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Abstract Model checking based on the causal partial order semantics of Petri nets is an
approach widely applied to cope with the state space explosion problem. One of the ways
to exploit such a semantics is to consider (finite prefixes of) net unfoldings—themselves
a class of acyclic Petri nets—which contain enough information, albeit implicit, to reason
about the reachable markings of the original Petri nets. In [19], a verification technique
for net unfoldings was proposed, in which deadlock detection was reduced to a mixed
integer linear programming problem. In this paper, we present a further development of
this approach. The essence of the proposed modifications is to transfer the information
about causality and conflicts between the events involved in an unfolding, into a relationship
between the corresponding integer variables in the system of linear constraints. Moreover, we
present some problem-specific optimisation rules, reducing the search space. To solve other
verification problems, such as mutual exclusion or marking reachability and coverability,
we adopt Contejean and Devie’s algorithm for solving systems of linear constraints over
the natural numbers domain and refine it, by taking advantage of the specific properties of
systems of linear constraints to be solved.

Another contribution of this paper is a method of re-formulating some problems specified
in terms of Petri nets as problems defined for their unfoldings. Using this method, we obtain
a memory efficient translation of a deadlock detection problem for a safe Petri net into an
LP problem. We also propose an on-the-fly deadlock detection method.

Experimental results demonstrate that the resulting algorithms can achieve significant
speedups.
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1. Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of local states have
descriptions which are both short and manageable, and the complexity of their behaviour
comes from highly complicated interactions with the external environment rather than from
complicated data structures and manipulations thereon. One way of coping with this com-
plexity problem is to use formal methods and, especially, computer aided verification tools
implementing model checking [3]—a technique in which the verification of a system is
carried out using a finite representation of its state space. The main drawback of model
checking is that it suffers from the state space explosion problem; that is, even a relatively
small system specification can (and often does) yield a very large state space.

To alleviate this problem, a number of methods have been proposed. Among them, a
prominent technique is McMillan’s (finite prefixes of) Petri net unfoldings [8, 9, 16]. It
relies on the partial order view of concurrent computation, and represents system states
implicitly, using an acyclic net, called a prefix. Often such prefixes are exponentially smaller
than the corresponding reachability graphs, especially if the system at hand exhibits a lot
of concurrency. The net unfolding technique presented in [16, 19] reduces the memory
consumption, but the deadlock checking algorithms proposed there were relatively slow,
even for medium-size unfoldings.

In [19], the problem of deadlock checking a Petri net was reduced to a mixed integer
linear programming (MIP) problem. In this paper, we present a further development of
this approach. The essence of the proposed modifications is to transfer the information
about causality and conflicts between events involved in an unfolding into a relationship
between the corresponding integer variables in the system of linear constraints. We adopt
the Contejean and Devie’s algorithm (CDA), developed in [1, 4], for efficiently solving
systems of linear constraints over the domain of natural numbers, and refine it by employing
specific properties of the systems of linear constraints to be solved, in model checking
aimed at deadlock detection. The results of initial experiments demonstrate that the resulting
algorithms can achieve significant speedups.

The paper is organised as follows. In Section 2 we provide basic definitions concerning
Petri nets and, in particular, net unfoldings. Section 3 briefly recalls the results presented in
[19], where the deadlock checking problem has been reduced to the feasibility test of a system
of linear constraints. Section 4 is based on the results developed in [1, 4] and recalls the main
aspects of CDA. The algorithm we propose in this paper is developed specifically to exploit
partial order dependencies between events in the unfolding of a Petri net, combining this idea
with CDA. It is described in Sections 6 and 7, where we provide theoretical background and
implementation details, as well as outlining ways of reducing the number of variables and
constraints in the original system presented in [19]. Section 8 describes an approach which
allows one to render a problem specified in terms of a Petri net into a corresponding problem
defined for its unfolding. This method is then used in Section 8.1 to obtain a memory efficient
translation of a deadlock detection problem into an LP problem, and in Section 8.3 to deal
with other verification problems, such as mutual exclusion, coverability and reachability
analysis. Section 9 presents some additional heuristics, which can be incorporated into our
algorithm. There we also consider an on-the-fly version of our algorithm, which allows one
to verify deadlock-freeness without explicitly generating the system of constraints. Section
10 contains the results of experiments obtained for a number of benchmark examples, and
we will finish with some conclusions in Section 11.
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2. Basic definitions

In this section, we first present basic definitions concerning Petri nets, and then recall (see
also [7–9, 11, 16, 20, 22]) notions related to net unfoldings.

2.1. Petri nets

A net is a triple N
df= (S, T, F) such that S and T are disjoint sets of respectively places and

transitions (collectively referred to as nodes), and F ⊆ (S × T ) ∪ (T × S) is a flow relation
(we will sometimes identify the flow relation with the corresponding characteristic function
(S × T) ∪ (T × S) → {0, 1}). A marking of N is a multiset M of places, i.e., M : S → N = {0,
1, 2, . . . }. We adopt the standard rules about representing nets as directed graphs, viz. places
are represented as circles, transitions as rectangles, the flow relation by arcs, and markings
are shown by placing tokens within circles. As usual, we will denote •z

df={y | (y, z) ∈ F}
and z• df={y | (z, y) ∈ F}, for all z ∈ S ∪ T . We will assume that •t �= ∅, for every t ∈ T.

A net system is a pair �
df= (N , M0) comprising a finite net N = (S, T, F) and an

initial marking M0. A transition t ∈ T is enabled at a marking M, denoted M[t〉, if for every
s ∈ •t, M(s) ≥ 1. Such a transition can be executed, leading to a marking M ′ df= M − •t + t•;
we denote this by M[t〉M′. The set of reachable markings of � is the smallest (w.r.t. ⊂ ) set
[M0〉 containing M0 and such that if M ∈ [M0〉 and M[t〉M′ for some t ∈ T then M′ ∈ [M0〉.
A marking M is covered by marking M′ if M(s) ≤ M′(s), for all s ∈ S. For a finite sequence
σ = t1 . . . tk of transitions, we write M0[σ 〉M if there are markings M1, . . ., Mk such that
Mk = M and Mi−1[ti〉Mi, for i = 1, . . ., k.

A marking is deadlocked if it does not enable any transitions; the net system � is deadlock-
free if none of its reachable markings is deadlocked. � is k-bounded if, for every reachable
marking M and every place s ∈ S, M(s) ≤ k, safe if it is 1-bounded, and bounded if it
is k-bounded for some k ∈ N. The set [M0〉 of reachable markings of � is finite iff � is
bounded.

An example of a safe Petri net modelling two dining philosophers is given in Fig. 2(a); it
is not deadlock-free since, e.g., the marking {s3, s4, s10, s13} reached by firing the sequence
of transitions t1t2t6t8 is deadlocked.

2.2. Marking equation

Let � = (N, M0) be a net system, S = {s1, . . ., sm} and T = {t1, . . ., tn} be the sets of
its places and transitions, respectively, and σ be a finite sequence transitions of � such that
M0[σ 〉M. By counting the tokens brought to and taken from a place s by the transitions in σ

it is possible to calculate M(s) as follows:

M(s) = M0(s) +
∑

t ∈ T

F((t, s))#tσ −
∑

t∈T

F((s, t))#tσ ,

where #tσ denotes the number of times a transition t occurs in σ , as illustrated in Fig. 1(a).
This is a linear equation which holds for every place of �. It can be written in the matrix
form as follows. We identify a marking M of � with a vector (µ1, . . ., µm) such that M(si)
= µi, for all i ≤ m. The incidence matrix of � is an m × n matrix N = (Ni j ) such that, for
all i ≤ m and j ≤ n, Ni j

df= F((t j , si )) − F((si , t j )). The Parikh vector of a finite sequence
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Fig. 1 Marking equation (only one place with its environment and initial marking is shown) (a), and two
net systems which have distinct sets of reachable markings but are indistinguishable by the marking equation
(b,c). (Note that these net systems have the same incidence matrix and the same initial marking, and so the
same set of solutions of the marking equation.)

of transitions σ is a vector xσ = (x1, . . ., xn), where xi
df= #ti σ , for every i ≤ n. One can

show that if σ is an execution sequence such that M0[σ 〉M then M = M0 + N · xσ . This
provides a motivation for investigating the feasibility (or solvability) of the following system
of equations:

{
M = M0 + N · x

M ∈ N
m and x ∈ N

n .
(1)

If one fixes the marking M, then the feasibility of the above system is a necessary (but, in
general, not sufficient) condition for M to be reachable from M0.

A vector x ∈ N
n is �-compatible if it is the Parikh vector of some execution sequence

of �. Each �-compatible vector is a solution of the marking equation for some reachable
marking M, but, in general, (1) can have solutions which do not correspond to any execution
sequence of �.

2.3. Unfolding prefixes

A finite and complete unfolding prefix Pref� of a Petri net � is a finite acyclic net which
implicitly represents all the reachable states of � together with transitions enabled at those
states. Intuitively, it can be obtained through unfolding �, by successive firings of transitions,
under the following assumptions: (a) for each new firing a fresh transition (called an event) is
generated; (b) for each newly produced token a fresh place (called a condition) is generated.
The resulting object is called the unfolding of �. We will denote by h the function mapping
the events and conditions of the unfolding to the corresponding places and transitions of �.
The unfolding is acyclic, and the precedence relation 
 on its nodes will be called the causal
order. Moreover, for two distinct nodes, y and y′, of the unfolding: y and y′ are in conflict,
denoted y # y′, if there are distinct events e and e′ such that •e ∩ •e′ �= ∅ and e 
 y and
e′ 
 y′; y is in self-conflict if y # y; and y and y′ are concurrent, denoted y ‖ y′, if neither
y # y′ nor y 
 y′ nor y′ 
 y.

