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Abstract We study the cost-optimal reachability problem for weighted timed automata
such that positive and negative costs are allowed on edges and locations. By optimality, we
mean an infimum cost as well as a supremum cost. We show that this problem is PSPACE-
COMPLETE. Our proof uses techniques of linear programming, and thus exploits an impor-
tant property of optimal runs: their time-transitions use a time τ which is arbitrarily close to
an integer. We then propose an extension of the region graph, the weighted discrete graph,
whose structure gives light on the way to solve the cost-optimal reachability problem. We
also give an application of the cost-optimal reachability problem in the context of timed
games.

Keywords Weighted timed automaton · Cost-optimal reachability problem

1 Introduction

Timed automata are a well-established formalism for the modeling and analysis of timed
systems. Timed automata augment finite state automata with clocks and clock con-
straints [1]. The reachability problem for a timed automaton A asks, given a location l

of A, if there exists a run of A that visits the location l. This basic problem has been shown
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PSPACE-COMPLETE in the seminal paper of Alur and Dill [1]. The verification of more com-
plex properties like properties expressed in the timed extension of the CTL logic, known as
TCTL, is also a PSPACE-COMPLETE problem [2]. On the other hand, some problems have
been shown undecidable on the model of timed automata. For example, the universality
problem that asks if a given timed automaton accepts the language of all timed words, has
been shown undecidable in [1]. As a direct consequence, the language inclusion problem
between two timed automata is also undecidable. Not only a large number of important and
interesting theoretical results have been obtained on timed automata, but efficient verifica-
tion tools have also been implemented and successfully applied to industrially relevant case
studies [13, 17].

Recently, a useful extension of timed automata has been proposed: weighted timed au-
tomata1 [4, 7]. Weighted timed automata are natural models for embedded systems where,
often, resources consumptions have to be modeled. They extend classical timed automata
with a cost function C that maps every location and every edge to a nonnegative integer (or
rational) number. For a location l, C(l) represents the cost per time unit for staying in loca-
tion l. For an edge e, C(e) represents the cost of crossing the edge. As a consequence, an
accumulated cost can be associated to each run of a weighted timed automata and optimiza-
tion problems can be defined. The cost-optimal reachability problem for a weighted timed
automaton A asks, given a location l of A, what is the minimal accumulated cost of a run
that visits l in A ?

Two different algorithmic solutions have been proposed independently to solve the cost-
optimal reachability problem. First, in [4], Alur et al. propose a non-trivial extension of
the region automaton to solve the cost-optimal reachability problem. This construction is
the basis for an EXPTIME solution to the problem. The optimality of the proposed solu-
tion is not studied there. Second, in [7], Larsen et al. propose a symbolic algorithm that
manipulates priced (weighted) extensions of zones. This second solution does not provide
a complexity result: the termination of the algorithm is ensured by a well-quasi order for
which the length of descending chains is not studied. The decidability of the cost-optimal
reachability problem can also be derived from a paper by Kesten et al. [15] where some sub-
classes of integration graphs are shown decidable. In particular, weighted timed automata are
integration graphs with a single integrator test along each run (when entering the location l).

In this paper, we further study the cost-optimal reachability problem. Our results are
threefold. First, we show that the cost-optimal reachability problem can be solved for a more
general class of weighted timed automata: positive as well as negative costs on edges and
locations can be handled simultaneously. As a consequence, we study the computation of
the infimum and the supremum of costs for reachability. This extension is of practical inter-
est. In fact, assume that a weighted timed automaton A models the behaviors of an embed-
ded controller and its environment. Assume that the objective of the controller is to force
the system to reach a given location with an optimal cost whatever does the environment.
To measure the quality of a fixed controller, one can consider the worst-case cost, that is,
the supremum cost of runs performed by this controller over all possible behaviours of
the environment. The smaller is this worst-case cost, the better is the controller. Our method
does not find the optimal controller (which is impossible because of the results of [11]),
but allows evaluating and comparing controllers. Second, we settle the exact complexity of
the cost-optimal reachability problem in weighted timed automata with positive and nega-
tive costs. We show that this problem is PSPACE-COMPLETE. Third, our solution comes in

1The terminology of “priced timed automata” is also used.
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the form of an extension of the region graph which is simpler than the one proposed initially
in [4]. Our construction exploits an important property of optimal runs: optimal runs only
contain time-transitions with a time τ arbitrarily close to an integer.

Our optimal algorithm relies on two main ingredients. First, we study a simpler version
of the cost-optimal reachability problem: the cost-optimal path reachability problem. In this
problem, a sequence of locations of the underlying timed automaton A is fixed a priori.
Then the problem asks for the optimal time-transitions to switch between the locations of
the sequence. We show that this problem is closely related to a linear programming prob-
lem. We study the structure of this linear programming problem and show that the associated
polyhedron has vertices with integer coordinates. As a consequence, we gain an important
knowledge: only time-transitions with a time τ arbitrarily close to an integer have to be
considered. This important property allows us to propose and justify a simple extension
of the classical notion of region called ε-region. This notion of ε-region is at the heart of
a finite weighted discrete graph whose optimal paths are related to optimal runs in the orig-
inal weighted timed automaton A. The justifications for the correctness of our construction
are not straightforward. Indeed, we show that there is no reasonable simulation relation
between the states of the weighted discrete graph and the transition graph associated with
the weighted timed automaton A. Finally, to obtain an optimal PSPACE algorithm, we show
that the construction of the entire weighted discrete graph can be avoided and that this graph
can be analyzed without being explicitly constructed.

Our approach easily extends to weighted timed automata with a more general cost func-
tion C, for instance when the cost of staying a time τ in location l is computed as C(l) · ln(τ )

instead of C(l) · τ . Indeed, the linear programming problem related to the cost-optimal path
reachability problem can still be solved in the more general case of concave and convex cost
functions. Moreover, since the notion of ε-region proposed in this paper is only dependent
on the fact that the associated polyhedron has vertices with integer coordinates, the weighted
discrete graph can be easily adapted to more general cost functions under mild hypotheses.

Other related works In [3], the authors study the reachability problem for timed automata
augmented with costs. Timed automata augmented with costs are a simple class of hy-
brid automata. The decidability border for hybrid automata has been extensively studied
(for surveys see [12, 20]). Among the numerous results about this problem, let us mention
the following ones. The important class of initialized rectangular automata has a decid-
able reachability problem; however several slight generalizations of these automata lead to
an undecidable reachability problem, in particular for timed automata augmented with one
stopwatch [14]. The reachability problem is also undecidable for the simple class of constant
slope hybrid systems which are timed automata augmented with integrators; the reachabil-
ity problem becomes decidable when the integrators are used as observers (they are neither
reset nor tested) [15].

The optimal reachability problem has also recently been studied in a game setting. In
this setting, we are interested in synthesizing optimal strategies for reachability objectives
in weighted timed automata. In [5], Alur et al. show that optimal strategies for reachability in
less than k transitions can be computed. In [10], the authors show that optimal strategies for
reachability can be computed for a restricted class of weighted timed automata that respect
the condition of strong non-zenoness of cost. Recently in [11], it is shown that, in the general
case, optimal strategies can not be constructed algorithmically. The interesting subcase of
time-optimal strategies is solved in [6].

In [18], Larsen and Rasmussen consider the problem of determining the minimal cost
of reaching a given target location, with respect to some primary cost variable, while re-
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specting upper bound constraints on the remaining (secondary) cost variables. The proposed
algorithm is an extension of the algorithm presented in [7].

In [9], the optimal way of staying into a designated set of safe locations is studied.
The construction proposed in [9], called corner point abstraction, shares several ideas with
the construction proposed here for the weighted discrete graph.

Organization of the paper In Sect. 2, we recall the notion of timed automaton, region
graph and weighted timed automaton.

In Sect. 3, we introduce the cost-optimal reachability problem and we announce our main
result that it is PSPACE-COMPLETE. We also introduce the simpler problem of cost-optimal
path reachability. We show that solving this problem reduces in solving a linear program-
ming problem. When studying further the related linear programming problem, we deduce
the important observation that optimal runs have time-transitions with a time τ arbitrarily
close to an integer.

In Sect. 4, we prove that the cost-optimal reachability problem is PSPACE-COMPLETE.
PSPACE-HARDNESS is straightforward. The proof of PSPACE-EASYNESS needs several
steps. First, due to the previous observation, we refine the classical notion of region with
the concept of ε-region. We therefore define the ε-region graph. Second, while there is no
natural simulation between states of the ε-region graph and the underlying weighted timed
automaton, we are able to relate them in a weaker way (this relation is not straightforward).
Third we propose the notion of weighted discrete graph where the cost-optimal reachability
problem can be reformulated and solved with a PSPACE-complexity.

In Sect. 5, we show that some assumptions made at the beginning of the paper can be dis-
carded without loss of generality. In Sect. 6, we illustrate the interest of computing infimum
and supremum costs in the context of timed games. Finally we give a conclusion in the last
section.

2 Preliminaries

In this section, we recall the notions of timed automaton and region graph [1]. We introduce
the concept of weighted timed automaton [4, 7].

2.1 Timed automaton

Notations Throughout the paper, we denote by X = {x1, . . . , xn} a set of n clocks. A clock
valuation is a map ν : X → R

+, where R
+ denotes the set of non-negative real numbers. For

i ∈ {1, . . . , n}, we denote by νi the image of the clock xi by ν, i.e. ν(xi) = νi . Given a clock
valuation ν, when no confusion is possible, we also denote by ν the n-tuple of clock values
(ν1, . . . , νn). Let ν be a clock valuation and τ ∈ R

+, ν + τ is the clock valuation defined by
(ν1 + τ, . . . , νn + τ). A guard is any finite conjunction of expressions of the form xi ∼ c or
xi −xj ∼ c where xi , xj are clocks, c ∈ N is an integer constant, and ∼ is one of the symbols
in {<,≤,=,>,≥}. We denote by G the set of guards. Let g be a guard and ν be a clock
valuation, notation ν |= g means that (ν1, . . . , νn) satisfies g. A reset Y ∈ 2X indicates which
clocks are reset to 0.

Definition 1 A timed automaton A = (L,X,E,I) has the following components: (i) L is
a finite set of locations, (ii) X is a set of clocks, (iii) E ⊆ L × G × 2X × L is a finite set of
edges and (iv) I : L → G assigns an invariant to each location.
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The semantics of a timed automaton A is given by its transition system TA.

Definition 2 A timed automaton A = (L,X,E,I) generates a transition system TA =
(Q,→) with a set of states Q equal to

{(l, ν) | l ∈ L,ν ∈ (R+)n, ν |= I(l)}

and a transition relation

→ =
⋃

τ∈R+

τ→ ∪
⋃

e∈E

e→

defined by

– Time-transition (l, ν)
τ→ (l′, ν ′): if l = l′ and ν ′ = ν + τ ,

– Switch-transition (l, ν)
e→ (l′, ν ′): if e = (l, g,Y, l′) ∈ E, ν |= g and ν ′

i = 0 if xi ∈ Y ,
ν ′

i = νi otherwise.

A time-transition corresponds to an elapse of time at a location l, and a switch-transition
corresponds to an instantaneous switch from a location l to a location l′.

Remark 1 Let us notice that notation (l, ν) → (l′, ν ′) is ambiguous in some very particular
cases, since it can represent both a time-transition and a switch-transition. Indeed, one could
have both (l, ν)

τ→ (l, ν ′) with τ = 0 and (l, ν)
e→ (l, ν ′) for some e ∈ E. However we use it

in order to avoid a too heavy notation.

Remark 2 In this paper, we only consider bounded and diagonal-free timed automata. A
timed automaton is diagonal-free if the guards used in the edges and the invariants contain
no expression of the form xi − xj ∼ c, with xi, xj being clocks, c ∈ N and ∼ ∈ {<,≤,=,

≥,>}. A timed automaton A is bounded if for each location l, the invariant I(l) is upper
bounded on all clocks. In other words, there exists a constant M such that each state (l, ν) of
TA satisfies νi ≤ M for all i ∈ {1, . . . , n}. In Sect. 5, we explain why these two hypotheses
are not restrictions.

The states (l, ν) of TA are shortly denoted by q . Given q = (l, ν) ∈ Q and τ ∈ R
+, we

denote by q + τ the state (l, ν + τ).
A run ρ of TA is a finite path

ρ = q0 → q1 → ·· · → qm.

It is also shortly denoted ρ = q0 � qm. The run ρ is called initialized if q0 is of the form
(l,0) with all the clock values being null. We say that ρ is canonical if it is of the form

q0
τ1→ q1

e1→ q2
τ2→ q3

e2→ q4 · · · where time-transitions and switch-transitions alternate.

Remark 3 A canonical (initialized) run can be associated with any (initialized) run ρ =
q0 → ·· · → qm. Indeed any two consecutive time-transitions qk

τ→ qk+1
τ ′→ qk+2 can be

replaced by the time-transition qk

τ+τ ′→ qk+2, and time-transition qk

τ→ qk+1 with τ = 0 is
allowed in Definition 2.
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Fig. 1 The ordering of
the fractional parts of the clock
values in a region

Remark 4 Let ρ be the following canonical initialized run

q ′
0 = (l0,0)

τ1→ q1
e1→ q ′

1
τ2→ q2

e2→ q ′
2 · · · τk→ qk

ek→ q ′
k · · · .

Given qk = (lk, ν
k) a state of ρ, the clock values (νk

1 , . . . , ν
k
n) at qk depend on {τ1, . . . , τk} as

follows: the value νk
i of the clock xi at state qk is equal to

νk
i = τh+1 + τh+2 + · · · + τk−1 + τk

with 0 ≤ h ≤ k such that qh

eh→ q ′
h is the last transition of ρ where the clock xi has been

reset.2

2.2 Region graph

In this section, we define the region graph of a timed automaton A = (L,X,E,I). We first
recall the usual equivalence on clock valuations and its extension to the states of TA. For
every clock xi , let ci be the largest constant that xi is compared with in any guard of E and
any invariant of I . For τ ∈ R

+, 
τ� denotes its integral part and τ̄ denotes its fractional part.

Definition 3 Two clock valuations ν and ν ′ are equivalent, ν ≈ ν ′, iff the following condi-
tions hold

– 
νi� = 
ν ′
i� or νi, ν

′
i > ci , for all i ∈ {1, . . . , n};

– ν̄i ≤ ν̄j iff ν̄ ′
i ≤ ν̄ ′

j , for all i 
= j ∈ {1, . . . , n} with νi ≤ ci , νj ≤ cj ;
– ν̄i = 0 iff ν̄ ′

i = 0, for all i ∈ {1, . . . , n} with νi ≤ ci .

