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Abstract Symbolic techniques based on Binary Decision Diagrams (BDDs) are widely
employed for reasoning about temporal properties of hardware circuits and synchronous
controllers. However, they often perform poorly when dealing with the huge state spaces
underlying systems based on interleaving semantics, such as communications protocols
and distributed software, which are composed of independently acting subsystems that
communicate via shared events.

This article shows that the efficiency of state-space exploration techniques using decision
diagrams can be drastically improved by exploiting the interleaving semantics underlying
many event-based and component-based system models. A new algorithm for symbolically
generating state spaces is presented that (i) encodes a model’s state vectors with Multi–valued
Decision Diagrams (MDDs) rather than flattening them into BDDs and (ii) partitions the
model’s Kronecker–consistent next–state function by event and subsystem, thus enabling
multiple lightweight next–state transformations rather than a single heavyweight one. To-
gether, this paves the way for a novel iteration order, called saturation, which replaces the
breadth–first search order of traditional algorithms. The resulting saturation algorithm is
implemented in the tool SmArT, and experimental studies show that it is often several orders
of magnitude better in terms of time efficiency, final memory consumption, and peak memory
consumption than existing symbolic algorithms.

Keywords Symbolic state-space exploration . Interleaving semantics . Decision diagrams .

Kronecker algebra

G. Ciardo (�)
Department of Computer Science and Engineering, University of California, Riverside, CA, USA
e-mail: ciardo@cs.ucr.edu

G. Lüttgen
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1 Introduction

The advent of Binary Decision Diagrams (BDDs) [3] has had a massive impact on the
practicality and adoption of state–based automated verification. It increased the manageable
sizes of state spaces from about 107 states, with traditional explicit state-space generation
techniques, to about 1020 states [4]. Today BDD–based symbolic model checkers [15] are able
to automatically verify temporal properties of complex hardware circuits and synchronous
controllers. However, they often perform poorly on system models that employ interleaving
semantics, such as models of communications protocols and distributed software, which
often suffer from state-space explosion. It is a widely held belief that decision diagrams are
the wrong choice of data structure when generating, storing, and manipulating the huge state
spaces underlying interleaving–based system behavior [6]. Indeed, the most popular model
checker used on such systems is the explicit–state model checker Spin [23] which relies on
partial–order reduction techniques to limit state-space explosion.

The aim of this article is to show that the above–stated belief is wrong and that symbolic
techniques may well be adapted to cope with the intrinsic complexities of system models
based on interleaving. We restrict ourselves to state-space generation which is the most
fundamental challenge for many formal verification tools, such as model checkers [16].
Traditional symbolic state-space generators store both the set of initial states and the global
next–state function, which together define a system’s state space, as BDDs. The BDD–
representation of the desired reachable state space is then computed by iteratively applying
the BDD–encoded next–state function to the BDD representing the initial states, until a fixed
point is reached. In contrast to explicit state-space generators, whose memory requirements
increase linearly with the number of explored states, such a symbolic breadth–first–search
algorithm sees the BDD storing the reachable state space grow and shrink during execution.
In practice, the peak BDD size is achieved well before reaching its final size and is frequently
so large that it cannot be stored in the main memory of a modern workstation.

1.1 Contributions

Our main contribution is a novel symbolic state-space generation algorithm that exploits
the interleaving semantics in event-based concurrent systems and is orders of magnitude
more time– and memory–efficient than traditional symbolic algorithms. The effect of firing
events in such system models is local, a fact that is largely ignored by traditional symbolic
state-space exploration tools, with the exception of the disjunctive partitioning of next–state
functions [5].

System models equipped with interleaving semantics have both structured states and a
structured next–state function. States are described by vectors over finite sets, where each
vector entry represents the state of a subsystem in the system under consideration. These
subsystems either arise naturally when, e.g., considering models of distributed software or
are the result of partitioning a system model that is given in one piece, such as a Petri
net [30]. Sets of state vectors, i.e., structured sets of states, can be represented naturally
by Multi–valued Decision Diagrams [24] (MDDs). This is a variant of Binary Decision
Diagrams (BDDs) that facilitates the encoding of functions over finite–set variables rather
than boolean variables.

Similarly, the next–state function of an event-based system must not be treated as one
monolithic function, but can be disjunctively partitioned by event and, in product–form style,
by subsystem. The latter is due to the Kronecker representation [33] inherently possible in
interleaving–based semantics, such as the standard semantics of Petri nets. This means that
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firing an event usually updates just a few components of a system’s state vector, which
permits the use of multiple lightweight next–state transformations that manipulate MDDs
locally, rather than a single heavyweight one that manipulates BDDs globally. This results
in significant time savings when symbolically exploring state spaces.

The partitioning of the next–state function by events also implies that the reachable
state space can be built by firing the system’s events in any order, as long as every event
is considered often enough. This is in contrast to statements that symbolic state-space
generation is “inherently breadth–first” [1]. We exploit the freedom of firing order in our
setting by proposing a novel iteration strategy that exhaustively fires all events affecting a
given MDD node, thereby transforming it into its final saturated shape. Moreover, nodes are
considered in depth-first fashion, i.e., whenever a node is processed, all its descendants are
already saturated. Saturation implies that MDD nodes are updated as soon as safely possible,
whereas traditional symbolic techniques constantly generate new BDD nodes and disconnect
others [27]. This is important since non–saturated nodes are guaranteed not to be part of the
final state space, while saturated nodes have a good chance to be part of it. Moreover, the data
structures we use to implement MDDs and their operations contain only saturated nodes and
are not cluttered with nodes that will later become superfluous. This significantly reduces
the peak number of MDD nodes and cache entries required during state-space generation. In
addition, the resulting state-space generation algorithm is not only concise, but also allows
for an elegant proof of correctness.

1.2 Results

We have implemented our new Saturation algorithm in the tool SmArT [8], and experimental
studies indicate that it performs on average several orders of magnitude faster than state-
space generation in the modern symbolic model checkers Cadence SMV and NuSMV [15],
for the class of event-based concurrent system models that rely on interleaving semantics.
The considered examples range from the classic problem of dining philosophers to mutual–
exclusion protocols, a flexible manufacturing system, and a fault–tolerant multiprocessor
system, all of which are taken from the rich literature on state-space exploration [22, 29, 32,
36]. Even more important, and in contrast to related work, the peak memory requirements
of the saturation algorithm are often close to its final memory requirements.

Further experiments for which we have replaced the Saturation order with a breadth–first
search strategy in our implementation, testify that the impressive performance improvements
of Saturation are largely a result of our novel iteration order. In comparison, the use of MDDs
and the Kronecker property contribute little to the efficiency improvements, but significantly
simplify the presentation of the Saturation algorithm.

Thus, Saturation enables the symbolic verification of larger concurrent systems than ever
before, using much less memory and providing faster feedback. Recent work [12], which
has applied our Saturation algorithm to implementing a novel symbolic model checker for
the temporal logic CTL, further testifies to this statement.

1.3 Organization

The remainder of this article is organized as follows. Section 2 revisits the classical setting
of symbolic state-space generation. Section 3 briefly summarizes the modeling formalism of
Petri nets, which we have chosen for presenting our work, and introduces a running example.
Our approach to exploiting the structure of concurrent systems models with MDD and
Kronecker encodings is detailed in Section 4, while Section 5 presents our novel Saturation
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algorithm, illustrates it by means of the running example, and proves it correct. The results
of our experimental studies are reported in Section 6, related work is discussed in Sections 7
and 8 gives our conclusions and directions for future research.

2 Traditional symbolic state-space generation

Many real–world systems, including digital circuits and software, may be specified as
discrete–state models. A state may indicate, for example, which registers of a digital circuit
are currently set or which value each variable of a program currently possesses.

Definition 2.1. A discrete–state model is a tuple (Ŝ,N ,S init), where

� Ŝ is the potential state space, i.e., a set that includes all states i that the underlying system
may potentially enter;

� N : Ŝ → 2Ŝ is the next–state function, i.e., N (i) specifies the set of states that can be
reached from state i in one step;

� S init ⊆ Ŝ is the set of initial states.

Intuitively, a discrete–state model of a system is simply a directed graph, in which traversals
through the graph correspond to system runs. In practice, discrete–state models are not
directly given as graphs, but are extracted from structured high–level system descriptions,
e.g., encoded in VHDL or modeled as Petri nets, which often represent an enormous potential
state space and a complex next–state function. Typically, a system modeled in a high–
level formalism is composed of K subsystems, i.e., Ŝ = SK × · · · × S1, in such a way
that a (global) state i can be written as a K -tuple (iK , . . . , i1) of local states, each one
corresponding to a different subsystem. For example, in a digital circuit, each register may
define a subsystem of its own; or, alternatively, several registers may be grouped together. As
another example, in distributed software, each thread may be considered as a subsystem. The
reason for numbering subsystems backwards from K to 1 instead of forwards will become
apparent in Section 4.2.1.

2.1 Computing reachable state spaces

state-space generation consists of finding out which states of a discrete–state model’s po-
tential state space are reachable from its initial states. The set of its reachable states S ⊆ Ŝ
is called the model’s state space. Computing this state space is conceptually a simple task:
one only has to consider the graph corresponding to the model’s next–state function and
search it starting from each initial state. Explicit state-space generators explore this graph
state–by–state, thus their time and space complexity is linear in the number of reachable
states. The challenge of state-space generation is to handle real–world systems with enor-
mous state spaces; indeed, explicit approaches usually become infeasible for systems with
more than about 107 states. Systems based on interleaving semantics may have state-space
sizes that are exponential in the number of subsystems. Thus, states cannot be practically
handled and stored one–by–one but are better processed in chunks of large sets. To achieve
this, researchers typically apply a breadth–first algorithm that computes a model’s state space
as the reflexive and transitive closure of the model’s next–state function, starting from the
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Fig. 1 A classical symbolic algorithm for state-space generation

model’s initial states:

S = S init ∪ N (S init) ∪ N 2(S init) ∪ · · · = N ∗(S init),

where we have extended N to accept sets of states as argument, i.e., N (X ) = ⋃
i∈X N (i).

This leads to the algorithm BFSGenerate of Fig. 1, which performs a breadth–first search
and manipulates sets of states, rather than individual states. The number of required steps,
or iterations, is equal to the the maximum of the (shortest) distances of any reachable state
from S init. To make this algorithm work in practice, one must be able to represent very
large sets of states and the next–state function compactly in the memory of a workstation, as
well as to efficiently perform union operations and apply the next–state function directly on
these representations. In this context, BFSGenerate is referred to as a symbolic, or implicit,
state-space generation algorithm [27].

2.2 Binary Decision Diagrams

A popular technique for implicitly representing sets of states is to use Binary Decision Dia-
grams (BDDs) [3]. Informally, BDDs are graph structures that represent boolean functions
over boolean variables. While the BDD size can be exponential in the number of variables in
the worst case [3], BDDs are an extremely compact representation in many practical cases.
Moreover, given a fixed order on the variables, BDD representations are canonical.

To use BDDs for storing state spaces, each state must be expressible via b boolean variables
(xb, . . . , x1), for some b ∈ N. Then, a set of states X can be represented as a BDD via its
characteristic function fX , i.e., fX (i) = 1 if and only if i ∈ X . One approach is to encode
a potential state i ∈ Ŝ by assuming that |Ŝ| = 2b for some b ∈ N [16]. Another approach,
applicable to structured models, is to represent local states using a “one–hot” encoding with
nl = |Sl | boolean variables, only one of which possesses value 1 at any given time [32]. Set
operations such as union and intersection can be performed via logical operations on the
arguments’ characteristic functions; for example, union on sets corresponds to disjunction on
BDDs. The complexity of these operations depends on the number of nodes in the arguments’
BDDs and not on the number of states encoded by the BDDs. For union and intersection,
the complexity is proportional to the product of the arguments’ BDD sizes, while checks for
emptiness can be made in constant time due to the canonicity of BDDs.

The next–state function of a discrete–state model may be represented by a function fN
over 2b variables (xb, . . . , x1, x ′

b, . . . , x ′
1), where fN evaluates to 1 if and only if state

(x ′
b, . . . , x ′

1) can be reached from state (xb, . . . , x1) in exactly one step. Since the chosen
ordering of variables can have a significant impact on the number of nodes in the resulting
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BDD, fN is typically represented using the variable order (xb, x ′
b, . . . , x1, x ′

1), which usually
produces a more compact BDD than the naive order (xb, . . . , x1, x ′

b, . . . , x ′
1). Applying N to

a set of states X encoded by BDD fX —a process known as image computation—is typically
implemented on BDDs as N (X ) = ∃{xb, . . . , x1}( fX ∧ fN ), where fX ∧ fN considers the
next–state function for only the states in X , and ∃{xb, . . . , x1} determines all possible
outcomes of fX ∧ fN . Note that the resulting BDD is over variables (x ′

b, . . . , x ′
1); these must

be converted back to variables (xb, . . . , x1) at the end of each image computation.