A configuration C is a finite set of events of the unfolding of � such that (i) for every
e ∈ C, f 
 e implies f ∈ C (i.e., C is causally closed), and (ii) for all distinct e, f ∈ C,
¬(e # f ) (i.e., there are no choices between the events of C). Intuitively, a configuration is a
partial-order execution, i.e., an execution where the order of firing of some of its events (viz.
concurrent ones) is not important. For an event e of the unfolding, [e]

df= { f | f 
 e} is called
the local configuration of e. Moreover, for a configuration C of the unfolding, Mark(C) will
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Fig. 2 A Petri net modelling two dining philosophers (a), a finite and complete prefix of its unfolding (b),
and the mixed-integer (2) and fully integer (11) linear programming formulations of the deadlock detection
problem (c, d)
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denote the final marking of C, i.e., the marking of � reached by the execution h(e1)h(e2) . . .

h(ek), where e1, e2, . . ., ek is any total ordering of the events of C consistent with 
.
The unfolding of � is infinite whenever � has an infinite run; however, if � has finitely

many reachable states (or, equivalently, � is bounded) then the unfolding eventually starts to
repeat itself and can be truncated (by identifying a set Ecut of cut-off events beyond which it is
not generated), yielding a finite and complete unfolding prefix Pref� . Unfolding algorithms
declare an event e cut-off if there is a corresponding configuration C in the already built part
of the prefix containing no cut-off events and satisfying Mark(C) = Mark([e]) and C � [e],
where � is some well-founded partial order, called an adequate order, see [8, 11].

It turns out that prefixes built in this way are complete, i.e., (i) every reachable marking M
of � is represented in such a prefix by means of a configuration C containing no cut-off events
and such that Mark(C) = M ; and (ii) all the firings are preserved, i.e., if a configuration C
of Pref� containing no cut-off events is such that Mark(C) enables a transition t of � then C
can be extended by an event e of Pref� such that h(e) = t (e may be a cut-off event). Hence,
the unfolding is truncated without loss of information and can, in principle, be re-constructed
from Pref� . For example, Fig. 2(b) shows a finite and complete prefix of the Petri net in
Fig. 2(a); the mapping h is shown as node labels.

Efficient algorithms exist for building finite and complete prefixes [8, 11], which ensure
that the number of non-cut-off events in the resulting prefix never exceeds the number
of reachable states of �. In fact, complete prefixes are often exponentially smaller than
the corresponding state graphs, especially for highly concurrent Petri nets, because they
represent concurrency directly rather than by multidimensional ‘diamonds’ as it is done in
state graphs. For example, if the original Petri net consists of 100 transitions which can fire
once in parallel, the state graph will be a 100-dimensional hypercube with 2100 vertices,
whereas the complete prefix will coincide with the net itself. The experimental results in [8]
demonstrate that high levels of compression can indeed be achieved in practice.

3. Deadlock detection using linear programming

In the rest of this paper we will assume that Unf �

df= (B, E, G, Min) is the safe net system
built from a finite and complete prefix Pref� of the unfolding of a bounded net system �

= (S, T, F, M0), where Min is the canonical initial marking of Unf� which places a single
token in each of the minimal (w.r.t. 
) conditions and no token elsewhere, E = {b1, b2, . . .,
bp} and E = {e1, e2, . . ., eq} are respectively the conditions and events of Pref� , and C is
the p × q incidence matrix of Unf� .1 The set of cut-off events of Pref� will be denoted by
Ecut ⊆ E .

We now recall the main results from [19]. Since Pref� is complete, each reachable
deadlocked marking of � is represented by a deadlocked marking of Unf� . However, Unf�
can have additional deadlocks introduced by truncating the unfolding of �. Such deadlocks
can be eliminated by prohibiting the cut-off events from occurring. Since for an acyclic
Petri net the feasibility of the marking equation is a sufficient condition for a marking to
be reachable, the problem of deadlock checking can be reduced to the feasibility test of a
system of linear constraints.

1 We will often identify Unf� and Pref� , provided that this does not create an ambiguity.
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Theorem 1 (Melzer and Römer [19]). � is deadlock-free iff the following system has no
solution (in M and x):






M = Min + C · x
∑

b∈•e

M(b) ≤ |•e| − 1 for all e ∈ E

x(e) = 0 for all e ∈ Ecut

M ∈ N
p and x ∈ N

q ,

(2)

where x(ei) = xi, for every i ≤ q.

In order to decrease the number of integer variables, M ≥ 0 can be treated as a rational
vector, since x ∈ N

q and M = Min + C · x ≥ 0 always imply that M ∈ N
p. Moreover, as

an event can occur at most once in a given execution sequence of Unf� from the initial
marking Min, one can require x to be a binary vector, x ∈ {0,1}q. Figure 2(c) shows the MIP
formulation (2) of the deadlock detection problem for the unfolding prefix in Fig. 2(b).

To solve the resulting MIP problem, [19] used the general-purpose LP-solver CPLEXTM

[6], and demonstrated that there are significant performance gains if the number of cut-off
events is relatively high, since all variables in x corresponding to cut-off events are set to 0.

We will show in Section 5.1 that it is possible to reduce (2) to a pure integer LP-problem
without increasing the total number of integer variables. Moreover, (2) has several problem-
specific internal dependencies between variables, and taking them into account may allow one
to significantly reduce the number of calculations. Therefore, it turns out to be non-optimal
to use general-purpose LP-solvers for this particular problem.

4. Solving systems of linear constraints

In this paper, we will adapt the approach proposed in [1, 4], in order to solve Petri net
verification problems which can be reformulated as LP-problems. We start by recalling
some basic results.

The original Contejean and Devie’s algorithm (CDA) [4] solves a system of linear homo-
geneous equations with arbitrary integer coefficients






a11x1 + · · · + a1q xq = 0

a21x1 + · · · + a2q xq = 0

...
...

...

ap1x1 + · · · + apq xq = 0,

(3)

or A · x = 0, where x ∈ N
q and A df= (ai j ). For every 1 ≤ j ≤ q, let

ε j
df= ( 0, . . . , 0︸ ︷︷ ︸

j−1 times

, 1, 0, . . . , 0)
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be the j-th vector in the canonical basis CB of N
q . Moreover, for every x ∈ N

q , let a(x) ∈ N
p

be a vector defined by

a(x)
df=





a11x1 + · · · + a1q xq

a21x1 + · · · + a2q xq

...
...

ap1x1 + · · · + apq xq




=

q∑

i=1

xi · a(εi ), (4)

where a(εj)—the j-th column vector of the matrix A—is called the j-th basic default vector.
The set S of all solutions of (3) can be represented by a finite basis B which is the minimal

(w.r.t. ⊂ ) subset of S such that every solution is an N-linear combination of the solutions in
B. It can be shown that B comprises all solutions in S different from the trivial one, x = 0,
which are minimal with respect to the ≤ ordering on N

q (x ≤ x′ if xi ≤ x′
i, for all 1 ≤ i ≤

q; moreover, x < x′ if x ≤ x′ and x �= x′).
The representation (4) suggests that any solution of (3) can be seen as a multiset of

default vectors whose sum is 0. Choosing an arbitrary order among these vectors amounts
to constructing a sequence of default vectors starting from, and returning to, the origin of
Z

p. CDA constructs such a sequence step by step: starting from the empty sequence, new
default vectors are added until a solution is found, or no minimal solution can be obtained.
However, different sequences of default vectors may correspond to the same solution (up
to permutation of vectors). To eliminate some of the redundant sequences, a restriction for
choosing the next default vector is used.

Branching Condition 1. A vector x ∈ N
q (corresponding to a sequence of default vectors)

such that a(x) �= 0 can be incremented by 1 on its j-th component provided that a(x + εj)
= a(x) + a(εj) lies in the half-space containing 0 and delimited by the affine hyperplane
perpendicular to the vector a(x) at its extremity when originating from 0 (see Fig. 3).

This reflects a view that a(x) should not become too large, hence adding a(εj) to a(x) should
yield a vector a(x + εj) = a(x) + a(εj) ‘returning to the origin’. Formally, this restriction can
be expressed by saying that given x = (x1, . . ., xq),

increment by 1 an x j satisfying a(x) � a(ε j ) < 0, (5)

Fig. 3 Geometric interpretation
of the branching condition in CDA
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Fig. 4 An outline of CDA (breadth-first version)

where � denotes the scalar product of two vectors. This reduces the search space without
losing any minimal solution, since every sequence of default vectors which corresponds to a
solution can be rearranged into a sequence satisfying (5).

Theorem 2 (Contejean and Devie [4]). The following hold for CDA shown in Fig. 4:

1. Every minimal solution of the system (3) is found. (completeness)
2. Every solution found by CDA is minimal. (soundness)
3. The algorithm always terminates. (termination)

Figure 5(a) illustrates the process of solving the homogeneous system of linear equations

{ −x1 + x2 + 2x3 − 3x4 = 0
−x1 + 3x2 − 2x3 − x4 = 0,

considered in [15]. The example shows redundancies, as some vectors were computed more
than once. This can be remedied by using frozen components, defined as follows. Assume
that there is a total ordering ≺x on the sons of each node2 x of the search graph constructed
by CDA.

Frozen Components 1. If x + εi and x + εj are two distinct sons of a node x such that
x + εi ≺x x + ε j then the j-th component is frozen in the sub-graph rooted at x + εi and
cannot be incremented even if the condition in (5) is satisfied.

The modified algorithm is still complete [4], and builds a forest which is a sub-graph of
the original search graph. By defining3 the ordering ≺x as x + εi ≺x x + ε j ⇔ i < j we
obtain, for the system in the above example, the graph shown in Fig. 5(b) [15].

The ordered version of CDA can easily handle bounds imposed on variables:

– x′ ≤ x. Then, instead of starting with the vectors ε1, . . ., εq, the algorithm starts with
x′. The rest of the operation remains the same, but the minimal elements of the set
S ′ = {x | A · x = 0 ∧ x ′ ≤ x} do not give all the solutions of

{
A · x = 0

x ′ ≤ x .

2 Including the virtual node 0.
3 The ordering ≺x may be defined in other ways as well [4].
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Fig. 5 (a) Search graph constructed by CDA in Fig. 4; inside each box, the current value of a(x) is represented
by a column on the left, and is followed by the current value of x; note that x′ = (0, 1, 1, 1) and x′′ = (4, 2, 1,
0) are two minimal solutions. (b) Search graph constructed by the ordered version of CDA; frozen components
are underlined, and the *s indicate the nodes which cannot be developed due to condition (5) and the frozen
components rule

However, any solution of the above system can be represented as a sum of a minimal
element of S ′ and an N-linear combination of minimal solutions of the original system.