The equivalence relation ≈ is extended to the states of TA as follows

q = (l, ν) ≈ q ′ = (l′, ν ′) iff l = l′ and ν ≈ ν ′.

We use [ν] (resp. [q]) to denote the equivalence class to which ν (resp. q) belongs. A
region is an equivalence class [q]. The set of all the regions is denoted by R. A region [q]
is closed if q + τ 
≈ q for any τ > 0, otherwise it is open. A region [q] is unbounded if it
satisfies q = (l, ν) with νi > ci for some i ∈ {1, . . . , n}, otherwise it is bounded.

We notice that since timed automata are supposed to be bounded (see Remark 2),
the states of any run of TA never belong to an unbounded region.

Remark 5 A nice representation of the regions has been introduced in [3]. A region is fully
specified by a location l, the integral parts of the clock values (ν1, . . . , νn), and the ordering
of their fractional parts for the clocks xi such that νi ≤ ci . The representation proposed in [3]
consists in visualizing this ordering. For example, the ordering 0 < ν̄1 < ν̄2 < · · · < ν̄n < 1
is depicted on Fig. 1.

2We notice that h depends on i.
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We now define the region graph of a timed automaton A which is nothing else than
the quotient of TA by ≈.

Definition 4 Let A be a timed automaton. The region graph RA = (R,→) is the finite graph
given by TA/≈. Its vertex set is equal to R. Its edge set is composed of the edges r → r ′,
with r, r ′ ∈ R, such that there exist two states q ∈ r , q ′ ∈ r ′, and a transition q → q ′ in TA.
The edge r → r ′ is called a switch-edge (resp. time-edge) if q → q ′ is a switch-transition
(resp. time-transition).

Given two distinct bounded regions r = [q], r ′ = [q ′], we say that r ′ is a successor of r ,
written r ′ = succ(r), if ∃τ ∈ R

+, q + τ ∈ r ′, and ∀τ ′ < τ , q + τ ′ ∈ r ∪ r ′.
Given a run ρ = q0 → q1 → ·· · → qm of TA, we denote by [ρ] the corresponding path

[q0] → [q1] → · · · → [qm] in RA. Notice that due to Remark 2, each region [qk] with k ∈
{0, . . . ,m}, is bounded. We say that a path ρR in RA is canonical (resp. initialized) if ρR =
[ρ] for some canonical (resp. initialized) run ρ of TA. We use the notation ρR = r � r ′ for
a path in RA starting with the region r and ending with the region r ′. Let us notice that we
only consider finite paths of RA in this paper.

Remark 6 We recall [1] that the size |RA| of the region graph, i.e. its number of regions
and edges, is in O((|L| + |E|)2|δ(A)|) where δ(A) is the binary encoding of the constants
(guards and costs) appearing in A. Thus |RA| is in O(2|A|) where |A| takes into account
the locations, edges and constants of A.

2.3 Weighted timed automaton

We now introduce the notion of weighted timed automaton,3 which is an extension of timed
automaton with costs on both locations and edges.

Definition 5 A weighted timed automaton is a timed automaton A = (L,X,E, I,C) aug-
mented with a cost function C : L ∪ E → Z which assigns an integer cost to both locations
and edges.

The semantics of a weighted timed automaton A associates a cost with each run of TA
in the following way.

Definition 6 Let A be a weighted timed automaton and ρ = q ′
0

τ1→ q1
e1→ q ′

1
τ2→ q2

e2→
q ′

2 · · · τm→ qm

em→ q ′
m be a canonical run of TA. Let lk be the location of qk (and q ′

k−1) for
each k. Then the cost4 C(ρ) of ρ is equal to Cd(ρ) + Cs(ρ) with

Cd(ρ) =
∑

k∈{1,...,m}
C(lk) · τk, Cs(ρ) =

∑

k∈{1,...,m}
C(ek).

In the previous definition, Cd(ρ) is called the duration cost of ρ, and Cs(ρ) the switch
cost of ρ.

3This model differs from the one used in [4, 7] since it allows negative costs.
4In the case ρ ends with a time-transition, i.e. there is an additional transition q ′

m

τm+1→ qm+1, then there is
an additional term C(lm+1) · τm+1 in both C(ρ) and Cd (ρ).
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Fig. 2 A weighted timed
automaton

Fig. 3 Its equivalence relation ≈

Example 1 Let A be the weighted timed automaton pictured on Fig. 2. The cost of each
location is indicated on the figure and the cost of each edge is null. The invariant (x1 ≤ 4)

∧ (x2 ≤ 2) is assigned to each location, showing that A is bounded.
The canonical run

ρ = (l0,0,0)
0.5→ (l0,0.5,0.5) → (l1,0,0.5)

1.5→ (l1,1.5,2) → (l3,1.5,2)

has a cost equal to Cd(ρ) = C(l0) · 0.5 + C(l1) · 1.5 = 5.

3 Cost-optimal reachability problem

In this section, we define the cost-optimal reachability problem for weighted timed automata
[7].5

Definition 7 Let A be a weighted timed automaton. Given two regions r, r ′ of RA, the op-
timal cost OptCost(r, r ′) of reaching r ′ from r is the infimum (resp. supremum) of the costs
of the runs ρ = q � q ′ of TA such that q ∈ r and q ′ ∈ r ′.

Moreover, we say that OptCost(r, r ′) is realizable if there exists such a run ρ such that
C(ρ) = OptCost(r, r ′).

Remark 7 In the previous definition, suppose that the infimum cost is considered. By con-
vention OptCost(r, r ′) = +∞ in the case there is no run ρ = q � q ′ such that q ∈ r and
q ′ ∈ r ′. Otherwise, OptCost(r, r ′) ∈ R or OptCost(r, r ′) = −∞. Symmetric observations
hold when the supremum cost is considered.

5In this paper, by cost-optimality we mean both infimum cost and supremum cost, while only infimum cost
is studied in [7].
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Problem 1 (Cost-optimal reachability problem) Given A a weighted timed automaton, and
two regions r , r ′ of RA, compute the optimal cost OptCost(r, r ′).

Our main result is the following one. The rest of the paper is devoted to its proof.

Theorem 1 The cost-optimal reachability problem is PSPACE-COMPLETE.

Remark 8 In the sequel, we make two assumptions for solving Problem 1. First, we suppose
that the region r given in Problem 1 is composed of a unique state of the form (l,0) such
that all the clock values are null. Second, we focus only on the computation of the infimum
cost. Indeed these two assumptions can be discarded with little effort (see Sect. 5).

Remark 9 Problem 1 refers to the computation of OptCost(r, r ′) for two regions r, r ′ of RA.
An alternative problem is the computation of OptCost(q, q ′) where q = (l, ν), q ′ = (l, ν ′)
are two given states of TA. When q, q ′ have rational clocks values ν, ν ′, the optimal cost
OptCost(q, q ′) can be computed by using our method for Problem 1. The arguments are
the following ones. Let λ ∈ N be such that λ · ν, λ · ν ′ are integers. Let Aλ be the automaton
obtained from the weighted timed automaton A by replacing

– Each constant c in each guard and invariant of A by λ · c;
– Each cost C(e) of each edge e by λ · C(e).

In this way the “granularity” of time has been modified, such that (l, ν) � (l′, ν ′) is a run of
A with cost κ iff (l, λ · ν) � (l′, λ · ν ′) is a run of Aλ with cost λ · κ (see also [1]). Therefore
computing OptCost(q, q ′) in A is equivalent to computing 1

λ
OptCost(r, r ′) in Aλ where

the region r (resp. r ′) of RAλ
is composed of the unique state (l, λ · ν) (resp. (l′, λ · ν ′)).

The next example indicates how the cost-optimal reachability problem is related to a lin-
ear programming problem (see the book [19] for details on linear programming).

Example 2 We consider again the weighted timed automaton of Fig. 2. We are interested in
runs from l0 to l3.6 There are mainly two families of such runs, the runs going through l1, and
the runs going through l2. The first family can be described by the following parameterized
run7

ρ1(t1, t2) = (l0,0,0)
t1→ (l0, t1, t1) → (l1,0, t1)

t2→ (l1, t2, t1 + t2) → (l3, t2, t1 + t2).

The parameters t1, t2 represent the time elapsed at locations l0, l1 respectively. They are
constrained by the next linear inequalities

0 ≤ t1 ≤ 1, t2 ≥ 0 and t1 + t2 = 2. (1)

The cost of the parameterized run ρ1(t1, t2) is given by t1 + 3 · t2. Therefore to find the infi-
mum cost with respect to the first family of runs reduces in computing the infimum value of
the function t1 + 3 · t2 under the constraints (1). This is a linear programming problem for

6In this example, we work with locations, instead of regions as indicated in Definition 7.
7We can suppose that this run is canonical by Remark 3 and that it is initialized by Remark 8. Moreover we
can assume that this run ends with a switch-transition since we consider the infimum cost to reach l3. We also
notice the form of the clock values as described in Remark 4.
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Fig. 4 Optimizing the cost of
ρ1(t1, t2)

Fig. 5 Optimizing the cost of
ρ2(t1, t2)

which it is known that the optimal solution is given by one of the vertices of the polyhedron
defined by (1), here the point (1,1) leading to the infimum cost 4. On Fig. 4, the bold line
represents this polyhedron, and the dashed line represents the situation of an optimal cost
t1 + 3 · t2 = 4. Note that the optimum cost 4 is a minimum cost since it is realized by the run
ρ1(t1, t2) with t1 = t2 = 1.

Similarly the second family of runs is described by the following parameterized run

ρ2(t1, t2) = (l0,0,0)
t1→ (l0, t1, t1) → (l2, t1,0)

t2→ (l2, t1 + t2, t2) → (l3, t1 + t2, t2).

In this case, parameters t1, t2 are constrained by the linear inequalities

0 ≤ t1 < 2, t2 > 1 and t1 + t2 > 3. (2)

The cost with respect to ρ2(t1, t2) is given by t1 +2 · t2. on Fig. 5, the shaded zone represents
the polyhedron defined by (2), and the dashed line represents the situation of the infimum
cost t1 + 2 · t2 = 4. This infimum cost is not a minimum cost since no run realizes it. Indeed
the value 4 is achieved at the vertex (2,1) of the polyhedron, a point that does not belong
to it.

Therefore in this simple example, the infimum cost of reaching location l3 from loca-
tion l1 is equal to 4, and it is realizable. This value has been obtained by solving a linear
programming problem for the two parameterized runs ρ1(t1, t2) and ρ2(t1, t2).
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In order to solve the cost-optimal reachability problem, we first study an easier problem:
the cost-optimal path reachability problem. It is related to a given path in the region graph
RA of a weighted timed automaton A. We define this simpler problem in Sect. 3.1 below. We
show in Sect. 3.2 that solving the cost-optimal path reachability problem reduces in solving
a linear programming problem. In Sects. 3.3 and 3.4, we investigate further the approach by
linear programming. The obtained results will be a first step toward the solution of Problem 1
given in Sect. 4.

3.1 Cost-optimal path reachability problem

Definition 8 Let A be a weighted timed automaton. Given a canonical initialized path ρR

in RA, the optimal cost OptCost(ρR) associated with ρR is the infimum of the costs C(ρ)

among the runs ρ of TA such that [ρ] = ρR .
Moreover, we say that OptCost(ρR) is realizable if there exists such a run ρ such that

C(ρ) = OptCost(ρR).

Remark 10 In the previous definition, we can suppose that ρR is canonical and initialized
due to Remarks 3 and 8.

Problem 2 (Cost-optimal path reachability problem). Given A a weighted timed automaton,
and ρR a canonical initialized path in RA, compute the optimal cost OptCost(ρR) associated
with ρR .

Remark 11 We notice that given ρR a path of RA, we have Cs(ρ) = Cs(ρ
′) whenever

[ρ] = [ρ ′] = ρR . Hence the cost-optimal path reachability problem reduces in computing
the optimal duration cost Cd .

3.2 A linear programming problem

In this section we show that solving Problem 2 reduces in solving a linear programming
problem. This idea was already illustrated in Example 2. Before we formalize this idea, we
go further with this example.

Example 3 We come back to the weighted timed automaton of Fig. 2 and its equivalence
relation ≈ given on Fig. 3. We consider the following path ρR in RA

ρR = r ′
0 → r1 → r ′

1 → r2 → r ′
2

with the regions

r ′
0 = (l0,0,0),

r1 = (l0,0 < x1 = x2 < 1),

r ′
1 = (l1, x1 = 0,0 < x2 < 1),

r2 = (l1,1 < x1 < 2, x2 = 2),

r ′
2 = (l3,1 < x1 < 2, x2 = 2).

Each run ρ of TA such that [ρ] = ρR can be parameterized as

ρ(t1, t2) = (l0,0,0)
t1→ (l0, t1, t1) → (l1,0, t1)

t2→ (l1, t2, t1 + t2) → (l3, t2, t1 + t2)
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with the two parameters t1, t2 constrained by the next linear inequalities

0 < t1 < 1, 1 < t2 < 2 and t1 + t2 = 2. (3)

These constraints are obtained as follows. We have r1 = [(l0, t1, t1)] justifying the first in-
equality, and r2 = [(l1, t2, t1 + t2)] justifying the second and third inequalities.

In the same way it has been done in Example 2, we compute OptCost(ρR) as equal
to 4. Indeed, it is equal to the infimum value of the cost C(ρ(t1, t2)) = t1 + 3 · t2 under
the constraints (3). This optimal cost is not realizable. However it can be approximated by
ρ(1 − ε,1 + ε) with ε > 0 arbitrarily small.

We now generalize arguments of Example 3 to any canonical initial path ρR of Defini-
tion 8. We suppose that it has the following form with the last edge being a switch-edge8:

ρR = r ′
0 → r1 → r ′

1 → r2 · · · → rm → r ′
m. (4)

In this path, each region rk (resp. r ′
k) is bounded since the timed automata studied in this

paper are supposed to be bounded (see Remark 2).
We recall the basic fact [1] that each region r of A can be described by a location and

a finite set of linear constraints of the form

xi − xj ∼ c or xi ∼ c, (5)

where xi , xj are clocks, c ∈ Z and ∼ ∈ {<,≤,=,≥,>}. We denote this set of linear con-
straints by r(x1, . . . , xn).