2.3 Problems of symbolic state-space generation

Applying algorithm BFSGenerate with BDD–encoded sets of states often results in sig-
nificant time and memory savings for state-space generation. Indeed, the advent of BDDs
increased the manageable sizes of state spaces to about 1020 states [4], particularly for
synchronous hardware models. Nevertheless, many challenges remain.

One particular problem is that, although the final state space might have a very compact
BDD representation, the intermediate sets of states built during the execution of algorithm
BFSGenerate might not, and thus might not fit into a workstation’s memory. In other words,
it is the peak, not the final BDD size that limits the applicability of BDD-based methods, and
this peak size is almost always reached well before the algorithm terminates. This problem is
made even worse by the way the breadth–first iterations operate on the BDD nodes: whenever
S is updated, new BDD nodes are generated as a result of the union operation, rather than
modifying existing ones. One way to reduce the peak size is to reorganize BDDs by changing
their variable order on–the–fly [20], hoping to achieve a more compact representation.

Another problem is that many next–state functions underlying real–world systems are very
complex and frequently cannot be compactly stored as BDDs. Widely employed techniques
to reduce the size of the BDD representing a system’s next–state function are conjunctive
or disjunctive partitioning [5]. For synchronous system models with K submodels, the next–
state function can be expressed as the conjunction

N (i) = NK (i) × · · · × N1(i),

where the local next–state function Nl (i) describes the change in local state il for global
state i. For many systems, the BDDs representing functions Nl in conjunctive form are quite
compact. Image computation for a conjunctive form can be performed by applying one BDD
at a time, thus avoiding the construction of the monolithic and potentially large BDD for N .
Experimental studies have shown that this approach can increase the size of manageable
state spaces by about one order of magnitude [5].

Similarly, for asynchronous system models, where asynchrony is exemplified by inter-
leaving and where only a single submodel changes its local state at a time, the next–state
function can be expressed as the disjunction

N (i) =
K⋃

l=1

IK × · · · Il+1 × Nl (i) × Il−1 × · · · I1,

where function Nl (i) is as before, while Ig , for g 
= l indicates that the local state of the
gth submodel remains unchanged. Indeed, many concurrent system models, such as event-
based system models specified in process algebras or Petri nets, rely on synchronizations
between an often small subset of the submodels. This event locality requires a more general
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disjunctive–partitioning approach than the one shown above or than minor improvements
(see, e.g., p. 80 of [16]) to the above approach.

3 Petri nets

While our results and our novel algorithm for symbolic state-space generation which we
will present in Sections 4–6 are applicable to general discrete–state models of event-based
concurrent systems that rely on interleaving semantics, such as models of communications
protocols and distributed software, we focus our discussion on an extended class of Petri
nets [30]. This is because the Petri net formalism is well known and widely used, it is easy
to define, and employs interleaving semantics. In addition, with the appropriate extensions,
arbitrarily complex discrete–state concurrent systems can be modeled in Petri nets. In case the
state space of the underlying system model is not finite, our state-space generation algorithm
will not terminate; this is the same as for most other state-space generators. However, in
special cases, but not in general, it can be decided whether a Petri net with the extensions
we use in our study, has a finite state space [30].

Definition 3.1. A Petri net (P, T , f, s) is a directed bipartite multigraph with two finite sets
of nodes: places P and transitions T , such that f : (P × T ) ∪ (T × P) → N defines the
cardinality of input arcs (from places to transitions) and output arcs (from transition to
places), while s ∈ N

|P| defines an initial marking, i.e., an assignment of tokens to each place.
The net evolves according to two rules, the enabling rule and the firing rule. The enabling
rule states that a transition t is enabled in marking i if, for all places p ∈ P , i p ≥ f (p, t).
The firing rule states that an enabled transition t in marking i may fire, leading to a marking
j given by jp = i p − f (p, t) + f (t, p), for all places p ∈ P .

It is easy to see that a Petri net defines a discrete–state model where the potential state space
is the set of potential markings N

|P| and the next–state function is determined by the enabling
and firing rules for f .

3.1 Extended Petri nets

Various extensions have been proposed to the standard Petri net formalism [30].

Definition 3.2. A Petri net with inhibitor arcs specifies, in addition, a function h : P × T →
N ∪ {∞}, and its enabling rule is modified as follows: t is enabled in marking i if, for all
places p ∈ P , i p ≥ f (p, t) and i p < h(p, t).

Definition 3.3. A Petri net with reset arcs specifies, in addition, a function r : P × T →
{0, 1}, and its firing rule is modified as follows: an enabled transition t in marking i may fire,
leading to a marking j given by jp = r (p, t)(i p − f (p, t)) + f (t, p), for all places p ∈ P .

Definition 3.4. A self–modifying net allows the arc cardinalities to be a function of the current
marking, f : ((P × T ) ∪ (T × P)) × N

|P| → N, and modifies the enabling and firing rules
accordingly: a transition t is enabled in marking i if, for all places p ∈ P , i p ≥ f (p, t)(i) and,
if enabled, it can fire, leading to marking j that satisfies jp = i p − f (p, t)(i) + f (t, p)(i),
for all places p ∈ P .
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In other words, an inhibitor arc with cardinality c from p to t disables t whenever p
contains c or more tokens; a reset arc from p to t empties p immediately before adding the
tokens specified by the output arc from t to p, if any, when t fires; and, in self–modifying
nets, the effect of an input or output arc is not constant, but depends instead on the entire
marking.

Petri net formalisms can be classified according to the class of languages they can generate
if transitions are labeled with events α from some event alphabet E , which are emitted when
a transition fires. Petri nets with reset arcs are known to be strictly more expressive than
standard Petri nets, while Petri nets with inhibitor arcs and self–modifying Petri nets are
Turing equivalent. In this paper we restrict ourselves to Petri nets defining finite state spaces,
i.e., Petri nets with a finite number of reachable markings. In this case, the above extensions
can simply be seen as a way to define more compact models, in the sense that model sizes
are small.

3.2 Structuring Petri nets

Although Petri nets appear to be rather monolithic models, they offer a rich and flexible
structure, regarding both potential state spaces and next–state functions.

To represent the potential state space Ŝ of a Petri net as a cross–product SK × · · · × S1,
one may partition the net’s places into K disjoint sets. For example, given a Petri net where
each place is considered to be a submodel, Sl is the set of possible values that the number of
tokens in place pl can assume. For convenience, we may think of Sl as the set {0, 1, . . . , ml},
where ml is the maximum number of tokens place pl might have, even if some number jl < ml

might not occur, as no marking i ∈ S with il = jl exists. Knowing a priori the value of ml

or even just an upper bound on it, e.g., through the computation of place invariants, can be
expensive, and it is undecidable if inhibitor arcs are present [30]. Furthermore, if multiple
places are grouped into the same submodel, Sl may be defined as the cross–product of the
possible values for the number of tokens in those places but, again, many combinations of
these values might not occur. Note that using a finite but larger–than–needed set Sl does not
affect the correctness of the state-space generation algorithms considered here, but it may
make them less efficient.

Determining the smallest possible sets Sl is a problem of practical interest and depends on
the underlying modeling language, here Petri nets. In this article, we simply assume that Sl is
finite and known; hence, given its size nl , we can map its elements to {0, . . . , nl − 1}. In our
experiments in Section 6 we derived the exact bounds of the submodels of the chosen Petri
nets by considering place invariants. However, computing a priori the sets Sl is, in practice,
not necessary for computing the underlying model’s overall state space. Both computations
can be interleaved, i.e., submarkings, or local state spaces, can be computed on–the–fly, as
demonstrated in [11].

Regarding the structure of the next–state function N encoded by a Petri net, it is easy
to see that N can be represented as the union of one next–state function per event α ∈ E ;
formally, N (i) = ⋃

α∈E Nα(i). We then have that α is enabled in state i if Nα(i) 
= ∅, and
that it is disabled otherwise. Moreover, if j ∈ Nα(i), we say that the Petri net can progress
from state i to state j when event, i.e., transition, α fires. As the effect of firing a Petri net
transition is deterministic, Nα(i) can contain at most one state. This union representation
of N is a form of disjunctive partitioning. However, there is more structure to the next–
state function of a Petri net; since this is less obvious, we defer a further discussion to
Section 4.1.
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Fig. 2 The Petri net of our running example (left) and its discrete–state model (right)

3.3 Running example

We use the simple Petri net shown in Fig. 2 as a running example to illustrate our techniques.
This model is often studied in the literature, as it contains important behaviors that can be
modeled with Petri nets: sequentialization, concurrency, conflict, and fork–and–join.

The events of the model are the transitions of the Petri net: E = {a, b, c, d, e}. If the initial
marking is (p1q0r0s0t0), i.e., there is one token in place p and zero tokens in places q , r , s,
and t , the state space S contains only five states, as shown in Fig. 2 on the right. However,
the size of S grows with the cube of the number of tokens initially in place p: if the initial
marking is (pN q0r0s0t0), then S has (N + 1)(N + 2)(2N + 3)/6 markings.

The structure and size of the potential state space depend on how we define the submodels
for this net. In our approach, a Petri net is decomposed into submodels by partitioning
its places. If we assign each place to a different class of the partition, i.e., we use the
partition ({p}, {q}, {r}, {s}, {t}), we have K = 5 submodels. Then it is easy to see that S5 =
{(p0), (p1), . . . , (pN )}, S4 = {(q0), (q1), . . . , (q N )}, and so on, thus Ŝ has (N + 1)5 states.
If we use instead the partition ({p}, {q, r}, {s}, {t}), we have K = 4 submodels, where, for
k ∈ {4, 2, 1}, the set Sk still has N + 1 states, but S3 has instead (N + 1)(N + 2)/2 states,
corresponding to all the ways to put a total of up to N tokens in places q and r , namely
{(q0r0), (q1r0), (q0r1), (q2r0), (q1r1), (q0r2), . . . , (q0r N )}. With this second partition, the
potential state space Ŝ is smaller, as it contains only (N + 1)4(N + 2)/2 states. Of course,
the state space S is the same, regardless of how we define Ŝ.

4 Exploiting interleaving semantics in concurrent system models

To benefit from the interleaving semantics in event-based concurrent system models for
symbolic state-space generation, we depart from the classical encoding of next–state func-
tions and state spaces as BDDs. Instead, we propose to employ Kronecker expressions on
sparse boolean matrices to store next–state functions and Multi–valued Decision Diagrams
(MDDs) to store state spaces. This allows us to exploit the event locality implied by interleav-
ing semantics and forms the foundation for the symbolic state-space generation algorithm
we present in Section 5.

4.1 Sparse boolean matrices to store next–state functions

In contrast to the wealth of related work starting with McMillan’s thesis [27], we do not
represent the next–state function of an event-based concurrent system model with interleaving
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semantics via decision diagrams. Instead we split the next–state function by event α and level l
to obtain a nested disjunctive–conjunctive form, which can be represented as a collection of
(at most) K · |E | sparse matrices, where E is the set of considered events.

This splitting is inspired by techniques to compactly represent the transition rate matrix of
a continuous–time Markov chain by means of a sum of Kronecker products [33]. Of course,
since our next–state functions are concerned only with which states can be reached, and not
with the rate at which they can be reached, we use boolean matrices instead of real–valued
matrices. The application of Kronecker–based encodings to state-space generation has been
proposed by Buchholz and Kemper in [25], but for explicit rather than symbolic state-space
generation. In this section we briefly review Kronecker products and show that many next–
state functions, including those defined by Petri nets, permit a practical Kronecker–based
encoding.

4.1.1 Kronecker products, consistency, and representation

We start from a given next–state function N of an event-based concurrent system model
with interleaving semantics, with Ŝ = SK × · · · × S1 and nl = |Sl |, which is decomposed
by event, i.e., N = ⋃

α∈E Nα . In a Kronecker–based encoding scheme, Nα is represented by
a square boolean matrix Nα of size |Ŝ|, where Nα[i, j] = 1 if and only if j ∈ Nα(i) and states
i and j, when used as global state indices, are interpreted as mixed–base natural numbers
i = ∑

K≥l≥1 il · ∏l−1
g=1 ng , and j = ∑

K≥l≥1 jl · ∏l−1
g=1 ng , respectively. However, matrix Nα

is not stored explicitly but as the Kronecker product Nα = NK ,α ⊗ · · · ⊗ N1,α , where each
square matrix Nl,α has dimension nl . Such a representation always exists for generalized
Kronecker products [19], but this may require functional elements in the matrices Nl,α . To
eliminate the need for functional elements and use ordinary Kronecker products, we must
ensure that the representation of NK ,α ⊗ · · · ⊗ N1,α is possible using matrices Nl,α having
constant boolean entries.