– x ≤ x′′ where x ′′ ∈ (N ∪ {∞})q . Then the algorithm works in the standard way except that
the j-th component of a vector becomes frozen as soon as it reaches the j-th component of
x′′.

– x′ ≤ x ≤ x′′. Then a combination of two previous techniques is used.
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With the above extensions, CDA allows one to solve non-homogeneous diophantine
systems






a11x1 + · · · + a1q xq = d1

a21x1 + · · · + a2q xq = d2

...
...

...

ap1x1 + · · · + apq xq = dp.

(6)

By introducing a new variable, x0, one can transform (6) into a homogeneous system






−d1x0 + a11x1 + · · · + a1q xq = 0

−d2x0 + a21x1 + · · · + a2q xq = 0

...
...

...
...

−dpx0 + ap1x1 + · · · + apq xq = 0.

Let Bk (k = 0, 1) be the set of all minimal solutions x = (x0, x1, . . ., xq) of this system with
x0 = k. Then any solution of (6) can be represented as

x = y +
∑

z∈B0

cz z,

where y ∈ B1 and each cz belongs to N. Thus, to solve (6), it suffices to add just one variable
which becomes frozen as soon as it reaches the value 1.

The task of solving a system of linear inequalities






a11x1 + · · · + a1q xq ≤ d1

a21x1 + · · · + a2q xq ≤ d2
...

...
...

ap1x1 + · · · + apq xq ≤ dp

(7)

is more complicated. In general, not all the solutions of (7) can be represented as N-
linear combinations of minimal solutions, even if the system of inequalities is homoge-
neous. As an example, [1] considers the inequality x − y ≤ 0. Its only non-trivial minimal
solution is (0,1), which is not enough to generate the set of all solutions, {(n, n + m) |
n, m ∈ N}. To generate the whole set one needs also to take a non-minimal solution
(1, 1) > (0, 1).

The standard linear programming approach is to reduce (7) to a system of equations






a11x1 + · · · + a1q xq + y1 = d1

a21x1 + · · · + a2q xq + y2 = d2
...

...
. . .

...
ap1x1 + · · · + apq xq + yp = dp

by introducing slack variables yi ∈ N, but this transformation increases the number of vari-
ables from q to q + p. Consequently, as the computation time can grow exponentially in the
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number of variables, such an approach is not efficient. Moreover, slack variables may assume
arbitrary values in N, even if all the variables in the original problem were binary as in (2);
as a result, the search space can grow very rapidly.

Another approach is to deal with the inequalities (7) directly. It was developed in [1],
where CDA has been generalised to solve homogeneous systems of equations and inequal-
ities. The approach uses the notion of a non-decomposable solution, i.e., one which cannot
be represented as an N-linear combination of other solutions; one can see that the non-
decomposable solutions form a basis of the set of all the solutions. For a system of linear
constraints A · x = 0 ∧ B · x ≤ 0, the branching condition (5) is modified in the following
way.

Branching Condition 2. Given a vector x = (x1, . . ., xq ), increment by 1 an element x j for
which there exist y1, . . ., yp such that the vector (x1, . . ., xq , y1, . . ., yp) can be incremented
on its j-th component according to (5) applied to the system A · x = 0 ∧ B · x + y = 0,
where p is the number of rows in B and y = (y1, . . ., yp).

As shown in [1], this condition can be expressed as

(A · x) � (A · ε j ) +
p∑

i=1

min

{
(Bi � x)(Bi � ε j ),

max{0,Bi � x}(Bi � ε j )

}
< 0, (8)

where Bi is the i-th row of B. To ensure the termination in the general case, [1] added one
more condition, but if all the variables are bounded (as in our case) then such a condition is
unnecessary.

5. Integer programming verification algorithm

In this section we start by turning the deadlock detection problem—one of the fundamental
verification problems for Petri nets—into a pure integer problem. We then describe how
solving such a system may be improved by taking into account partial-order dependencies
between the variables derived from the unfolding. After that we develop an extension of
CDA aimed at combining these dependencies with the original algorithm.

5.1. Reduction to a pure integer problem

The MIP problem described in Section 3 can be reduced to a pure integer one, by substituting
the expression for M given by the marking equation into the other constraints. Each equation
in M = Min + C · x has the form

M(b) = Min(b) +
∑

f ∈•b

x( f ) −
∑

f ∈b•
x( f ),
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where b ∈ B. Substituting these into (2) results in the following system






∑

b∈•e




∑

f ∈•b

x( f ) −
∑

f ∈b•
x( f )



 ≤ |•e| − 1 −
∑

b∈•e

Min(b) for all e ∈ E

Min + C · x ≥ 0 for all b ∈ B

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut.

(9)

Usually, each inequality in (9) contains relatively few variables, so it does make sense
to use the sparse-matrix representation of this system. For efficiency reasons, inequalities
can be first generated without paying attention to possible repetitions of the same variable
in its left-hand side, and then sorted and transformed into the normal form. But one should
be careful when choosing the sorting algorithm: the sequence of monomials obtained after
generating the inequalities is often nearly sorted, and QuickSort performs rather poorly,
i.e., in quadratic time. Our early experiments showed that in this case the process of sorting
monomials can be much more time consuming than the process of solving the system; it is
therefore better to use a sorting algorithm with O(n log n) worst case execution time. In our
implementation, we obtained satisfactory results with HeapSort, which has an additional
advantage that it does not require auxiliary arrays.

As (9) is a pure integer problem, the usual integer programming algorithms are in principle
directly applicable. However, since the number of variables is usually large even for moderate
sized net systems, a further refinement is needed.

5.2. Partial-order dependencies between variables

In [19], Unf� is used only for building a system of constraints, and the latter is then passed
to an LP-solver without any additional information. Yet, during the solving of the system,
one may use dependencies between variables implied by the causal order on events, which
can easily be derived from Unf� . For example, if we set x(e) = 1 then each x( f ) such that
f 
 e must be equal to 1, and each x(g) such that g # e, must be equal to 0. Similarly, if we
set x(e) = 0 then no event f satisfying e 
 f can be executed in the same run, and so x( f )
must be equal to 0. Hence, it is sufficient to restrict the search space to vectors satisfying
these constraints.

These observations can be formalised by considering Unf�-compatible vectors (see
Section 2 for the definition), which in this case correspond to the configurations of Pref� ,
and the following result provides a basis for such an approach.

Theorem 3. A vector x ∈ {0, 1}q is Unf�-compatible iff for all distinct events e, f ∈ E such
that x(e) = 1, we have:

f 
 e ⇒ x( f ) = 1 and f # e ⇒ x( f ) = 0. (10)

Proof: Straightforward. We just point out that Unf�-compatible vectors are binary, since
each event in the unfolding of � can occur at most once in an execution sequence, and
vectors satisfying (10) correspond to configurations of Pref� . �
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Fig. 6 An unfolding prefix

Corollary 1. For each reachable marking M of �, there exists an execution sequence of
Unf� leading to a marking representing M, whose Parikh vector x satisfies (10), and for
every e ∈ Ecut, x(e) = 0.

Proof: Since the prefix Pref� used to build Unf� was complete, each reachable marking
M of � is represented in Unf� by a marking M′ which can be reached from Min through an
execution sequence σ without cut-off events. Theorem 3 implies that the Parikh vector of σ

satisfies (10). �

In view of this result, it is sufficient for a deadlock detection algorithm to check only Unf�-
compatible vectors whose components corresponding to cut-off events are equal to zero. This
can be done by freezing all x(e) such that e ∈ Ecut at the beginning of the algorithm and
constructing the minimal Unf�-compatible closure (see below) of the current vector in each
step of the algorithm.

5.3. Compatible closures

An Unf�-compatible vector y ∈ {0, 1}q is an Unf�-compatible closure of a vector x ∈ {0,
1}q if x ≤ y. Moreover, y is the minimal Unf�-compatible closure of x, denoted by MCC(x),
if it is minimal (w.r.t. ≤ ) among all Unf�-compatible closures of x. Note that MCC(x)
is undefined for some x’s, but whenever it is defined then, due to Theorem 4 below, it is
unambiguous.

As an example, consider the prefix shown in Fig. 6, and let x = (1, 0, 1, 0). Then y =
(1, 1, 1, 0) and z = (1, 1, 1, 1) are Unf�-compatible closures of x, and MCC(x) = y.

Theorem 4. A vector x ∈ {0, 1}q has an Unf�-compatible closure iff for all e, f ∈ E, x(e)
= x( f ) = 1 implies ¬(e # f ). If x has an Unf�-compatible closure then its minimal Unf�-
compatible closure exists and is unique. Moreover, in such a case if x has zero components
for all cut-off events, then the same is true for MCC(x).

Proof: Straightforward. We just point out that to build the minimal Unf�-compatible closure
of x, when it does exist, it is enough to set to 1 all the components x( f ) for which there is
e such that f 
 e and x(e) = 1, i.e., to ‘downclose’ the set of events corresponding to x,
producing a configuration. �

From the implementation point of view, it may happen that a vector x has an Unf�-
compatible closure according to Theorem 4, but it cannot be computed because some of the
zero components of x to be set to 1 have been frozen during the search process (see Section
4). In such a case, the algorithm should behave as if such a closure could not be built.
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5.4. Removing redundant constraints

One can see that the inequalities in the middle of (9) are not essential for an algorithm check-
ing only Unf�-compatible vectors. Indeed, such a vector x corresponds to some execution
sequence of Unf� , and so the marking M = Min + C · x is guaranteed to be non-negative.
Consequently, these inequalities may be left out without adding any Unf�-compatible solu-
tion. The reduced system






∑

b∈•e




∑

f ∈•b

x( f ) −
∑

f ∈b•
x( f )



 ≤ |•e| − 1 −
∑

b∈•e

Min(b) for all e ∈ E

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

x is Unf�-compatible

(11)

is the one which will be treated in the rest of this paper. Figure 2(d) shows the formulation
(11) of the deadlock detection problem for the unfolding prefix in Fig. 2(b).

