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Abstract Visibly pushdown languages are an interesting subclass of deterministic context-
free languages that can model nonregular properties of interest in program analysis. Such
class properly contains typical classes of parenthesized languages such as “parenthesis”,
“bracketed”, “balanced” and “input-driven” languages. It is closed under boolean operations
and has decidable decision problems such as emptiness, inclusion and universality. We study
the membership problem for visibly pushdown languages, and show that it can be solved in
time linear in both the size of the input grammar and the length of the input word. The
algorithm relies on a reduction to the reachability problem for game graphs. We also discuss
the time complexity of the membership problem for the class of balanced languages which
is the largest among those cited above. Besides the intrinsic theoretical interest, we further
motivate our main result showing an application to the validation of XML documents against
Schema and Document Type Definitions (DTDs).

Keywords Visibly pushdown grammars · Verification · XML

1 Introduction

Context-free languages are a very interesting class of languages that have been intensively
studied by many researchers from different areas. Via their recursive characterization (the
context-free grammars) they have played a central role in the development of compiler tech-
nologies, and recently, they have been also used to describe document formats over the
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Web (XML schema and Document Type Definitions) [16]. The automaton-like characteri-
zation of this class of formal languages, the pushdown automata, is a natural model for the
control flow of sequential programs of typical procedural programming languages. Thus,
program analysis, compiler optimizations, and program verification can be rephrased as de-
cision problems for pushdown automata. As sample references on these topics see [2, 6, 9,
10, 12, 15, 23].

Often, the relevance of context-free languages cannot be fully exploited due to the in-
tractability of many fundamental problems. In a recent paper Alur and Madhusudan [4]
have introduced the class of visibly pushdown languages (VPLs). Visibly pushdown lan-
guages are context-free languages accepted by pushdown automata in which the input sym-
bols determine the stack operations. They have been also characterized by the so-called
visibly pushdown grammars (VPGs) [4]. This class of languages is rich enough to model
nonregular properties and is also tractable and robust as the class of regular languages. In
fact, VPLs are closed under all the boolean operations and some decision problems, such
as inclusion and universality, are EXPTIME-complete while they are in general undecidable
for the context-free languages. In [3], syntactic congruences on words and the problem of
finding a minimal canonical deterministic pushdown automaton for VPLs are studied.

In this paper, we focus on the membership problem: “given a word w and a VPL lan-
guage L, is w ∈ L?” While w is represented explicitly, L may be represented by either an
automaton or a grammar and this leads to different approaches and hence different com-
plexities. When a VPL language is represented by a VPA A, a simple algorithm for testing
membership can be obtained by determinizing A by the construction given in [4] and then
running the deterministic automaton on the input word. Clearly, it is not needed to com-
pute the whole deterministic automaton (that would require exponential time) but the de-
terminization can be carried out directly (on-the-fly) getting an O(|Q|2 · |Γ | + |Q|3) time
upper bound, where Q is the set of states and Γ the set stack symbols of the nondeterministic
pushdown automaton accepting the input language.

On the other hand, it is interesting to have an efficient algorithm also when the language
is given by a VPG. It is known that for context-free languages, represented by grammars in
Chomsky Normal Form, an efficient algorithm is the CYK algorithm. This algorithm runs
in time cubic in the size of the word and linear in the size of the grammar. Time complexity
improves on to quadratic if the grammar is not ambiguous [16]. More efficient algorithms
have been given for particular subclasses of unambiguous grammars [1].

Here we give a solution to the membership problem for VPLs that takes time linear in
both the size of the input word w and the size of the input visibly pushdown grammar G.
Non-null productions of this kind of grammars are either of the form X → aY or of the
form X → aYbZ where X,Y,Z are variables, a, b are terminal symbols, and in the latter
production a and b correspond respectively to a push and its matching pop of the stack.
The main idea of our algorithm is to reduce this problem to a two-player game H where: a
player (the existential player) claims that she can show a derivation for a word and gives the
next step in her proof; the other player (the universal player) challenges her to proceed in
her proof on a portion of the remaining part of the word. Note that when a production of the
form X → aY is picked by the existential player as next step in the proof of av, then the only
claim on which the universal player can challenge her is on generating v from Y . Instead,
when a production of the form X → aYbZ is picked as next step in the proof of avbz, then
the universal player can challenge the existential player both on generating v from Y and z

from Z. Clearly, the proof is completed when the existential player is asked to show that the
empty word is generated from a variable X such that X → ε is a production of G. Therefore,
if S is the start variable of G, we have that w ∈ L(G) if and only if the existential player can
prove the claim S ⇒∗ w independently from the objections of the universal player.
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The above game can be modeled as a reachability problem on a game graph of size linear
in the size of w and G. Therefore, our result follows from the fact that the reachability
problem on a game graph can be solved in linear time with essentially a depth-first search
(cf. [24]).

