2000 412 364 362 360 b
3 253 250 618 546 543 540 c
4 1254 1250 − 1926 728 724 720 a
5 − 495 2250 − 1720 910 905 900 b
6 506 500 − 1514 1092 1086 1080 d
7 1507 1500 − 1308 − 1476 1267 1260 a
8 − 242 2500 − 1102 − 1294 1448 1440 b
9 759 750 − 896 − 1112 1629 1620 e
10 1760 1750 − 690 − 930 − 940 1800 f
11 2761 2750 -484 − 748 − 759 − 770 a
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Furthermore, we assume that if candidate i and j are tied, then the tie is broken in 
favor of min(i, j) . Due to this tie-breaking assumption, the modified Frege method 
selects candidate  1 in the first round, candidate  2 in the second, candidate  t in 
round t. Let us consider round m − 1 , in which candidate m − 1 wins. The variable 
lower quota of candidate m is

Since the harmonic series 
∑∞

i=1

1

i
 grows without limit, the variable lower quota of 

candidate m is unbounded for a growing number of candidates (m). Recall that can-
didate m does not win before round m. Thus, if m tends to infinity, so does the viola-
tion of candidate m’s variable lower quota at time t = m − 1.

5  The Apportionment Setting

In this section, we want to analyse Frege’s methods from the viewpoint of apportion-
ment. Let us first review the apportionment problem and well-known methods that 
provide apportionment solutions.

5.1  Apportionment Methods

An apportionment problem for m parties is given by a distribution � = (p1,… , pm) 
of votes with 

∑m

i=1
pi = 1 and a desired house size k. A solution to the apportion-

ment problem (�, k) is an m-sequence of non-negative integers (a1,… , am) with ∑m

i=1
ai = k . An apportionment method is a function that returns for every appor-

tionment problem a valid solution.5 Apportionment has two main applications: to 
assign a fixed number of parliamentary seats to parties (proportionally to their vote 
count), and to assign representatives in a senate to states (proportionally to their 
population count). From a mathematical point of view, these two applications are 
indistinguishable, and, in particular, this distinction is not relevant for our study. For 
the sake of clarity, we speak in the following of parties and seats. First, we are going 
to introduce some important apportionment methods (cf. Balinski and Young 1982; 
Pukelsheim 2017).

pt
j
= 0 for j ∈ {1,… , t − 1},

pt
j
=

1

m − t + 1
for j ∈ {t,… ,m}.

⌊
m−1∑

s=1

ps
m

⌋
=
⌊
1

m
+

1

m − 1
+⋯ +

1

2

⌋
=

⌊
m∑

i=2

1

i

⌋
>

m∑

i=1

1

i
− 2.

5 To simplify the presentation, we assume that ties are broken in some fashion and thus apportionment 
methods always return a single solution.
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Largest remainder method The earliest proposal for an apportionment method 
is the largest remainder method (or Hamilton method). The largest remainder 
method assigns in a first step ⌊kpi⌋ seats to each party. In a second step, all remain-
ing seats are distributed so that each party receives at most one seat. Priority is 
given to parties with the largest remainder, that is, those with largest kpi − ⌊kpi⌋.

Divisor methods Divisor methods are the most commonly used apportionment 
methods. Their definition is based on divisor criteria: A divisor criterion is a 
monotonically increasing function d ∶ ℕ → ℝ that satisfies i ≤ d(i) ≤ i + 1 for all 
i ≥ 0 . A divisor criterion d induces a d-rounding, defined as follows:

If x = d(a) for some a, then [x]d contains two integers, otherwise only one. For 
example, the divisor criterion d(a) = a + 1 corresponds to rounding down, with the 
slight difference that rounding down an integer x with x = a yields here both a and 
a − 1.

Given a divisor criterion d we define a corresponding divisor method: the set 
of d-admissible solutions is defined as

As we require that apportionment methods return only one solution, a tie-breaking 
mechanism may be necessary to choose one solution in this set.

We can now define the most common divisor methods: the D’Hondt method (or 
Jefferson method) is defined by d(a) = a + 1 , that is, rounding down. The Adams 
method is defined by d(a) = a (rounding up). The Sainte-Laguë method (or Web-
ster method) is defined by d(a) = a + 0.5 , which corresponds to rounding to the 
nearest integer. Finally, the Huntington–Hill method uses the d(a) =

√
a(a + 1) 

criterion.
Quota method The quota method (Balinski and Young 1975) is the most recent 

addition to this list of apportionment methods. It is defined iteratively, starting 
with the empty solution (0,… , 0) . In round � ≥ 1 , if (a1,… , am) is the current 
solution ( 

∑
ai = � − 1 ), we consider all parties that would not violate upper quota 

(cf. Definition  4) if they received an additional seat, that is, all parties i with 
ai + 1 ≤ ⌈pi�⌉ or, equivalently, ai < pi� . Then we choose among these parties the 
one party i with maximum pi∕(ai + 1) (subject to a tie-breaking, if necessary); 
party i receives another seat.