Definition 4.1. An event α has a Kronecker representation for a given model partition if
its next–state function Nα can be written as the cross–product of K local functions, i.e.,
Nα = NK ,α × · · · × N1,α , where Nl,α : Sl → 2Sl , for K ≥ l ≥ 1. Moreover, a partition of a
given system model into submodels is Kronecker–consistent if every event α has a Kronecker
representation for that partition.

A Kronecker representation guarantees that the entries of each matrix Nl,α are boolean
constants, since Nl,α[il , jl ] = 1 if and only if jl ∈ Nl,α(il ). Indeed, the matrix Nl,α can be
seen as a way to represent the local next–state function Nl,α .

Intuitively, a Kronecker representation reflects the interleaving semantics of event-based
concurrent systems. For an event to be enabled, it must not be disabled by any subsystem:
Nl,α(il ) = ∅ implies Nα(i) = ∅, for any global state i whose lth component is il . Moreover,
the outcome of firing an event is decided by each subsystem independently: if Nα(i) contains
both ( jK , . . . , j1) and ( j ′

K , . . . , j ′
1), then it must contain all states of the form ( j ′′

K , . . . , j ′′
1 ),

where each j ′′
l can be either jl or j ′

l .
An important observation given a Kronecker–consistent partition is that, if the state of

submodel l does not affect the enabling of event α and if the firing of α does not change the
state of subsystem l, then Nl,α(il ) = {il} for all il ∈ Sl , i.e., Nl,α = I, the identity matrix of
dimension nl . Since this property features prominently in those concurrent system models that
are equipped with interleaving semantics, we introduce the following notational conventions.
We say that event α depends on level l if Nl,α 
= I, i.e., if the local state at level l affects the
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enabling of α or if it is changed by the firing of α. Let Top(α) and Bot(α) be the highest and
lowest levels, respectively, on which α depends. An event α such that Top(α) = Bot(α) = l
is said to be a local event for level l.

4.1.2 Existence of Kronecker representations

The aim of this section is to show that our Kronecker–consistency requirement is not re-
strictive in practice. It is in fact quite natural for concurrent system models; indeed, it is
automatically satisfied by many modeling formalisms, such as by Petri nets, even in the
presence of inhibitor and reset arcs. For other models, such as self–modifying Petri nets,
Kronecker consistency can always be achieved, albeit at the price of introducing additional
system events or combining subsystems. To substantiate these statements we establish some
theoretical properties of Kronecker representations.

Lemma 4.1. An event that is enabled in exactly one state and whose firing leads to exactly
one state has a Kronecker representation in any partition.

Proof: If i is the only state in which event α is enabled, and Nα(i) = {j}, then we have
Nl,α(il ) = { jl} and Nl,α(i ′

l ) = ∅ for any submodel l and any local state i ′
l 
= il . �

Another way to achieve Kronecker consistency is to coarsen the considered partition by
merging submodels. In the extreme case where all submodels are merged, the resulting
partition is trivially a Kronecker representation but no longer exhibits any structure.

Lemma 4.2. An event α with a Kronecker representation for a given partition also has a
Kronecker representation for any coarser partition, i.e., a partition obtained by merging any
number of submodels.

For the proof of this lemma and the next we use the shorthand Nl:g,α to represent the effect
of α on substates, i.e., Nl:g,α((il , . . . , ig)) = Nl,α(il ) × · · · × Ng,α(ig), for K ≥ l ≥ g ≥ 1.

Proof: Since the ordering of submodels does not determine whether an event has a Kronecker
representation, it suffices to show that the theorem holds when the topmost submodels from K
down to K ′ < K are merged. Given that event α has a Kronecker representation, we have
Nα = NK :1,α = NK :K ′,α × N(K ′−1):1,α . Thus, in the coarsened partition with K ′ levels, where
level K ′ corresponds to the old levels K , K −1, . . . , K ′, the local next–state function for
submodel K ′ is NK :K ′,α . �

As an example, consider some model that is partitioned into four submodels, where ev-
ery event has a Kronecker representation except for α, i.e., Nα = N4,α × N(3,2),α × N1,α ,
but N(3,2),α : S3 × S2 → 2S3×S2 cannot be expressed as the product N3,α × N2,α . We can
achieve Kronecker consistency by either partitioning the model into three submodels—
since, then, α would now have a Kronecker representation and Lemma 4.2 ensures that every
other event would retain a Kronecker representation—or by replacing event α with a set of
events {αi, j : i ≡ (i3, i2) ∈ S3 × S2 ∧ j ≡ ( j3, j2) ∈ N(3,2),α(i)}—so that N3,αi, j (i3) = { j3}
and N2,αi, j (i2) = { j2}. In the worst case α can be enabled in each combination of local states.
For a formalism such as Petri nets, where the effect of α is deterministic, this splits α into
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n3 · n2 events. However, it may be possible to merge some of these events using the following
lemma.

Lemma 4.3. For a given partition, two events α1 and α2 with Kronecker representations
can be merged into a single event α with a Kronecker representation, if the local next–state
functions for α1 and α2 differ in at most one submodel. The local functions for the merged
event α are given by the union of the local functions for events α1 and α2.

Proof: Suppose we have a partition of K submodels and Ng,α1 = Ng,α2 for all g 
= l, for
some l with K ≥ l ≥ 1. Then we have Nα = Nα1 ∪ Nα2 and

Nα1 ∪ Nα2

= (
NK :(l+1),α1 × Nl,α1 × N(l−1):1,α1

) ∪ (
NK :(l+1),α2 × Nl,α2 × N(l−1):1,α2

)

= (
NK :(l+1),α1 × Nl,α1 × N(l−1):1,α1

) ∪ (
NK :(l+1),α1 × Nl,α2 × N(l−1):1,α1

)

=NK :(l+1),α1 × (
Nl,α1 ∪ Nl,α2

) × N(l−1):1,α1 .

Thus, we getNg,α = Ng,α1 = Ng,α2 = Ng,α1 ∪ Ng,α2 for all g 
= l, andNl,α = Nl,α1 ∪ Nl,α2 .
�

Since the next–state functions of local events for submodel l differ only at level l, we can
always apply Lemma 4.3 and merge such events into a single macro–event λl . This improves
the efficiency of the state-space generation algorithm we introduce in Section 5.

Many modeling languages guarantee Kronecker consistency for any partition of a given
system model. The following theorem shows that any partition of a non–self–modifying Petri
net is Kronecker–consistent, even in the presence of inhibitor arcs and reset arcs.

Theorem 4.1. Given a Petri net with inhibitor arcs and reset arcs (P, T , f, h, r, s), any
partition of its places P into K ≤ |P| submodels is Kronecker–consistent.

Proof: By Lemma 4.2, it suffices to show that the theorem holds for K = |P|, since any
other partitioning is a coarsening of that one. In this case, each place is a submodel, and we
may name both with the integers from K down to 1. Then, Sl contains the numbers of tokens
that place l can hold, and the local functions for transition α are given by

Nl,α(il ) =
{

∅ if il < f (l, α) or il ≥ h(l, α)

{r (l, α)(il − f (l, α)) + f (α, l)} otherwise .

This matches Definition 3.1, i.e., event α is enabled in marking i if and only if, for all places l,
Nl,α(il ) 
= ∅ and, if α fires, the new marking j satisfies jl = r (l, α)(il − f (l, α)) + f (α, l).
Thus, every transition α has a Kronecker representation. �

This proof suggests the following variant of Theorem 4.1 for a specific class of self–modifying
Petri nets.

Theorem 4.2. Given a self–modifying Petri net (P, T , f, s), a transition α ∈ T has a Kro-
necker representation in a partition PK , . . . ,P1 of P if, for each submodel Pl and for each
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place p ∈ Pl , the functions f (α, p) and f (p, α) depend only on the lth component of the
global state, i.e., only on the numbers of tokens in the places of Pl .

Proof: (Sketch) The proof is analogous to that of Theorem 4.1. The restriction on the form
of f (α, p) and f (p, α) ensures that Nl,α can be properly defined as a function of Pl alone,
i.e., Nl,α : N

|Pl | → 2N
|Pl | . �

Theorem 4.1 also suggests our desired representation of the next–state function N of a
discrete–state model as a collection of boolean matrices, one for each event and submodel.

Corollary 4.1. The next–state function N of a discrete–state model defined by a Petri net
(P, T , f, h, r, s) with inhibitor arcs and reset arcs can be encoded by |P| · |T | square
boolean matrices Nl,α , for α ∈ T and l ∈ P satisfying: (i) Nl,α is of size nl , where nl is
the number of different token counts il that l may contain in any reachable marking; and
(ii) Nl,α[il , jl ] = 1 if and only if (il ≥ f (l, α)) ∧ ( jl = r (l, α)(il − f (l, α)) + f (α, l)) ∧
(il < h(l, α)).

We conclude this section by observing that, for practical purposes, we can automatically
extract the finest Kronecker–consistent partition of an arbitrary self–modifying Petri net.
In our tool SmArT [8], we simply have to parse the expressions used to specify f (α, p)
and f (p, α), for each transition α. Alternatively, if we are also given a partition, we can
automatically find the finest Kronecker–consistent coarsening of that partition, by applying
Lemma 4.2, or the coarsest refinement of the transitions in the net so that the given partition is
Kronecker–consistent, by applying Lemma 4.1. These statements must be qualified, however,
since our approach is purely syntactic, i.e., we must assume that, if the number of tokens for
some place appears in an expression, then the expression truly depends on it.

4.1.3 Storing the next–state function of our running example

Returning to our example of Fig. 2, we can now show how its next–state function may
be encoded using Kronecker representations. For the partition into five submodels, the
corresponding boolean matrices are given in the top table of Fig. 3, when indexing the local
states as shown on the left–hand side of Fig. 5. An empty cell at level l for event α signifies
that Nl,α is the identity matrix. Observing that both events b and c depend on levels 4 and 3,
one could decide to merge these two levels, i.e., assign places q and r to the same submodel,
as discussed at the end of Section 3.3. The resulting matrices are displayed in the middle
of Fig. 3. Finally, since events b and c now depend only on the revised level 3, they are
both local events for level 3 and can be merged into the single macro–event λ3. This yields
the matrices at the bottom of Fig. 3. Note that these matrices coincide with the ones in the
previous case, except that the new column for the macro–event λ3 is obtained as the boolean
sum of the old columns for events b and c.

4.1.4 Implementation of Kronecker representations

A naive implementation for the Kronecker representation of N according to Corollary 4.1
uses a number of boolean matrices equal to |P|·|T |, and is thus quadratic in the size of the
Petri net, where the |T | matrices for level l are themselves quadratic in the size nl of the
corresponding local state space Sl . However, by exploiting the presence of identity matrices
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Fig. 3 Storing N for our running example using a Kronecker encoding

and the subsystem structure of the model, a linear number of matrices, each itself of linear
size, suffices.

To see this, note that Corollary 4.1 implies that each Nl,α contains at most one entry
equal to 1 per row, thus it can be stored using an integer vector of size nl , whose entry il is
either the unique local state jl satisfying Nl,α(il ) = { jl}, or “−1” if Nl,α(il ) = ∅. The same
corollary also implies that Nl,α is the identity if f (l, α) = 0, f (α, l) = 0, h(l, α) = ∞, and
r (l, α) = 1, i.e., if place l and transition α are not connected by any input, output, inhibitor,
or reset arc. Since identity matrices do not need to be represented explicitly, we can store the
next–state function N for a Petri net of this class using at most |P| + |T | + ∑

(l,α)∈F (nl + 1)
integers, where “|P|” corresponds to a vector needed to record the sizes of the local state
spaces, “|T |” corresponds to pointers to a sparse transition–wise addressing scheme for the
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Fig. 4 Storing N for our running example (with K = 5) using |P| + |T | + 3|F | integers

non–identity matrices, “(nl + 1)” corresponds to an integer vector of size nl for each matrix
for submodel l plus an integer to record the submodel index, and F describes the transition–
place pairs connected by some arc in the net, i.e., F = {(l, α) : f (α, l) 
= 0 ∨ f (l, α) 
=
0 ∨ r (l, α) 
= 1 ∨ h(l, α) 
= ∞}. In particular, we obtain the following theorem for safe
Petri nets, i.e., for those Petri nets for which no place ever contains more than one token.