We further show that the class of balanced languages introduced in [7], which extends the
well-known parentheses and bracketed languages, is strictly contained in the class of VPLs,
and that a balanced grammar can be translated in linear time to a language equivalent visi-
bly push-down grammar. Therefore, we derive a linear time algorithm for the membership
problem for all such class of languages.

Classical applications of the membership problem for formal languages have concerned
with the parsing of programs and thus is strictly related to the design of compilers. In such a
context, a language generator/acceptor is constructed once and for all and then it is used to
parse several programs. Therefore, the size of the grammar or of the automaton can be con-
sidered constant and the efficiency of the algorithms is measured in terms of the length of
the document (i.e., word) to parse. Also, the possibility of computing a deterministic model
that captures the languages of interest guarantees efficient parsing independently of the com-
plexity of the determinization procedure (determinization is done only once). Clearly, such
observations do not apply when the language acceptor/generator may vary and this is the
case of the type conformity checking of XML documents [26, 27]. In this paper, we show
that the syntactic structure of a Document Type Definition (DTD) and of an XML schema
can be efficiently captured by a visibly pushdown grammar, and thus our algorithm solv-
ing the membership problem for visibly pushdown languages can be used for efficiently
checking the type of XML documents.

Finally, we discuss the complexity of translating visibly pushdown grammars to language
equivalent visibly pushdown automata and vice-versa, and compare the algorithms to solv-
ing the membership problem that can be obtained using such translations with the direct
ones. We also consider other algorithms that can be derived by standard approaches.

Organization of the paper In the next section we recall some definitions and introduce the
notation we use in the rest of the paper. We provide our solutions to the membership problem
for VPLs in Sect. 3 and for the class of balanced languages in Sect. 4. In Sect. 5, we give
an application of our result that can be used to type-checking XML documents. In Sect. 6,
we report a thorough discussion on the time complexity of other approaches. Finally, we
conclude the paper with few remarks.

2 Preliminaries

In this section, we recall the definitions and introduce the notation we use in the rest of the
paper.

2.1 Visibly pushdown languages

A pushdown alphabet is a tuple Σ̃ = 〈Σc,Σr,Σ�〉 consisting of three disjoint alphabets:
Σc is a finite set of calls, Σr is a finite set of returns and Σ� is a finite set of local actions.

Visibly pushdown languages are characterized by a context-free grammar.

Definition 1 (Visibly pushdown grammar) A context-free grammar G = (V ,S,P ), over an
alphabet Σ , is a Visibly Pushdown Grammar (VPG) with respect to the pushdown alphabet
Σ̃ = (Σc,Σr,Σ�), if the set V of variables is partitioned into two disjoint sets V 0 and V 1,
and the productions in P are of the following forms:
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• X → ε;
• X → aY such that if X ∈ V 0 then a ∈ Σ� and Y ∈ V 0;
• X → aYbZ such that a ∈ Σc and b ∈ Σr and Y ∈ V 0 and if X ∈ V 0 then Z ∈ V 0.

Definition 2 A language of finite words L ⊆ Σ∗ is a visibly pushdown language (VPL)
with respect to Σ̃ if there is a VPG G over Σ̃ such that L(G) = L.

A word w is well-matched if either w ∈ Σ∗
� or w = xaybz where x, y, z are well-

matched, a ∈ Σc and b ∈ Σr . In a word w = uaxbv, where u,v, x ∈ Σ∗ and x is well-
matched, a ∈ Σc and b ∈ Σr are called matching symbols.1 Observe that in any word w, for
each call symbol there is at most one matching return symbol and vice-versa. Moreover,
such matching relation can be efficiently determined in O(|w|) time by parsing the input
word once.