Frege’s apportionment method Both Frege’s original method and the modified 
Frege method can easily be transformed into apportionment methods. However, 
since Frege’s original method violates even a very basic proportionality property 
(weak proportionality, see below), it is not a sensible method in this context and 
we omit it here from further study. To apply the modified Frege method, we view 
the vote distribution (p1,… , pm) as a fixed electorate and apply the method for k 
rounds, thus obtaining an apportionment solution (r1(k),… , rm(k)) . Let us refer to 
this method as Frege’s apportionment method.

[x]d = {a ∈ ℕ ∶ d(a − 1) ≤ x ≤ d(a)}.

{
(a1,… , am) ∈ ℕ

m ∶

m∑

i=1

ai = k and ai ∈
[pi
x

]

d
for some positive x ∈ ℝ

}
.



2627

1 3

A Mathematical Analysis of an Election System Proposed by Gottlob…

Given this interpretation, it is natural to ask how Frege’s apportionment method 
compares to other apportionment methods, and, in particular, whether it is equiva-
lent to an already established method in the apportionment setting. Example 7 gives 
a negative answer to this question.

Example 7 A concrete example where all apportionment methods listed in Table 5 
yield different solutions is given by � = (

79

98
,

7

98
,

6

98
,

3

98
,

2

98
,

1

98
) and a house size 

k = 20 . We omit the calculations and only list the results:

In the following section, we address the issue in more depth from an axiomatic 
perspective.

5.2  Apportionment Axioms

For an overview of apportionment methods and their respective properties, we refer 
the reader to Table  5; the corresponding analysis can be found, e.g., in the book 
by Balinski and Young (1982). In the following, we discuss axiomatic properties of 
Frege’s apportionment method.

As a first step, we want to discuss a basic requirement of apportionment methods, 
called weak proportionality.

Definition 3 An apportionment method satisfies weak proportionality if, given 
an apportionment problem ((p1,… , pm), k) with k ⋅ pi being integer for every 
i ∈ {1,… ,m} , the method returns (kp1,… , kpm).

Largest Remainder: (16, 2, 1, 1, 0, 0)

D’Hondt (Jefferson): (18, 1, 1, 0, 0, 0)

Adams: (14, 2, 1, 1, 1, 1)

Sainte-Laguë (Webster): (17, 1, 1, 1, 0, 0)

Huntington–Hill: (15, 1, 1, 1, 1, 1)

Quota method: (17, 2, 1, 0, 0, 0)

Frege’s apportionment method: (16, 1, 1, 1, 1, 0)

Table 5  An overview of apportionment methods and their respective properties

House monot. Popul. monot. Lower quota Upper quota Quota 
for 
m = 3

Largest Remainder − − + + +
D’Hondt (Jefferson) + + + − −

Adams + + − + −

Sainte-Laguë (Webster) + + − − +
Huntington–Hill + + − − −

Quota method + − + + +
Frege’s apportionment method + − − + +
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It is easy to see that our concept of variable integral quota is closely related to 
weak proportionality. Thus, Frege’s original method, seen as an apportionment 
method, violates this property. This is the reason why we focus on Frege’s appor-
tionment method (which is based on the modified Frege method). Let us now con-
sider two stronger proportionality requirements:

Definition 4 An apportionment method satisfies upper quota if, for any apportion-
ment problem ((p1,… , pm), k) , the method returns a solution (a1,… , am) satisfying 
ai ≤ ⌈kpi⌉ for all i ∈ {1,… ,m} . An apportionment method satisfies lower quota 
if, for any apportionment problem ((p1,… , pm), k) , the method returns a solution 
(a1,… , am) satisfying ai ≥ ⌊kpi⌋ for all i ∈ {1,… ,m} . An apportionment method 
satisfies quota if it satisfies both lower and upper quota.

Note that upper quota implies weak proportionality since any deviation from 
the proportional solution (kp1,… , kpm) would violate upper quota for some voter. 
The same holds for lower quota.

Frege’s apportionment method satisfies upper quota (and thus weak propor-
tionality) but fails lower quota. This is an immediate consequence of Theorem 3 
and Example 5, respectively. Note that Theorem 4 also holds in the apportionment 
setting and thus Frege’s apportionment method satisfies quota for m ∈ {2, 3} , and 
for m ≥ 4 violates lower quota by at most ⌈m−3

2
⌉.

Let us now turn to two monotonicity axioms, viz., house and population 
monotonicity.

Definition 5 An apportionment method satisfies house monotonicity if the following 
holds: for any vote distribution � and positive integer k, if this method returns the 
solution (a1,… , am) for the problem (�, k) and the solution (b1,… , bm) for the prob-
lem (�, k + 1) , then there exists 1 ≤ i ≤ m such that (i) ai + 1 = bi and (ii) aj = bj for 
all j ≠ i.

In other words, if the house size increases by one, then the apportionment solu-
tion can change only by an increase of 1 for one party. The largest remainder method 
is notable in that it actually violates this basic criterium. As Frege’s apportionment 
method is calculated iteratively, it is easy to see that it satisfies house monotonicity.