All runs ρ of TA such that [ρ] = ρR can be parameterized as

ρ(t1, t2, . . . , tm) = q ′
0

t1→ q1
e1→ q ′

1
t2→ q2

e2→ ·· · tm→ qm

em→ q ′
m, (6)

where

– The first state is of the form q ′
0 = (l1,0) such that r ′

0 = [(l1,0)],
– Each other state can be written as qk = (lk, x

k) = (lk, x
k
1 , x

k
2 , . . . , x

k
n) (resp. q ′

k =
(lk+1, x

′k)) such that each clock xk
i (resp. x ′k

i ) depends on the parameters t1, t2, . . . , tk .

For state qk , this dependence xk
i = xk

i (t1, . . . , tk) is given in Remark 4:

xk
i (t1, . . . , tk) = th+1 + th+2 + · · · + tk−1 + tk (7)

with 0 ≤ h ≤ k such that qh

eh→ q ′
h is the last transition of ρ(t1, . . . , tm) where the clock xi

has been reset. For state q ′
k , with ek = (lk, gk, Yk, lk+1), we have

x ′k
i (t1, . . . , tk) = 0 if xk

i ∈ Yk

= xk
i otherwise. (8)

Since [ρ(t1, . . . , tm)] = ρR , we have rk = [qk] for all k ∈ {1, . . . ,m}, this shows that
the parameters t1, . . . , tm are constrained by the following set of inequalities

Constr(ρR) =
⋃

k∈{1,...,m}
rk(t1, . . . , tk) (9)

8The case where the last edge is a time-edge can be treated similarly. All the results of Sect. 3.2 remain valid.
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rk(t1, . . . , tk) = rk(x
k
1 (t1, . . . , tk), . . . , x

k
n(t1, . . . , tk)).

Therefore for all runs ρ of TA such that [ρ] = ρR , we can write ρ = ρ(τ1, . . . , τm) such
that (τ1, . . . , τm) ∈ (R+)m satisfy the constraints of Constr(ρR).

Example 4 Let us illustrate the previous notation on the path ρR of Example 3. The set
Constr(ρR) is composed of the following linear constraints

– Region r1: 0 < t1 < 1,
– Region r2: 1 < t2 < 2, t1 + t2 = 2.

They have been obtained as follows. From r1 = (l0,0 < x1 = x2 < 1) with the two clocks
equal to t1, we obtain the first constraint 0 < t1 < 1. From r2 = (l1,1 < x1 < 2, x2 = 2) with
the two clocks x1, x2 respectively equal to t2 and t1 + t2, we obtain the second and third
constraints 1 < t2 < 2 and t1 + t2 = 2.

We now define the two following subsets of (R+)m:

A(ρR) = {(τ1, . . . , τm) ∈ (R+)m | [ρ(τ1, . . . , τm)] = ρR},
B(ρR) = {(τ1, . . . , τm) ∈ (R+)m | (τ1, . . . , τm) |= Constr(ρR)}.

This allows us to formulate the next lemma.

Lemma 1 A(ρR) = B(ρR).

Proof From above we have A(ρR) ⊆ B(ρR). For the other inclusion, consider (τ1, . . . , τm)

|= Constr(ρR), we have to prove that ρ = ρ(τ1, . . . , τm) is a run of TA satisfying
[ρ(τ1, . . . , τm)] = ρR . The proof is by induction on k with k ∈ {0, . . . ,m}.

For k = 0, we have q ′
0 = (l1, ν

′0) = (l1,0) and [q ′
0] = r ′

0. For correctly starting the in-
duction, we also need a fictitious state q0 = (l0, ν

0) = (l0,0) and a fictitious edge e0 =
(l0, g0, Y0, l1) with g = true and Y0 = X.

Consider the case k > 0. Let ek−1 be the edge (lk−1, gk−1, Yk−1, lk).
By induction, we can suppose that q ′

k−1 = (lk, ν
′k−1) with ν ′k−1 satisfying (8) and (7),

that is

ν ′k−1
i = 0 if the clock xi belongs to Yk−1

= νk−1
i otherwise,

where

νk−1
i = τh+1 + τh+2 + · · · + τk−1

with 0 ≤ h ≤ k − 1 such that qh

eh→ q ′
h is the last transition of ρ where the clock xi has been

reset. Moreover, [q ′
k−1] = r ′

k−1.
Let us now study the form of the states qk and q ′

k .
By definition of a time-transition, we have qk = (lk, ν

k) with

νk
i = τk if ν ′k−1

i = 0
= τh+1 + τh+2 + · · · + τk−1 + τk otherwise.

This shows that νk satisfies (7). By hypothesis, τ1, . . . , τk satisfy the subset of constraints

rk(t1, . . . , tk) of Constr(ρR). It follows that the transition q ′
k−1

τk→ qk is a time-transition of
TA such that [qk] = rk .
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Let ek be the edge (lk, gk, Yk, lk+1). By definition of a switch-transition, we have q ′
k =

(lk+1, ν
′k) with

ν ′k
i = 0 if the clock xi belongs to Yk

= νk
i otherwise.

Then we have a switch-transition qk

ek→ q ′
k such that [q ′

k] = r ′
k and ν ′k satisfies (8). This ends

the case k > 0 of the induction. �

In Remark 11, we notice that solving the cost-optimal path reachability problem reduces
in computing the optimal duration cost Cd . Looking at the parameterized run ρ(t1, . . . , tm)

(see (6)), its duration cost is equal to

Cd(ρ(t1, . . . , tm)) =
∑

k∈{1,...,m}
C(lk) · tk. (10)

Thus by Lemma 1, the optimal cost OptCost(ρR) can be obtained by computing the infimum
value of Cd(ρ(t1, . . . , tm)) under the set of constraints Constr(ρR).

The set Constr(ρR) defines an m-dimensional polyhedron Pol(ρR) equal to

Pol(ρR) = {(τ1, . . . , τm) ∈ (R+)m | (τ1, . . . , τm) |= Constr(ρR)}. (11)

Notice that this polyhedron is bounded since the set of constraints Constr(ρR) is constructed
from bounded regions.

We also define the closure of the polyhedron Pol(ρR), denoted by Pol(ρR). This polyhe-
dron is obtained by considering the set Constr(ρR) where each constraint (see (5)) of the
form xi − xj < c or xi < c (resp. xi − xj > c or xi > c) is replaced by xi − xj ≤ c or xi ≤ c

(resp. xi − xj ≥ c or xi ≥ c).9 Looking at (7), we notice that the constraints of Constr(ρR)

have the form

ti + ti+1 + · · · + tj−1 + tj ∼ c

with i, j ∈ {1, . . . ,m}, c ∈ Z and ∼∈ {<,≤,=,≥,>}. It follows that Pol(ρR) can be defined
by constraints of the form

M · t ≤ d, t ≥ 0, (12)

where M is a (p × m) matrix with integer coefficients (for some p), t is the column vector
(t1, . . . , tm) such that ti ≥ 0 for all i ∈ {1, . . . ,m}, and d is a column vector of p integer
constants.

As the duration cost is a linear function with integer coefficients (see (10)), the optimum
value of Cd(ρ(t1, . . . , tm)) is obtained at one of the vertices of the polyhedron Pol(ρR). Due
to the form of (12), this can be computed by the Simplex Method, a well-known method in
linear programming (see [19]). In this way, we have shown how to solve Problem 2.

Corollary 1 Problem 2 is decidable.

9This definition corresponds to the notion of closure from the topological point of view.
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Notice that this problem is in PTIME (in p and m). We recall that m is the length of ρR

and p is related to the number of constraints of Constr(ρR) defined in (9).
With the linear programming approach, we can also decide whether the optimal cost

OptCost(ρR) is realizable.

Corollary 2 It is decidable whether the optimal cost OptCost(ρR) is realizable.

Proof Suppose that the minimum value of Cd(ρ(τ1, . . . , τm)) computed by the Simplex
Method is equal to b. Recall the form of Cd(ρ(τ1, . . . , τm)) given in (10). Then OptCost(ρR)

is realizable if and only if the intersection between

{
(τ1, . . . , τm) ∈ (R+)m

∣∣∣
∑

k∈{1,...,m}
C(lk) · τk = b

}

and Pol(ρR) is nonempty. �

Remark 12 It is important to note that Corollary 1 remains true in the case of more general
duration cost functions. For instance, if Cd(ρ(t1, . . . , tm)) is a concave function, then its
minimum value is obtained at one of the vertices of the polyhedron Pol(ρR) (see [21]). We
recall that a function f (t) = f (t1, . . . , tm) is concave if

f (λt + (1 − λ)t ′) ≥ λf (t) + (1 − λ)f (t ′)

with λ ∈ [0,1]. Since every t ∈ Pol(ρR) can be written as t = ∑
k λkvk with

∑
k λk = 1 and

the vk’s being the vertices of Pol(ρR), we have

f (t) = f

(∑

k

λkvk

)
≥

∑

k

λkf (vk) ≥
∑

k

λk min
k

{f (vk)} = min
k

{f (vk)}.

This shows that the minimum value of Cd(ρ(t1, . . . , tm)) is obtained at the vertex vl of
Pol(ρR) such that f (vl) = mink{f (vk)}.

Symmetrically, if Cd(ρ(t1, . . . , tm)) is a convex function, then its maximum value is ob-
tained at one of the vertices of Pol(ρR) (see [21]). A function f (t) is convex if −f (t) is
concave.

3.3 3-Block matrices

Let A be a weighted timed automaton, and ρR be a canonical initial path in RA. In this
section we investigate in more details the form of the polyhedron Pol(ρR), and in particular
its vertices. This study leads to the nice results given in Corollaries 4 and 5.

Coming back to the form of the matrix M given in (12), we observe that each row of
M is composed of three blocks (possibly empty): a first block of 0’s, a second block of 1’s
(resp. −1’s) and a third block of 0’s, that is

(0, . . . ,0,1, . . . ,1,0, . . . ,0) or (0, . . . ,0,−1, . . . ,−1,0, . . . ,0).

We call 3-block a matrix of this form. This particularity of the matrix M will lead to very
nice results. First we give an illustration.
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Example 5 Considering the path ρR of Example 3 with the set Constr(ρR) being composed
of the linear constraints

0 < t1 < 1, 1 < t2 < 2, t1 + t2 = 2

(see Example 4). The polyhedron Pol(ρR) is defined by the following matrix system

⎛

⎜⎜⎜⎜⎜⎝

−1 0
1 0
0 −1
0 1
1 1

−1 −1

⎞

⎟⎟⎟⎟⎟⎠

(
t1
t2

)
≤

⎛

⎜⎜⎜⎜⎜⎝

0
1

−1
2
2

−2

⎞

⎟⎟⎟⎟⎟⎠
.

Let us show that the matrix M is totally unimodular.

Definition 9 ([19]) An integer matrix M is said totally unimodular if the determinant of all
its square submatrices is equal to 0, 1 or −1.

Lemma 2 Any 3-block matrix is totally unimodular.

Proof We prove this lemma by induction on the size l of the square submatrices of M . The
computation of their determinant is done with the cofactor method.

If l = 1 the result clearly holds. Suppose l > 1 and let A ∈ Z
l×l be a submatrix of M . We

have to prove that det(A) equals 0, 1 or −1. This proof is by induction on k the number of
non null coefficients of the first column of A.

If k = 0, then det(A) = 0. If k = 1, then we obtain the desired result by the induction
hypothesis on l.

In order to treat the case k > 1, we need to introduce some notation and definition. As
usual we denote by Aij the coefficient of A located in row Li and column Cj of A. We
consider the rows Li of A such that Ai1 
= 0,10 and we define a total ordering on these rows
as follows

Li ⊆ Li′ iff ∀j Aij 
= 0 ⇒ Ai′j 
= 0.

Consider two rows Li , Li′ such that Ai1 
= 0, Ai′1 
= 0 respectively, and Li ⊆ Li′ . We
build a new matrix B from A by replacing the row Li′ by the row Li′ − Li if Ai1 = Ai′1,
and by the row Li′ +Li if Ai1 = −Ai′1. The other rows are left unchanged. Since B is again
3-block, det(A) = det(B), and B has k − 1 non null coefficients in its first column, we can
conclude that det(A) equals 0, 1 or −1 by the induction hypothesis on k. �

From the next theorem and Lemma 2, we have the following nice corollaries.

Theorem 2 ([19]) Consider the polyhedron {t ∈ R
m | M · t ≤ d} with M a totally unimod-

ular (p × m) matrix and d ∈ Z
p . Then the coordinates of its vertices are integers.

Corollary 3 The vertices of the polyhedron Pol(ρR) have integer coordinates.

10Recall that M is 3-block. Thus such a row Li is formed by a block of 1’s (resp. −1’s) followed by a block
of 0’s.
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Corollary 4 The optimal cost OptCost(ρR) is an integer.

In the next corollary, we indicate the relation between the optimal cost OptCost(r, r ′) of
reaching the region r ′ from the region r and the optimal cost OptCost(ρR) associated with
a path ρR of the region graph (see Definitions 7 and 8).

Corollary 5 Let A be a timed automaton and r , r ′ be two regions of RA. Then

OptCost(r, r ′) = inf{OptCost(ρR) | ρR = r � r ′path inRA}.
Moreover, if OptCost(r, r ′) 
= ∞, then

OptCost(r, r ′) = OptCost(ρR)

for some path ρR = r � r ′ of RA, and OptCost(r, r ′) is an integer.

Proof The first part of the corollary follows from the next equality.

inf{C(ρ) | ρ = q � q ′, q ∈ r, q ′ ∈ r ′} = inf
ρR

inf{C(ρ) | ρ = q � q ′, [ρ] = ρR}.

The second part is an immediate consequence of Corollary 4. �

3.4 ε-Semantics

We have shown that Problem 2 is decidable: with the notation of Sect. 3.2, the optimal
cost OptCost(ρR) can be obtained by computing the infimum value of the duration cost
Cd(ρ(t1, . . . , tm)) under the set of constraints Constr(ρR). By the Simplex Method, it is ob-
tained at one of the vertices of the polyhedron Pol(ρR). Moreover, these vertices have inte-
ger coordinates by Corollary 3. All these results suggest that when computing OptCost(ρR),
only time-transitions with a time τ “arbitrarily close to an integer” have to be considered
(see also the end of Example 3). We thus introduce the ε-semantics in Definition 10 and we
formalize the previous suggestion in Lemma 3.