Directly from the definition, we can prove that from variables in V 0 only well-matched
words can be derived, while words that can be derived from variables in V 1 are not neces-
sarily well-matched.

Example 1 Consider the grammar G = (V ,S,P ) over Σ̃ = 〈{a}, {b}, {d}〉 where V 0 =
{X,Y }, V 1 = {S} and P has the following rules:

S → ε|aS|bS|aXbS; X → ε|aYbY ; Y → ε|dY.

It is easy to see that the word w = a3bdba ∈ L(G). Note that in w the first and the last
occurrences of a are unmatched, while the others match with the b’s. Note also that G is
ambiguous (consider for example the word ab).

2.2 Game graphs

A game graph is a graph H = (N,E) where N is a finite set of nodes partitioned into two
sets N∃ and N∀, and E ⊆ N × N is the set of edges. A node of N∃ is called an ∃-node and
a node of N∀ is called a ∀-node. A strategy tree from a node n0 of H is a finite labeled tree
obtained from H as follows. The root is labeled with n0, and for each internal node u of the
tree: if u is labeled with an ∃-node n1 of H , then it has only a child which is labeled with a
node n2 such that (n1, n2) ∈ E; if u is labeled with a ∀-node n1 of H , then for each n2 such
that (n1, n2) ∈ E it has a child that is labeled with n2. Given a game graph H , a starting node
n0 and a set T of nodes of H (called the target set), the reachability problem in H consists
of determining if there exists a strategy tree from n0 whose leaves are all labeled with nodes
of T . We call such a strategy tree a winning strategy.

In Fig. 1, a simple game graph is shown. We have used a circle to denote an ∃-node and a
box to denote a ∀-node. If we consider as target set T = {n6} then there are no strategy trees
from n1 whose leaves are all in T , that is the reachability problem is not satisfied. If instead
we set T = {n2, n4}, the reachability problem is satisfied.

Reachability in game graphs can be solved at the cost of a depth-first search of the graph.
Therefore, we have the following theorem, where |H | = |N | + |E|.

Theorem 1 The reachability problem on a game graph H can be solved in O(|H |) time.

1Let us underline that we use matching symbols as a shorthand for symbols in matching positions.
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Fig. 1 An example of a game
graph, where the ∃-nodes are
circles and the ∀-nodes are boxes

Fig. 2 Graphical representation
of the construction rules of the
game graph HG

w

3 Membership problem

Given a string w and a language L, the membership problem consists of establishing whether
w is in L. While w is represented explicitly, L can be represented by an automaton, a
grammar, or an expression. For each of these representations a different algorithm, hence
different time and space complexities, corresponds.

In this section we present an algorithm to decide whether a word w ∈ Σ∗ belongs to a
language generated by a given VPG G = (V ,S,P ). The main idea of this algorithm is to
reduce our membership problem to reachability in game graphs. We assume that we have
precomputed the matching symbols occurring in w.

The construction of the game graph Let G be a VPG (V ,S,P ) over Σ̃ = 〈Σc,Σr,Σ�〉 and
w ∈ Σ∗. Define HG

w = (N,E) with N = N∀ ∪ N∃ and N∃ ⊂ (V × Σ∗) and N∀ ⊂ (P × Σ∗).
The sets N and E are defined inductively as follows:

Let (S,w) ∈ N∃. Consider a node n1 = (X,u) in N∃, then

1. if u = av and (X → aY ) ∈ P , then n2 = (Y, v) ∈ N∃ and the edge (n1, n2) ∈ E (see part
(1) of Fig. 2);

2. if u = avbz such that a ∈ Σc and b ∈ Σr are matching symbols and (X → aYbZ) ∈ P ,
then

• n2 = (X → aYbZ,u) ∈ N∀ and (n1, n2) ∈ E,
• n3 = (Y, v) ∈ N∃ and (n2, n3) ∈ E,
• n4 = (Z, z) ∈ N∃ and (n2, n4) ∈ E.

(See part (2) of Fig. 2.)