5.5. Extending CDA (intuition)

Each step of CDA can be seen as moving from a point a(x) along a default vector a(εj) such
that a(x) � a(ε j ) < 0, which is interpreted as ‘returning to the origin’ (see Fig. 3). However,
for an algorithm checking Unf�-compatible vectors only, each step consists in moving along
a vector which may be represented as a sum of several default vectors, and this branching
condition is no longer valid. Indeed, let us consider the same ordering as in Fig. 6, and the
equation

a(x) = x1 + 5x2 − 3x3 − 3x4 = 0

(which has a solution x = (1, 1, 1, 1)) with an initial constraint x1 = 1. The algorithm
starts from the vector x = (1, 0, 0, 0), and the sequence of steps should begin from
either ε2 or ε2 + ε3 or ε2 + ε4. But a(x) � a(ε2) = 5 ≮ 0, a(x) � a(ε2 + ε3) = 2 ≮ 0 and
a(x) � a(ε2 + ε4) = 2 ≮ 0, i.e., one cannot choose a vector to make the first step!

A possible solution is to interpret each step εi1 + · · · + εik as a sequence of smaller
steps, εi1 , . . ., εik , where the algorithm chooses only the first element εi1 for which a(εi1 )
does return to the origin, and then builds the minimal Unf�-compatible closure x + εi1 +
· · · + εik of x + εi1 without worrying where the vector εi1 + · · · + εik actually leads (if
there is no Unf�-compatible closure of x + εi1 then εi1 cannot be chosen). This means that
the algorithm uses the condition a(x) � a(εi1 ) < 0 which coincides with the original CDA’s
branching condition, though it is moving along a possibly different vector. The geometric
interpretation of this new branching condition is shown in Fig. 7. We will now cast the above
idea in a formal setting.

6. Developing an extension of CDA

In this section, we will obtain a general result extending that in [4]. This result will later be
applied to unfolding-based model checking, but it is also of independent interest.
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Fig. 7 Geometric interpretation
of the new branching condition:
a(εi1 ) is ‘returning to the origin’,
although a(εi1 + · · · + εik ) may
not posses this property; here
vi+1 = vi + εi1 + · · · + εik is
the minimal Unf� -compatible
closure of vi + εi1

6.1. Branching condition

Consider the following homogeneous system of linear constraints:






A · x = 0

B · x ≤ 0

x ∈ D
df= D1 × · · · × Dq ,

(12)

where Di
df= {ki , ki + 1, . . . , ki + li } and ki , li ≥ 0, for every i ≤ q. Below we assume that

0 �∈ D.4

Let ξ : D→ D be a partial function5 with the domain dom such that xmin
df= (k1, . . . , kq ) ∈

dom, and codom
df= ξ (dom). A ξ -minimal solution of (12) is any solution x ∈ codom for

which there is no solution y ∈ codom satisfying y < x. We will denote this by x ∈ minξ , and
assume that:

y ∈ dom ⇒ y ≤ ξ (y)
y ≤ x ∈ minξ ⇒ y ∈ dom ∧ ξ (y) ≤ x .

(13)

The aim is to develop an algorithm searching for all ξ -minimal solutions and, in what
follows, we present an extension of CDA achieving this. First, we introduce a new branching
condition.

Branching Condition 3. A vector x ∈ codom which is not a solution of (12) can be extended
to ξ (x + εj) if x + ε j ∈ dom and

(A · x) � (A · ε j ) +
m∑

i=1

min

{
max{0,Bi � x}(Bi � ε j ),

(Bi � x)(Bi � ε j )

}
< 0, (14)

where m is the number of rows in B, and Bi is the i-th row of B.

The above rule determines a search space which can be represented by a labelled directed
graph Gξ

df= (X, A), where X ⊆ codom is a set of vertices and A ⊆ X × C B × X is a set

4 From the point of view of this paper, such an assumption is unproblematic. The case 0 ∈ D is discussed in
Remark 1, at the end of this section.
5 Later we will take ξ to be the MCC function to apply the developed technique to unfolding-based model
checking.
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of arcs. It is defined as the smallest graph such that X contains a distinguished vertex
xroot

df= ξ (xmin) and, for every x ∈ X which is not a solution of (12), if ε j ∈ C B satisfies
x + ε j ∈ dom and (14) then (x, εj, ξ (x + εj)) ∈ A. Directly from the definitions we obtain

Proposition 1. Gξ is finite and acyclic.

Proof: From the first part of (13) it follows that x < y, for every (x, εj, y) ∈ A. Thus a
directed path in Gξ can have at most |D| vertices. The result follows from this and |X| ≤ |D|
< ∞ . �

The next proposition states a crucial property of the new branching condition.

Proposition 2. If a vertex x of Gξ and y ∈ minξ satisfy x < y, then there is an arc (x, εj, z)
in Gξ such that z ≤ y.

Proof: (Adapted from [1]) We have y − x = ∑
j∈J ε j , for some non-empty multiset J .

Suppose that the desired arc does not exist. We observe that, for every j ∈ J , by the second
part of (13), x + ε j ∈ dom and ξ (x + εj) ≤ y. Thus, for all j ∈ J ,

(A · x) � (A · ε j ) +
m∑

i=1

min

{
max{0,Bi � x}(Bi � ε j ),

(Bi � x)(Bi � ε j )

}
≥ 0 ,

and after summing these inequalities for all j ∈ J , we obtain

(A · x) � (A · (y − x)) +
∑

j∈J

m∑

i=1

min

{
max{0,Bi � x}(Bi � ε j ),

(Bi � x)(Bi � ε j )

}
≥ 0. (15)

Let I and K be the sets of all i ≤ m such that Bi � x > 0 and Bi � x ≤ 0, respectively. Since
A · y = 0,

∑

j∈J

∑

i∈I
(Bi � x)(Bi � ε j ) ≥ ||A · x ||2 −

∑

j∈J

∑

i∈K
min{(Bi � x)(Bi � ε j ), 0} ≥ 0.

We are now going to show that I = ∅. Indeed, by the last inequality,

∑

j∈J

∑

i∈I
(Bi � x)(Bi � ε j ) =

∑

i∈I
(Bi � x)(Bi � (y − x)) ≥ 0.

This, and the fact that for all i ∈ I, (Bi � x)(Bi � y) ≤ 0 (which follows from B · y ≤ 0 and
the definition of I), yields

0 ≥
∑

i∈I
(Bi � x)(Bi � y) ≥

∑

i∈I
(Bi � x)2 ≥ 0.
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Hence Bi � x = 0, for all i ∈ I. This, however, means that I = ∅. As a result, B · x ≤ 0.
From I = ∅ it further follows that max{Bi � x, 0} = 0, for all i ≤ m, which together with

(15) and A · y = 0 leads to

∑

j∈J

m∑

i=1

min{(Bi � x)(Bi � ε j ), 0} ≥ ||A · x ||2 ≥ 0.

Thus, since min{(Bi � x)(Bi � ε j ), 0} ≤ 0, for every i ≤ m, we obtain that A · x = 0. Hence
x ∈ codom is a solution of (12) satisfying x < y, contradicting y ∈ minξ . �

Corollary 2. All ξ -minimal solutions are vertices of Gξ .

Proof: Let x ∈ minξ . We first observe that xroot ≤ x which follows from the second part of
(13). Hence x ∈ X, by Propositions 1 and 2. �

6.2. Frozen components

Although Proposition 1 and Corollary 2 imply that Gξ could be used to solve the problem
at hand,6 it may contain a large number of redundant paths. We will now adapt the frozen
components method of [1, 4] to cope with this problem. Below, for any node x of Gξ we
denote by out(x) the set of all the εj’s which label the arcs outgoing from x.

Frozen Components 2. We assume that, for each node x of Gξ , there is a total ordering ≺x on
the set out(x). And, if εi ≺x ε j , then εj is frozen along all the directed paths in Gξ beginning
with the arc (x, εi, ξ (x + εi)).

To capture the above rule through a suitable modification of Gξ , we associate sets of
frozen components with the arcs of directed paths originating at xroot. Let σ = α1α2 . . . αk

be a sequence of arcs in Gξ forming a directed path starting at xroot. For every arc αi = (x,
εj, y) in σ , we denote by Frozσ (αi ) a subset of CB such that

Frozσ (αi )
df= {εm ∈ out(x) | ε j ≺x εm} ∪

{
∅ if i = 1

Frozσ (αi−1) if i > 1.

We then say that σ is non-frozen if, for every arc αi = (x, εj, y) in σ , Supp(y − x) ∩
Frozσ (αi ) = ∅, where Supp(x)

df= {ε j | ε j ≤ x}.
With the above notation, Frozen Components 2 determines a search space which can be

represented by the smallest subgraph Tξ of Gξ containing xroot and all the non-frozen directed
paths of Gξ .

Theorem 5. Tξ is a tree rooted at xroot whose set of vertices contains all ξ -minimal solutions.

Proof: We first observe that the orderings associated with the vertices of Gξ induce, for
every vertex x, a total order � x on all the directed paths leading from xroot to x in such a
way that, σ � x σ ′ iff σ = σ 1(y, εi, z)σ 2, σ ′ = σ 1(y, εj, z′)σ 3 and εi ≺y ε j (note that since

6 E.g., Gξ could be searched in the breadth-first or depth-first manner.
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Gξ is acyclic, a directed path leading from xroot to x cannot be a prefix of another directed
path from xroot to x).

Suppose that Tξ is not a tree. Then there are two different non-frozen directed paths, σ � x

σ ′, leading from xroot to some node x �= xroot. We can represent them as σ = σ 1(y, εi, z)σ 2

and σ ′ = σ 1(y, εj, z′)σ 3, where εi �= εj. Then ε j ∈ Frozσ (α), for every arc in (y, εi, z)σ 2.
Moreover, by the first part of (13), εj ≤ x − y and so σ is not non-frozen, a contradiction.

Suppose now that x ∈ minξ . Since Gξ is finite, and there is at least one directed path from
xroot to x, there is a unique directed path σ = α1 . . . αk from xroot to x which is maximal
w.r.t. � x. Suppose that such a σ is not non-frozen. Then there are m ∈ {1, . . .,k} and α ∈
A such that αm = (y, εj, ξ (y + εj)), α = (y, εi, ξ (y + εi)), ε j ≺y εi and εi ∈ Supp(x − y).
By the second part of (13), ξ (y + εi) ≤ x. Hence, by Propositions 1 and 2, there is a directed
path σ ′ = αα′

1. . .α
′
l from ξ (y + εi) to x. Thus σ ′′ =α1 . . .αm−1σ

′ is a directed path in Gξ

such that σ � x σ ′′, contradicting the choice of σ . Hence x is a vertex of Tξ . �

We observe that since Tξ is a tree, in the notation Frozσ (α) we can drop the index σ (see the
definition of Frozσ ).