The notion of ε-semantics of a timed automaton A is similar to the semantics given in
Definition 2, except that elapse τ of time at a location is restricted to τ close to an integer.

Definition 10 Let A = (L,X,E,I) be a timed automaton and ε ∈ ]0, 1
2 ] be a real number.

The ε-transition system T ε
A = (Q,→ε) has the same set Q as in TA and a transition relation

→ε=
⋃

τ∈R
+
ε

τ→ ∪
⋃

e∈E

e→

such that R
+
ε = {τ ∈ R

+ | ∃N ∈ N |N − τ | < ε}.

We distinguish two kinds of time-transition
τ→ with τ ∈ R

+
ε : either 0 ≤ N − τ < ε, or

0 ≤ τ − N < ε.11 In the first case we use notation
N−→, and in the second case

N+→.
A finite path in the ε-transition system T ε

A is called an ε-run; it is denoted by ρε . Clearly
any ε-run of T ε

A can be seen as a run of TA.

11The two cases are mutually exclusive by the choice of ε ∈ ]0, 1
2 ].
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Remark 13 When the context is clear enough, we use notation q → q ′ instead of q →ε q ′
for transitions of T ε

A.

In the next lemma, we show that the optimal cost OptCost(ρR) can be approximated by
the cost of some well-chosen ε-run.

Lemma 3 Let A be a weighted timed automaton, and ρR be a canonical initialized path in
RA. Let ε ∈ ]0, 1

2 ]. Then there exists an initialized ε-run ρε in T ε
A such that

[ρε] = ρR and |OptCost(ρR) − C(ρε)| < ε.

Proof We use the notation of Sect. 3.2. We suppose that ρR has the form

ρR = r ′
0 → r1 → r ′

1 → r2 · · · → rm → r ′
m

with the related parameterized run

ρ(t1, t2, . . . , tm) = q ′
0

t1→ q1
e1→ q ′

1
t2→ q2

e2→ ·· · tm→ qm

em→ q ′
m

(see (4) and (6)). Consider the set of constraints Constr(ρR) and the polyhedron Pol(ρR)

defined by them (see (9) and (11)).
By Remark 11, we know that computing the optimal cost OptCost(ρR) reduces in com-

puting the optimal duration cost Cd . By the Simplex Method and Corollary 3, this duration
cost is obtained at one of the vertices (τ1, . . . , τm) ∈ N

m of Pol(ρR) with integer coordinates.
Let us show how to define the required ε-run ρε . Suppose A = (L,X,E,I,C) and let

K = maxl∈L |C(l)|. Let ε′ be such that 0 < ε′ ≤ ε and mKε′ < ε. Since Pol(ρR) is the closure
of the polyhedron Pol(ρR), there exists a point (τ ′

1, . . . , τ
′
m) ∈ Pol(ρR) such that |τk −τ ′

k| < ε′
for all k ∈ {1, . . . ,m}. By Lemma 1, the run ρ(τ ′

1, . . . , τ
′
m) of TA satisfies [ρ(τ ′

1, . . . , τ
′
m)] =

ρR . Moreover, since τk ∈ N, ∀k, and ε′ ≤ ε, ρ(τ ′
1, . . . , τ

′
m) is an ε-run. Therefore we define

ρε = ρ(τ ′
1, . . . , τ

′
m). Looking at Definition 6 and Remark 11, we have

|OptCost(ρR) − C(ρε)| =
∣∣∣∣

∑

k∈{1,...,m}
C(lk)τk −

∑

k∈{1,...,m}
C(lk)τ

′
k

∣∣∣∣ ≤ Kmε′ < ε.
�

4 Solving the cost-optimal reachability problem

In this section, we solve the cost-optimal reachability problem for weighted timed automata
(Problem 1) and we prove that it is PSPACE-COMPLETE as announced in Sect. 3. This
proof needs several steps that we now briefly introduce. By Lemma 3, we have seen that
to solve Problem 2 for a weighted timed automaton A, it was sufficient to consider runs of
the transition system TA restricted to the ε-semantics (with ε arbitrarily close to 0). This
observation motivates the introduction of the ε-region graph in Sect. 4.1, which is a refine-
ment of the region graph RA. In Sect. 4.2, we establish what is the correspondence between
runs of the ε-semantics and paths of the ε-region graph (Lemmas 4 and 5). In Sect. 4.3, we
introduce the notion of discrete graph, a notion similar to the ε-region graph, which is inde-
pendent of ε. We show how to augment the discrete graph with a weight function in relation
to the cost function of A. Then, we give the counterparts of the two previous lemmas with
weight (Lemmas 8 and 9). All these steps lead to Theorem 3 where it is stated that solving
Problem 1 reduces to compute some minimum weight in the discrete graph. The announced
complexity of the cost-optimal reachability problem is proved in Sect. 4.4.
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Fig. 6 The ε-equivalence ≈ε

4.1 ε-Region graph

In this section, given a timed automaton A, we define the concept of ε-region graph which
can be seen as a refinement of RA. The refinement that we propose is simpler than the one
given in [4].

Let ε ∈ ]0, 1
2 ]. We define the ε-equivalence denoted ≈ε on clock valuations. This new

equivalence relation refines the equivalence relation ≈ given in Definition 3. We recall that
for every clock xi , ci is the largest constant such that xi is compared with in any guard and
any invariant of A.

Definition 11 Let ε ∈ ]0, 1
2 ]. Two clock valuations ν and ν ′ are ε-equivalent, ν ≈ε ν ′, iff

they satisfy the following conditions12

– ν ≈ ν ′;
– ν̄i < ε iff ν̄ ′

i < ε for all i ∈ {1, . . . , n} with νi ≤ ci ;
– 1 − ε < ν̄i iff 1 − ε < ν̄ ′

i for all i ∈ {1, . . . , n} with νi ≤ ci .

Figure 6 indicates the partition induced by the ε-equivalence for the timed automaton of
Fig. 2.

The relation ≈ε is extended to the states of TA as done previously with ≈. An equivalence
class is called an ε-region. The ε-region to which a state q belongs is denoted [q]ε and the set
of all ε-regions is denoted by Rε .

In order to define the ε-region graph of a timed automaton A, we do not need all the ε-
regions of Rε (contrarily to the construction of RA). Due to Lemma 3, we only need to
consider the ε-regions [(l, ν)]ε whose clock values ν are close enough to n-tuples of integers
(the dashed zones on Fig. 6).

Definition 12 Given a timed automaton A and ε ∈ ]0, 1
2 ], the set of acceptable ε-regions,

denoted Sε , is defined by

Sε = {[(l, ν)]ε | ∀i ∈ {1, . . . , n} : νi ≤ ci ⇒ (ν̄i < ε or 1 − ε < ν̄i)}.

Remark 14 If rε = [(l, ν)]ε is an ε-region of Sε , then there exists a unique region r ∈ R,
equal to [(l, ν)], such that rε ⊆ r . In the sequel, rε always denotes an ε-region included in
the region r .13

12With the choice of ε ∈ ]0, 1
2 ], the last two conditions are mutually exclusive.

13Similarly if δ ≤ ε, we will also use notation rδ , rε, r with rδ ⊆ rε ⊆ r .
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Fig. 7 Representation of
the region
0 < ν̄1 < · · · < ν̄i < ε ≤ 1 − ε

< ν̄i+1 < · · · < ν̄n

Fig. 8 A weighted timed
automaton

Remark 15 Using the representation introduced in Remark 5, we can visualize an ε-region
rε as on Fig. 7 (when r is a bounded region). We observe that the fractional parts ν̄i of
the clock values are either less than ε or greater than 1 − ε. We thus introduce the following
notation14

Low(rε) = {xi | νi ≤ ci and ν̄i < ε};
High(rε) = {xi | νi ≤ ci and 1 − ε < ν̄i}.

This graphical representation of the ε-regions is very helpful in the proofs below.

Remark 16 The acceptable ε-regions that we propose as a refinement of the classical regions
of [1] are simpler than the refinement introduced in [4]. Indeed in our case, the clock values
of an acceptable ε-region rε are arbitrarily close to one of the corners of the region r , when
in [4] the clock values are arbitrarily close to one of the boundaries of r .

In the next examm, we illustrate the interest of Definition 12 for computing the optimal
cost OtpCost(r, r ′) for two regions r, r ′ of a timed automaton.

Example 6 We consider the weighted timed automaton A of Fig. 8. The cost of each
location is indicated on the figure and the cost of each edge is null. The invariant (x ≤ 1) is
assigned to each location, showing that A is bounded. We want to compute the optimal cost
OptCost(r, r ′) for the two regions r = [(l1,0)] and r ′ = [(l2,1)] of RA.

Let ρ1 = (l1,0) � (l2,1) be a run of TA not going through location l3. Clearly it has
a cost C(ρ1) = 2.

We now consider runs ρ2 = (l1,0) � (l2,1) going through l3. This family of runs can be
described by the parameterized run

ρ2(t1, t2, t3) = (l1,0)
t1→ (l1, t1) → (l3, t1)

t2→ (l3, t1 + t2)

→ (l1, t1 + t2)
t3→ (l1, t1 + t2 + t3) → (l2, t1 + t2 + t3),

14Notice that the sets Low(rε) and High(rε) are disjoint since ε ≤ 1
2 .
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Fig. 9 The run ρ2(ε,1 − 2 · ε, ε)

where t1, t2 and t3 are constrained by

0 < t1 < 1, 0 < t1 + t2 < 1 and t1 + t2 + t3 = 1. (13)

The cost of the parameterized run ρ2(t1, t2, t3) is given by 2 · t1 + t2 + 2 · t3. One can check
that the infimum value of 2 · t1 + t2 + 2 · t3 under the constraints (13) is equal to 1, and that
it is obtained at the point (t1, t2, t3) = (0,1,0).

Therefore, the optimal cost OptCost(r, r ′) is equal to 1.
We now study in more details the parameterized run ρ2(t1, t2, t3) with (t1, t2, t3) arbi-

trarily close to (0,1,0). Let us fix ε ∈ ]0, 1
2 ]. Given 0 < δ < ε, the run ρ2(δ,1 − 2 · δ, δ)

respects the constraints given in (13). This run is depicted on Fig. 9. Notice on this figure
how it was necessary to refine the region (l3,0 < x < 1) into the two acceptable ε-regions
(l3,0 < x < ε) and (l3,1 − ε < x < 1).

Given A a timed automaton and ε ∈ ]0, 1
2 ], we now define the ε-region graph Rε

A. It is
obtained in two steps: first we define the quotient graph TA/≈ε , and then we restrict it to
the set Sε of acceptable ε-regions.

Definition 13 Let A be a timed automaton and ε ∈ ]0, 1
2 ]. The ε-region graph Rε

A = (Sε,→)

is the finite subgraph of TA/≈ε induced by Sε . Its vertex set is equal to Sε . Its edge set is
composed of the edges rε → r ′ε , with rε, r ′ε ∈ Sε , such that there exist two states q ∈ rε ,
q ′ ∈ r ′ε , and a transition q → q ′ in TA. The edge rε → r ′ε is called a switch-edge (resp.
time-edge) if q → q ′ is a switch-transition (resp. time-transition).

A path in Rε
A is denoted ρSε . As for RA, the vertices of such a path are all bounded

regions (see Remark 2). We say that a path ρSε = rε � r ′ε in Rε
A is initialized if rε is of

the form [(l,0)]ε such that all the clock values are null. Let us notice that we only consider
finite paths of Rε

A in this paper.

Remark 17 In the sequel, we only work with the ε-regions that are acceptable. Therefore,
we omit the term “acceptable”.

Remark 18 The size |Sε| is bounded by (n+1)|R|.15 Indeed a region r of RA gives rise to at
most n+1 different ε-regions rε ⊆ r , since each such rε is specified by the way the interval
[0,1[ is cut into the sets Low(rε) and High(rε) (see Fig. 7). Since |RA| is in O(2|A|), it
follows that |Rε

A| is also in O(2|A|).

15We recall that n is the number of clocks.
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Fig. 10 No natural simulation of
Rε

A by T ε
A

4.2 Links between T ε
A and Rε

A

In this section, given a timed automaton A and ε ∈ ]0, 1
2 ], we show how the runs of

the ε-transition system T ε
A are linked to the paths of the ε-region graph Rε

A, and conversely
(Lemmas 4 and 5).

First, it is important to notice that there are no natural simulation of Rε
A by T ε

A (Exam-
ple 7) and no natural simulation of T ε

A by Rε
A (Example 8).

Example 7 Let A be a timed automaton with one location l and two clocks x1, x2. Let us fix
ε ∈ ]0, 1

2 ] and δ = ε
10 . Let rε be the ε-region such that 0 < x2 < x1 < 1, Low(rε) = {x2} and

High(rε) = {x1}, and let r ′ε be the ε-region such that 0 < x2 < x1 = 1, Low(r ′ε) = {x1, x2}
and High(r ′ε) = ∅. We clearly have rε → r ′ε . However given (l, ν) = (l,1 − ε + δ, ε − δ) ∈
rε , it is impossible to find (l, ν ′) such that (l, ν) → (l, ν ′) and (l, ν ′) ∈ r ′ε . This situation is
illustrated on Fig. 10.

Example 8 Let A be a timed automaton with one location l and one clock x1. Let us fix

ε ∈ ]0, 1
3 ] and δ = ε

10 . We consider the transition (l, ν)
2δ→ (l, ν ′) of T ε

A such that ν = ε − δ

and ν ′ = ε + δ. Clearly (l, ν) belongs to some ε-region rε of Rε
A since ν < ε. However, it is

impossible to find an ε-region r ′ε such that (l, ν ′) ∈ r ′ε because we have neither ν ′ < ε nor
1 − ε < ν ′ by the choice of ε and δ. (See Definition 12.)

Although there is no natural simulation between Rε
A and T ε

A, we are able to relate runs
of T ε

A and paths of Rε
A in a weaker way. This relation is described in the next two lemmas.

We recall that the timed automata of this paper are bounded (see Remark 2). Therefore,
the regions and ε-regions considered in these lemmas are supposed to be bounded.

Lemma 4 Let A be a timed automaton and ε ∈ ]0, 1
3 ]. Let ρSε = rε

0 → rε
1 → ·· · → rε

m be
an initialized path in Rε

A. Then there exists an initialized ε-run ρε = (l0, ν
0) → (l1, ν

1) →
·· · → (lm, νm) in T ε

A such that (lk, ν
k) ∈ rε

k for all k ∈ {0, . . . ,m}.