Definition 6 An apportionment method satisfies population monotonicity if the 
following holds: for vote distributions � , �′ and a positive integer k, if this method 
returns the solution (a1,… , am) for the problem (�, k) and the solution (b1,… , bm) 
for the problem (��, k) , then for any i, j ∈ {1,… ,m}:

In other words, if party i increases its vote count relative to party j, then either 
i does not lose seats or j does not gain seats. We speak of a population paradox 

p′
i

p′
j

≥
pi

pj
implies that either a′

i
≥ ai or a

′
j
≤ aj.
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if this property is violated: a gain for party i relative to party j grants extra seats 
for  j while  i loses seats. The following example shows that Frege’s apportion-
ment method suffers from the population paradox and thus violates population 
monotonicity.

Example 8 Consider the following two scenarios with three parties (a, b, and c) and 
three seats ( k = 3 ): In the first, we have � = (

8

20
,

3

20
,

9

20
) , for which Frege’s appor-

tionment method yields: 

Time a b c Representative

1 8

20

3

20

�

��

c

2 ��

��

6

20
−

2

20

a

3 4

20

�

��

7

20

b

In the second scenario, we have �� = (
5

20
,

4

20
,
11

20
) . 

time a b c Representative

1 5

20

4

20

��

��

c

2 ��

��

8

20

2

20

a

3 −
5

20

12

20

��

��

c

Now consider parties b and c. We have

that is, the relative strength of b over c increases, but b loses a seat while c gains 
one.

Theorem 5 summarizes our findings in this section.

Theorem  5 Frege’s apportionment method satisfies house monotonicity, upper 
quota, and quota for m ∈ {2, 3} , but fails lower quota for m ≥ 4 and population 
monotonicity.

This theorem shows in particular that Frege’s apportionment method is not a divi-
sor method, as divisor methods satisfy—and can even be uniquely characterized 
by—population monotonicity (Balinski and Young 1982). Furthermore, the theorem 
shows an axiomatic difference with the largest remainder method (which fails house 
monotonicity), as well as to the quota method (which satisfies lower quota).

pb

pc
=

1

3
<

4

11
=

p�
b

p�
c

,
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5.3  Bias

As a final aspect of apportionment methods, we consider “bias”: does a method 
favor small over large parties—or vice versa? Bias is generally more of a concern 
when using apportionment methods for assigning representatives to states and less 
so for parties. In parliamentary elections, a bias for larger parties can support the 
formation of governments and disincentivize schisms of parties  (Rae 1967; Balin-
ski and Young 1982). In contrast, when assigning representatives to states, a fair 
treatment of large and small states is often an essential property (e.g., in the U.S. 
House of Representatives). However, an example of strong bias (in the aforemen-
tioned sense) is the European parliament, where small countries have disproportion-
ally many members; this is referred to as degressive proportionality (Koriyama et al. 
2013).

To formalize “bias” as an axiom is difficult, as it is best described as a tendency. 
Balinski and Young (1982) formalize what it means for a divisor method to be unbi-
ased, but this definition does not extend to arbitrary apportionment methods. Puke-
lsheim (2017) provides a more general, probabilistic analysis assuming that vote dis-
tributions are distributed uniformly at random and that the house size converges to 
infinity. A third approach is to compute bias in given data sets. This has been done 
by Balinski and Young (1982) and Birkhoff (1976) based on Congressional appor-
tionment in the USA. It is noteworthy that all these analyses yield similar results.

Our approach is to determine bias via numerical simulations.6 We employ the 
following simple test: we assume five parties, each having a vote count between 1 
and 1000, drawn uniformly at random. Furthermore, we assume a house size of 100 
seats. For each apportionment method, we compute the number of votes per repre-
sentative of the smallest and the largest party. If pl and ps are the vote counts for the 
largest and smallest party, respectively, and al and as are the number of seats of the 
largest and smallest party, we say that the given apportionment method favors the 
smaller party if

that is, if the smaller party requires fewer votes per seat. We computed the frac-
tion of apportionment problems where the smaller party had this advantage based on 
1.000.000 instances. A value of 50% would correspond to being perfectly unbiased, 
as small and large parties are favored equally often.

The results are shown in Table 6 (including 95% confidence intervals), and can 
be summarized as follows. Adams favors small parties; D’Hondt and the quota 
method favor large parties. Sainte-Laguë and the Largest remainder method are 
well-balanced, as is Huntington–Hill, but to a lesser degree. All these findings are 
in alignment with previous work (Balinski and Young 1982; Birkhoff 1976; Puke-
lsheim 2017). Frege’s apportionment method achieves a ratio of 54.5% , in between 

ps

as
<

pl

al
,

6 The Python source code to run these simulations is available (Harrenstein et al. 2020).
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Sainte-Laguë and Huntington–Hill, and thus can be seen as a rather unbiased appor-
tionment method.