The above frozen components rule allows for further improvement, which will given in
the form of an additional function froz.

Frozen Components 3. We assume that, for every arc α of Tξ , froz(α) is a subset of C B such
that if α and α′ form two consecutive arcs then froz(α) ⊆ froz(α′). Moreover, if α1. . .αk is a
directed path in Tξ leading from xroot to y ∈ minξ , then for every i ≤ k, froz(αi ) ∩ Supp(y −
xi ) = ∅, where xi is the origin of αi.

Theorem 6. Let Sξ be the minimal subtree of Tξ which contains xroot and all the directed
paths non-frozen w.r.t. froz. Then the set of vertices of Sξ comprises all ξ -minimal solutions.

Proof: Follows directly from the definitions and (13). �

To summarise, Branching Condition 3 and Frozen Components 2 and 3 define search
trees which can be traversed7 to find all ξ -minimal solution of (12) in a finite number of
steps (as Gξ is finite, see Proposition 1).

6.3. Non-homogeneous systems

The developed approach can be applied to deal with a non-homogeneous system of linear
constraints






A · x = a
B · x ≤ b
x ∈ D,

(16)

where we do not assume that 0 �∈ D, and all the notions and assumptions relating to ξ are as
those for (12).

The problem of finding all ξ -minimal solutions of (16) can be reduced to an instance of
the problem considered earlier in this section. To this end, we introduce an auxiliary variable

7 Using, e.g., depth-first search as the breadth-first search would be inefficient due to the need to record frozen
components.
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z and two matrices, A′ df= (A,−a) and B′ df= (B,−b). Then (16) can be rewritten as






A′ · (x, z) = 0
B′ · (x, z) ≤ 0
(x, z) ∈ D′ df= D × {1}.

(17)

Moreover, after setting dom ′ df= dom × {1} and ξ ′(x, z)
df= (ξ (x), 1), we obtain an instance

of (12) (note that 0 �∈ D′). We now observe that x is a ξ -minimal solution of (16) iff (x, 1)
is a ξ ′-minimal solution of (17). As a result, one can render the branching condition derived
for (17), directly in terms of (16).

Branching Condition 4. A vector x ∈ codom which is not a solution of (16) can be extended
to ξ (x + εj) if x + ε j ∈ dom and

(A · x − a) � (A · ε j ) +
m∑

i=1

ri < 0 , (18)

where, for every 1 ≤ i ≤ m,

ri
df=

{
0 if Bi � x ≤ bi and Bi � ε j ≤ 0
(Bi � x − bi )(Bi � ε j ) otherwise.

Remark 1. We assumed that xmin ∈ dom since otherwise there are no ξ -minimal solutions
at all. To obtain a full extension of CDA, we still need to consider (12) when 0 ∈ D (note
that 0 is a trivial solution and has to be excluded from the search). Our discussion can easily
be adapted, as follows:

– We assume that 0 �∈ codom.

– xroot
df= 0, and if ε j ∈ dom then (0, εj, ξ (εj)) ∈ A.

Then all the results developed earlier in this section still hold, in particular, Theorems 5
and 6.

Allowing infinite ranges Di
df= {ki , ki + 1, . . .} leads to termination problems; in other

words, the search graph Gξ may be infinite. In such a case, one needs to develop conditions
for bounding ξ -minimal solutions. Such a problem depends on the actual definition of the
function ξ , and so we expect that it will be addressed on the individual basis. �

6.4. Optimisations

Various heuristics used by general purpose integer programming solvers can be implemented
to reduce the search effort, especially when we terminate the search after finding one solution.

For example, one can look one step ahead and choose a branch that in some sense is the
‘most promising’ one. This can be done by choosing an ordering on the sons of each node
of the search tree, depending on the current value of x (e.g., the ≺‖·‖ ordering in [4]).
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Moreover, if the algorithm, having fixed some variables,8 finds out that some of the
inequalities have become infeasible, then it may prune the current branch of the search tree.
Alternatively, it is sometimes possible to determine the values of some variables which have
not yet been fixed, or to find out that some of the constraints have become redundant (in
[12], some simple heuristics of this sort, applicable to arbitrary systems of linear constraints,
were described).

After fixing the value of a variable, the ξ -function is computed on the resulting vector. As
new variables can become fixed during this process, the above tests can be applied iteratively.
(If the ξ -function increases some of the frozen components then the current subtree of the
search tree contains no ξ -minimal solution and may be pruned.) Such optimisation rules can
formally be justified in the following way.

Let opt : D → D be a partial function9 with the domain domopt, corresponding to applying
the heuristics described above, satisfying:

x ∈ domopt ⇒ x ≤ opt(x)
x ≤ y ∈ minξ ⇒ x ∈ domopt ∧ opt(x) ≤ y.

(19)

We then define a partial function ξ o : D→ D such that ξo(x)
df= ξ (opt(ξ (x))), for every x in

domo which is the largest subset of dom for which this expression is well-defined. We denote
codomo

df= ξo(domo), and then observe that, by (13) and (19):

x ∈ domo ⇒ x ≤ ξo(x)
x ≤ y ∈ minξ ⇒ x ∈ domo ∧ ξo(x) ≤ y.

(20)

Proposition 3. minξ = minξo .

Proof: Suppose that x ∈ minξ . Then, by x ≤ x and (20), we have x ≤ ξ o(x) ≤ x. Hence
ξ o(x) = x and so x ∈ codomo. If x �∈ minξo , then there is y ∈ minξo such that y < x. Hence,
since codomo ⊆ codom, we obtained a contradiction with x ∈ minξ .

Suppose that y ∈ minξo . If y �∈ minξ then, by codomo ⊆ codom, there is z ∈ minξ such
that z < y. By the first part of the proof, z ∈ minξo , contradicting y ∈ minξ . �

From Proposition 3 and (20) it follows that the counterpart of (13) holds for ξ o as well.
Thus, in view of minξ = minξo , the search for ξ -minimal solutions can be based on the tree
Sξ o , which can often be much more efficient than using Sξ . As for the frozen components
given by the function frozo, it must satisfy the condition in Frozen Components 3.

In order to avoid calculations related to redundant constraints, one can remember for each
of them the depth in the search tree at which it was marked as redundant, and unmark it
during the backtracking. Clearly, they do not need to be considered when checking whether
the system is satisfied. What is more, the algorithm may skip them when computing the
branching condition [13].

8 xi is fixed if it is equal to the highest value in Di, or if εi has been frozen.
9 Intuitively, opt(x) is undefined if, during the application of the optimisation rules, the algorithm finds out
that the system has no ξ -minimal solution y ≥ x.
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7. Applying the method for Unf�-compatible vectors

We will now apply the theory developed in the previous section to check only Unf�-
compatible vectors. Referring to the notation introduced above, we shall assume that the
system of constraints to be solved is a non-homogeneous one, and:

– Di
df= {0} if ei ∈ Ecut, and Di

df= {0, 1} otherwise.
– dom is the set of all vectors of D having an Unf�-compatible closure, and ξ (x)

df= MCC(x).
– For an arc α = (x, εj, y), froz(α)

df={εi | ∃εk ∈ Supp(y) : ek # ei }.

It is straightforward to show that all the properties required for dom, ξ and froz are then
satisfied, and so after ignoring the auxiliary variable z, the search tree Sξ contains all minimal
Unf�-compatible solutions. Further optimisations can also be incorporated, as described at
the end of previous section.

Retrieving a solution
What we often want to see as a solution is an execution sequence of the original net system,
rather then a configuration of its unfolding. To derive such a sequence, it is enough to
topologically sort the constructed configuration according to the causal order on the set of
the events, and replace the events by their labels in the constructed sequence. An observation
one can make is that the existing unfolding algorithms [8, 11] add events one-by-one to the
unfolding being constructed, in such a way that for all non-cut-off events ei and ej, ei 
 e j

implies i ≤ j. Therefore, if the natural numbering of the components of x, xi = x(ei), is used
then one can avoid sorting the events and find a sequence of transitions in a straightforward
way.

Shortest trail
Finding a shortest path leading, e.g., to a deadlock can facilitate the debugging of the
system modelled by a Petri net. In such a case, one has to solve an optimisation problem
with the same system of constraints, and L(x) = x1 + · · · + xq as the cost function to be
minimised.

The described approach can easily be adopted for this task. Indeed, it is enough for
the algorithm not to stop after the first solution has been found, but to keep the current
optimal solution together with the corresponding value of the function L. As this function
is non-decreasing, one can prune a branch of the search tree as soon as the value of L
becomes greater than, or equal to, the current optimal value. This strategy speeds up the
search and saves us from keeping all ξ -minimal solutions found so far. It is easy to see
that the completeness of the algorithm is not affected in the sense that a ξ -minimal solution
minimising L is computed when it exists. Indeed, the strategy builds the same search tree
up to the cutting of some of the subtrees rooted in nodes with the sum of the components
not less than the optimal value of L. But all the descendants of such nodes have even greater
sum of the components, and so these subtrees cannot contain an optimal solution. To allow
more pruning and, therefore, to reduce the search space, it makes sense to organise the search
process in such a way that the first solutions found give the value of L ‘close’ to the optimal
one. This can be done by choosing in each step of the algorithm the ‘most promising’ branch.
Since the orderings ≺x used by the algorithm are arbitrary, one can exploit the information
about the value of L on the successors of x, and check those with smaller values first (see,
e.g., the ≺‖·‖ ordering in [4]). Such an algorithm can be seen as a version of the ‘branch and
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bound’ method which considers only Unf�-compatible vectors and uses frozen components
and branching condition to reduce the search space.

8. Extended reachability analysis

The algorithm described in Section 7 is applicable to any system of linear constraints which
are supposed to be solved in Unf�-compatible vectors. The theory of verifying co-linear
properties using unfoldings was developed in [18]. It can easily be generalised to arbitrary
reachability properties, although solving (very large) non-linear systems obtained in this
case is usually a hard task for general-purpose solvers. An algorithm checking only Unf�-
compatible vectors can do this more efficiently. Indeed, the only reason why the algorithm in
Section 7 accepts only systems of linear constraints is that in order to reduce the search space
it employs the branching condition (18). In principle, it can deal with arbitrary constraints,
if one switches off this heuristic.