In the statement of this lemma, the same ε number is used in both the path ρSε in Rε
A and

the ε-run ρε in T ε
A.

The proof proceeds by induction on the length of ρSε and therefore it requires the use of
m + 1 intermediate εk ≤ ε, k ∈ {0, . . . ,m}, of the form εk = ε

2m−k . For instance, to avoid

the situation of Example 7, one takes (l, ν) in r
ε
2 (instead of rε) to obtain a transition

(l, ν) → (l, ν ′) with (l, ν ′) ∈ r ′ε (see Fig. 10). The proof is technical since several cases
have to be considered, however it is not difficult. It can be skipped at a first reading.
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Fig. 11 The proof at a glance when xf ∈ Low(rεk )

Fig. 12 The proof at a glance when xf ∈ High(rεk )

Proof of Lemma 4 We are going to build the required ε-run ρε as follows: for all k ∈
{0, . . . ,m}, we will insure that (lk, ν

k) ∈ r
εk

k and the prefix

ρεk = (l0, ν
0)→(l1, ν

1) · · ·→(lk, ν
k) (14)

is a run in T
εk
A , with εk = ε

2m−k . Since εk ≤ ε, we have r
εk

k ⊆ rε
k and ρεk is an ε-run of T ε

A.16

Thus the thesis holds with k = m.
We proceed by induction on k. Suppose k = 0. Since ρSε is initial, rε

0 has the form
[(l0,0)]. The unique state of ρε0 is thus (l0,0).

Let k ≥ 0 and suppose by the induction hypothesis that we have built a path ρεk like in
(14) with the desired conditions. Since ρεk is also an εk+1-run in T

εk+1
A , we have to show that

we can find a transition (lk, ν
k)→(lk+1, ν

k+1) in T
εk+1
A such that (lk+1, ν

k+1) ∈ r
εk+1
k+1 .

To make the sequel more readable, we change the notation as follows. We denote the state
(lk, ν

k) by (l, ν) and the state (lk+1, ν
k+1) by (l′, ν ′). Similarly notation rε and r ′ε is used

instead of rε
k and rε

k+1 respectively; notation rεk and r ′εk+1 is used instead of r
εk

k and r
εk+1
k+1

respectively. We denote by r (resp. r ′) the region of RA which contains rεk (resp. r ′εk+1 ).
We now consider the two possible cases, switch-edge and time-edge, for the edge rε →

r ′ε in Rε
A. In each case we define the adequate state (l′, ν ′).

Suppose that rε → r ′ε is a switch-edge. By the induction hypothesis, (l, ν) ∈ rεk . Since
r → r ′ is a switch-edge in RA, there exists a switch-transition (l, ν)

e→ (l′, ν ′) in TA.
Since εk < εk+1 and (l, ν) ∈ rεk , this transition is also a switch-transition in T

εk+1
A such

that (l′, ν ′) ∈ rεk+1 .
We now treat the case where rε → r ′ε is a time-edge. First we suppose that r ′ is a closed

region. It follows that there exists a unique (l, ν ′) ∈ r ′ (and a unique τ ) such that (l, ν)
τ→

(l, ν ′) is a time-transition in TA. Hence there exists a clock xf whose fractional part is equal

to 0 in r ′ (i.e. ν̄ ′
f = 0). We are going to prove that (l, ν)

τ→ (l, ν ′) is a transition in T
εk+1
A

such that (l, ν ′) ∈ r ′εk+1 . In other words we show that |N − τ | < εk+1 for some N ∈ N (see
Definition 10) and ν̄ ′

i ∈ [0, εk+1[∪]1 − εk+1,1[ for each i ∈ {1, . . . , n} (see Definition 12).
We have to distinguish four cases depending on the belonging of xf and xi to Low(rεk ) or
High(rεk ).

1. If xf ∈ Low(rεk ), then τ = N − ν̄f for some N ∈ N \ {0} (this case is illustrated on
Fig. 11). Thus N − τ = ν̄f < εk , showing that |N − τ | < εk+1. We distinguish two sub-
cases.

16Notice that we use the notation r
εk
k

, rε
k

as proposed in Remark 14.
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Fig. 13 Additional notation

Fig. 14 The proof at a glance for transition r ′′ → r ′

(a) xi ∈ Low(rεk ).
If ν̄i ≥ ν̄f , then ν̄ ′

i = ν̄i − ν̄f . Hence by induction hypothesis we have 0 ≤ ν̄ ′
i < εk <

εk+1. If ν̄i < ν̄f , then ν̄ ′
i = 1 − (ν̄f − ν̄i ). Hence by induction hypothesis we have

1 − εk+1 < 1 − εk < ν̄ ′
i < 1.

(b) xi ∈ High(rεk ).
We have ν̄ ′

i = ν̄i − ν̄f . By induction hypothesis, we conclude that 1−εk+1 = 1−2εk <

ν̄ ′
i < 1.

2. If xf ∈ High(rεk ), then τ = N − ν̄f for some N ∈ N \ {0} (this case is illustrated on
Fig. 12). Thus τ − N + 1 < εk , showing that |τ − N + 1| < εk+1. We distinguish two
subcases.
(a) xi ∈ Low(rεk ).

We have ν̄ ′
i = ν̄i + (1 − ν̄f ). Hence 0 ≤ ν̄ ′

i < 2εk = εk+1.
(b) xi ∈ High(rεk ).

If ν̄i < ν̄f , then ν̄ ′
i = ν̄i + (1 − ν̄f ) and 1 − εk+1 < 1 − εk < ν̄i

′ < 1. If ν̄i ≥ ν̄f , then
ν̄ ′

i = ν̄i − ν̄f and 0 ≤ ν̄ ′
i < εk < εk+1.

This concludes the case where rε → r ′ε is a time-edge such that r ′ is a closed region.17

We now treat the case where rε → r ′ε is a time-edge such that r ′ is an open region. We
have to define τ and (l, ν ′) such that (l, ν)

τ→ (l, ν ′) is a time-transition of T
εk+1
A and (l, ν ′) ∈

r ′εk+1 . We begin to introduce additional notation (see Fig. 13). Among the clocks which
belong to Low(rεk ), we denote by xa (resp. xb) the one whose valuation has the smallest
(resp. largest) fractional part. Similarly for the clocks of High(rεk ), xc (resp. xd ) is the one
whose valuation has the smallest (resp. largest) fractional part.

Since the region r ′ is supposed to be open, either there exists a closed region r ′′ such that
r → r ′′ → r ′ (with possibly r = r ′′) such that r ′ = succ(r ′′), or such a closed region r ′′ does
not exist, and then r = r ′.

1. If r ′′ exists, by using the previous case, we can find (l, ν ′′) ∈ r ′′ such that (l, ν)
τ ′→ (l, ν ′′)

is a transition in T
εk+1
A , |N − τ | < εk+1 for some N ∈ N, and (l, ν ′′) ∈ r ′′εk+1 . We then

choose τ ′′ such that τ ′′ < min(εk+1 − ν̄ ′′
b ,1− ν̄ ′′

d ) and |N − (τ ′ +τ ′′)| < εk+1 (see Fig. 14).

We define (l, ν ′) such that (l, ν ′′) τ ′′→ (l, ν ′). With τ = τ ′ + τ ′′, it follows that (l, ν)
τ→

(l, ν ′) is a transition in T
εk+1
A such that (l, ν ′) ∈ r ′εk+1 .

2. If r ′′ does not exist, then r = r ′. In the case rε = r ′ε , we proceed with an argument similar
to the one of the previous case. Indeed it suffices to take τ < min(εk − ν̄b,1 − ν̄d ). With
N = 0, we have |N − τ | < εk < εk+1.

17The hypothesis that r ′ε is an ε-region is of no importance in the arguments given in this case.
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Fig. 15 An impossible situation

Fig. 16 The proof at a glance when Low(rε) = High(r ′ε), and High(rε) = Low(r ′ε) = ∅

In the case rε 
= r ′ε , let us show that

Low(rε) = High(r ′ε), and High(rε) = Low(r ′ε) = ∅. (15)

The hypothesis ε ≤ 1
3 will be necessary. Assume that (15) does not hold. Let us study in

more detail the transition rε → r ′ε in the light of Definition 13. The situation Low(rε) =
∅ and High(rε) 
= ∅ is impossible. Therefore Low(rε) and High(rε) are both non empty.

Consider a time-transition (l, ν̃)
τ̃→ (l, ν̃ ′) of TA such that (l, ν̃) ∈ rε and (l, ν̃ ′) ∈ r ′ε .

Since rε 
= r ′ε , we must have (i) ν̃b < ε, ν̃b + τ̃ > 1 − ε, and (ii) ν̃d > 1 − ε, ν̃d + τ̃ < 1
(see Fig. 15). It follows that 1 − ε < ε + τ̃ in case (i), and 1 − ε + τ̃ < 1 in case (ii).
This is impossible because ε ≤ 1

3 . Since (15) holds, we choose τ = 1 − εk . This case is

illustrated on Fig. 16. The transition (l, ν)
τ→ (l, ν ′) is thus a time-transition of T

εk+1
A .

It remains to show that (l, ν ′) ∈ r ′εk+1 , that is, 1 − εk+1 < ν̄ ′
c and ν̄ ′

d < 1. We have ν̄ ′
c =

ν̄a + 1 − εk > 1 − εk > 1 − εk+1, showing the first inequality. To obtain the second one,
notice that ν̄ ′

d = ν̄b + 1 − εk < εk + 1 − εk = 1. �

Lemma 5 Let A be a timed automaton. Let ρδ = (l0, ν
0) → (l1, ν

1) → ·· · → (lm, νm) be
an initialized δ-run in T δ

A, with δ ∈ ]0, 1
2(m+1)

]. Then, with ε = (m + 1)δ, there exists a path

ρSε = rε
0 → rε

1 → ·· · → rε
m in Rε

A such that (lk, ν
k) ∈ rε

k for all k ∈ {0, . . . ,m}.

Contrary to Lemma 4 where the same ε number was used, the statement of this lemma
requires the use of different numbers ε and δ. This is necessary to avoid the situation of
Example 8. Again the proof of this lemma is technical, but not difficult. It can be skipped at
a first reading.

Proof of Lemma 5 Consider the regions rk = [(lk, νk)] of RA, for k ∈ {0, . . . ,m}. We are
going to build the required path ρSε as follows: for all k ∈ {0, . . . ,m}, we have (lk, ν

k) ∈ r
εk

k

and the prefix

ρSεk = r
εk

0 → r
εk

1 → ·· · → r
εk

k

is a path in R
εk
A , with εk = (k + 1)δ.18 Since εk ≤ ε, we have r

εk

k ⊆ rε
k and ρSεk is also a path

in Rε
A. Thus the thesis holds with k = m.

We proceed by induction on k. If k = 0, then (l0, ν
0) ∈ r

ε0
0 since ν0 = 0.

18As in the proof of the previous lemma, we use the notation discussed in Remark 14. On the other hand,

notice that ε ∈ ]0, 1
2 ] by the choice of δ.



160 Form Methods Syst Des (2007) 31: 135–175

Fig. 17 The proof at a glance for

transition (l, ν)
N+→ (l, ν′)

Fig. 18 The proof at a glance for

transition (l, ν)
N−→ (l, ν′)

Let k ≥ 0. Suppose by induction hypothesis that we have built the path ρSεk with
the desired conditions. This path can be seen as a path in R

εk+1
A since r

εk

j ⊆ r
εk+1
j for all

j ∈ {0, . . . , k}. Consider the edge rk → rk+1 of RA. If we show that (lk+1, ν
k+1) ∈ r

εk+1
k+1 ,

then r
εk+1
k → r

εk+1
k+1 is an edge of R

εk+1
A , and case k + 1 is thus solved.

As in the proof of Lemma 4, we change the notation as follows. We denote the states
(lk, ν

k), (lk+1, ν
k+1) by (l, ν), (l′, ν ′) respectively, and the regions rk, rk+1 by r, r ′ respec-

tively. In a way to prove that (l′, ν ′) ∈ r ′εk+1 , we treat the different types of transition
(l, ν)→(l′, ν ′) (see Definition 10).

Suppose that (l, ν)→(l′, ν ′) is a switch-transition. Since (l, ν) ∈ rεk by induction hypoth-
esis and εk < εk+1, then (l′, ν ′) ∈ r ′εk ⊆ r ′εk+1 .

Suppose now that (l, ν)
τ→ (l′, ν ′) is a time-transition such that |N − τ | < δ for some

N ∈ N. We have to consider the two cases (l, ν)
N+→ (l, ν ′) and (l, ν)

N−→ (l, ν ′).

1. Suppose τ = N + τ ′ with 0 ≤ τ ′ < δ. This case is illustrated on Fig. 17. We have to
prove that (l, ν ′) ∈ r ′εk+1 , i.e. ν̄ ′

i ∈ [0, εk+1[∪]1 − εk+1,1[ for all i ∈ {1, . . . , n}. A clock
xi belongs either to Low(r

εk

k ) or to High(r
εk

k ).
(a) xi ∈ Low(r

εk

k ). Thus by induction hypothesis, 0 ≤ ν̄ ′
i = ν̄i + τ ′ < εk + δ = εk+1.

(b) xi ∈ High(r
εk

k ). Then either ν̄ ′
i = ν̄i + τ ′ or ν̄ ′

i = ν̄i + τ ′ − 1. In the first case, we have
1 − εk+1 < 1 − εk < ν̄i ≤ ν̄ ′

i < 1. In the second case, we have 0 ≤ ν̄ ′
i < δ < εk+1.

2. Suppose that τ = N − τ ′ with 0 < τ ′ < δ. This case is illustrated on Fig. 18. Let us show
that ν̄ ′

i ∈ [0, εk+1[∪]1 − εk+1,1[ for all i ∈ {1, . . . , n}.
(a) xi ∈ Low(r

εk

k ). Then either ν̄ ′
i = ν̄i − τ ′, or ν̄ ′

i = ν̄i − τ ′ + 1. In the first case, we have
0 ≤ ν̄ ′

i ≤ ν̄i < εk < εk+1. In the second case, we have 1 − εk+1 < 1 − εk < ν̄i < ν̄ ′
i < 1.