To sum up our findings, Frege’s apportionment satisfies strong proportional-
ity guarantees, which are not achievable in the class of divisor methods. The quota 
method satisfies slightly stronger proportionality guarantees (both upper and lower 
quota), but is biased towards large parties. Frege’s method, in contrast, shows no 
particular bias towards large or small parties.

6  Conclusions and Discussion

In our mathematical study of Frege’s voting method we focused on the extent to 
which it guarantees various forms of proportionality. Accordingly, we ignored a 
number of its other features that are still worth discussing.

6.1  Practical Applicability in Political Elections

It should be noted that the proportionality guarantees of Frege’s method only apply 
to single constituencies (when observed over time) but not to the political assemblies 
formed by the chosen representatives. It is thus possible that the political assem-
bly does not at all reflect the entire electorate’s current political opinion. This issue 
becomes even more dramatic if one considers the actual political decision power 
within such an assembly (cf. the work on power indices, e.g., Rae 1969; Dubey and 
Shapley 1979; Felsenthal and Machover 1998; Napel 2019). In particular, it may be 
beneficial for a group of candidates (e.g., a party) to receive few additional votes 
at time t, so that all of them are elected at time t + 1 and thus potentially achieve a 
majority in the assembly. This paradoxical behaviour leads us to the conclusion that 
Frege’s method and the modified Frege method are only sensible for single decisions 
and not so much in the broader sense for electing assemblies.

In addition, Frege’s idea is only attractive if the main concern is fairness towards 
candidates (in the sense that no votes are lost) and only in the absence of harmful 

Table 6  Bias of apportionment methods computed based on numerical simulations, along with the 95% 
confidence intervals

Bias, as shown here, is the percentage of instances where the smallest party is favored over the largest 
party; a value of 50% corresponds to “no bias” for the used set of apportionment problems

Bias (%) 95% confidence interval

Largest Remainder 48.5 (48.41%, 48.61%)
D’Hondt (Jefferson) 11.9 (11.81%, 11.94%)
Adams 87.6 (87.51%, 87.64%)
Sainte-Laguë (Webster) 48.5 (48.38%, 48.58%)
Huntington–Hill 55.7 (55.59%, 55.78%)
Quota method 12.7 (12.60%, 12.73%)
Frege’s apportionment method 54.5 (54.38%, 54.58%)
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extremist opinions (as also extremist candidates would win eventually). This is likely 
to be the case in low-stake, high-frequency settings, where the long-term behaviour 
of a mechanism is much more important than individual decisions. In such settings, 
moreover, the strong assumption, occasionally made in this paper, that the electorate 
is fixed and does not change their preferences, would arguably also be more reasona-
ble. Frege’s apportionment method, as introduced in Sect. 5, is not affected by these 
considerations and can be recommended in situations where its axiomatic properties 
appear desirable.

6.2  Gerrymandering

Frege claimed in his proposal (Erläuterungen, 302, [9]) that his method provides a 
safeguard against gerrymandering (“Wahlkreisgeometrie”), that is, the strategic dis-
tricting by a political party for electoral gain, an iniquity that infamously pervades 
representative systems based on first-past-the-post methods for electing representa-
tives (see, e.g., Ricca et  al. 2013). The validity of Frege’s claim, however, much 
depends on the exact assumptions that are being made and accordingly warrants a 
careful analysis.

The effectiveness of gerrymandering obviously rests upon the possibility of affect-
ing the proportional support of a party in constituencies. However, if the constitu-
encies are of equal size and the combined electorate of all constituencies is fixed, 
redistricting will not affect the sum of these proportions, no matter how clever the 
gerrymander. Thus, if redistricting can only be performed once, Theorem 1 shows 
that, as time goes to infinity, the number of times each candidate for a party is elected 
in her respective constituency will be in accordance with this proportion. It would 
thus follow that Frege’s method does indeed contravene the designs of gerrymander-
ers. The argument can be generalized to electorates that are not necessarily fixed but 
still comply with the convergence conditions as in the second part of Theorem 1.

A number of caveats, however, are in place regarding the sweep of this argu-
ment. First, Frege’s voting method is based on the plurality rule, and as such it is 
still susceptible to gerrymandering for gain in the short run if an individual elec-
tion in a constituency is seen as a singular event (ignoring past and future elections) 
or as particularly important. Second, even when considering the temporal nature of 
Frege’s method, incidental gerrymandering may be successful in achieving short-
term benefits without harming the candidates’ long-term chances. This point also 
relates to the question of power distribution within an assembly, as discussed above. 
Third, Frege argues that constituencies should be kept of a similar size and remain 
largely unchanged over time (Vorbemerkung, 197,  [1]). This demand by itself 
excludes some forms of gerrymandering but cannot be seen as a (mathematical) 
guarantee of his voting method. Therefore, Frege’s method certainly prevents or hin-
ders certain forms of gerrymandering, but to which extent and under which assump-
tions is a question we leave for future research. Furthermore, it would be interest-
ing to investigate whether the modified Frege method guarantees a better protection 
against gerrymandering.