The approach we will now describe is similar to the one in [18], generalised to deal
with non-linear constraints. In addition, we use the ideas from Section 5 to re-formulate the
resulting LP problem as a problem based on Unf�-compatible vectors and reduce the number
of variables and constraints in the system.

Let P be a property specified for the markings of the original net system �. One can
transform it into a corresponding property P ′ specified for Unf�-compatible vectors in such
a way that if there exists a reachable marking M in � for which P holds then P ′ holds for
some Unf�-compatible vector, and vice versa. Indeed, let M be a reachable marking of �,
and M′ be a corresponding marking in Unf� . Then M(s) can be calculated as

M(s) =
∑

b∈h−1(s)

M ′(b) ,

where the marking M′(b) of a place b in Unf� can be found from the marking equation

M ′(b) = Min(b) +
∑

f ∈•b

x( f ) −
∑

f ∈b•
x( f ) .

Therefore,

M(s) =
∑

b∈h−1(s)



Min(b) +
∑

f ∈•b

x( f ) −
∑

f ∈b•
x( f )



 ,

and P ′ can be rendered as a predicate specified for Unf�-compatible vectors. And, moreover,
if P is initially expressed as a system of linear constraints then P ′ will possess this property
as well.

8.1. Deadlock checking in safe case

By applying the technique described in the previous section, one can generate a system of
constraints different from (11) for deadlock checking safe Petri nets (a similar idea was
used in [18] to obtain a translation of this problem into a MIP problem). To begin with, the
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following condition states for safe Petri nets that no transition is enabled:

∑

s∈•t

M(s) ≤ |•t | − 1 for all t in T \ Td , (21)

where Td is the set of transitions which are dead in �. For example, referring to the
Petri net and its unfolding in Fig. 2(a) and (b), the constraint for transition t2 of has the
form M(s2) + M(s7) ≤ 1, where M(s2) = e1 − e3 (since h−1(s2) = {b5}) and M(s7) =
1 − e3 − e5 + e9 + e10 (since h−1(s7) = {b2, b16, b18}).

Rendering (21) in terms of the finite prefix yields the following system of linear constraints
(all non-dead transitions needed for constructing this system can easily be found, as we have
a finite and complete prefix):






∑

s∈•t

∑

b∈h−1(s)



Min(b) +
∑

f ∈•b

x( f )−
∑

f ∈b•
x( f )



 ≤ |•t |−1 for all t ∈ T \Td

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

x is Unf�-compatible .

(22)

In particular, referring to the example in Fig. 2(a) and (b), the constraint for transition t2
becomes 1 + e1 − 2e3 − e5 + e9 + e10 ≤ 1, or, equivalently, e1 − 2e3 − e5 + e9 + e10 ≤ 0.

We now need to keep in memory at most |T| constraints rather than |E| as in the previous
method. Though the constraints are now longer, the overall size of the whole system (in
terms of the number of monomials) is often much smaller.

Note that this method is in some sense more general then the one described in Section
3. In the latter, the cut-off events played an essential role in separating real deadlocks from
the false ones, introduced by truncating the unfolding. But the notion of a cut-off event is
very specific to the existing algorithms used for prefix generation. Consequently, one can
imagine an algorithm for generating prefixes, using different principles of cutting unfoldings
(to illustrate this issue, [8] considers a prefix shown in Fig. 8). The approach proposed in
this section will work for a prefix generated by such a hypothetical algorithm as well.

To apply this approach to non-safe net systems, one can use the following constraints
instead of (21):

∑

s∈•t

sg(M(s)) ≤ |•t | − 1 for all t in T \ Td ,

Fig. 8 A Petri net and its finite and complete prefix generated by the algorithm described in [8]; although
neither e2 nor e3 can be marked as a cut-off event, all the reachable markings are still represented after
removing the cut-off event e4
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where sg(0)
df= 0 and sg(n)

df= 1 for every n > 0; or, alternatively,

∏

s∈•t

M(s) = 0 for all t in T \Td .

Although the resulting system is non-linear, it can be dealt with by the algorithm in
Section 7 with the branching condition (18) switched off.

8.2. Terminal markings

Some reactive systems can have states corresponding to a proper termination, which are
considered to be different from deadlocks, though they may enable no transition. For example,
PEP [2] works with a class of labelled nets, called boxes [14], which are essentially safe
Petri nets with distinguished disjoint sets of entry and exit places, respectively denoted by I
and O. The proper terminal marking for a box is defined as one that puts a token in each of
the exit places and no token elsewhere. Such a false deadlock can be eliminated from the set
of solutions by adding a new constraint, which holds for all but terminal markings. As the
relevant property P one can take

∑

s∈O
M(s) −

∑

s∈S\O
M(s) ≤ |O| − 1,

and, using the approach described earlier in this section, render this constraint in terms of
Unf� and add it to (11) or (22).

One could slightly relax the notion of a terminal marking of a box, allowing dead tokens
on internal (i.e., different from the entry and exit) places. Such a situation can be handled in
a similar way using the constraint

∑

s∈O
M(s) −

∑

s∈I
M(s) ≤ |O| − 1.

8.3. Other verification problems

In this section we consider checking mutual exclusion of places, marking reachability and
coverability. Since all these properties are linear (or co-linear), they can be verified using
the approach proposed in [18]. We refine the technique proposed there, by checking only
Unf�-compatible vectors.

Mutual exclusion
Two places, s and s′, of a net system � are mutually exclusive if for any reachable marking
M, at least one of them is empty, or, in other words, M(s) ≥ 1 and M(s ′) ≥ 1 cannot hold
simultaneously. Using the technique described earlier in this section, one can state that a
necessary and sufficient condition for s and s′ to be mutually exclusive is the infeasibility of
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the following system of linear constraints:






∑

b∈h−1(s)

(
∑

e∈•b

x(e) −
∑

e∈b•
x(e)

)
≥ 1 −

∑

b∈h−1(s)

Min(b)

∑

b∈h−1(s ′)

(
∑

e∈•b

x(e) −
∑

e∈b•
x(e)

)
≥ 1 −

∑

b∈h−1(s ′)

Min(b)

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

x is Unf�-compatible.

In the safe case, one can check the pairwise mutual exclusion of more than two places
simultaneously, and still remain within the domain of linear constraints. Indeed, let S′ ⊆ S
be a set of places whose mutual exclusion should be checked. Then

∑
s∈S′ M(s) ≥ 2 must

be not satisfied by any reachable marking M of �, and so the corresponding necessary and
sufficient condition is the infeasibility of the following system:






∑

s∈S′

∑

b∈h−1(s)

(
∑

e∈•b

x(e) −
∑

e∈b•
x(e)

)
≥ 2 −

∑

s∈S′

∑

b∈h−1(s)

Min(b)

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

x is Unf�-compatible .

Reachability and coverability
Since it is clear how the standard reachability and coverability problems can be expressed
in terms of extended reachability, we give the translation directly. A marking M of � is
reachable (coverable) iff the following system of linear constraints is feasible:






∑

b∈h−1(s)




∑

f ∈•b

x( f )−
∑

f ∈b•
x( f )



 (≥)= M(s)−
∑

b∈h−1(s)

Min(b) for all s ∈ S

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

x is Unf�-compatible.

This system can be simplified even further: for the coverability problem one can leave out
the constraints for which M(s) = 0 as they always hold, and for the reachability problem
one can replace all such constraints by their sum.

In the safe case, M should be a safe marking, i.e., M(s) ∈ {0,1} for all s ∈ S (otherwise it
is neither reachable, nor coverable). Therefore, one can add up the other constraints, reducing
the system to a single constraint in the case of the coverability problem, and to a system
of two constraints for the reachability problem. Moreover, we can replace ≥ by = when
checking coverability.

Remark 2. One might be tempted to use the following additional heuristic for the problems
described above: increment only those x(e), for which the transition h(e) produces a token on
a place in M. Technically, this can be done by using a problem-specific branching condition.
But in some cases the branching condition (18) already allows one to choose only such x(e)
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to be incremented! Let us show that this holds, e.g., for coverability analysis in the safe case.
Each constraint has the form

∑

b∈h−1(s)




∑

f ∈b•
x( f ) −

∑

f ∈•b

x( f )



 ≤
∑

b∈h−1(s)

Min(b) − 1 for all s ∈ M ,

where M is the marking we want to cover. If (18) holds for some εj then ri < 0 for some i, i.e.,
(Bi � x − bi )(Bi � ε j ) < 0. One can see that Bi � x ≥ bi always holds for safe nets, and so
Bi � ε j < 0, i.e., Bi j is negative. But this means that xj is x(e) for some event e ∈ •(h−1(M)).
Note that the above argument can easily be modified for the cases when the constraints are
added up and/or ≤ is replaced by = . �

9. Further optimisation for deadlock detection

The deadlock detection problem (11), has a very special structure, which can further be
exploited. In particular, the maximal value of the left hand side of the inequality

∑

b∈•e



Min(b) +
∑

f ∈•b

x( f ) −
∑

f ∈b•
x( f )



 ≤ |•e| − 1

is |•e|, even if we allow x to be non-Unf�-compatible. Therefore, the i-th inequality in (11)
is falsified iff all the variables from Posi are equal to 1, and all the variables from Negi are
equal to 0, where Posi and Negi denote the sets of the variables with respectively positive
and negative coefficients. This means that one can mark the i-th inequality as redundant as
soon as any of the variables from Posi becomes frozen at 0, or if any of the variables from
Negi is set to 1. In addition to this simple redundancy test, one can apply on each step an
infeasibility test for each non-redundant inequality of (11).

If for the inequality all the variables from Posi are set to 1, and all the variables from Negi

are frozen at 0, then this inequality (and, thus, the whole system) cannot be satisfied, and the
algorithm may stop developing the current branch of the search tree. Apart from this, if all
but one variable from Posi are set to 1, and all the variables from Negi are frozen at 0, then the
only way to prevent a contradiction is to freeze at 0 the remaining variable from Posi. And,
similarly, if all the variables in Posi are set to 1, and all but one variable in Negi are frozen at
0, then we may deterministically set the remaining variable to 1. In both cases, the constraint
becomes redundant. Notice that these rules can be justified by choosing appropriate opt and
frozo functions (see Section 6.4).