The target set T consists of the nodes (X, ε), such that X → ε is a rule in P . Note that
the graph HG

w is a directed acyclic graph, having just one node with no incoming edges
and such that the nodes in T do not have outgoing edges. Moreover each ∀-node has only
one incoming edge (stemming from an ∃-node) and at most two outgoing edges (going into
∃-nodes).
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Fig. 3 The ∃-nodes are denoted with circles and the ∀-nodes with boxes. The nodes belonging to the tar-
get-set are starred. The subgraph enclosed in the dashed area corresponds to a winning strategy

Example 2 Given G as in the Example 1 and w = a3bdba the corresponding graph HG
w is

given in Fig. 3. It is immediate to see that w ∈ L(G) and there is a strategy tree from (S,w),
whose leaves are all in the target set (dashed area of Fig. 3).

In the above construction, it is clear that the words denoting the second component of the
∃-nodes and ∀-nodes are all subwords of w. Since the number of subwords of w is O(|w|2),
we get an O(|w|2 · |V |) upper bound on the number of ∃-nodes and an O(|w|2 · |P |) upper
bound on the number of ∀-nodes. Indeed, we can show a tighter upper bound on the number
of the nodes in the graph, that is O(|w| · |P |). To this aim, in the next lemma we give a
careful characterization of the form of the subwords effectively used in the construction
of HG

w .

Lemma 1 If (Y, v) ∈ N∃ then

1. either v is a suffix of w

2. or Y ∈ V 0, v is well-matched and there is a subword w′ of w such that
2.1 either w′ = a1αvb1, where a1, b1 are pairs of matching symbols and α ∈ Σ∗

�

2.2 or w′ = a1x1a2x2b2αvb1, where a1, b1 and a2, b2 are matching symbols, x1, x2 ∈ Σ∗
and α ∈ Σ∗

� .
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Proof The proof is by structural induction on the definition of N∃. If (Y, v) is (S,w) then
clearly v is a suffix of w. Suppose now that (Y, v) has an incoming edge then three cases
can occur:

(i) The incoming edge comes from a ∃-node (X,u), and this implies that there is a pro-
duction X → aY ∈ P and u = av. If u is a suffix of w then v is a suffix as well and
case 1 holds. Otherwise, from the inductive hypothesis, u is well-matched and X ∈ V 0
and Y ∈ V 0. Thus, from the definition of G, a ∈ Σ�. Moreover, there exists a sub-
word w′ of w such that either w′ = a1αub1 = a1αavb1 or w′ = a1x1a2x2b2αub1 =
a1x1a2x2b2αavb1, where αa ∈ Σ∗

� and thus 2 holds for (Y, v).
(ii) The incoming edge comes from a ∀-node (X → aYbZ,u) and in turn this has an

incoming edge from the ∃-node (X,u) where u = avbz, for some z ∈ Σ∗. Since a, b are
matching symbols, then Y ∈ V 0 and v is well-matched. From the inductive hypothesis
u is a subword of w and then w′ = avb is a subword of w as well (case 2.1 holds).

(iii) The incoming edge comes from a ∀-node (X → aZbY,u) and this in turn has an in-
coming edge from the ∃-node (X,u) where u = azbv, for some z ∈ Σ∗. If u is a
suffix of w then v is a suffix of w as well and thus case 1 holds. Otherwise, u is well-
matched and there exists a subword w′ of w such that either w′ = a1αub1 = a1αazbvb1

or w′ = a1x1a2x2b2αub1 which can be written as a1x
′azbvb1 where x ′ = x1a2x2b2α.

Moreover X ∈ V 0 implies that Y ∈ V 0 too and thus case 2 holds. �

Note that the second component of a ∀-node is identical to the second component of the
∃-node which precedes it.

A simple characterization of the words in the second component of the nodes of the game
graph HG

w can be obtained using the following definition. A well-matched subword v of w

is called right maximal if w = uvx and, for each prefix x ′ �= ε of x, the subword vx ′ is not
well-matched. In fact, from Lemma 1, if v is not a suffix of w, it is well matched and is
immediately followed by a return symbol whose matching call precedes v. Therefore, v is
right maximal, and the following corollary holds.

Corollary 1 If (X,v) ∈ N∃ then v is either a suffix of w or a right maximal well-matched
subword of w.

In the next lemma we state an upper bound on the number of different subwords of w

which appear in the nodes of HG
w .

Lemma 2 The number of different words u such that (X,u) ∈ N∃ is O(|w|).