2633

1 3

A Mathematical Analysis of an Election System Proposed by Gottlob…

6.3  Choice Candidates and Delegation

Among all candidates in a constituency, Frege proposes to distinguish so-called 
choice candidates (“Erlesene”), the twenty-five candidates in a constituency with 
maximal electoral backing, among which the representative will be chosen. So as 
to ensure that no votes are lost, Frege also provisioned for a delegation mechanism, 
in which non-choice candidates or deceased choice candidates can transfer the 
votes cast on them to one of the (living) choice candidates. The exact social choice 
theoretic ramifications of this delegation mechanism are left as a topic for future 
research. Furthermore, this mechanism could be compared with modern proposals 
for vote delegation (Alger 2006; Green-Armytage 2015; Blum and Zuber 2016).

6.4  Negative Aggregate Scores and Strategic Voting

We have seen how an increasing cost of winning undermines the proportionality 
guarantees of Frege’s method until this cost stabilizes (after a potentially very 
long time). A further disadvantage of the original method is that long-serving 
candidates tend to have high scores, which makes the entry of new candidates 
difficult, even if they have a strong public support. In contrast, the modified Frege 
method has a constant cost of winning and, as we have seen, stronger propor-
tionality guarantees. However, here the aggregate scores of the candidates can 
be negative, which also leads to negative consequences. The possibility of nega-
tive scores renders the modified Frege method vulnerable to the following type 
of manipulation. Once a candidate has a negative score, it is advantageous for 
this candidate to retract his or her candidacy in favor of a like-minded person (in 
social choice terminology a so-called clone), who then starts with a higher aggre-
gate score of 0. A complete study of the manipulability of Frege’s voting method 
and the modified Frege method is subject to future research.

6.5  Transition from Plurality to Proportionality

The plurality rule performs very badly when it comes to proportionality in the 
long run. If the electorate is assumed to be fixed, it will always elect the same 
candidate! Frege’s method has much better proportionality properties, and the 
modified Frege method even better ones still. In an important and interesting 
sense, Frege’s method can be seen as a gradual transition between a system based 
on plurality towards a system based on the modified Frege method, as the cost of 
winning is increased until it stabilizes at the size of the electorate and hencefor-
ward behaves like the modified Frege method.

6.6  Outlook and Research Directions

The temporal or dynamic aspect of the Frege methods distinguishes them from 
most other voting methods that have been considered in the literature. As such 
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they can also take into account changing electorates and changing opinions 
among the electorate. Yet, the dynamic Frege methods still rely on the plurality 
rule in that plurality ballots are used and, for any election at any one single time, 
they simply select the candidate with the highest aggregate score. Seen this way, 
the Frege methods could easily be varied upon by considering other ‘static’ social 
choice rules instead of the plurality rule, thus defining a new class of dynamic 
voting rules that can be studied from a social choice perspective in their own 
right. An obvious variation, for instance, would be to assume that the voters’ bal-
lots specify complete preference orders over the candidates. This would allow 
the computation of Borda scores. The candidates then aggregate their respective 
Borda scores over time in a similar way as they aggregate plurality scores for the 
Frege methods. At each election the candidate with the highest Borda score could 
then be chosen as representative and subsequently incur a certain cost of win-
ning yet to be defined. In order to investigate this class of dynamic voting rules 
in a systematic and principled fashion, one may want to define axioms that are 
specific to the temporal setting, like variable quota axioms. In particular it would 
be interesting to see if there is a dynamic voting rule that satisfies both variable 
upper and lower quota.
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Proofs of Sect. 3

Lemma 1 Assume that the number of voters is fixed, that is, nt = n for all t ≥ 1 . 
Then the function a(t) =

∑
k∈C �

t
k
 is monotonically increasing. Moreover, there 

exists a positive number t0 such that a(t) = n ⋅ m for all t ≥ t0.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof Let us establish a recursive definition for a(t), starting with

Let j∗ = repr(t) . Then the following equalities hold:

Now, let us start by proving that there exists a t0 ∈ ℕ such that a(t) ≥ n ⋅ m for all 
t ≥ t0 . For this purpose, let us consider the simpler recursion b(1) = n and 
b(t + 1) = b(t) + n −

1

m
⋅ b(t) . This recursion has the solution 

b(t) = nm

(
1 −

(
m−1

m

)t
)

 . Note that b(t) converges to nm for t → ∞ . Furthermore, it 

holds that b(t) ≤ a(t) (this can easily be shown by induction). Since b(t) converges to 
nm and a(t) is integer-valued, there has to be a point in time t1 such that a(t) ≥ nm 
for all t ≥ t1.

Let t0 ≥ 1 be the smallest possible choice for t1 , that is, t0 is chosen such that 
a(t0) ≥ nm and a(t0 − 1) < nm . We want to show that a(t0) = nm . Let i ∈ ℕ be such 
that a(t0 − 1) = nm − i . Then, using the recursion for a(t), we obtain the following:

since −i +
⌈

i

m

⌉
≤ 0 . It follows that a(t0) = nm.