(b) xi ∈ High(r
εk

k ). Therefore ν̄ ′
i = ν̄i − τ ′ and 1 − εk+1 = 1 − εk − δ < ν̄ ′

i < 1. �

4.3 Weighted discrete graph

In the previous subsection, we gave the relation between the ε-semantics and the ε-region
graph of a timed automaton A. In this section, we introduce the notion of discrete graph,
a notion similar to the ε-region graph, which is independent of ε (Definition 14). Then, we
consider A as a weighted timed automaton with a cost function C. We show how the discrete
graph can be augmented with a weight function W in relation to C (Definition 15). We
end the section with an important result that indicates how the optimal cost OptCost(r, r ′),
with r, r ′ being two regions of RA, can be computed thanks to the weighted discrete graph
(Theorem 3).

In [9], Bouyer et al. propose the construction of a graph called the corner point abstrac-
tion, for studying the optimal way of staying into a designated set of safe locations. This
construction shares several ideas with the construction proposed here for the weighted dis-
crete graph.

Let A be a timed automaton. We begin with a lemma that states that all the ε-region
graphs Rε

A are isomorphic. The proof is in the same vein as for Lemma 4.
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Lemma 6 Let A be a timed automaton. Then all the ε-region graphs Rε
A, with ε ∈ ]0, 1

3 ],
are isomorphic graphs.

Proof Consider Rδ
A = (Sδ,→) and Rε

A = (Sε,→), with δ, ε ∈ ]0, 1
3 ] such that δ < ε. We

have to prove that Rδ
A and Rε

A are isomorphic graphs, that is, there exists a one-to-one
correspondence between Sδ and Sε that respects the edge relation → of each graph.

For any δ-region rδ of Rδ
A, since δ < ε, there exists exactly one ε-region rε of Rε

A such
that rδ ⊆ rε .19 This establishes the one-to-one correspondence between Sδ and Sε . Of course
we have Low(rε) = Low(rδ) and High(rε) = Low(rδ).

If rδ → r ′δ is an edge in Rδ
A, then clearly there is an edge rε → r ′ε in Rε

A. The converse
is more difficult to prove. However the proof follows arguments similar to the ones given in
the proof of Lemma 4. Let us explain them, with less details.20

Let rε → r ′ε be an edge in Rε
A. It is a switch-edge or a time-edge. We have to show that

there exists an edge rδ → r ′δ in Rδ
A. If rε → r ′ε is a switch-edge, it is not difficult to verify

that rδ → r ′δ exists.
We now treat the case where rε → r ′ε is a time-edge. Let (l, ν)

τ→ (l, ν ′) be a time-
transition in TA such that (l, ν) ∈ rε and (l, ν ′) ∈ r ′ε . We define new clock values μ from ν

as follows

μi =
{ 
νi� + δ

2ε
ν̄i if xi ∈ Low(rε),


νi� + 1 − ( δ
2ε

(1 − ν̄i )) if xi ∈ High(rε).

One verifies that for each i

μ̄i ∈
[

0,
δ

2

[
∪

]
1 − δ

2
,1

[
.

In particular, (l,μ) ∈ rδ . If we exhibit a time-transition (l,μ)
τ ′→ (l,μ′) in TA with (l,μ′) ∈

rδ , then we obtain the required time-edge rδ → r ′δ of Rδ
A.

First we suppose that r ′ is a closed region. Hence, there exists a clock xf such that ν̄ ′
f = 0.

It follows that τ = N − νf with N = ν ′
f ∈ N. We define τ ′ = N − μf and μ′ = μ + τ ′. Let

us show that (l,μ′) ∈ r ′δ , i.e. μ̄′
i ∈ [0, δ[∪]1 − δ,1[ for each i. We have to distinguish four

cases.

1. xf ∈ Low(rε).
(a) xi ∈ Low(rε).

If μ̄i ≥ μ̄f , then μ̄′
i = μ̄i − μ̄f . We have 0 ≤ μ̄′

i < δ
2 < δ. If μ̄i < μ̄f , then μ̄′

i =
1 − (μ̄f − μ̄i). We have 1 − δ < 1 − δ

2 < μ̄′
i < 1.

(b) xi ∈ High(rε).
We have μ̄′

i = μ̄i − μ̄f . We conclude that 1 − δ = 1 − 2 δ
2 < μ̄′

i < 1.
2. xf ∈ High(rε).

(a) xi ∈ Low(rε).
We have μ̄′

i = μ̄i + (1 − μ̄f ). Hence 0 ≤ μ̄′
i < 2 δ

2 = δ.
(b) xi ∈ High(rε).

If μ̄i < μ̄f , then μ̄′
i = μ̄i + (1 − μ̄f ) and 1 − δ < 1 − δ

2 < μ̄′
i < 1. If μ̄i ≥ μ̄f , then

μ̄′
i = μ̄i − μ̄f and 0 ≤ μ̄′

i < δ
2 < δ.

19We again use the notation discussed in Remark 14.
20We use the notation of the proof of Lemma 4. Figures 11–16 will be helpful.
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We have thus proved that (l,μ)
τ ′→ (l,μ′) is a transition in TA with (l,μ′) ∈ r ′δ .

We now treat the case where r ′ is an open region. Either there exists a closed region r ′′
such that r → r ′′ → r ′ and r ′ = succ(r ′′), or r ′′ does not exist and then r = r ′.

1. If r ′′ exists, by using the previous case, we can find a transition (l,μ)
τ ′

1→ (l,μ′′) in TA
such that (l, ν ′′) ∈ r ′′δ . We then choose τ ′

2 such that τ ′
2 < min(δ − μ̄′′

b,1 − μ̄′′
d), and we

define μ′ = μ + τ ′
1 + τ ′

2. It follows that (l,μ)
τ ′

1+τ ′
2−−−→ (l,μ′) is a transition in TA such that

(l,μ′) ∈ r ′δ .
2. If r ′′ does not exist, then r = r ′. In the case rε = r ′ε , we proceed with an argument similar

to the one of the previous case with τ ′ < min(δ − μ̄b,1 − ν̄d ).
In the case rε 
= r ′ε , we show as in the proof of Lemma 4 that

Low(rε) = High(r ′ε), and High(rε) = Low(r ′ε) = ∅. (16)

We then choose τ ′ = 1 − δ. Let us show that, with μ′ = μ+ τ ′, we have (l,μ′) ∈ r ′δ , that
is, 1 − δ < μ̄′

c and μ̄′
d < 1. We have μ̄′

c = μ̄a + 1 − δ > 1 − δ, and μ̄′
d = μ̄b + 1 − δ < 1.

The proof is completed. �

Due to the previous lemma, the only difference between the ε-region graphs, with
ε ∈ ]0, 1

3 ], is the size of their ε-regions depending on ε. We thus introduce the follow-
ing graph, independently of any ε, which is isomorphic to all Rε

A. It can be seen as the limit
graph of Rε

A when ε converges to 0.

Definition 14 Let A be a timed automaton. We denote by ṘA = (Ṡ,→) a graph isomorphic
to each Rε

A = (Sε,→), with ε ∈ ]0, 1
3 ], and we call it the discrete graph of A. We also use

the same terminology of switch-edge and time-edge.

Remark 19 In the sequel, as done in Remark 14, we use the same letter r to express that
the vertex ṙ of Ṡ is isomorphic to the vertex rε of Sε . Moreover, we say that the edge ṙ → ṙ ′
is isomorphic to rε → r ′ε , and that the path ṙ � ṙ ′ is isomorphic to rε � r ′ε .

We now want to augment the discrete graph with a weight function. First, in the next
lemma, we show that given a time-edge rε → r ′ε in the ε-region graph Rε

A, we can associate
a unique integer N which represents, up to 2ε, the time elapsed between rε and r ′ε . We recall
that both ε-regions rε and r ′ε are bounded (see Remark 2).

Let us notice that it is impossible to associate a unique integer with an edge r → r ′ of
the region graph RA in such a way.

Lemma 7 Let A be a timed automaton. Let rε → r ′ε be a time-edge in the ε-region graph
Rε

A, with ε ∈ ]0, 1
6 ]. Then there exists a unique N ∈ N such that for all time-transitions

(l, ν)
τ→ (l, ν ′) in TA with (l, ν) ∈ rε , (l, ν ′) ∈ r ′ε :

|τ − N | < 2ε.

Moreover, N is independent of ε.

Proof Let (l, ν)
τ→ (l, ν ′) be a time-transition such that (l, ν) ∈ rε and (l, ν ′) ∈ r ′ε . We first

prove that there exists N ∈ N such that |τ − N | < 2ε. We then prove that this integer N is
the same for all such time-transitions.
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1. Existence. Assume the contrary, that is, |τ − N | ≥ 2ε for all N ∈ N. In particular for
M = 
τ�, we have τ = M + τ ′ and 2ε ≤ τ ′ ≤ 1 − 2ε. Let xi be a clock. We consider two
cases according to xi ∈ Low(rε) or xi ∈ High(rε). Let us study bounds for ν ′

i = νi + τ .
(a) xi ∈ Low(rε). Thus we have

M + 2ε ≤ νi + M + τ ′ = ν ′
i < ε + M + (1 − 2ε) = (M + 1) − ε.

It follows that 2ε ≤ ν̄i < 1 − 2ε. This contradicts (l, ν ′) ∈ r ′ε .
(b) xi ∈ High(rε). It follows that

(M + 1) + ε = (1 − ε) + M + 2ε < νi + M + τ ′ = ν ′
i < 1 + M + (1 − 2ε)

= (M + 2) − 2ε.

It follows that ε < ν̄i ≤ 1 − 2ε again in contradiction with (l, ν ′) ∈ r ′ε .

2. Uniqueness. We consider two time-transitions (l, ν)
τ→ (l, ν ′) and (l, ν̃)

τ̃→ (l, ν̃ ′) such
that (l, ν), (l, ν̃) ∈ rε and (l, ν ′), (l, ν̃ ′) ∈ r ′ε . We know that there exist N, Ñ ∈ N such
that |τ − N | < 2ε and |τ̃ − Ñ | < 2ε. Let us show that N = Ñ .

|Ñ − N | = |(τ − N) − (τ̃ − Ñ) + (τ̃ − τ)| < 4ε + |τ̃ − τ |.

For all i ∈ {1, . . . , n}, we have ν ′
i = νi + τ and ν̃ ′

i = ν̃i + τ̃ . Moreover we recall that
(l, ν), (l, ν̃) ∈ rε and (l, ν ′), (l, ν̃ ′) ∈ r ′ε . Therefore

|τ̃ − τ | = |(ν̃ ′
i − ν ′

i ) − (ν̃i − νi)| < 2ε.

It follows that

|Ñ − N | < 6ε.

By hypothesis ε ≤ 1
6 . Hence N = Ñ .

It remains to prove that N is independent of ε. Let ε, ε′ ∈ ]0, 1
6 ] and N,N ′ ∈ N be such

that |τ − N | < 2ε and |τ − N ′| < 2ε′. Then

|N ′ − N | = |(τ − N) + (τ − N ′)| < 2ε + 2ε′ < 1.

Therefore, N = N ′. �

Remembering the definition of the discrete graph ṘA (see Definition 14), the number
N proposed in Lemma 7 for the time-edge rε → r ′ε of Rε

A can also be associated with
the time-edge ṙ → ṙ ′ of ṘA isomorphic to rε → r ′ε .

We now consider A as a weighted timed automaton A = (L,X,E,I,C), and we explain
how to assign a weight to each edge of the discrete graph ṘA of A, in relation with the cost
function C. Let ε ∈ ]0, 1

6 ] and let ṙ → ṙ ′ be an edge of ṘA. It is isomorphic to an edge
rε → r ′ε of the ε-region graph Rε

A. Consider a transition

(l, ν) → (l′, ν ′) (17)

in TA such that (l, ν) ∈ rε and (l′, ν ′) ∈ r ′ε . It is a time-transition (l, ν)
τ→ (l′, ν ′) or a switch-

transition (l, ν)
e→ (l′, ν ′).
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1. Transition (l, ν)
τ→ (l′, ν ′). In this case, ṙ → ṙ ′ is a time-edge. We associate with it

a weight W(ṙ, ṙ ′) equal to

W(ṙ, ṙ ′) = N · C(l), (18)

where N is the unique integer of Lemma 7.
2. Transition (l, ν)

e→ (l′, ν ′). Thus ṙ → ṙ ′ is a switch-edge. We associate with it a weight
W(ṙ, ṙ ′) equal to

W(ṙ, ṙ ′) = C(e). (19)

Definition 15 Let A be a weighted timed automaton. The weighted discrete graph Ṙw
A =

(Ṡ,→,W) of A is the discrete graph ṘA of A augmented with the weight function W as
defined in (18) and (19).

Remark 20 We are conscious that this definition is incorrect in some very particular cases.
Indeed (see Remark 1), both weights defined in (18), (19) can be assigned to the same
edge ṙ → ṙ ′ when the transition (l, ν)→(l′, ν ′) defined in (17) is both a time-transition and
a switch-transition. If such a case happens, the edge ṙ → ṙ ′ must be duplicated in a way that
each of the two weights is assigned to each of the two copies.

Remark 21 We notice that weights labeling the edges of Ṙw
A are polynomials in the constants

appearing in A (see (18), (19). Therefore, since |Rε
A| is in O(2|A|) by Remark 18, we also

have |Ṙw
A| in O(2|A|) .

Definition 16 Let A be a weighted timed automaton. Let ρ̇ = ṙ0 → ṙ1 → ṙ2 · · · → ṙm be
a path in Ṙw

A. Then the weight W(ρ̇) of ρ̇ is equal to

W(ρ̇) =
m−1∑

k=0

W(ṙk, ṙk+1).

It is an integer number.

In the next two lemmas, we relate the weight of paths in Ṙw
A to the cost of runs in T ε

A.
These lemmas are the counterparts of Lemmas 4 and 5 with weight.

Lemma 8 Let A = (L,X,E,I,C) be a weighted timed automaton and let K = ∑
l∈L |C(l)|.

Let ρ̇ = ṙ � ṙ ′ be an initialized path of length m in Ṙw
A. Let ε ∈ ]0, 1

6 ]. Then there exist two
ε-regions rε, r ′ε of Rε

A respectively isomorphic to ṙ , ṙ ′, and there exists an ε-run ρε = q �
q ′ of length m in T ε

A such that

|W(ρ̇) − C(ρε)| ≤ 2εKm

and q ∈ rε , q ′ ∈ r ′ε .