Theorem 4.3. For a safe Petri net, possibly with inhibitor arcs and reset arcs, the next–state
function can be encoded in linear space; it requires at most |P| + |T | + 3|F | integers,
where F is the set of arcs in the net.

Proof: (Sketch) The proof is a special case of the discussion above, when nl = 2. �

As a consequence of this theorem, the set of matrices in the top portion of Fig. 3 (case K = 5
and 5 events), can be encoded by the three vectors shown in Fig. 4, where |P| + |T | + 3|F | =
5 + 5 + 3 · 12 = 46. Each entry in the vector of transition pointers points to the end of the
encoding of the sequence of matrices for the corresponding transition. For readability, the
numbers corresponding to the level indices are in boldface, “–” represents “−1”, i.e., the
transition is disabled, and the separators “||” have been added (their position in the vector
encoding the entries of the Kronecker matrices can be inferred from the local state-space
sizes and the transition–pointer vector).

4.2 MDDs to store state spaces

Concurrent systems consisting of multiple subsystems give rise to state spaces whose char-
acteristic function is of the form SK × SK−1 × · · · × S1 → {0, 1}. Since we assume that a
system’s local state spaces Sl are finite, we may identify each local state with an integer in
the range {0, 1, . . . , nl−1}. State spaces may thus be represented naturally via Multi–valued
Decision Diagrams. These were proposed by Kam et al. [24] and encode functions of the form

{0, 1, . . . , nK −1} × {0, 1, . . . , nK−1−1} × · · · × {0, 1, . . . , n1−1} → {0, 1}.

Intuitively, Multi–valued Decision Diagrams generalize BDDs by extending the constant–
two fan–out of BDD nodes to larger fan–outs, namely fan–out nl for nodes at level l. The
particular variant of Multi–valued Decision Diagrams we use is defined as follows.

Definition 4.2. A Multi–valued Decision Diagram, or MDD for short, is a directed acyclic
edge–labeled multi–graph with the following properties:

� Nodes are organized into K + 1 levels. We write p.lvl to denote the level of node p.
� Level K contains only a single non–terminal node r , the root, whereas levels K −1 through

1 contain one or more non–terminal nodes.
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Fig. 5 Storing S for our running example using MDDs (top: K = 5; bottom: K = 4)

� Level 0 consists of the two terminal nodes, 0 and 1.
� A non–terminal node p at level l has nl arcs pointing to nodes at level l−1. An arc from

position il ∈ Sl to node q is denoted by p[il ] = q .
� No two nodes are duplicates. Two distinct non–terminal nodes p and q at level l are

duplicates if p[il ] = q[il ] for all 0 ≤ il < nl .

In contrast to [24], our MDDs are not fully–reduced but quasi–reduced [26], as our definition
permits redundant nodes, i.e., non–terminal nodes p at level l such that p[il ] = p[0] for all
0 ≤ il < nl . As shown for quasi–reduced ordered BDDs, which correspond to the special case
of our MDDs where nl = 2 for all K ≥ l ≥ 1, this does not affect canonicity; quasi–reduced
MDDs may simply be understood as minimized deterministic automata [26].

Given a node p at level l, we recursively define the node reached from it through a substate
starting at level l, i.e., a sequence σ of local states (il , . . . , il ′ ), as

p[σ ] =
{

p if σ = (), the empty sequence

p[il ][σ ′] if σ = (il , σ
′), with il ∈ Sl .

Given a node p at level l, the substates encoded by p or reaching p, are then, respectively,

B(p) = {σ ∈ Sl × · · · × S1 : p[σ ] = 1} “below′′ p;

A(p) = {σ ∈ SK × · · · × Sl+1 : r [σ ] = p} “above′′ p.

Consequently, B(p) contains the substates that, prefixed by a substate in A(p), form a global
state encoded by the MDD. For technical convenience, we reserve a special node zl at level l
to encode the empty set: B(zl ) = ∅. Note that node zl has all arcs pointing to node zl−1, with
z0 corresponding to terminal node 0.
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4.2.1 Storing the state space of our running example with MDDs

The state space for the Petri net of Fig. 2, when the initial state is (p1q0r0s0t0) and the
model is partitioned into five submodels, is encoded by the 5–level MDD in Fig. 5, top; the
elements of the local state spaces Sl and their mapping to {0, . . . , nl −1} are shown to the
left of the MDD. We use a discovery order for the mapping: submarkings are indexed in
the order they might be found by a breadth–first exploration from the initial marking, which
then always corresponds to the global state where all local states have index 0. In particular,
the indices of local states (p1) and (p0) in SK are 0 and 1, respectively, not 1 and 0.

Graphically, we display a node p at level l as an array of size nl indexed from 0 to nl −1;
to improve readability, we write the indices inside the cell. If p[il ] = q 
= zl−1, we draw an
arc from index il of the array to node q . If p[il ] = zl−1, we omit the arc and the index, since
only terminal node 1 is displayed.

The MDD resulting when partitioning our example Petri net into four submodels, with
places q and r assigned to the same submodel, is displayed in Fig. 5, bottom. One of the
local state spaces, S3, contains now three, not two, states. Had we included state (q1r1) in
the definition of S3, the arrays depicting the nodes at level 3 of the the MDD would have had
a fourth entry, corresponding to this local state, but each associated arc would have been to
node z2, i.e., this entry would not have been used to encode any reachable global state.

This mapping of concurrent systems onto MDD levels is the reason why we label subsys-
tems “backwards”, i.e., from K to 1. When employing this convention, as has been done in
the literature before (see, e.g., [40]), the MDD terminal nodes always reside at level 0.

4.2.2 Implementation of MDDs

While the Multi-valued Decision Diagrams proposed in [24] were implemented through
BDDs, we showed in [29] that implementing MDDs directly may result in greater efficiency
during state-space generation. This is because accessing and manipulating a local state
requires us to work on a single MDD node only, rather than on multiple BDD nodes that need
to be recursively traversed. Implementing MDDs directly offers a few additional challenges
with respect to the more commonly used BDDs.

The main and most obvious challenge is a consequence of nodes at different levels having
different sizes, which implies that it might not be possible to reuse them across levels. Our
solution is to manage K separate pools of nodes, one per level. To avoid duplicate nodes,
each pool is managed by a separate unique table stored using extensible arrays, whose sizes
can be increased or reduced during the execution and yet provide constant–time access to
any element. More specifically, we store the nodes at a given level l using a node array
and an arc array, as shown in Fig. 6. The former is organized according to the MDD node
indices, i.e., the constant portion of the data for node p at level l is stored in node[l][p]. As
such, the index of node p is unique only within its level l; an arbitrary node must therefore
be referred to as the pair (l, p). The arc array is indexed by the start and size field of
the node array, i.e., if node[l][p].start = a and node[l][p].si ze = b, then p[i] is stored in
arcs[l][a + i], for 0 ≤ i < b. The arcs are stored in truncated full format, i.e., b < nl means
that p[b] = · · · = p[nl−1] = zl−1, where nl is the node size at level l. Our implementation
in SmArT [8] also provides a sparse format, which stores each arc p[il ] 
= zl−1 using two
successive positions in the arc array, one for the local state il and one for the value of p[il ].
The format that saves the most memory is chosen individually for each node, and a flag
in the node is used to discriminate between the two choices. For convenience, we reserve
the index 0 at each level for the special node zl . This can be physically stored in the node
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Fig. 6 Implementing MDD nodes using extensible arrays

array, with a size of 0, and inserted into the unique table. Alternatively, node (l, 0) can be
a virtual node, not stored in the node array, but this requires ensuring that each newly–
created node is not a duplicate of zl before checking the unique table. SmArT uses the latter
approach.

As mentioned before, we use quasi–reduced instead of fully–reduced decision diagrams.
Indeed, having arcs span only one level has several important implementation advantages.
First, any operation on MDDs frequently used in our Saturation algorithm of Section 5,
such as the union of two MDDs, is performed on nodes at the same level. As for BDDs,
each MDD operation uses a cache to reduce computational complexity. Since our caches are
organized by level, there is no need to store level information as part of the key or the result.
Analogously, each entry in array arcs[l] stores only the index of the node being pointed to,
since its level is known to be l−1.

Second, field count of node[l][p] represents the number of arcs pointing to node p.
When an arc pointing to p is redirected, we reduce node[l][p].count and, if it reaches 0,
we know that p has become disconnected. However, index p might still appear in cache
entries, thus we cannot recycle p right away. Combined with our level–based node storage,
the quasi–reduced form allows us to recycle nodes in array node[l] and compact array arcs[l]
independently and efficiently, on a level-by-level basis. To recycle all nodes p at level l for
which node[l][p].count = 0, we simply remove the corresponding entries from the unique
table for level l and scan all operation caches at level l to eliminate any entry referring to
them. If we also want to compact node array node[l], we must update the pointers to the
nodes. In our MDDs, this only requires us to update the entries in arcs[l+1]. Independently,
we can choose to compact arc array arcs[l] at any time. This only requires us to update the
start field of the entries in array node[l].

Third, as will be clear in the discussion of our Kronecker representation of the next–state
function and of our Saturation algorithm, greater efficiency is achieved by firing events not
from the root node of the MDD, but from each node at the highest level l affected by an event.
This includes redundant nodes, which would then have to be recognized, by examining each
arc “jumping over” level l, and reintroduced in the MDD, had we used fully–reduced MDDs.

A final reason to use the quasi–reduced form is that, in practice, our experiments confirm
that very few, if any, nodes in the MDD encoding the state space of the discrete–state
models we studied are redundant. Indeed, it is easy to see that, if a local state space Sl

contains even just one unreachable local state, then the only possible redundant node at
level l is the special node zl . As discussed above, our implementation does not actually
store zl .
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5 Saturation–based state-space generation

Our novel algorithm for generating the reachable state space S of an event-based concurrent
system model relies on storing reached states as an MDD and on encoding the next–state
function as a Kronecker expression on sparse boolean matrices, as shown in the previous
section.

In contrast to related work, we iterate multiple local next–state functions rather than a
single global next–state function to obtain state space S. This has two distinct advantages.
First, it enables the local manipulation of the underlying data structures, which is the key
to eliminating computational overheads. Second, it gives us a choice for the order in which
to iterate the local next–state functions, while still computing the desired fixed point, due to
the inherent monotonicity of state-space generation. The only requirement is that each event
must be considered in each state, or at least in each state where it might be enabled and it
might create new states if it fires. In our setting, firing an event is an extremely lightweight
operation because of event locality. Event locality ensures that most events affect only a
few components of a global state, i.e., a few local states, and this is often even more so as
models scale up; indeed, our firing operation exploits the many identity matrices that are
part of a Kronecker representation. In turn, monotonicity and event locality pave the road for
modifying MDD nodes in place, which is unique to our approach and significantly reduces
memory requirements while increasing time efficiency.

5.1 The idea of node saturation

We exploit the freedom of iteration order by suggesting a novel iteration order based on
exhaustively firing all events affecting a given MDD node and its descendants, thereby
bringing the node to its final, saturated shape. Moreover, nodes are considered in a bottom–
up fashion, i.e., when a node is processed, all its descendants are already saturated. To aid our
presentation, it is convenient to introduce the following notational conventions. We extend
the next–state function Nl:g,α for an event α to sets of substates: Nl:g,α(X ) = ⋃

i∈X Nl:g,α(i),
for X ⊆ Sl × · · · × Sg , and to sets of events: Nl:g,E ′ (X ) = ⋃

α∈E ′ Nl:g,α(X ), for E ′ ⊆ E . We
omit the range of levels when it is clear from the context; in particular, we write N≤l as a
shorthand for Nl:1,{α:Top(α)≤l}. We may now formalize node saturation as follows:

Definition 5.1. An MDD node p at level l is saturated if it encodes a set of (sub)states that
is a fixed point with respect to the firing of any event affecting only its level or lower levels,
i.e., if B(p) = N ∗

≤l (B(p)) holds.

It can easily be shown by contradiction that, if node p is saturated, any node on a path from
p to 1 must also be saturated.