Now, let us prove that a(t) = nm for all t ≥ t0 . Using the recursion for a(t), we 
have a(t0 + 1) = nm + n −

⌊
nm

m

⌋
= nm . By induction a(t) = nm for all t ≥ t0.

Let us finally show that the function a(t) is monotonically increasing. From what 
was proven so far, we now that 0 ≤ a(t) ≤ nm and thus 0 ≤

⌊
a(t)

m

⌋
≤ n for all t ≥ 1 . 

Thus, we have for all t ≥ 1:

a(1) =
∑

k∈C

�1
k
=
∑

k∈C

�1
k
= n.

a(t + 1) =
∑

k∈C

�t+1
k

=�t
j∗
+ �t+1

j∗
−

⌊
1

m

∑

k∈C

�t
k

⌋
+
∑

k≠j∗

(�t
k
+ �t+1

k
)

=
∑

k

�t
k
+
∑

k

�t+1
k

−

⌊
1

m

∑

k∈C

�t
k

⌋

= a(t) + n −
⌊
1

m
a(t)

⌋
for t ≥ 1.

a(t0) = a(t0 − 1) + n −

⌊
a(t0 − 1)

m

⌋

= nm − i + n −
⌊
nm − i

m

⌋

= nm − i + n − n −
⌊
−

i

m

⌋

= nm − i +
⌈
i

m

⌉

≤ nm,
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  ◻

Theorem 1 If we assume a fixed electorate, that is, nt = n and �t
j
= �j for all 

t ≥ 1 , the following holds for Frege’s voting method:

If nt = n and for all t ≥ 1 and for all j ∈ C there is some �∗
j
∈ [0, 1] such that

then the following holds for all candidates j ∈ C:

Let us first prove a technical lemma, which is required in the proof of Theorem 1:
Lemma A.1 Assume that the number of voters n is fixed. For every candidate 

j ∈ C there exists a positive integer cj such that for all t ≥ t0

where t0 ≥ 1 is such that 
∑

k∈C �
t0
k
= nm.

Proof Let t0 ≥ 1 be such that 
∑

k∈C �
t0
k
= nm (the existence of such a t0 was proven in 

Lemma 1), and let cj ≥ 0 be such that

We shall prove Eq. (1) by induction over t ≥ t0.
For the induction start, let us consider time t0:

For the induction step, we distinguish whether repr(t + 1) = j or not. We may 
assume that �t+1

j
=
∑t+1

s=1
�s
j
− cj −

�
�j(t) − �j(t0)

�
⋅ n . In case repr(t + 1) = j , we 

have:

a(t + 1) = a(t) + n −
⌊
1

m
a(t)

⌋
≥ a(t) + n − n = a(t).

lim
t→∞

�j(t)

t
=

�j

n
.

lim
t→∞

∑t

s=1
�s
j

t
= �∗

j
,

lim
t→∞

�j(t)

t
=

�∗
j

n
.

(1)�t+1
j

=

t+1∑

s=1

�s
j
− cj − n ⋅

(
�j(t) − �j(t0)

)
,

�
t0+1

j
=

t0+1∑

s=1

�s
j
− cj.

�
t0+1

j
=

t0+1∑

s=1

�s
j
− cj =

t0+1∑

s=1

�s
j
− cj − n ⋅

(
�j(t0) − �j(t0)

)
.
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In case repr(t + 1) ≠ j , we have:

which concludes the induction step.   ◻

Proof of Theorem 1 Assuming a fixed electorate, Eq. (1) becomes:

or, equivalently,

To see that the expression 1
t
(… ) converges to 0, note the following: First, 0 ≤

�j

n
≤ 1 

and 0 ≤ �j(t0) ≤ t0 . Moreover, 0 ≤ cj ≤ �j(t0) ⋅ n ≤ t0 ⋅ n and 0 ≤ �t+1
j

≤ n ⋅ m . Thus, 
the term in brackets is bounded from below and above. We obtain:

Similarly, if the electorate is not fixed but the mean plurality scores converge, that is, 
limt→∞

1∕t ⋅
∑t

s=1
�s
j
= �∗

j
 for all j ∈ C , we have:

�t+2
j

= �t+1
j

+ �t+2
j

−

⌊
1

m

∑

k∈C

�t+1
k

⌋

=

t+1∑

s=1

�s
j
− cj −

(
�j(t) − �j(t0)

)
⋅ n + �t+2

j
− n

=

t+2∑

s=1

�s
j
− cj −

(
�j(t) + 1 − �j(t0)

)
⋅ n

=

t+2∑

s=1

�s
j
− cj −

(
�j(t + 1) − �j(t0)

)
⋅ n.