Proof Suppose ρ̇ has the form ṙ0 → ṙ1 → ·· · → ṙm. It is isomorphic to the ε-run ρSε =
rε

0 → rε
1 → ·· · → rε

m in Rε
A. Since ρ̇ is initialized, rε

0 = [(l0,0)]ε for some location l0.
By Lemma 4, there exists an ε-run ρε = (l0,0)→(l1, ν

1) → ·· ·→(lm, νm) in T ε
A such that

(lk, ν
k) ∈ rε

k for all k. Looking at Definitions 6 and 16, by Lemma 7, we verify that |W(ρ̇)−
C(ρε)| ≤ 2εKm. �
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Lemma 9 Let A = (L,X,E,I,C) be a weighted timed automaton and let K = ∑
l∈L |C(l)|.

Let ρδ = q � q ′ be an initialized δ-run of length m in T δ
A, with δ ∈ ]0, 1

6(m+1)
]. Then there

exist two ε-regions rε, r ′ε of Rε
A such that q ∈ rε , q ′ ∈ r ′ε , and there exists a path ρ̇ = ṙ � ṙ ′

of length m in Ṙw
A such that ṙ , ṙ ′ are respectively isomorphic to rε, r ′ε and

|W(ρ̇) − C(ρδ)| ≤ 2εKm

with ε = (m + 1)δ.

Proof Suppose that ρδ is of the form (l0,0) → (l1, ν
1) → ·· · → (lm, νm). By Lemma 5,

there exists a path ρSε = rε
0 → rε

1 → ·· · → rε
m in Rε

A such that (lk, ν
k) ∈ rε

k for all
k ∈ {0, . . . ,m}. We consider the isomorphic path ρ̇ = ṙ0 → ṙ1 → ·· · → ṙm of Ṙw

A. As in
the proof of Lemma 8 we conclude that |W(ρ̇) − C(ρδ)| < 2εKm. �

Let A be a timed automaton. Let r , r ′ be two regions of RA where r satisfies the first
assumption of Remark 8, i.e., r is composed of a unique state of the form (l,0). We are going
to state an important result about OptCost(r, r ′). Before, we need to fix some notation. Thus,
given ε ∈ ]0, 1

2 ], there is exactly one ε-region rε included in r (also composed of the unique
state (l,0)). We denote by ṙ the vertex of Ṙw

A isomorphic to rε . On the hand, the region r ′
gives rise to at most n + 1 different ε-regions r ′ε ⊆ r ′ (see Remark 18). We denote by S(r ′)
this set of ε-regions, and by Ṡ(r ′) the set of vertices of Ṙw

A that are isomorphic to them.

Theorem 3 Let A be a weighted timed automaton and r , r ′ two regions of RA. Then

OptCost(r, r ′) = inf{W(ρ̇) | ∃ṙ ′ ∈ Ṡ(r ′), ρ̇ = ṙ � ṙ ′path inṘw
A}. (20)

Proof We denote inf{W(ρ̇) | ∃ṙ ′ ∈ Ṡ(r ′), ρ̇ = ṙ � ṙ ′} by InfWeight. Suppose OptCost(r, r ′)
= +∞, i.e. there is no run ρ = q � q ′ of TA such that q ∈ r , q ′ ∈ r ′, then there is no path
ρ̇ = ṙ � ṙ ′ for any ṙ ′ ∈ Ṡ(r ′). Otherwise, by Lemma 8, there exists an ε-run ρε = q � q ′
with q ∈ rε and q ′ ∈ r ′ε . This ε-run can be seen as a run ρ = q � q ′ of TA with q ∈ r and
q ′ ∈ r ′, a contradiction. So InfWeight = +∞ and (20) holds in this case.

Assume OptCost(r, r ′) ∈ R ∪ {−∞} and OptCost(r, r ′) < InfWeight. By Corollary 5, it
follows that there is a path ρR = r � r ′ in RA with length m such that OptCost(ρR) <

InfWeight. By Lemmas 3 and 9 respectively used with ε and δ chosen small enough, we can
find a path ρ̇ = ṙ � ṙ ′ in Ṙw

A such that ṙ ′ ∈ Ṡ(r ′) and W(ρ̇) < InfWeight. This is impossible.
Assume now that OptCost(r, r ′) ∈ R and OptCost(r, r ′) > InfWeight. By definition of

the inf operator, we have OptCost(r, r ′) > W(ρ̇) for some ρ̇ = ṙ � ṙ ′ with ṙ ′ ∈ Ṡ(r ′). We
get a contradiction using Lemma 8 with ε chosen small enough.

This proves (20). �

4.4 Complexity

In this section, we prove the main result of this paper, that is the cost-optimal reachability
problem is PSPACE-COMPLETE (Theorem 1).

Proof of Theorem 1 We begin with some preliminary considerations. The discrete graph
Ṙw

A has size in O(2|A|), and the weights labelling its edges are polynomials in the constants
appearing in A (see Remark 21). In the sequel of the proof, we consider paths ρ̇ in Ṙw

A with
a length bounded by the number of vertices of Ṙw

A, thus with a length at most exponential in
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|A|. These paths are called elementary. Therefore, the encoding of the cost of an elementary
path ρ̇ can be done in PSPACE.

Let us now prove that the cost-optimal reachability problem is in PSPACE. By Theo-
rem 3, computing the optimal cost OptCost(r, r ′) given two regions r, r ′ of RA, reduces in
computing inf{W(ρ̇) | ∃ṙ ′ ∈ Ṡ(r ′), ρ̇ = ṙ � ṙ ′path inṘw

A}. There are three possibilities:

– There is no path ρ̇ = ṙ � ṙ ′ with ṙ ′ ∈ Ṡ(r ′) in Ṙw
A, and thus OptCost(r, r ′) = +∞;

– There is such a path ρ̇ containing a cycle with a negative weight, and thus OptCost(r, r ′) =
−∞;

– There is such a path ρ̇, and none of these paths contains a cycle with a negative weight.
Therefore OptCost(r, r ′) is an integer equal to the minimum value of {W(ρ̇) | ∃ṙ ′ ∈
Ṡ(r ′), ρ̇ = ṙ � ṙ ′}.

Let us notice that in the three previous situations, the considered paths and cycles can be
supposed to be elementary. In the third situation, a path ρ̇ with a minimum value W(ρ̇) can
also supposed to be elementary. The algorithm works as follows.

1. Guess an elementary path ρ̇ = ṙ � ṙ ′ for some ṙ ′ ∈ Ṡ(r ′). Note that the length of ρ̇ is
exponential in |A|, and that each vertex of Ṙw

A can be stored in polynomial space. Hence
one can decide in NPSPACE, thus in PSPACE, whether OptCost(r, r ′) is equal to +∞ or
not.

2. We assume OptCost(r, r ′) 
= +∞.
Guess a vertex ṙ0 in Ṙw

A, and check whether there exist an elementary path from ṙ to
ṙ0 and another one from ṙ0 to some ṙ ′ ∈ S(r ′) (as explained in 1., this can be done in
PSpace). Then guess an elementary cycle from ṙ0 to ṙ0 and compute on-the-fly its weight
(as explained at the beginning of the proof, the computation of this weight can be done
in PSPACE). Therefore it can be decided in PSPACE whether OptCost(r, r ′) is equal to
−∞ or not.

3. We assume OptCost(r, r ′) ∈ Z.
Guess an elementary path ρ̇ = ṙ � ṙ ′ with ṙ ′ ∈ Ṡ(r ′), and compute on-the-fly its weight
W(ρ̇). As explained in 2., this can be done in PSPACE. Store the weight W(ρ̇) in variable
aux. If there is no elementary path ρ̇1 = ṙ � ṙ ′

1 with ṙ ′
1 ∈ Ṡ(r ′) with a weight strictly less

than aux, then it means that OptCost(r, r ′) is equal to aux. Therefore guess such a path
ρ̇1, compute its weight W(ρ̇1) on-the-fly, and compare W(ρ̇1) with aux. It follows that
the complexity of this procedure is in N-(CO-NPSPACE), thus in PSPACE.

The proposed algorithm is globally in PSPACE showing that the cost-optimal reachability
problem is in PSPACE. It remains to prove that it is PSPACE-hard. We do that by reduction
of the reachability problem for timed automata known to be PSPACE-complete [1]. Let A
be a timed automaton. We augment it with a cost function C that assigns a null cost to each
location and edge of A. Then, trivially, a region r ′ is reachable from a region r if and only
if the optimal cost OptCost(r, r ′) is different from +∞. �

We conclude Sect. 4 with the following important remark.

Remark 22 In Remark 12, we have mentioned that Problem 2 remains decidable if the du-
ration cost is a concave function (resp. convex function) and the considered optimum cost is
an infimum (resp. supremum).

Given a weighted timed automaton A, we recall that the definitions of ε-semantics T ε
A,

ε-region graph Rε
A and discrete graph ṘA have been introduced independently of the cost

function C used in A. Their definition was only based on the crucial Corollary 3 indicating
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that when computing an optimum cost, only time-transitions with a time τ arbitrarily close
to an integer have to be considered.

In Definition 15, we have shown how to augment the discrete graph ṘA with a weight
function W in relation with C. We have given the related Lemmas 8 and 9.

Let us consider some possible generalizations of cost and weight functions. In (18), given
a time-transition (l, ν)

τ→ (l′, ν ′) in TA and the related time-edge ṙ → ṙ ′ in ṘA, the duration
cost of the time-transition is equal to

τ · C(l), (21)

and the weight of the time-edge is equal to

N · C(l). (22)

The number N is the unique integer of Lemma 7 satisfying |τ − N | < 2ε. Suppose that
(21) and (22) are respectively replaced by f (τ) ·C(l) and f (N) ·C(l) where f is a continuous
function. It follows that we still have an analog of Lemma 7 with |f (τ) − f (N)| < δ and δ

small enough, as well as the analog of Lemmas 8 and 9. Therefore, Theorem 3 remains true
with a concave duration cost function and the continuous function f mentioned above.21 If
additionally these functions are computable, we get a generalization of Theorem 1.

5 Assumptions

Till this section, the whole paper has been written under two assumptions concerning Prob-
lem 1 (see Remark 8): First, the region r given in Problem 1 is composed of a unique state
of the form (l,0). Second, the infimum cost is only considered. On the other hand, we have
supposed in Remark 2 that the timed automata of this paper are diagonal-free and bounded.
We show in this section that all these assumptions can be discarded.

5.1 Supremum cost

Let us go through the paper and indicate the modifications to be done when the supremum
cost is considered instead of the infimum cost.

In Definition 7, the optimal cost OptCost(r, r ′) is the supremum of the costs of the runs
ρ = q � q ′ of TA such that q ∈ r and q ′ ∈ r ′. It is equal to −∞ when there is no such run ρ.
Otherwise it belongs to R ∪ {+∞}. Similarly, in Definition 8, the optimal cost OptCost(ρR)

is the supremum of the costs C(ρ) among the runs ρ of TA such that [ρ] = ρR .
The proof of Corollary 1 stating that Problem 2 is decidable is the same. Indeed the Sim-

plex Method acts similarly when a supremum or an infimum value has to be computed. Here
the supremum value of Cd(ρ(t1, . . . , tm)) is also obtained at one of the vertices of the polyhe-
dron Pol(ρR). Therefore Corollaries 4 and 5 also hold for the supremum costs OptCost(ρR)

and OptCost(r, r ′).22

In the case of a supremum cost, Theorem 3 states that

OptCost(r, r ′) = sup{W(ρ̇) | ∃ṙ ′ ∈ Ṡ(r ′), ρ̇ = ṙ � ṙ ′ path in Ṙw
A}.

21For instance with f = ln and Cd (ρ(t1, . . . , tm)) = ∑
k∈{1,...,m} C(lk) · ln(tk) (see (10)).

22Of course, the inf operator has to be replaced by the sup operator in Corollary 5.
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Fig. 19 The parameters t1, . . . , tn

The proof has to be adapted since the sup operator is considered. This can be done easily.
The proof of Theorem 1 essentially remains the same. It must be slightly adapted to deal

with the sup operator instead of the inf operator.

5.2 Any region r

In Definition 7, the optimal cost OptCost(r, r ′) is defined for any regions r, r ′ of RA. Along
the paper, we have assumed that r is composed of a unique state of the form (l,0). We
now indicate the modifications to be done when r is any region. We here come back to the
infimum cost.

We first consider Sect. 3.2 dedicated to the solution of Problem 2. The approach is sim-
ilar: Given ρR = r � r ′ a path in RA, we construct a set of constraints Constr(ρR) that
define a polyhedron Pol(ρR). The optimal cost OptCost(r, r ′) is then computed thanks to
one of the vertices of Pol(ρR).

Let us go into details. We use the same notation as in Sect. 3.2. Let us write ρR as in (4)

ρR = r ′
0 → r1 → r ′

1 → r2 · · · → rm → r ′
m.

The runs ρ of TA such that [ρ] = ρR can be parameterized as done in (6), with the difference
that the first region r ′

0 is not equal to [(l1,0)]. Instead of (6), we write

ρ(t1, t2, . . . , tn+m) = q ′
0

tn+1→ q1
e1→ q ′

1

tn+2→ q2
e2→ ·· · tn+m→ qm

em→ q ′
m

such that

– The state q ′
0 depends on the parameters t1, t2, . . . , tn,

– Each state qk (resp. q ′
k) depends on the parameters t1, t2, . . . , tn+k , for k ∈ {1, . . . ,m}.

Let us study the form of q ′
0 = (l1, x

′0
1 , x ′0

2 , . . . , x ′0
n ) ∈ r ′

0. Without loss of generality we can
suppose that the ordering of the clocks is as follows

0 ≤ x ′0
1 ≤ x ′0

2 ≤ · · · ≤ x ′0
n−1 ≤ x ′0

n .

We define the n parameters t1, . . . , tn such that

tn−j =
{

x ′0
1 ifj = 0,

x ′0
j+1 − x ′0

j otherwise
(23)

for j ∈ {0, . . . , n − 1}. These parameters are represented on Fig. 19. With this definition, we
have x ′0

i = x ′0
i (t1, . . . , tn), for i ∈ {1, . . . , n}, equal to the sum

x ′0
i (t1, . . . , tn) = tn−i+1 + · · · + tn−1 + tn (24)

which expresses a dependence on the parameters t1, . . . , tn like in (7).