Our choice of iteration order improves both memory and execution–time efficiency, for
several reasons. First, it ensures that the firing of an event α ∈ El = {β ∈ E : Top(β) = l}
at an MDD node p adds as many new states as possible, since all descendants of p have
already been saturated. Then, since each node in the final encoding of the state space S is
saturated by definition, any node inserted in the unique table has at least a chance of being
still part of the final MDD, while any unsaturated node inserted by a traditional symbolic
approach is guaranteed to be eventually deleted and replaced with another node encoding
a larger subset of states. Finally, once we saturate a node p at level l, we never need to fire
any event α ∈ El in p again, while, in classic symbolic approaches [27], N is applied to the
entire decision diagram at every iteration.
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The resulting state-space generation algorithm is on average several orders of magnitude
more efficient in time and memory than existing BDD–based algorithms, as the data in
Section 6 will show. Most importantly, the peak memory requirements of our algorithm
are often close to its final memory requirements. When compared to our own previous
work [9, 29] on MDD–based state-space generation, saturation eliminates much administra-
tion overhead, reduces the average number of event firings, and enables a simpler and more
efficient cache management.

5.2 The saturation algorithm

Our algorithm implementing the idea of node saturation is shown in Fig. 7. It consists of
routine Generate for initialization, routine Saturate to control node saturation, and routine
Fire to recursively fire events at lower levels. Routines Saturate and Fire are mutually
recursive. Obviously, saturating a node requires firing events on this node, whence Saturate
calls Fire. The mutual recursion is necessary to implement our desired invariant that the
descendants of a node being saturated are already saturated; every new node generated during
the execution of Fire will immediately be saturated by calling Saturate on this new node.
However, before commenting on our routines in more detail, we introduce the underlying
data types and data structures, as well as some generic routines for manipulating them which
are adapted from the literature.

5.2.1 Data structures

Our algorithm’s basic data types are evnt (event), lcl (local state), lvl (MDD level), and
node (MDD node), which in practice are simply integers in appropriate ranges. Just as
in traditional symbolic state-space generation algorithms, we use a unique table, to detect
duplicate nodes, and operation caches, in particular a union cache and a firing cache to
avoid potentially expensive re–computations of operations already carried out. However, our
approach is distinguished by the fact that only saturated nodes are checked in the unique table
or referenced in the caches. As mentioned in Section 4.2.2, the table and cache data structures
are organized along MDD levels. For K ≥ l ≥1, UT[l] is a unique table for nodes at level l;
it is used to retrieve the node p given the key p[0], . . . , p[nl −1]. For K > l ≥1, UC[l] is
the union cache for nodes at level l; it is used to retrieve the node s given the nodes {p, q}
(as an unordered set, since the union operation is commutative), where B(s) = B(p) ∪ B(q).
For K > l ≥1, FC[l] is the firing cache for nodes at level l; it is used to retrieve the node s
given node p and event α, where Top(α) > l ≥ Bot(α) and B(s) = N ∗

≤l (Nα(B(p))). Note
that FC[l] does not contain entries for any event α ∈ El , since our approach saturates a node
by modifying it in place, as will be shown below; for the same reason, UC[K ] and FC[K ]
are not needed at all.

5.2.2 Routine generate

The call Generate(s) starts off our algorithm by creating the MDD that encodes the initial
state s and by immediately saturating each MDD node p it creates, in a bottom–up fashion,
by calling Saturate(p). It is straightforward to generalize our algorithm from taking a single
initial state to multiple initial states that are represented as an MDD. We simply traverse this
MDD in a depth-first fashion and use a flag to recognize MDD nodes that have already been
saturated.
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Fig. 7 Pseudo–code for the Saturation algorithm

5.2.3 Routine saturate

The call Saturate(p) saturates node p at level l. Since our algorithm guarantees that all
children of p are already saturated, saturating p involves exhaustively firing all events α ∈ El

affecting level l and possibly lower levels. Node p itself is saturated “in place”. For each
i ∈ Locals(α, p), that is, for each i ∈ Sl used to currently encode states in this node (i.e.,
p[i] 
= 0) and locally enabling α (i.e.,Nl,α(i) 
= ∅) we call Fire(α, p[i]) to compute the result
f of firing α in the node pointed by p[i], and then recursively saturating it in place. This set of
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Fig. 8 In–place updates vs. ordinary node manipulation during state-space generation

states is added directly to eachB(p[ j]), for each j ∈ Nl,α(i), and p[ j] is updated accordingly.
This is correct because, according to our Kronecker representation of Nα , the enabling and
the outcome of firing event α depend only on the states of submodels Top(α) through Bot(α)
and is, in particular, independent of the ones in submodels K through Top(α) + 1. Updating
node p in place means that the effect of firing α benefits all global states through node p,
i.e., all paths in A(p), thus avoiding repetitions of the same work; this is illustrated in
Fig. 8.

Whenever new states are found, i.e., the union of B(p[ j]) and B( f ) is not B(p[ j]), every
event in El must be fired again to test for further reachable states. This iteration continues
until no more states are found, i.e., until we attempted the firing of each event α ∈ El once
without changing node p. It should be pointed out again that routines Saturate and Fire
are actually mutually recursive. This is because the firing of event α ∈ El might lead to the
creation of new MDD nodes at levels lower than l, which are saturated before the saturation
of node p continues.

5.2.4 Routine fire

The second fundamental routine in our algorithm is Fire(α, q), where q.lvl = l < Top(α).
Like Saturate, Fire finds out whether event α is enabled in a node q and its descendants.
However, unlike Saturate, routine Fire operates on a fresh node s instead of modifying q in
place, since (i) q is already saturated and in UT[l], (ii) might be already referenced by UC[l]
and FC[l], and (iii) might be pointed to by other nodes at level l + 1 along paths that do not
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locally enable α. The third argument shows that updating such a node s, with l < Top(α), is
incompatible with interleaving semantics and would thus be incorrect in general.

Accordingly, Fire(α, q) proceeds as follows. First some trivial cases are done away with,
namely that l < Bot(α) (Line 3) or that the result of firing α in q has been computed before
and is stored in the firing cache (Line 4). The actual work of Fire occurs in Lines 6–9. For
each local state i ∈ Locals(α, q) in which α is enabled, we recursively call Fire (Line 7) and
join the resulting set of states represented by node f to each of the i–successor states of
node s, as given by the next–state function for event α at level l. This is done by invoking the
standard union operation on MDDs (Line 9). If a recursive call determines that event α is not
enabled at some lower level l > g ≥ Bot(α), i.e., if Locals(α, q) = ∅ when q.lvl = g, then
Fire correctly returns zl , the node at level l representing the empty set. Before returning, node
s is saturated by calling Saturate(s) and the result is stored in the firing cache (Lines 10–11),
thus maintaining our invariant that lower–level nodes are saturated before higher–level nodes.

Summarizing, the Saturation algorithm brings MDD nodes into their final shapes as early
as possible, from the bottom to the top. The firing of events exploits the structure of the
partitioned model at hand, as well as the Kronecker representation of the underlying local
next–state functions. In–place updates help us reuse MDD nodes as often as possible, rather
than generating many new nodes that soon become disconnected, as classical BDD–based
approaches do. Together, these features allow us to compute reachable state spaces very
efficiently, while keeping peak memory requirements small.

5.3 Proof of correctness

Before presenting an example of our algorithm we prove its correctness. To begin with,
we show that the algorithm terminates. The mutual recursion between routines Saturate
and Fire must eventually terminate: assuming p.lvl = l, Saturate(p) calls Fire(α, q), with
q.lvl = l − 1 (Line 9), and Fire calls itself only on one level below the one it has been
called (Line 7) and calls Saturate at the same level l − 1 (Line 10). A similar argument
holds for the Union routine, which is taken from the literature [3, 24]. The only other
reason for non–termination could be due to an infinite while–loop in Saturate (Line 6).
However, the only updates to node p are unions, which are monotonically non-decreasing.
Since B(p) ⊆ Sl × · · · × S1 and since each local state space is finite and fixed, we can only
increase B(p), thus modify p and reset the value of F to El , a finite number of times, after
which the loop must be exited.

To see that our algorithm correctly computes the reachable state space, we focus closer
on the two key routines Saturate and Fire. First of all, it is easy to check that the algorithm
preserves the invariant that Fire can be invoked only on saturated nodes and that Saturate
can be invoked only on nodes whose children are already saturated. This is because routine
Generate invokes Saturate in a bottom–up fashion, whereas any fresh node generated in
Fire is immediately saturated before returning it (Line 10), and the union of saturated nodes,
called by Saturate (Line 10) and Fire (Line 9), is saturated by definition.

Theorem 5.1. Let p be a node at level l, where K ≥ l ≥ 1, with saturated children, and let

� q be one of its children at level g = l − 1, satisfying q 
= 0;
� U stand for B(q) before the call Fire(α, q), for some event α with g < Top(α), and V

represent B( f ), where f is the node at level g returned by this call;
� X and Y denote B(p) before and after calling Saturate(p), respectively.
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Then, the algorithm guarantees the following two properties:

1. V = N ∗
≤g(Nα(U)) and

2. Y = N ∗
≤l (X ).

By choosing, for node p, the root node r of the MDD representing the initial state s, we
obtain Y = N ∗

≤K (B(r )) = N ∗
≤K ({s}) = S, as desired.

Proof: To prove both of the above statements we employ a simultaneous induction on l.

� Inductive base (l = 1): Since local events affecting only a single submodel l are bundled
into a single event λl , the event set E1 is either empty or the singleton set {λ1}. We
concentrate on the latter case, as the former is trivial.

The only possible call Fire(λ1, 1) immediately returns 1 because of the test on 1.lvl,
which has value 0, in line 3. Then, U = V = {()} and {()} = N ∗

≤0(Nλ1 ({()})). Hence,
Proposition (1) holds.

The call Saturate(p) repeatedly explores λ1, the only event in E1, in every local state i for
which, according to the definition of routine Locals, (i)N1,λ1 (i) 
= ∅ and (ii) either p[i] = 1,
or p[i] has been modified from 0 to 1 (cf. line 13) in a previous iteration of the outermost
foreach–loop, because of some other local state i ′ satisfying i ∈ N1,λ1 (i ′) and p[i ′] = 1.
The iteration stops when further attempts to fire λ1 do not add any new state to B(p). At
this point, Y = N ∗

λ1
(X ) = N ∗

≤1(X ), which is Proposition (2).
� Inductive step (l−1 implies l): We first verify Proposition (1). A call Fire(α, q)

can be resolved in three ways. If q.lvl = g < Bot(α), the returned value is f = q
and Ng,α(U) = U for any set U ; as q is saturated and Ng:1,α is the identity, B(q) =
N ∗

≤g(B(q)) = N ∗
≤g(Nα(B(q))). If g ≥ Bot(α) but Fire has been called previously with

the same parameters, then the call Find(FC[g], {q, α}, s) is successful. Since node q
is in the unique table, it is saturated and has thus not been modified further. Hence,
the value s in the cache is still valid and can be safely used. Finally, we need to
consider the case where the call Fire(α, q) performs real work. First, a new node s
at level g is created, having all its arcs initialized to 0. We explore the firing of α

in each state i satisfying q[i] 
= 0 and Ng,α(i) 
= ∅. According to the induction hy-
pothesis, the recursive call Fire(α, q[i]) returns N ∗

≤g−1(Nα(B(q[i]))). Hence, we have
B(s) = ⋃

i∈Sg
Ng,α(i) × N ∗

≤g−1(Nα(B(q[i]))) = N ∗
≤g−1(Nα(B(q))) when the outer loop

terminates, i.e., all children of s are saturated. By induction hypothesis, the call Saturate(s)
saturates s. Consequently, we have B(s) = N ∗

≤g(N ∗
≤g−1(Nα(B(q))) = N ∗

≤g(Nα(B(q))) af-
ter the call.
Regarding Proposition (2), Saturate(p) repeatedly explores the firing of each event α that
is locally enabled in i ∈ Sl , by calling Fire(α, p[i]) which, as shown above and since
g = l − 1, returns N ∗

≤l−1(Nα(B(p[i]))). Further, Saturate(p) terminates when firing the
events in El = {α1, α2, . . . , αm} does not add any state to B(p), and the set Y encoded by p
is the fixed point of the iteration

Y (m+1) ← Y (m) ∪ N ∗
≤l−1(Nα1 (N ∗

≤l−1(Nα2 (· · ·N ∗
≤l−1(Nαm (Y (m))) · · ·)))),

initialized with Y (0) ← X . Hence, Y = N ∗
≤l (X ), as desired.