�t+2
j

= �t+1
j

+ �t+2
j

=

t+1∑

s=1

�s
j
− cj −

(
�j(t) − �j(t0)

)
⋅ n + �t+2

j

=

t+2∑

s=1

�s
j
− cj −

(
�j(t) − �j(t0)

)
⋅ n

=

t+2∑

s=1

�s
j
− cj −

(
�j(t + 1) − �j(t0)

)
⋅ n,

(2)�t+1
j

= (t + 1) ⋅ �j − cj −
(
�j(t) − �j(t0)

)
⋅ n

�j(t)

t
=

�j

n
+

1

t

(
�j

n
+ �j(t0) −

cj

n
−

�t+1
j

n

)

lim
t→∞

�j(t)

t
=

�j

n
.
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and thus

  ◻

The following proposition shows that, for a fixed electorate, proportionality is not 
only guaranteed in the limit but eventually also within (finite) intervals.

Proposition  1 If we assume a fixed electorate with n voters, there exists a time 
t∗ ≥ 1 and a period length P ∈ ℕ such that, for all t ≥ t∗ and all j ∈ C,

Proof From Lemma 1 we know that 0 ≤ �t
k
≤ nm for all k ∈ C and t ≥ 1 . Thus the 

tuple (�t
1
, �t

2
,… , �t

m
) can only take finitely many values. Therefore there must be a 

time t∗ ≥ 1 and an integer P such that

Given these two values t∗ and P, it clearly also holds that

From Eq. (1) in Lemma A.1 it follows that the following holds for t ≥ t∗ − 1:

Thus

which concludes the proof.   ◻

�j(t)

t
=

∑t

s=1
�s
j

t ⋅ n
+

1

t

�
�t+1
j

n
+ �j(t0) −

cj

n
−

�t+1
j

n

�

lim
t→∞

�j(t)

t
= lim

t→∞

∑t

s=1
�s
j

t ⋅ n
=

�∗
j

n
.

�j(t + P) − �j(t)

P
=

�j

n
.

(�t∗

1
, �t∗

2
,… , �t∗

m
) = (�t∗+P

1
, �t∗+P

2
,… , �t∗+P

m
).

(�t∗+k
1

, �t∗+k
2

,… , �t∗+k
m

) = (�t∗+P+k
1

, �t∗+P+k
2

,… , �t∗+P+k
m

) for k ∈ ℕ and thus

(�t
1
, �t

2
,… , �t

m
) = (�t+P

1
, �t+P

2
,… , �t+P

m
) for all t ≥ t∗.

�j(t + P) − �j(t0) =
1

n
⋅

(
�j ⋅ (t + P + 1) − cj − �t+P+1

j

)

and �j(t) − �j(t0) =
1

n
⋅

(
�j ⋅ (t + 1) − cj − �t+1

j

)
.

�j(t + P) − �j(t) =
1

n
⋅

(
�j ⋅ P − (�t+P+1

j
− �t+1

j
)
)
=

�j ⋅ P

n
,
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Proofs of Sect. 4

Theorem 2 If we assume that pt
j
= pj for all t ≥ 1 , the following holds for the modi-

fied Frege method:

If the normalized plurality scores pt
j
 are not fixed but for all j ∈ C there is some 

p∗
j
∈ [0, 1] such that

then the following holds for all candidates j ∈ C:

Let us first prove a technical lemma, which will yield the desired proportionality 
results.

Lemma B.1 For the modified Frege method, we have 
∑

j∈C s
t
j
= 1 and −1 < st

j
− pt

j
 

for all j ∈ C and t ≥ 1.

Proof The proof of the first statement is by induction on  t. For the basis t = 1 , we 
immediately have

For the induction step, we assume 
∑

j∈C s
t
j
= 1 . Let j∗ = repr(t) . Then,

The proof of the second statement is by induction on t as well. For the basis t = 1 , 
we immediately have

For the induction step, we assume −1 < st
j
− pt

j
 . We distinguish two cases. First, if 

j ≠ repr(t) , we have:

lim
t→∞

rj(t)

t
= pj.

lim
t→∞

∑t

s=1
ps
j

t
= p∗

j
,

lim
t→∞

rj(t)

t
= lim

t→∞

∑t

s=1
ps
j

t
= p∗

j
.

∑

j∈C

s1
j
=
∑

j∈C

p1
j
=
∑

j∈C

�1
j

n1
=1.

∑

j∈C

st+1
j

=
∑

k≠j∗

(
st
k
+ pt+1

k

)
+ st

j∗
+ pt+1

j∗
− 1

=
∑

j∈C

st
j
+
∑

j∈C

pt+1
j

− 1 = 1 + 1 − 1 = 1.

s1
j
− p1

j
= p1

j
− p1

j
= 0 > −1.

st+1
j

− pt+1
j

= st
j
+ pt+1

j
− pt+1

j
= st

j
≥ st

j
− pt

j
> −1.
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Second, if j = repr(t) , it has to hold that st
j
≥

∑
j∈C st

j

m
=

1

m
 (in order for j to win). Thus 

we have:

  ◻

Proof of Theorem 2 Note that the following holds for the modified Frege method:

This corresponds to a normalized version of Eq. (1) in the proof of Lemma A.1 with 
rj(t0) = 0 and cj = 0.