Proof Fix w = w1 . . .wn and denote by w(i, j) the subword of w from the i-th through the
j-th position (i.e., w(i, j) = wi . . .wj ). From Corollary 1, we have that if (Y, v) ∈ N∃ then v

is either a suffix of w or a right maximal well-matched subword of w. Thus, for i = 1, . . . , n,
if v = w(i,h) for some i ≤ h ≤ n and (Y, v) ∈ N∃ then one of the following cases holds:

• wi is either a matched call or a local action: then v is either w(i,n) or the right maximal
well-matched subword starting at position i;

• wi is either an unmatched call or a return: then v = w(i,n).

Observe that once a position i is fixed, there is just one right maximal well-matched
subword starting at position i. Therefore, the number of the subwords u of w such that there
exists a (X,u) ∈ N∃ is bounded by (2|w|−nuc −nr), where nuc is the number of unmatched
calls in w and nr is the number of returns. �
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We can now compute the size of HG
w .

Lemma 3 The size of the graph HG
w is O(|w| · |G|). Moreover, HG

w can be constructed in
O(|w| · |G|) time.

Proof From Lemma 2 and the definition of HG
w , the number of ∃-nodes is bounded by

O(|w| · |V |). Since the second component of a ∀-node is identical to the second component
of the ∃-node which precedes it, we have that the number of ∀-nodes is O(|w| · |P |). More-
over, observe that the number of out-going edges from each ∃-node (X,v) is bounded by
the number of G productions rewriting variable X and there are only two out-going edges
from each ∀-node. Thus also the number of edges is O(|w| · |P |). Therefore the first part of
the lemma follows.

To show that HG
w can be constructed in O(|w| · |G|) time, observe that for each variable

X and for each ∃-node (X,u), one has just to go once through all the productions of the
form X → α (the ∀-nodes and the edges are uniquely determined by such productions and
the ∃-nodes). Using appropriate data structures this can be done in time proportional to the
number of such productions. Thus, adding up over all the possible words u and variables X,
by Lemma 2 we get that the total time to construct HG

w is O(|w| · |G|). �

In the next Lemma we prove that a strategy tree from (S,w) to nodes of the target set
exists if and only if w ∈ L(G) (cf. Example 2).

Lemma 4 For every (X,u) ∈ N∃ there is a strategy tree from (X,u) to the target set T if
and only if there is a derivation from X to u in G.

Proof We prove the assert by induction on the definition of N∃, using the nodes with no
outgoing edges as base case. Let (X,u) be one of these nodes. If u = ε then clearly a
derivation from X to u exists if and only if (X,u) ∈ T . If u �= ε then (X,u) /∈ T . As (X,u)

has no outgoing edges, there are no productions of G from X that can start a derivation to
u. Thus, a derivation from X to u does not exist. For the induction step we prove first the
only-if part and let e be the outgoing edge branching off the root (X,u) of the strategy tree.
If e is added in the HG

w construction for a production of the form X → aY , then an ∃-node
(Y, v) exists having e as an incoming edge and u = av. Then by induction hypothesis there
is a derivation from Y to v, and thus a derivation from X to u. If, on the other hand, e is
added for a production of the form X → aYbZ, then a ∀-node having e as an incoming edge
exists. In HG

w , each ∀-node is followed by two ∃-nodes within a strategy tree, let (Y, v) and
(Z, z), with u = avbz, be the labels of such nodes. By induction, Y ⇒∗ v and Z ⇒∗ z holds.
Thus, the following derivation exists: X ⇒ aYbZ ⇒∗ avbZ ⇒∗ avbz.

The if part can be easily proved analogously, by constructing the strategy tree from the
derivation of u from X. �

Now from Lemmas 3 and 4 our main result follows.

Theorem 2 The membership problem for a VPG G = (V ,S,P ) over Σ and a word w ∈ Σ∗

is decidable in O(|w| · |G|).
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4 Membership for grammars of well-matched words

Several kinds of grammars generating subsets of Dyck languages have been studied in the
past and are strictly related to VPG grammars. In this section we briefly describe some of
these grammars and prove that the classes of generated languages are strictly contained
in VPL. From this result we obtain an upper bound on the complexity of the membership
problem for all of them.