This completes the correctness proof of our Saturation algorithm. �
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Fig. 9 Applying the Saturation algorithm to our running example

5.4 Applying the Saturation algorithm to our running example

We now demonstrate the Saturation algorithm on our running example, when the Petri net is
partitioned into four subsystems, leading to a four–level MDD to store the set of reachable
states. Moreover, the event set E = {a, b, c, d, e} is split into the sets E1 = ∅, E2 = {d},
E3 = {λ3}, and E4 = {a, e}; recall that El denotes the set of events α for which Top(α) = l,
and that event λ3 combines the local events b and c. The lowest levels affected by the
events in E are as follows: Bot(a) = 2, Bot(λ3) = 3 and Bot(d) = Bot(e) = 1. Recall that the
local next–state functions of our example are stored by the matrices shown at the bottom of
Fig. 3.

We begin the Saturation algorithm by invoking Generate on the initial marking (0000).
This creates the MDD depicted in Fig. 9(a) whose nodes are successively saturated bottom–
up. Note that nodes r , s, and t are actually created later on, but we show them here from the
beginning for clarity. The levels of the nodes are given at the very left of the MDD figures.

Starting with node u, we observe that this is trivially saturated since E1 = ∅. Thus, we
move one level up and consider node t . This node, too, is saturated, since d is the only
event in E2, and Locals(d, t) = ∅. The same is true for node s at the next higher level since
Locals(λ3, s) = ∅.

Saturating node r turns out to be more interesting, as event a ∈ E4 is enabled be-
cause Locals(a, r ) = {0}, Locals(a, s) = {0}, and Locals(a, t) = {0}. When moving down
the MDD recursively, Fire generates the fresh nodes v and w at levels 3 and 2, respectively.
The recursive calls end at level 1, since Bot(a) = 2, and return node u. Since N2,a(0) = {1},
the 1–successor of w is pointed to u, as shown in Fig. 9(b).

Before continuing with saturating node r , we must saturate node w. Since Locals(d, w) =
{1} and Locals(d, u) = {0}, the only event d in E2 is enabled, and Fire generates a fresh node x
at level 1. Further, since N1,d (0) = {1} and N2,d (1) = {0}, the 1–successor of x points to the
terminal node 1 and the 0–successor of node w to node x , respectively. Note that the fresh
node x is already saturated as E1 = ∅. Further firings of d in node w are not possible, whence
the node is saturated, too. The resulting MDD is depicted in Fig. 9(c).

We continue with the saturation of node r in the middle of a call to Fire with event a,
and study the effect on the fresh node v. Since N3,a(0) = {1}, the 1–successor of v is set to
point to node w, and Saturate(v) is invoked. This leads us to considering v twice, until it is
saturated. First, N3,λ3 (1) = {2}, which updates node v in place by inserting an arc from the
2–successor of v to w. Then, the local event λ3 is enabled again in the local state 2 that has
just been added; however, since N3,λ3 (2) = {1}, firing λ3 a second time does not reveal any
new reachable local states and thus no further in–place update is made. This leaves us with
node v saturated and the MDD depicted in Fig. 9(d). Again, we return to the saturation of
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node r with respect to event a, which we can now complete. Since N4,a(0) = {1}, we add an
arc from the 1–successor of node r to node v, which results in the MDD shown in Fig. 9(e).

We continue saturating node r with respect to event e, which is now enabled via the
sequence r [1], v[2], w[0], and x[1]. This generates the fresh nodes y, y′, and y′′ (not shown)
at levels 3, 2, and 1, respectively, strictly less than Top(e) = 4. As N1,e(1) = {0}, the 0–
successor of the fresh node y′′ is pointed to the terminal node 1. Herewith, node y′′ is already
saturated and, since it is identical to u, node y′′ is discarded and instead u is returned as
the result of Fire(e, x). As a consequence and since N2,e(0) = {0}, the 0–successor of fresh
node y′ is pointed to node u. Hence, y′ becomes identical to the saturated node t and is
thus itself saturated. Similar to above, node y′ is discarded and node t is returned as the
result of Fire(e, w). Moving up one level to the fresh node y, N3,e(2) = 0, and consequently
its 0–successor is now set to node t . Again, this means that node y becomes identical to
saturated node s; thus, node y is discarded and s returned as the result of calling Fire(e, v).
Finally, N4,e(1) = 0, but the 0–successor of node r already points to node s, so the in–place
update of the 0–successor of node r with the union of nodes s and s is trivial. This concludes
the call of Fire(e, r ). Further firings of events a, e ∈ E4 do not reveal any new reachable
states, thus the root node r is saturated. This terminates the Saturation algorithm, i.e., the
state space of our example Petri net has been fully generated and is encoded by the MDD of
Fig. 9(e), which coincides with the desired MDD given in Fig. 5.

To summarize, since MDD nodes are saturated as soon as they are created, each node
will either be part of the final diagram or will eventually become disconnected, but never be
modified. It is worth pointing out that no node becomes disconnected in our simple example.
Once all events in El are exhaustively fired in a node p at level l, any further state discovered
that uses p for its encoding benefits in advance from the “knowledge” encapsulated in p and
its descendants. This reduces the amount of work needed to construct reachable state spaces
and contributes to the Saturation algorithm’s time–efficiency and memory–efficiency.

6 Experimental results

This section evaluates the time and memory efficiency of our Saturation algorithm, as imple-
mented in the SmArT verification tool [8], by applying Saturation to construct the reachable
state spaces of a large suite of examples taken from the literature. Within SmArT, we compare
the Saturation algorithm to the traditional breadth–first algorithm. We also carefully compare
SmArT’s efficiency to some of the leading symbolic model checkers, namely McMillan’s
(Cadence) SMV and NuSMV [15] (which is built on top of the CUDD BDD library [37]),
and attempt a brief comparison to the popular explicit–state model checker Spin [23].

The chosen examples for our performance studies, ranging from the well–known dining
philosophers to a fault–tolerant multiprocessor system, exhibit a wide range of characteristics
regarding the locality of events as well as the numbers and sizes of subsystems. Each example
is parametric, further allowing us to explore scalability issues with respect to different model
structures. Due to space constraints we cannot reproduce the formal models here but restrict
ourselves to an informal description of each. All models used in our experiments can be down-
loaded from the SmArT website located at (www.cs.ucr.edu/∼ciardo/SMART/).
SmArT itself is also freely available for non-commercial use upon request.

6.1 Toggling bits

This simple model describes the status of N bits, b1 through bN , which can be set (from 0 to
1) and reset (from 1 to 0), according to the following rules. Bit b1 can be set whenever it is
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0, or reset whenever it is 1, independently of the other bits. Bit bi , for 2 ≤ i ≤ N , can be set
or reset only together with b1, that is, if both b1 and bi are 0, they can both be set to 1, and
if they are both 1, they can both be reset to 0. No other change is possible. The MDD has
K = N levels, with bit i at level i , thus all events affect some level i plus level 1, except for
the two local events that independently toggle bit 1. The state space contains all possible 2N

combinations of bit values, but the bit toggling rules restrict the possible transitions between
states.

6.2 Dining philosophers

This classic model is obtained by connecting N identical submodels, one per philosopher, in
a circular fashion. Each philosopher starts in the idle state and occasionally decides to eat;
to do so he must acquire both his left and right forks, which he then releases when he has
finished eating. Since forks can be acquired in any order, this model is known to have two
deadlock states, the one where each philosopher has acquired his left fork and waits for his
right fork (which, being also the left fork of his right neighbor, will never be released), and
the symmetric state where each philosopher has acquired his right fork. Our model assigns
one philosopher per level. We also experimented with assigning P philosophers per level,
so that the height of the MDD is K = N/P when N is a multiple of P , but this results in
larger local state spaces and is less efficient overall (for example, |Sl | = 8, 34, 144, and 610
for P = 1, 2, 3, and 4, respectively). Events affecting a level l are either completely local
to l or they affect also a neighboring level, l + 1 or l − 1; the only exceptions are levels 1
and K , since their neighbors are 2 and K , or 1 and K − 1, respectively, due to the circular
arrangement of the philosophers.

6.3 Round–robin mutex [22]

This protocol solves a specific type of mutual exclusion problem among N processes orga-
nized in a circular fashion, requiring access to a shared resource. Each process is mapped
to a different level, from N + 1 down to 2, while the shared resource corresponds to level
1. All local state spaces are of size 7 except for |S1| = N + 1, since it encodes the identity
of the process that has been granted access to the resource, if any. There are no local events
and, in addition to events synchronizing neighboring processes, there are events synchroniz-
ing levels n and 1, for 2 ≤ n ≤ N + 1. The results from a similar model where the shared
resource is instead at level N + 1, while the processes are mapped to levels from N down to
1, are essentially the same.

6.4 Queens

The classic N queens problem consists in finding all ways to place N queens on a N ×
N chess board, with rows and columns indexed from 1 to N , so that they do not attack each
other. Since any such configuration of queens must have exactly one queen per row, the state
of the model can be encoded by a vector of size N , whose nth entry is the index m of the
column containing the queen for row n, or 0 if that queen has not yet been placed on the
board. The initial state is thus the vector of 0s and, at each step, a queen is placed on an empty
row, avoiding any square on the row that is attacked, vertically or diagonally, by previously
placed queens; thus, the evolution halts in exactly N steps, or fewer if it is not possible to
place further queens. We generate all legal configurations having up to N queens on the
board, and consider two versions of this model: one where queens are placed in sequential
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(SEQ) order from row 1 to row N , and one where they are placed in random (RND) order.
Of course, the number of final configurations having all N queens on the board is the same
for the two models, but the total number of configurations is larger for the latter. The levels
are in one–to–one correspondence to the queens, where level K = N stores the position of
queen N , and level 1 that of queen 1. In this model, locality is extremely poor, since each
event placing the queen on a row n must consider the state of rows 1 through n − 1 for the
SEQ model, or of all other rows for the RND model.

6.5 Fault–tolerant multiprocessor [36]

This models a system of N interconnected computers whose components can fail. The system
fails as soon as all N computers fail. A computer fails once two of its memory modules fail,
or two of its CPUs fail, or two of its I/O modules fail, or one of its error–handling modules
fails. A memory module fails once three of its RAM chips have failed or one of its interface
chips has failed. Uncovered failures are possible, e.g., failure of a RAM chip can cause its
memory module to fail even if spare RAM chips are available, which can in turn cause the
computer to fail even if its other memory modules are operational, which can cause the
entire system to fail even if other computers are operational. The state of a memory module
is described by the number of failed RAM chips and the number of failed interface chips.
The state of a computer is given by the state of its three memory modules together with the
number of failed memory modules, CPUs, I/O modules, and error–handling modules. Thus,
the overall system state contains K = 10N + 1 variables: ten for each computer plus one
to keep track of the number of failed computers. We partition this model so that each state
variable corresponds to an MDD level, with level 1 used for the number of failed computers.
Every event depends on level 1, since all events are disabled once N computers have failed.
Thus, every event is synchronizing, but only between level 1 and some of the ten levels
corresponding to state variables for a given computer. All local state spaces are of size 2, 3,
or 4, except for |S1| = N + 1. We faithfully follow the model in [36], except for splitting
some of the transitions to achieve Kronecker–consistency for the SmArT model.

6.6 Flexible manufacturing system [14]

This model describes the movement of pallets carrying parts of three different types to be
machined and assembled in an automated factory. The model is decomposed into a fixed
number of submodels, K = 16, but is parameterized by the number N of pallets initially
present in three repositories, which affects the size of the local state spaces. Thus, |Sl | =
N + 1 for all levels l except for some levels corresponding to stations with an admission
control policy that limits the number of parts being processed at any given time: |S17| = 4,
|S11| = 3, and |S7| = 2. The model exhibits a moderate degree of locality, as events span
from two to six levels.

6.7 Kanban [38]

This model describes a manufacturing system with four similar stations where “kanbans”
(tags) control the flow of parts. The overall flow of parts is as follows: a part enters station
1 first, then it is split into two parts that enter stations 2 and 3, then the two parts are joined
into a single part again that enters station 4, from which the part leaves the system. A part
can enter a station only if a kanban is available at that station and, after it is processed,
it undergoes a check to see whether it needs to be re–processed by the same machine. In
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particular, a part can leave station 1 only if there is a kanban at both stations 2 and 3, and
a part can leave station 2 (resp. 3) only if there is also a part ready to leave station 3 (resp.
2) and a kanban in station 4. Our partition has 16 levels and each local state space has size
N + 1, where N is the number of kanbans available in each station; all events affect multiple
levels. We also considered an alternative partition with just one level per station, where each
local state space has size (N +3)(N +2)(N +1)/6 and all events are local except the one that
splits a part, which affects levels 1, 2, and 3, as well as the one that joins two parts, which
affects levels 2, 3, and 4. For small values of N , this rougher partition is more efficient in
peak memory consumption, but not in runtime. However, as N grows, the cubic growth of the
local state spaces hurts its memory performance: for N > 6, the rougher partition becomes
less memory efficient, and for N = 30, its final and peak memory is about 12 times that of
the finer partition. The runtime for the rougher partition is more than 40 times that of the
finer partition for N = 30.