It follows that

Since we know from Lemma B.1 that −1 ≤ st+1
j

≤ 1 , both asymptotic results follow 
immediately.   ◻

We proceed with another technical lemma, which is useful for proving Theo-
rems 3 and 4.

Lemma B.2 For every t ≥ 1 and j ∈ C:

The second inequality is strict for m ≥ 3.

Proof The lower bound of −1 follows from a combination of Lemma B.1 and Theo-
rem 2: By virtue of Eq. (3) in the proof of Theorem 2, the lower bound is equivalent 
to −1 < st+1

j
− pt+1

j
 . Lemma B.1 ensures that this inequality holds for all j ∈ C and 

all t ≥ 1.
To prove the upper bound of m−1

2
 , by virtue of Eq.  (3), it suffices to show by 

induction on t that st+1
j

− pt+1
j

≤
m−1

2
 for all candidates j and t ≥ 1 . For the basis, let 

t = 1 . First assume that j = repr(1) . Then, observing that 0 < p1
j
≤ 1,

where the last inequality is strict as we always assume m ≥ 2 . Now assume that 
j ≠ repr(1) . Then, p1

j
≤

1

2
 , as otherwise j would have been chosen as representative. 

Accordingly,

st+1
j

− pt+1
j

= st
j
+ pt+1

j
− 1 − pt+1

j
= st

j
− 1 ≥

1

m
− 1 > −1.

(3)st+1
j

=

t+1∑

s=1

ps
j
− rj(t) for all t ≥ 1 and j ∈ C.

rj(t)

t
=

∑t+1

s=1
ps
j

t
−

st+1
j

t
.

−1<

t∑

s=1

ps
j
− rj(t)≤

m − 1

2
.

s2
j
− p2

j
=s1

j
+ p2

j
− 1 − p2

j
=p1

j
− 1≤0<

m−1

2
,
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where the last inequality is strict if m ≥ 3.
We introduce the following notation: we write <∗ to denote a weak inequality ( ≤ ) 

if m = 2 and a strict inequality (<) for m > 2 . For the induction step, we may assume 
st+1
j

− pt+1
j

<∗ m−1

2
 to prove that st+2

j
− pt+2

j
<∗ m−1

2
 . First assume that j = repr(t + 1) . 

Now the following inequalities hold.

Now, let j∗ = repr(t + 1) and assume that j ≠ j∗ . Accordingly, st+1
j

≤ st+1
j∗

 . By virtue 
of Lemma B.1, we have that

As we saw above that −1 < st+1
j

− pt+1
j

 , we also have the following:

As st+1
j

≤ st+1
j∗

 , it follows that st+1
j

<∗ m−1

2
 . Finally, since rj(t + 1) = rj(t),

which concludes the induction.   ◻

Theorem 3 The modified Frege method satisfies variable upper quota.

Proof By Lemma B.2, it holds that

and consequently

This is equivalent to

s2
j
− p2

j
=s1

j
+ p2

j
− p2

j
=p1

j
≤

1

2
≤

m−1

2
,

st+2
j

− pt+2
j

=st+1
j

+ pt+2
j

− 1 − pt+2
j

=st+1
j

− 1≤st+1
j

− pt+1
j

<∗
i.h.

m−1

2
.

st+1
j

+ st+1
j∗

+
∑

k∈C⧵{j,j∗}

st+1
k

= 1.

st+1
j

+ st+1
j∗

=1 −
∑

k∈C⧵{j,j∗} s
t+1
k

≤1 −
∑

k∈C⧵{j,j∗}(s
t+1
k

− pt+1
k

)

<∗1 + m − 2

=m − 1.

st+2
j

− pt+2
j

=

t+2∑

s=1

ps
j
− rj(t + 1) − pt+2

j
=

t+1∑

s=1

ps
j
− rj(t) = st+1

j
<∗ m−1

2
,

t∑

s=1

ps
j
− rj(t) > −1,

rj(t) <

t∑

s=1

ps
j
+ 1.
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which is exactly the condition for variable upper quota.   ◻

Theorem  4 For m ∈ {2, 3} , the modified Frege method satisfies variable lower 
quota. For m ≥ 4 , we have rj(t) ≥

�∑t

s=1
ps
j

�
−
�
m−3

2

�
 for every candidate j and time 

t ≥ 1.

Proof By Lemma B.2, for m ≥ 3 it holds that,

and consequently

This implies

For m = 3 , the last inequality becomes

and thus lower quota is fulfilled.
For m = 2 , variable lower quota follows from variable upper quota. Let C = {a, b} 

and 
∑t

s=1
ps
j
= xj for j ∈ {a, b} . Thus, xa + xb = t . Towards a contradiction, assume 

without loss of generality that ra(t) < ⌊xa⌋ , that is, candidate a’s lower quota is vio-
lated. Then:

which is in contradiction to variable upper quota for candidate b.   ◻
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