The above heuristics turned out to be much more effective than the general ones described
in [12] (see the results in Section 10 and in the corresponding part of [12]).

9.1. The safe case

Unfortunately, the above heuristics do not work for (22), where the inequalities are more
complex. But one still can derive some problem-specific optimisation rules.

The maximal value of the left-hand side of the inequality for a transition t on any Unf�-
compatible vector x is bounded by |•t |, since (22) was obtained from (21), and M(s) ≤ 1 for
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safe net systems. Therefore, if for some inequality, say the i-th one, the value of its left-hand
side is |•t |, then we can state the following:

– If all the variables from Negi are frozen at 0, then this inequality (and, thus, the whole
system) can never be satisfied. Hence the algorithm may stop developing the current branch
of the search tree.

– If all the variables in Posi are set to 1, and all but one variable in Negi are frozen, then we
may deterministically set the remaining non-fixed variable to 1. After this the constraint
becomes redundant.

Moreover, if the value of the left-hand side is |•t | − 1, and all the variables from Negi are
frozen at 0, then the only way to prevent a contradiction is to freeze all the non-fixed variables
from Posi. After this the constraint becomes redundant.

Again, the correctness of these heuristics can be justified by choosing appropriate opt and
frozo functions (see Section 6.4).

The problem-specific redundancy tests we obtained for (22) are relatively complex, and
not as effective as the test described above for (11). The reason is that the inequalities of (22)
do not become redundant as often as those of (11), and we used the general min/max-tests
developed in [12]. In Section 10, we will discuss how this new method compares with other
deadlock detection algorithms.

9.2. On-the-fly deadlock detection

Our experimental results demonstrated that the algorithm outlined in Section 7 is usually
fast, but the treated systems of constraints can be very large, even if the sparse matrix
representation is used (see Table 3 in Section 10). This, in turn, can lead to page swapping
when checking large unfoldings. Therefore, it is clearly desirable to find a way to reduce the
memory consumption, provided that this results in an increase of the running time only by a
small factor.

We now observe that the structure of the constraints in (11) is rather simple, and that
they can be generated ‘on-the-fly’, when they are needed. Indeed, the algorithm refers to the
system of constraints when checking whether the system is satisfied, when computing the
branching condition, and when applying the optimisation rules described in the beginning
of this section. All these can be efficiently done on-the-fly, without explicitly generating the
system of constraints, by exploring the sets •(•e) and (•e)• for all e ∈ E. An observation one
can make here is that for any event e ∈ E, •(•e) ∩ (•e)• = ∅ (since e′ ∈ •(•e) ∩ (•e)• means
that simultaneously e′ is a causal predecessor of e and either e′ = e or e′# e). Therefore, the
positive and negative coefficients for each constraint in (11) can be effectively separated, and
this can be exploited by the algorithm.

The on-the-fly approach can, in fact, be applied to other verification problems considered
in this paper. However, the resulting gains would not be so significant, as the corresponding
systems of constraints are usually of moderate size.

10. Experimental results

The results of our deadlock checking10 experiments are summarised in Tables 1–3, where
we use ‘time’ to indicate that the test had not stopped after 15 hours, ‘mem’ to indicate that

10 Though in Section 8.3 we consider other model checking problems, some of the existing tools we use
for comparison support only deadlock checking; moreover, the system of constraints for the other described
problems tend to be smaller and easier to solve than those for deadlock detection.
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Table 1 All the examples except sdl arg d and STACK(n) are deadlock-free

Time [s]
Unfolding PO

Problem |B| |E| |Ecut| McM MIP SM std ext o-t-fly

buf100 10101 5051 1 0.01 24577 0.17 0.01 0.02 0.01
mutual 887 479 79 4.42 70 0.03 <0.01 0.01 <0.01
ab gesc 3326 1200 511 33.93 260 0.16 0.02 0.04 0.02
sdl arg 644 199 10 0.04 20 0.01 <0.01 0.01 <0.01
sdl arg d 657 223 7 0.01 25 0.03 <0.01 <0.01 <0.01

PEPRW(2) 498 147 53 0.02 1 0.01 <0.01 <0.01 <0.01
PEPRW(3) 4668 1281 637 22.14 time 0.13 0.01 0.02 0.01
PEPRW(4) 51040 13513 7841 mem – 1.47 0.33 0.97 0.76
SEM(2) 61 32 5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SEM(3) 165 86 17 <0.01 1 <0.01 <0.01 <0.01 <0.01
SEM(4) 417 216 49 0.09 5 0.01 <0.01 <0.01 <0.01
SEM(5) 1013 522 129 2.30 81 0.03 <0.01 0.01 0.01
SEM(6) 2393 1228 321 37.33 time 0.10 0.02 0.05 0.03
SEM(7) 5533 2830 769 531.50 — 0.29 0.11 0.23 0.12
SEM(8) 12577 6416 1793 time – 0.78 0.49 1.38 0.54
SEM(9) 28197 14354 4097 – – 2.28 2.26 9.42 2.69
SEM(10) 62505 31764 9217 – – 7.30 10.74 56.10 13.65
PEPEL(1) 518 287 9 0.10 27 0.02 <0.01 <0.01 <0.01
PEPEL(2) 29413 15366 1796 mem time 2.91 1.85 10.42 3.06
STACK(3) 320 174 26 <0.01 3 0.01 <0.01 <0.01 <0.01
STACK(4) 968 525 80 0.08 79 0.02 < 0.01 < 0.01 < 0.01
STACK(5) 2912 1578 242 4.28 2408 0.07 < 0.01 < 0.01 < 0.01
STACK(6) 8744 4737 728 145.01 time 0.24 0.01 0.01 0.01
STACK(7) 26240 14214 2186 mem – 0.81 0.05 0.05 0.06
STACK(8) 78728 42645 6560 – – 2.82 0.14 0.23 0.20
STACK(9) 236192 127938 19682 – – 10.40 0.41 0.83 0.61

the test terminated because of memory overflow, and ‘inst’ to indicate that the test gave an
incorrect result or terminated because of numerical instability. The results in Tables 1–3 were
measured on a PC with PentiumTM III/500 MHz processor and 128M RAM. The following
benchmarks have been attempted:

� PEP examples:

buf100 – buffer with 2100 states
mutual – mutual exclusion algorithm (by R.Walter)
ab gesc – alternating bit protocol
sdl arg – automatic request protocol
sdl arg d – automatic request protocol (with a deadlock)
PEPRW(n) – readers-writers with n readers
SEM(n) – semaphore with n processes
PEPEL(n) – n elevators
STACK(n) – depth n stack with test for fullness

� Examples used in [19]:

DPD(n) – dining philosophers (dictionary version)
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DPH(n) – dining philosophers (host version)
ELEV(n) – n elevators
FURN(n) – remote furnace program
RING(n) – token ring mutual exclusion protocol
RW(n) – database with n readers and writers
DME(n) – distributed mutual exclusion asynchronous circuit with n DME-cells
SYNC(n) – readers/writers synchronisation

The first set of examples was taken from the standard PEP distribution (some of them
were scaled). The DME series of examples is due to K. McMillan, and the SYNC examples

Table 2 All the examples except ELEV(n) are deadlock-free

Time [s]
Unfolding PO

Problem |B| |E| |Ecut| McM MIP SM std ext o-t-fly

DPD(4) 594 296 81 0.34 8 0.01 <0.01 <0.01 <0.01
DPD(5) 1582 790 211 21.32 87 0.05 0.01 0.01 0.01
DPD(6) 3786 1892 499 544.42 711 0.17 0.05 0.05 0.05
DPD(7) 8630 4314 1129 11637 8610 0.55 0.26 0.18 0.21
DPH(4) 680 336 117 0.49 8 0.01 <0.01 <0.01 <0.01
DPH(5) 2712 1351 547 66.58 290 0.08 0.02 0.02 0.02
DPH(6) 14474 7231 3377 time 31062 0.76 0.32 0.55 0.34
DPH(7) 81358 40672 21427 – time 8.12 4.55 19.15 7.02
ELEV(1) 296 157 59 0.01 <0.01 0.01 <0.01 <0.01 <0.01
ELEV(2) 1562 827 331 0.59 10 0.03 <0.01 <0.01 <0.01
ELEV(3) 7398 3895 1629 83.41 438 0.16 0.04 0.01 0.02
ELEV(4) 32354 16935 7337 mem 11962 0.80 0.23 0.08 0.16
FURN(1) 535 326 189 0.15 2 0.01 <0.01 <0.01 <0.01
FURN(2) 5139 3111 1990 235.74 676 0.11 0.03 0.06 0.03
FURN(3) 34505 20770 13837 mem 129938 1.00 0.40 2.07 0.40
RING(3) 97 47 11 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
RING(5) 339 167 37 0.05 8 0.01 <0.01 <0.01 <0.01
RING(7) 813 403 79 0.93 181 0.02 <0.01 0.01 <0.01
RING(9) 1599 795 137 12.99 2506 0.07 0.01 0.06 0.01
RW(6) 806 397 327 0.14 2 0.01 <0.01 <0.01 <0.01
RW(9) 9272 4627 4106 166.70 inst 0.17 0.03 0.01 0.06
RW(12) 98378 49177 45069 mem time 2.70 1.28 0.26 4.85
DME(2) 487 122 4 0.02 9 0.01 <0.01 <0.01 <0.01
DME(3) 1210 321 9 0.42 354 0.04 <0.01 <0.01 <0.01
DME(4) 2381 652 16 3.54 30 0.09 0.01 0.01 0.01
DME(5) 4096 1145 25 26.99 123 0.23 0.04 0.05 0.04
DME(6) 6451 1830 36 184.19 256 0.57 0.10 0.13 0.11
DME(7) 9542 2737 49 929 inst 1.39 0.22 0.35 0.25
DME(8) 13465 3896 64 3802 inst 3.11 0.55 0.98 0.63
DME(9) 18316 5337 81 12560 – 7.91 1.25 2.59 1.48
DME(10) 24191 7090 100 36800 – 21.38 2.90 6.82 3.51
DME(11) 31186 9185 121 96600 – 59.84 6.68 17.42 8.12
SYNC(2) 4007 2162 490 274.79 4403 0.11 0.05 0.14 0.06
SYNC(3) 29132 15974 5381 mem time 1.52 1.46 4.69 2.08
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Table 3 Comparison of two methods of deadlock detection (‘con’ and ‘mono’ are the numbers of constraints
and monomials in the system of constraints, and ‘vec/exp’ the number of Unf� -compatible vectors explored
by the algorithm)