6.8 Leader election [17]

This randomized asynchronous leader election protocol designates a unique leader among N
participants, each with a unique identifier. Each stage of the protocol requires 2N messages,
sent along a unidirectional ring. Participants can become passive at each stage and the
protocol completes when only one participant remains active, at which point it can broadcast
the identity of the leader to the other participants. In SmArT, the most natural way to model the
exchange of integer messages between participants in this protocol is to use a self–modifying
net. However, to ensure Kronecker consistency, we must either merge places belonging to
different participants into a single submodel, or split events according to how many tokens
they move (according to the integer value being exchanged). The former approach results in
N + 2 levels and 14N + 2 events, but one of the local state spaces grows exponentially in N .
We therefore concentrate on the latter approach, and on producing a very fine partition with
small local state spaces; we use a model with O(N 2) levels and O(N 3) events (for each of
the N participants, several events must be split into the disjunction of N 2 “smaller” events).
The largest local state space has 11N − 1 states, while most local state spaces have N , 3, or
2 states.

6.9 Comparison within SmArT

Table 1 reports the final memory usage for the next–state function N and the reachable state
space S, the peak MDD memory required to construct S, and the CPU time required to
construct N and S using algorithms Saturate or BFSGenerate in SmArT. All experiments are
run on a 3.2 GHz Pentium IV with 1 GB of memory and 512 KB L2 cache. Our breadth–first
search implementation performs garbage collection after every G iterations, where G can be
modified by the user; the table reports results for running the garbage collector after every
iteration (columns BFS1) and after every 64 iterations (columns BFS64). We instead use a
“lazy” garbage collection policy for the Saturation algorithm: disconnected nodes are cleaned
up only at the end of the computation. Both Saturation and breadth–first search/iteration
construct each local state space Sk in isolation (using explicit local state-space exploration
of the kth submodel) before constructing N , and both algorithms use Kronecker encoding
for the next–state function N , which is quite compact, except for the leader election model.
In this model, a large number of split events is required to achieve Kronecker consistency;
alternative approaches would be to generate local state spaces Sk and the next–state function
N on–the–fly, using the technique described in [11] (this allows for using a coarse partition
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Table 1 Generating N and S: Saturation versus BFS in SmArT

Memory (Kb = 1,024 bytes)
CPU Time (seconds) to

Final Peak MDD memory Generate N and S

N |S| N S Sat. BFS1 BFS64 Sat. BFS1 BFS64

Toggling bits: K = N , |Sl | = 2 for all l
128 3.4×1038 17 4 7 567 926 0.2 375.3 17.7
256 1.2×1077 34 7 14 2,254 3,276 0.6 9,758.0 497.1

4,096 1.0×101,233 544 112 224 – – 260.5 – –
Dining philosophers: K = N , |Sl | = 13 for all l

100 5.0×1062 67 28 35 6,920 10,332 0.4 192.9 9.8
400 6.1×10250 265 113 141 112,728 131,528 1.8 100,359 2,989.7

5,000 6.5×103,134 3,301 1,047 1,758 – – 98.1 – –
Round robin mutex: K = N + 1, |Sl | = 10 for all l except |SK | = N + 1

60 1.6×1020 68 134 144 1,373 3,697 0.4 108.6 24.1
120 3.6×1038 191 506 527 9,424 18,875 2.5 5,489.6 1,143.6
400 2.3×10123 1,510 5,406 5,476 – – 202.6 – –

Queens-SEQ: K = N , |Sl | = N + 1 for all l
11 1.7×105 106 4,150 4,150 4,150 4,159 2.4 3.4 2.6
12 8.6×105 151 19,454 19,455 19,455 19,466 22.0 34.9 30.9
13 4.7×106 208 97,469 97,469 97,470 97,483 443.3 798.8 774.7

Queens-RND: K = N , |Sl | = N + 1 for all l
8 1.2×105 56 591 2,436 4,795 10,981 1.9 5.1 8.2
9 9.2×105 91 3,276 14,213 29,450 71,693 36.2 112.1 311.1

10 7.5×106 139 19,222 88,360 182,062 – 1,668.1 5,987.1 –
Fault-tolerant multiprocessor: K = 10 N + 1, 2 ≤ |Sl | ≤ 4 for all l except |S1| = N + 1

10 3.0×1026 143 47 166 11,720 16,754 21.0 7,130.9 253.4
12 5.1×1031 188 66 230 19,836 27,159 40.0 29,497.9 1,049.6
36 3.3×1094 1,157 554 1,773 – – 3,926.5 – –

Flexible manufacturing system: K = 19, |Sl | = N + 1 for all l except |S7| = 2, |S11| = 3, |S17| = 4
30 7.7×1014 18 210 376 47,082 85,710 0.2 4,035.4 324.6
40 2.6×1016 24 428 782 127,483 212,181 0.3 30,207.0 1,964.6

250 3.5×1026 142 67,270 132,029 – – 42.1 – –
Kanban: K = 16, |Sl | = N + 1 for all l

40 9.9×1014 26 97 104 38,847 55,772 0.1 2,862.2 171.6
60 7.2×1016 39 206 221 125,225 172,613 0.3 25,591.8 1,577.7

1,000 1.4×1030 626 51,149 55,083 – – 22.7 – –
Leader: K = O(N 2), |Sl | ≤ O(N ) for all l

12 3.4×1010 8,630 421 582 16,067 40,305 49.1 755.5 174.0
14 1.9×1012 15,576 612 834 29,312 63,724 133.9 2,139.7 474
24 1.0×1021 125,801 2,342 3,022 – – 3,826.2 – –

rather than splitting events, since the local state spaces generated in isolation are much larger
than the local states actually reached), or to use a version of Saturation that does not require a
Kronecker encoding for N , such as the one described in [28]. Finally, since the same model
decomposition and variable ordering is used for Saturation and breadth–first iteration, the
algorithms generate isomorphic “final” MDDs for S.

Several important conclusions can be reached from the results compiled in Table 1. As
expected, increasing the frequency of garbage collection for breadth–first iteration leads to
a smaller peak memory size at the cost of significantly increased runtime. The difference
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between our Saturation algorithm and the traditional breadth–first iteration is apparent by
considering the peak memory consumption, which goes hand–in–hand with the runtimes.
Depending on the model, Saturation requires one–to–three orders of magnitude less memory,
and one–to–five orders of magnitude less computation time. This difference in peak memory
allows Saturation to analyze models for which the breadth–first iteration fails due to excessive
peak memory requirements (designated by dashes in the table).

The only exception to Saturation’s excellent performance is the queens problem. In the
sequential version of this model, Saturation and breadth–first iteration require roughly the
same memory and similar computation time. In the random version, the Saturation memory
requirements are less than half that of breadth–first, and computation time is less than one
third that of breadth–first iteration. We argue that this model represents a worst–case scenario
not only for Saturation, since event locality is very poor in the sequential version and non–
existent in the random version, but also for symbolic approaches in general, since the memory
and time requirements for Saturation and breadth–first iteration are considerably worse than
for a good explicit implementation. For example, the explicit decision–tree storage and state-
space generation algorithm implemented in SmArT requires only 149 seconds and 147 MB
for N = 13 queens (sequential) and 136 seconds and 74 MB for N = 10 queens (random).

In summary, our results testify that exploiting the interleaving semantics of event-based
concurrent systems is the key for making their automated verification algorithms truly
efficient.

6.10 Comparison with SMV and NuSMV

To illustrate that the breadth–first implementation in SmArT is competitive with other symbolic
model checkers, we (manually) translated each example model into the SMV input language
and ran experiments using NuSMV version 2.3.1 and Cadence SMV. We empirically verified
that the resulting models are equivalent, by checking that they have the same initial state
and transition relation, and produce the same sets of reachable states. The SMV models
used process modules to handle asynchronous behavior, with the notable exception of the
dining philosophers model, where we specified the transition relation “by hand”, using an
input file of size O(N 3) for N philosophers; our process version of this model has instead an
input file of size O(N ), but requires significantly longer runtimes. Finally, we use the same
ordering of state variables for the SMV model as the SmArT model (both Cadence SMV and
NuSMV further decompose state variables into booleans; we use the default ordering for
this). We disabled dynamic variable reordering to ensure that the same variable ordering is
used throughout.

Table 2 reports the peak memory and the runtimes required to build the next–state function
N and the reachable state space S, using breadth–first symbolic exploration, in SmArT,
NuSMV, and Cadence SMV. The peak memory consumption for SmArT is measured as the
memory required for N plus the peak MDD memory, while the peak memory consumption
for NuSMV and Cadence SMV is measured as the peak number of BDD nodes multiplied by
the node size (which we assume is 16 bytes). We believe this measurement includes the nodes
required forN . The memory for the operation caches or other data structures required to parse
and build the model is not included in the measurements. In the case of SmArT, the runtimes
include the time to generate each local state space Sk in isolation, to generate and store the
required Kronecker matrices for N , and to generate S using standard symbolic breadth–first
iterations. In the case of NuSMV and Cadence SMV, the runtimes include the time to build
the BDD encoding of the transition relation (we hand–specified the sizes of the the local state
spaces Sk in the input file) and to generate S using breadth–first iterations. For NuSMV, we
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Table 2 Generating N and S using BFS in various tools

Peak memory (Kb = 1,024 bytes) SmArT CPU Time (seconds) SmArT

N #Its BFS1 BFS64 NuSMV Cadence BFS1 BFS64 NuSMV Cadence

Toggling bits
128 255 584 943 7,602 3,519 375.3 17.7 249.3 241.9
256 511 2,288 3,310 7,710 13,654 9,758.0 497.1 12,756.8 4,256.6
Dining philosophers

80 161 4,455 7,344 294,676 17,461 86.4 4.8 47.5 181.1
100 201 6,986 10,398 566,904 25,943 192.9 9.8 159.4 385.5
Round robin mutex

50 395 916 2,578 11,564 51,372 44.3 10.3 3,404.6 4,639.1
60 475 1,440 3,764 19,158 82,132 108.6 24.1 8,428.9 11,516.6

Queens-SEQ
11 12 4,256 4,265 9,975 86,358 3.4 2.6 14.5 20.1
12 13 19,605 19,616 42,359 398,638 34.8 30.9 108.0 125.4
13 14 97,677 97,691 192,862 – 798.8 774.7 1,786.8 –

Queens-RND
8 9 4,851 11,037 2,874 37,621 5.1 8.2 6.5 10.1
9 10 29,540 71,783 14,570 234,334 112.1 311.1 74.0 79.9

10 11 182,201 – 75,590 – 5,987.1 – 1,184.5 –
Fault-tolerant multiprocessor

10 81 11,863 16,896 8,939 29,338 7,130.9 253.4 7,714.0 2,166.9
12 97 20,024 27,347 9,042 47,545 29,497.9 1,049.6 28,150.3 5,125.4

Flexible manufacturing system
20 281 12,256 24,686 8,781 56,525 375.3 30.9 2,843.5 1,635.7
30 421 47,100 85,728 15,950 141,356 4,035.4 324.6 98,357.0 7,713.8

Kanban
30 421 17,122 25,626 12,188 61,029 730.1 40.8 3,720.9 2,649.4
40 561 38,872 55,797 23,769 135,824 2,862.2 171.6 69,391.1 8,794.9

Leader
12 144 24,696 48,935 102,056 118,321 755.5 174.0 1,120.3 5,394.7
14 168 44,888 79,299 190,139 211,403 2,139.7 474.1 3,026.3 15,543.0

use a monolithic BDD encoding of N , since the partitioned encodings (using options “-m
Threshold” or “-m Iwls95CP”) always resulted in longer generation times for S or the
models we considered. Conversely, for Cadence SMV, we use the partitioned encoding of N
since the monolithic encoding (using option “-nopr”) led to longer generation times. We
note that, for all the models we checked, the three tools required exactly the same number
of iterations, as expected.

As seen from the results compiled in Table 2, the SmArT breadth–first iteration is signif-
icantly faster (up to three orders of magnitude) than both NuSMV and Cadence SMV for
all models except the random queens problem. In terms of peak memory, there is no clear
winner among the three tools we tested. Again, dashes in the table correspond to runs that
could not complete due to excessive peak memory requirements. Perhaps more surprising is
the model–dependent difference in performance between NuSMV and Cadence SMV, which
use exactly the same input model and variable ordering: for some models, NuSMV has
significantly lower runtimes than Cadence SMV, while for other models, the reverse is true.