Form Methods Syst Des (2007) 31: 135–175 169

Concerning the other states qk = (lk, x
k) (resp. q ′

k = (lk+1, x
′k)), with k ∈ {1, . . . ,m},

we also have a dependence on the parameters like in (7). The clocks xk
i (t1, . . . , tn+k) and

x ′k
i (t1, . . . , tn+k) are either null or of the form

th+1 + th+2 + · · · + tn+k−1 + tn+k (25)

with n ≤ h ≤ n + k.
Therefore, as done in (9), we have to consider the set of constraints

Constr(ρR) = r ′
0(t1, . . . , tn) ∪

⋃

k∈{1,...,m}
rk(t1, . . . , tn+k). (26)

With the following subsets of (R+)n+m

A(ρR) = {(τ1, . . . , τn+m) ∈ (R+)n+m | [ρ(τ1, . . . , τn+m)] = ρR},
B(ρR) = {(τ1, . . . , τn+m) ∈ (R+)n+m | (τ1, . . . , τn+m) |= Constr(ρR)},

we have the analog of Lemma 1, i.e.

A(ρR) = B(ρR).

The proof of this lemma is similar, except that the base case of the induction has to be
adapted to the region r ′

0. This is easily done by using the additional constraints r ′
0(t1, . . . , tn)

appearing in (26).
Therefore, as done in Sect. 3.2, the optimal cost OptCost(ρR) can be obtained by com-

puting the infimum value of the duration cost Cd(ρ(t1, . . . , tn+m)) under the set of constraints
Constr(ρR). This infimum value is obtained at one of the vertices of the polyhedron Pol(ρR)

which is the closure of the polyhedron Pol(ρR) equal to

Pol(ρR) = {(τ1, . . . , τn+m) ∈ (R+)n+m | (τ1, . . . , τn+m) |= Constr(ρR)}.
This can be computed by the Simplex Method. It follows that Problem 2 is decidable (Corol-
lary 1) and that it is decidable whether OptCost(ρR) is realizable (Corollary 2).

Let us now go through Sect. 3.3. All the results of this section are similar because we
have (24) and (25) like in (7) that express each clock as a sum of consecutive tk .

In particular, since the vertices of the polyhedron Pol(ρR) have integer coordinates, a run
ρ = ρ(τ1, . . . , τn+m) with a cost C(ρ) arbitrarily close to OptCost(ρR) has its first state
q ′

0 ∈ r ′
0 with its clock values arbitrarily close to an integer (see (23)).

In Sect. 3.4, due to the previous discussion, the statement of Lemma 3 is modified as
follows.

Lemma 10 Let A be a weighted timed automaton, and ρR = r � r ′ be a canonical path in
RA. Let ε ∈ ]0, 1

2 ]. Then there exists an ε-run ρε = q � q ′ in T ε
A such that [ρε] = ρR ,

|OptCost(ρR) − C(ρε)| < ε

and q ∈ rε .

The only modification appears at the end of the lemma, with q ∈ rε . The proof remains
the same.

We now go to Sect. 4. We have to pay attention to Lemmas 4, 5, 8 and 9, and to Theo-
rems 3 and 1. We indicate the modified statements.
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Lemma 11 Let A be a timed automaton and ε ∈ ]0, 1
3 ]. Let ρSε = rε

0 → rε
1 → ·· · → rε

m be
a path in Rε

A. Then there exists an ε-run ρε = (l0, ν
0) → (l1, ν

1) → ·· · → (lm, νm) in T ε
A

such that (lk, ν
k) ∈ rε

k for all k ∈ {0, . . . ,m}.

The proof of this lemma is the same except for case k = 0. Instead of defining the first
state (l0, ν

0) = (l0,0), we choose it such that (l0, ν
0) ∈ r

ε0
0 with ε0 = ε

2m .

Lemma 12 Let A be a timed automaton. Let ρδ = (l0, ν
0) → (l1, ν

1) → ·· · → (lm, νm)

be a δ-run in T δ
A, such that δ ∈ ]0, 1

2(m+1)
] and (l0, ν

0) ∈ rδ
0 for some δ-region rδ

0 of Rδ
A.

Then, with ε = (m + 1)δ, there exists a path ρSε = rε
0 → rε

1 → ·· · → rε
m in Rε

A such that
(lk, ν

k) ∈ rε
k for all k ∈ {0, . . . ,m}.

The proof of this lemma is the same except for case k = 0. By hypothesis, we have
(l0, ν

0) ∈ rδ
0 = r

ε0
0 .

Lemma 13 Let A = (L,X,E,I,C) be a weighted timed automaton and let K =∑
l∈L |C(l)|. Let ρ̇ = ṙ � ṙ ′ be a path of length m in Ṙw

A. Let ε ∈]0, 1
6 ]. Then there ex-

ist two ε-regions rε, r ′ε of Rε
A respectively isomorphic to ṙ , ṙ ′, and there exists an ε-run

ρε = q � q ′ of length m in T ε
A such that

|W(ρ̇) − C(ρε)| ≤ 2εKm

and q ∈ rε , q ′ ∈ r ′ε .

The proof is unchanged.

Lemma 14 Let A = (L,X,E,I,C) be a weighted timed automaton and let K =∑
l∈L |C(l)|. Let ρδ = q � q ′ be a δ-run of length m in T δ

A, such that δ ∈ ]0, 1
6(m+1)

] and

(l0, ν
0) ∈ rδ

0 for some δ-region rδ
0 of Rδ

A. Then there exist two ε-regions rε, r ′ε of Rε
A such

that q ∈ rε , q ′ ∈ r ′ε , and there exists a path ρ̇ = ṙ � ṙ ′ of length m in Ṙw
A such that ṙ , ṙ ′ are

respectively isomorphic to rε, r ′ε and

|W(ρ̇) − C(ρδ)| ≤ 2εKm

with ε = (m + 1)δ.

The proof is unchanged.
Concerning Theorem 3, the modifications come from the fact that r is any region. Instead

of having a unique vertex ṙ associated to r , we now have to consider all the vertices ṙ ∈ S(r).
The statement of the theorem is thus as follows, with a similar proof.

Theorem 4 Let A be a weighted timed automaton and r , r ′ two regions of RA. Then

OptCost(r, r ′) = inf{W(ρ̇) | ∃ṙ ∈ Ṡ(r),∃ṙ ′ ∈ Ṡ(r ′), ρ̇ = ṙ � ṙ ′path inṘw
A}.

Finally, the proof of Theorem 1 is similar, except that the algorithm has to deal with paths
ρ̇ = ṙ � ṙ ′ such that ṙ ∈ Ṡ(r) and ṙ ′ ∈ Ṡ(r ′).
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5.3 Any timed automaton

In this paper, we have restricted our study to bounded and diagonal-free timed automata.
These restrictions already appear in [9, 18]. Indeed, it is well known that diagonal constraints
can be removed from timed automata [8] (while preserving strong bisimilarity), and we here
shortly explain how to transform a diagonal-free timed automaton into a bounded one. This
construction is a folklore result. We recall it here since we could not find it in any paper of
the literature.

Let A = (L,X,E,I(,C)) be a (weighted) diagonal-free timed automaton. Let M be
an integer strictly greater than all constants appearing in guards of A. Then we construct
the following automaton A′ = (L′,X,E′,I ′(,C′)):

– The set L′ of locations is L × 2X

– The set E′ of edges is
• ((l,Z), gZ,Y, (l′,Z′)) if (l, g,Y, l′) is an edge of A, and gZ is the guard obtained by

replacing every x ∼ c with x ∈ Z by either true or false, depending on ∼: if ∼ is ≥ or
>, then it is replaced by true, otherwise it is replaced by false. The set Z′ is equal to
Z \ Y

• ((l,Z), x = M, {x}, (l,Z ∪ {x})) for every location (l,Z)

– The invariant I ′ is such that I ′(l,Z) = I(l) ∧ ∧
x∈X x ≤ M

– The cost function C′ is naturally defined by C′((l,Z), gZ,Y, (l′,Z′)) = C(l, g,Y, l′),
C′((l,Z), x = M, {x}, (l,Z ∪ {x})) = 0, and C′(l,Z) = C(l).

Intuitively, a location (l,Z) represents the location l where all clocks in Z are inactive (i.e.
they should be strictly above the greatest constant of A, the truth value of every guard of A
is thus known).

The automaton A′ is clearly bounded (by M). It is easy to check that every run ρ of TA
has a corresponding run ρ ′ in TA′ , and vice-versa. Moreover these two runs have exactly the
same costs. Thus, computing the optimal cost in A can be reduced to computing the optimal
cost in A′.

However, the two constructions needed to restrict to bounded diagonal-free timed au-
tomata induce an exponential blowup in the number of locations of the timed automaton.
More precisely, the number of locations of the resulting automaton is |L| · 2|Diag| · 2|X| where
|Diag| is the number of diagonal guards in the original automaton, whereas the number of
edges becomes |E| ·2|Diag| ·2|X| + (|L| ·2|Diag| ·2|X|) · |X|. Nevertheless, the size of the region
graph of the resulting automaton remains exponential, because exponential factors are mul-
tiplied (see Remark 6). All our complexity computations thus remain correct and computing
the optimal cost also remains PSPACE-COMPLETE.

6 Application to optimal reachability in timed games

In this section, we propose an application of Theorem 1 in the context of optimal reacha-
bility timed games. Contrarily to the other sections, the presentation is quite informal, and
the insight is given through an examm. Optimal reachability timed games have been first
introduced in [16] and further studied in [5, 10, 11]. We refer to [11] for precise definitions.

A weighted timed game AG is a weighted timed automaton with a distinguished set of
winning locations, and where the set of edges is split into controllable edges (played by
the controller) and uncontrollable edges (played by the environment). We assume a classical
definition of strategy, and the aim of a game is, for the controller, from the state (l0,0), to
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Fig. 20 A weighted timed automaton inspired from [10]

reach a winning location and to minimize the cost of the plays, whatever does the environ-
ment. To illustrate these notions, we better give an examm.

Example 9 ([10]) We consider the weighted timed game AG of Fig. 20. Dashed (resp. plain)
arrows are for uncontrollable (resp. controllable) edges. The only winning location is l4.
When the cost is non null, it is indicated on the edge/location.

Let us consider plays of the game starting from (l0,0). If the environment chooses
the edge from location l1 to location l2, then the accumulated cost along the game is
5t + 10(2 − t) + 1 where t is the elapse of time at location l0. If it chooses the edge from l1
to l3 is, the accumulated cost is then 5t + (2 − t) + 7. The optimal cost the controller can
ensure is thus

inf
t≤2

max(5t + 10(2 − t) + 1,5t + (2 − t) + 7) = 14 + 1

3
,

and the optimal elapse of time is then t = 4
3 . The optimal strategy for the controller is thus

to wait in location l0 until x = 4
3 , and then enter location l1. Then, the environment chooses

to go either to l2 or to l3, and finally as soon as x = 2, the controller goes to l4.

This examm indicates that the region partitioning of [1] is not sufficient for solving op-
timal weighted timed games. Restricted decidability results have however been obtained
in [5, 10]. But the general problem has been recently proved undecidable [11]. Thus optimal
strategies cannot in general be computed.

However as an application of Theorem 1, given a weighted timed game AG and a strat-
egy λ, we can compute the infimum (resp. supremum) cost obtained when considering
executions of AG played according to λ. This allows to compare two given strategies on
a weighted timed game. A natural criterion to prefer a strategy to another one could be to
choose the strategy with lower supremum cost. Let us illustrate how it works on the game
AG of Example 9.

When looking at Fig. 20, one can easily be convinced that a strategy on AG only consists
in choosing the elapse of time t at location l0. The possible values for t are in the interval
[0,2]. Hence there are three natural strategies to consider: λi which imposes to stay i time
units in location l0 where i = 0,1,2. Considering the executions of AG played according
to λi is equivalent to consider the executions of the weighted timed automaton Ai depicted
on Fig. 21. Let us notice that the weighted timed automaton Ai has not to be considered as
a timed game anymore.
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Fig. 21 The weighted timed
automaton Ai

Fig. 22 InfCost and SupCost for
the strategies λi , i = 0,1,2

Following Theorem 1 one can compute the infimum cost InfCost (resp. supremum cost
SupCost) among the runs ρ reaching location l4 from (l0,0). The different cases are illus-
trated on Fig. 22. The results are as follows.

– On A0, InfCost = 9 and SupCost = 21,
– On A1, InfCost = 13 and SupCost = 16,
– On A2, InfCost = 11 and SupCost = 17.

Thus if the criterion to prefer a strategy to another one is the lowest supremum cost, strategy
λ1 is here the prefered one.

Let us now briefly explain how we can use Theorem 1 in general in order to compare
strategies. Given a weighted timed game AG and a strategy λ, the first step is to compute
the weighted timed automaton which results from the weighted timed game constrained by
the strategy. Let us call Aλ this automaton. The first question we have to ask is the following.
“Is there an infinite run of Aλ that always avoids the winning locations?” If the answer is
yes, the strategy λ has to be rejected, since it does not ensure reaching a winning location.
Otherwise, if the answer is no, we directly apply Theorem 1 to the weighted timed automa-
ton Aλ. This leads to an upper bound SupCost and a lower bound LowCost on the cost
obtained by the executions of AG played according to λ. Therefore different strategies λ

for a weighted timed game AG can be compared by referring to these values SupCost and
InfCost.
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7 Conclusion

In this paper, we have settled the exact complexity of the cost-optimal reachability problem:
it is PSPACE-COMPLETE. This result closes a gap left open by previous works where only
an EXPTIME algorithm was proposed to solve the problem [4].

To establish our result, we have first studied the structure of the problem and shown that
a simpler version of the problem, the cost-optimal path reachability problem, is naturally
related to a linear programming problem such that the associated polyhedron has vertices
with integer coordinates. As a direct consequence, optimal runs using time-transitions with
a time τ arbitrarily closed to an integer always exist. Using this property, a finite discrete
graph called the weighted discrete graph, which refines the classical region graph, can be
constructed. A formal relation between optimal paths in the discrete weighted graph and op-
timal runs in the weighted timed automaton is established. The construction that we propose
is simple and can be explored nondeterministically to obtain an optimal PSPACE algorithm.

Furthermore, we have shown that our construction extends to more general settings: neg-
ative costs, cost-optimal reachability with respect to the supremum, concave or convex cost
functions. Finally, computing optimal costs have interesting applications in the design of
controllers.
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