PO PO/ext
System size Performance System size Performance

Problem cons mons vec/exp t[s] o-t-fly t [s] cons mons vec/exp t[s]

buf100 5051 14951 1 0.01 0.01 101 14951 1 0.02
mutual 497 2160 59 <0.01 <0.01 41 1152 149 0.01
ab gesc 1200 9711 89 0.02 0.02 56 2837 330 0.04
sdl arg 199 709 7 <0.01 <0.01 96 671 116 0.01
sdl arg d 223 834 9 <0.01 <0.01 92 762 60 <0.01
PEPRW(2) 147 917 13 <0.01 <0.01 36 445 22 <0.01
PEPRW(3) 1281 29062 73 0.01 0.01 63 42.10 107 0.02
PEPRW(4) 13513 2050563 469 0.33 0.76 100 46689 634 0.97
SEM(2) 32 92 7 <0.01 <0.01 15 76 8 <0.01
SEM(3) 86 344 16 <0.01 <0.01 22 228 17 <0.01
SEM(4) 216 1262 37 <0.01 <0.01 29 636 38 <0.01
SEM(5) 522 4760 86 <0.01 0.01 36 1696 87 0.01
SEM(6) 1228 18730 199 0.02 0.03 43 4372 200 0.05
SEM(7) 2830 76620 456 0.11 0.12 50 10968 457 0.23
SEM(8) 6416 322190 1033 0.49 0.54 57 26908 1034 1.38
SEM(9) 14354 1376528 2314 2.26 2.69 64 64800 2315 9.42
SEM(10) 31764 5923346 5131 10.74 13.65 71 153636 5132 56.10
PEPEL(1) 287 1064 11 <0.01 <0.01 50 1051 100 <0.01
PEPEL(2) 15366 228613 3986 1.85 3.06 109 50213 5773 10.42
STACK(3) 174 530 4 <0.01 <0.01 24 530 6 <0.01
STACK(4) 525 1610 5 <0.01 <0.01 30 1610 8 <0.01
STACK(5) 1578 4850 6 <0.01 <0.01 36 4850 10 <0.01
STACK(6) 4737 14570 7 0.01 0.01 42 14570 12 0.01
STACK(7) 14214 43730 8 0.05 0.06 48 43730 14 0.05
STACK(8) 42645 131210 9 0.14 0.20 54 131210 16 0.23
STACK(9) 127938 393650 10 0.41 0.61 60 393650 18 0.83
DME(2) 122 528 8 <0.01 <0.01 78 434 10 <0.01
DME(3) 321 1890 25 <0.01 <0.01 117 1119 33 <0.01
DME(4) 652 5536 56 0.01 0.01 156 2228 82 0.01
DME(5) 1145 14250 119 0.04 0.04 195 3845 192 0.05
DME(6) 1830 32832 246 0.10 0.11 234 6054 436 0.13
DME(7) 2737 68698 501 0.22 0.25 273 8939 970 0.35
DME(8) 3896 132480 1012 0.55 0.63 312 12584 2130 0.98
DME(9) 5337 238626 2035 1.25 1.48 351 17073 4632 2.59
DME(10) 7090 406000 4082 2.90 3.51 390 22490 10000 6.82
DME(11) 9185 658842 8177 6.68 8.12 429 28919 21462 17.42
RW(6) 397 2965 1 <0.01 <0.01 85 1255 13 <0.01
RW(9) 4627 141567 1 0.03 0.06 181 14059 19 0.01
RW(12) 49177 8501695 1 1.28 4.85 313 147877 25 0.26

are due to S. Melzer and S. Römer. The other examples are due to J.C. Corbett [5], after a
translation into the PEP format by S. Melzer and S. Römer [19].

We used thePEP tool [2] to generate finite complete prefixes for our partial order algorithm,
and for deadlock checking based on McMillan’s method [16, 19] (the McM column in the
tables), the MIP algorithm [19] (the MIP column) and the method based on computing stable
models of a logic programs by K.Heljanko [10] (the SM column).

Springer



174 Form Method Syst Des (2007) 30:143–176

It is clear that the performance of the MIP algorithm highly depends on the performance
of the tool used to solve the system of constraints. In fact, the algorithm in Section 7 can
be considered as a specialised solver for (9), since the partial order and the conflict relation
can be reconstructed from the constraints Min + C · x ≥ 0. To solve the system of constraints
following the MIP approach, we used thelp solve general purpose LP-solver by M.R.C.M.
Berkelaar, since the CPLEX TM tool used in [19] is commercial. As CPLEX TM is considered
to be more powerful than lp solve, the results in the MIP column could be better.

The meaning of the columns corresponding to our PO algorithm is as follows: ‘std’
indicates the standard version of the algorithm using (11) as a system of constraints; ‘ext’
indicates the version using (22); and ‘o-t-fly’ indicates the on-the-fly version of our algorithm.

Table 3 contains the results of executing the algorithm in Section 7 using (11) and (22) as
systems of constraints for deadlock detection (for the on-the-fly method only time is given,
since it does not explicitly generate the system of constraints, and the number of explored
Unf�-compatible vectors is the same as for the original version of the algorithm). Note that the
search space is usually greater for (22), because it does not allow as effective optimisation as
(11), but since the size of the system (22) is often smaller, the actual running time of the algo-
rithm is still acceptable. Moreover, memory savings for some of the examples are very signifi-
cant. In view of the results in Table 3, the on-the-fly approach has a clear advantage, as it is not
much slower than the original method, but uses much less memory and is easier to implement.

Although our testing was limited in scope, it appears that the algorithm proposed in this
paper is fast, even for large prefixes. In [19], it has been pointed out that the MIP approach
is good for ‘wide’ prefixes with a high number of cut-off events, whereas for prefixes with a
small percentage of cut-off events McMillan’s approach is better. It appears that our approach
works well both for ‘wide’ prefixes with a high number of cut-off events and conflicts, and
for ‘narrow’ ones with a high number of causal dependencies. The worst case is a prefix
with a small number of conflicts and partial order dependencies (i.e., when nearly all pairs
of events are in the || relation), combined with a small percentage of cut-off events. As the
general problem is NP-complete in the size of the prefix, such examples can be artificially
constructed (see, e.g., [17], where a reduction from the 3-SAT problem is given), but we
expect that the new algorithm should work well for practical verification problems.

Among the tested algorithms, the only comparable method was that based on a translation
of a deadlock detection problem into a problem of finding a stable model of a logic program,
proposed in [10]; the problem was then solved using the smodels tool [21, 23]. This tool
is based on a backtracking search technique similar to Davis-Putnam method. An unusual
feature of smodels is the ability to handle threshold-1 constraints (requiring that at most
one variable from a given set is in the model), which were crucial for the efficiency of the
method in [10]. After discussing this approach with its author, we concluded that if the
logic solver used is powerful enough to model downclosing of configurations and freezing
conflicting events in linear time (and this is the case for smodels) then the timing results
of the SM method and our algorithm applied to the system (11) should be of the same order
of magnitude. Indeed, the experimental results confirm that both methods are comparable,
though they are based on different principles.

11. Conclusions

Experimental results indicate that the algorithm proposed in this paper can solve problems
with more than a hundred thousand variables. As MIP problems with even a few hundreds of
integer variables are usually a hard task for general purpose solvers, our approach overcomes
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the existing limitations, while retaining the ability to compute all the minimal solutions and
optimise w. r. t. a given monotonic cost function.

It is worth emphasising that earlier the limitation was not the size of computer memory,
but rather the time to solve an NP-complete problem. With our method, the main limitation
was the size of memory to store the system of constraints, but the on-the-fly approach
overcomes this problem. The method presented in this paper, combined with the efficient
parallel unfolding algorithm developed in [11, Section 5], yields an efficient unfolding-
based framework for model checking Petri nets. Moreover, this framework can be extended
to high-level Petri nets [11, Section 6].

Another contribution of this paper is a generalisation of CDA, which potentially can be
used for various other applications. In particular, we show that many optimisation rules are
compatible with CDA.
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8. Esparza J, Römer S, Vogler W (2002) An improvement of McMillan’s unfolding algorithm. Form

Method Syst Des 20(3):285–310
9. Esparza J (1994) Model checking based on branching processes. Sci Comput Program 23:151–195

10. Heljanko K (1999) Using logic programs with stable model semantics to solve deadlock and reachability
problems for 1-safe Petri nets. IOS Press, Fundamenta Inform 37(3):247–268

11. Khomenko V (2003) Model checking based on prefixes of Petri net unfoldings. PhD Thesis, School of
Computing Science, University of Newcastle

12. Khomenko V, Koutny M (2000) Deadlock checking using liner programming and partial order dep-
endencies. Technical Report CS-TR-695, School of Computing Science, University of Newcastle

13. Khomenko V, Koutny M (2000) Verification of bounded Petri Nets using integer programming. Technical
Report CS-TR-711, School of Computing Science, University of Newcastle

14. Koutny M, Best E (1999) Fundamental study: operational and denotational semantics for the box algebra.
Theor Comput Sci 211:1–83

15. Krivoi S (1999) About some methods of solving and feasibility criteria of linear diophantine equations
over the natural numbers domain (in Russian). Cybern Syst Anal 4:12–36

16. McMillan KL (1992) Using unfoldings to avoid state explosion problem in the verification of asynchronous
circuits. In: Proc CAV’92, Lecture Notes in Computer Science, Springer-Verlag, Vol 663, pp 164–174

17. McMillan KL (1992) Symbolic model checking: an approach to the state explosion problem. PhD Thesis,
School of Computer Science, Carnegie Mellon University

Springer



176 Form Method Syst Des (2007) 30:143–176

18. Melzer S (1998) Verifikation verteilter systeme mit linearer—und constraint-programmierung. PhD
Thesis. Technische Universität München
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