In summary, we find that the breadth–first iteration in SmArT is quite competitive with
other symbolic model checking tools. While Saturation is not included in Table 2 due to
lack of space, we see from Table 1 that Saturation is one–to–six orders of magnitude faster
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than NuSMV and one–to–five orders of magnitude faster than Cadence SMV, except for the
random queens problem. Also, the peak memory requirements for Saturation are less than
the peak memory requirements for NuSMV and Cadence SMV for all models, and for all
models except queens, the difference is one–to–three orders of magnitude.

6.11 Comparison with Spin

The most widely used model checker for verifying concurrent systems, in particular com-
munications protocols and distributed algorithms, is the Spin model checker developed by
Holzmann [23] over the past two decades.

Spin is an explicit–state model checker, i.e., state spaces are represented explicitly so that
each state corresponds to an entity of the underlying data structure. To make this approach
work for systems exhibiting interleaving behavior, it is complemented by partial–order
reduction [39]. This technique exploits the independence of transitions, which implies that
many traces of a system model may be equivalent with respect to the properties to be verified.
Hence, it is sufficient to explore a single trace of each equivalence class, i.e., only a subset of
the globally reachable state space. The success of Spin in commercial applications is due in
no small part to its efficient implementation of partial–order reduction, which often results
in greatly reduced memory requirements.

Comparing the state-space generator of Spin to Saturation in SmArT is quite difficult as their
algorithms are very different in nature and seem to have rather complementary strengths. For
example, the toggling bits model is built in such a way that all transitions affect each other, as
they all toggle bit one. This means that partial–order techniques do not enable any reduction,
and the size of the reachable state space is exponential in the number of bits in its model.
In contrast, our Saturation algorithm requires memory that is only linear in the number of
bits (cf. Table 1), since the transitions involving setting and resetting bit one, located at the
bottom level of the MDD, are fired first. The firings of the set and reset transitions for bit i ,
at level i > 1, then fully reuse the Saturation work done at lower levels.

The situation is quite different for the leader election model. This example, taken from the
distribution of the Spin model checker, is one where Spin’s partial–order reduction algorithm
provides maximal benefit: it reduces the state-space growth from exponential to linear in the
number of processes participating in the election. We translated this model into SmArT’s Petri
net language. This is a non–trivial task since Spin’s modeling language, called Promela [23],
is at a higher level than Petri nets, combining features of C with Dijkstra’s guarded command
language and message channels. Our translation encodes message channels, local Promela
variables, and program counters using Petri net places. The state space of the resulting
model has the same size as for the Promela model in Spin (when run without partial–order
reduction), thus we are confident of the exact equivalence of the two models. As shown in
Table 1, our Saturation algorithm does not perform as well for the leader election model;
its memory and runtimes still grow exponentially in the number of processes. Nevertheless,
Saturation is optimal among symbolic approaches for this model, as its final and peak
memory consumptions are essentially the same (the peak number of nodes is just two greater
than the final number of nodes), which is a much better behavior than breadth–first search.

Hence, partial–order reduction seems to have complementary strength and weaknesses
to our Saturation algorithm. A more insightful comparison between SmArT and Spin would
require implementing Saturation in Spin or equipping SmArT with a Promela front–end and
partial–order reduction algorithms. Then, the very same models could be used to thoroughly
evaluate the two approaches. However, such a major implementation effort is beyond the
scope of this article. It should only be mentioned here, for the sake of completeness, that
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researchers have tried to integrate partial–order techniques in BDD–based model–checking
algorithms [1], with some success. Whether our Saturation algorithm allows for such an
integration remains to be seen.

7 Related work, history and outlook

There exists a vast amount of literature on state-space generation, which is impossible to
discuss here in full. We restrict ourselves to symbolic techniques that aim at coping with the
state–explosion problem inherent in concurrent models that rely on interleaving semantics.

7.1 Related work

Symbolic (or implicit) state-space generation techniques based on decision diagrams, such
as BDDs, do not aim at storing fewer states and transitions, as, e.g., partial–order reduction
does, but at storing them more compactly, in sublinear space [3]. As early as a decade ago,
it has been pointed out that BDDs, although well suited for reasoning about synchronous
systems such as hardware circuits, are less successful when dealing with systems such as
Petri nets or distributed software [6]. The reason is that BDD–representations of state spaces
do not solve the state–explosion problem; in practice, the problem often shifts to a BDD–node
explosion problem. To tackle node explosion in BDD–based state-space generators, i.e., to
reduce the peak number of BDD nodes, two lines of research have been investigated in the
literature: partitioned representations of the next–state function and heuristics for iteration
orders.

7.1.1 Disjunctive partitioning

As mentioned in Section 2, disjunctively partitioning a next–state function and encoding
each disjunctive element as a BDD rather than the whole function leads to much smaller
encodings. Indeed, experimental studies have shown that this approach can increase the size of
manageable state spaces by about one order of magnitude [5]. Our approach also uses a form
of disjunctive partitioning of the global next–state function, although the resulting local next–
state functions are not encoded as MDDs but further partitioned conjunctively and stored as
sparse matrices [29]. This allows us to easily recognize and exploit the presence of identity
transformations when an event occurs, and has recently been adopted by other researchers [2].
In addition, our Saturation algorithm does not involve classical MDD operations when
applying next–state functions, but direct Kronecker–based manipulations. This leads to
considerable efficiency gains.

Rather than partitioning a system’s global next–state function, researchers have also
experimented with partitioning a system’s state space [7, 31]. Each state-space partition can
then be represented by a small BDD using its own variable order, even when the overall state
space cannot be encoded compactly by a BDD under any variable order.

7.1.2 Iteration order

It is well known in the automated verification community that computing state spaces in
breadth–first order often produces intermediate sets of states that fail to have small BDD
representations. This situation is normally not prevented but reacted to by changing the
variable order underlying BDDs on the fly, hoping for a more compact encoding [20]. In
contrast, the success of our Saturation algorithm lies in its iteration order, which tries to
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prevent rather than to react to the problem. Complementing our Saturation algorithm with
variable–reordering techniques is an interesting possibility that remains to be investigated.

Related work has experimented with different iteration orders combining breadth–first
and depth-first searches, with mixed results. Some examples of such iteration orders are
chaining [35], guided search [34], and partial traversal [7]. Another approach to iteration
orders freezes some subsystems in their initial states while symbolically exploring the state
space for the other subsystems of a given concurrent system model [21]. In this approach,
which can also be combined with disjunctively partitioned next–state functions, subsys-
tems are successively unfrozen until the entire state space has been constructed. While the
“freezing” iteration order requires more iterations to generate state spaces than the standard
breadth–first search, the produced intermediate BDDs are often smaller. This improves not
only memory efficiency but also time efficiency by about one order of magnitude on realistic
examples [21]. In contrast, Saturation gives improvements by one or two further orders of
magnitude for similar examples. This is because Saturation brings MDD nodes quickly and
cheaply into their final shape, without the need to store unsaturated nodes that are guaranteed
to become disconnected later.

7.2 History of our approach

The history of our own approach leading to the Saturation algorithm is documented in a
series of three conference papers that form the basis of this article. The earliest paper [29]
introduced the ideas to use MDDs rather than BDDs for storing the state spaces of partitioned
Petri nets, to represent the Kronecker–consistent next–state function of a partitioned Petri
net via sparse boolean matrices instead of MDDs, and to optimize the traversal of MDDs
for local events that affect only a single partition or MDD level. Our second paper [9] then
generalized the optimizations conducted for local events to all system events, thus exploiting
the local effect of firing events in concurrent systems, i.e., exploiting that the firing of an
event frequently depends on and updates only very few of a system’s subsystems. We also
showed in [9] that, as a consequence of this, the heuristics for the underlying iteration order
has an important impact on the efficiency of state-space generation and in particular on the
number of peak MDD nodes. Finally, our third paper [10] focused on a specific heuristics
for the iteration order, namely node saturation, and proposed the Saturation algorithm that
is the focus of this article.

7.3 Outlook—model checking with Saturation

Much related work employs the computation of the reachable state space, such as performed
by our Saturation algorithm, for checking temporal properties of concurrent systems. In-
deed, recent work has seen the Saturation algorithm being used for symbolic CTL–based
model checking [12], where it has proved to efficiently model check the important class
of interleaving–based concurrent systems which had been thought to be out of the reach
of symbolic model checkers before. If the property under consideration is violated, such
a Saturation–based model checker can terminate early and return a counterexample, in the
form of a shortest path leading to an error state [13]. However, to compute such shortest
counterexamples, edge-valued decision diagrams are employed, which may be thought of as
extended form of MDDs that stores, for each globally reachable state, its distance from the
initial states.
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8 Conclusions and future work

The novel Saturation algorithm presented in this article proves that symbolic techniques based
on decision diagrams can be successfully applied to efficiently generating state spaces of
event-based concurrent systems with interleaving semantics. The key for achieving efficiency
is to systematically exploit the local effects of firing events. First, the Saturation algorithm
employs Multi–valued Decision Diagrams (MDDs) which naturally reflect the structure
of the state vectors defined by a component-based, concurrent system model. Second, it
partitions the model’s Kronecker–consistent next–state function by both event and subsystem
and stores it as a collection of sparse boolean matrices. This enables lightweight operations to
manipulate MDDs, which drastically improves the time–efficiency of state-space generation
when compared to traditional approaches that rely on iterating a single, heavyweight next–
state function.

Both MDDs and the partitioned next–state function are the prerequisite for our unique
iteration order, Saturation, that efficiently computes the reachable state space of an event-
based concurrent system model with interleaving semantics. Indeed, symbolic state-space
generation is not inherently breadth–first, as is widely believed [1]. Instead, Saturation fires
all events affecting a given MDD node exhaustively and saturates nodes in a bottom–up
fashion. This not only avoids duplicating work at lower MDD levels but also brings nodes
into their final shape quickly. Most importantly and in contrast to classical BDD–based state-
space generators, Saturation does not constantly create nodes that become disconnected later
on. Hence, the peak memory consumption of Saturation drastically improves on earlier work.

Our experimental results testify to the cumulative effect of systematically exploiting
the interleaving semantics in event-based concurrent system models, by consistently show-
ing improvements of several orders of magnitude in run–time efficiency—from hours to
seconds—and peak memory consumption—from megabytes to kilobytes—when compared
to traditional BDD–based state-space generators. Moreover, our evaluation shows that by
far the largest efficiency improvements result from our novel iteration order. While being
very helpful in presenting our algorithm, the use of MDDs and Kronecker–consistency is
not essential [28] and contributes comparatively little to the achieved performance gains.

8.1 Future work

Future work should proceed along several directions. First, we intend to develop heuristics
for partitioning large systems specified by Petri nets into subsystems. As our experimental
studies have shown, the size and order of the submodels in the partition have a significant
impact on the compactness, i.e., the size of their MDD representation, in much the same
way as the variable ordering has on the compactness of the BDD representation. It is worth
investigating how existing variable re–ordering algorithms for BDDs can be adapted to our
setting.

The second direction is to interface our Saturation algorithm to other modeling languages,
most importantly the language Promela used in Holzmann’s Spin tool [23]. This would enable
a better comparison of the saturation algorithm to the Spin model checker, which is an
explicit–state model checker that exploits interleaving semantics via partial–order reduction
techniques. We leave it to future work to check whether our idea of node saturation can
be successfully combined with partial–order reduction techniques. In addition, the Promela
language includes advanced data structures such as message queues. It remains an interesting
research question as to how those data structures can best be mapped onto MDD variables.
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The third direction concerns a more extensive comparison of SmArT to Spin. To do so, one
could write a translator from Spin’s Promela language to SmArT’s input language. However,
writing such a translator would not automatically enable a fair comparison. This is because
a translator, when fed a well–designed Promela model, does not necessarily produce a Petri
net and a partition that are in the right form in order for Saturation to be efficient. Writing
“fair” translators is a difficult craft and requires much further research.

The fourth and final direction for future research aims at parallelizing the Saturation
algorithm. Many approaches to parallelizing symbolic model checkers utilize the huge main
memory available in parallel machines in order to store larger state spaces, but have seen
the model–checking problem shift from a memory–bound to a time–bound problem. For
model checkers to be used by engineers working under strict deadlines, time efficiency is
of paramount importance. We believe that the locality of manipulating MDD nodes in our
Saturation algorithm might prove to be the key for achieving efficient parallelizations of
symbolic model checkers for verifying communications protocols and distributed software.
Preliminary findings on parallelizing Saturation are reported in [18].
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