The best known examples of grammars generating well-matched words are the paren-
thesis grammars, defined by Mc Naughton in 1967 [20] and the bracketed grammars, in-
troduced by Ginsburg and Harrison [14]. A parenthesis grammar is a context-free grammar
with set of variables V and alphabet Σ ∪ {(, )}, where each rule is of the form X → (α),
α ∈ (Σ ∪V )∗. One of the most relevant results for this class was obtained by Knuth [17] who
showed the existence of an algorithm for determining whether a context-free language ad-
mits a parenthesis grammar (actually the class of languages considered by Knuth is slightly
larger than that defined by Mc Naughton since a word in a language does not needed to be
surrounded by parenthesis).

A bracketed grammar differs from a parenthesis grammar because of a set of indexed
parentheses and a bijection between parentheses and production rules. In fact, any rule i of
a bracketed grammar is of the form X → (iα)i , α ∈ (Σ ∪ V )∗, and (i �= (j for i �= j .

More recently, the class of so-called balanced grammars has been introduced [7] and
many interesting properties of balanced languages have been studied. Balanced grammars
extend both parenthesis and bracketed grammars. In these grammars the set of productions
for each variable is a regular set (as in the XML grammars, studied in [8] and considered in
Sect. 5). More precisely, let A be a set of open parentheses, Ā = {ā | a ∈ A} be the set of
closed parentheses and Σ be an alphabet. A balanced grammar is defined as follows.

Definition 3 (Balanced grammar) A balanced grammar over an alphabet A ∪ Ā ∪ Σ is a
tuple G = (V ,S,P,R) such that:

• V is the set of variables and S ∈ V is the axiom;
• R = {RX,a | X ∈ V,a ∈ A}, for regular sets RX,a over the alphabet V ∪ Σ ;
• P is the set of productions of the form X → aαā where X ∈ V,a ∈ A and α belongs

to RX,a .

The languages defined by all the above described grammars are deterministic context-
free languages and the membership problem can thus be solved in time which is linear with
respect to the length of the input word. Moreover, Lynch [19] studied the membership prob-
lem for parenthesis languages and showed that it is in LOGSPACE with respect to the size
of the input word. Note that the complexity of this problem with respect to the size of the
grammar has not been addressed. In [11, 22, 25], the class of input-driven languages has
been introduced, which coincides with well matched VPLs. In these papers the space com-
plexity of the membership problem is analyzed when the languages are given as automata
(instead of grammars).

Here we determine the complexity of the membership problem with respect to the size
of the grammar (besides the size input word). For some of the considered kinds of grammar,
easy algorithms to check the membership (without modifying the grammar) can be given.
For instance, the bijection between parentheses and production rules in bracketed grammars
allows to uniquely determine, at each step of a derivation for a given word, the production
which corresponds to the parenthesis under reading, thus checking the membership. On the
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other side, the problem is more interesting for the balanced grammars and we solve it by
showing the containment of balanced languages in the class of VPLs, where call and return
symbols play the role of open and closed parentheses. Let us observe that the containment is
strict since VPLs are closed under concatenation [4] while balanced languages are not (ac-
tually no word in a balanced language is the concatenation of two non-empty well matched
words). Moreover, observe that there are also other differences between balanced languages
and VPLs. First, balanced languages are defined over a more restrict kind of alphabet, with a
one-to-one correspondence between open and closed parentheses and, further, all the words
in a balanced language are well matched, while VPLs contain also non well-matched words.

In the following lemma we show that a balanced grammar can be translated into a VPL

grammar whose size is linear in the size of the balanced grammar and the number of open
parentheses. Observe that the set of productions of a balanced grammar may be infinite, thus
the size of the grammar is defined in terms of the size of the representation of the regular
languages RX,a . Here we assume that they are represented by right-linear grammars.2 Thus
the size of a Balanced Grammar (V ,S,P,R) is |P | + ∑

X∈V,a∈A |PX,a|, where PX,a is the
set of the productions of a right-linear grammar generating RX,a . Observe that this grammar
has the same size as a nondeterministic finite automaton recognizing RX,a .

Lemma 5 Given a balanced grammar G over an alphabet A ∪ Ā ∪ Σ there exists a visibly
pushdown grammar G′ with respect to Σ̃ = 〈A, Ā,Σ〉 such that L(G′) = L(G) and |G′| =
O(|G| · |A|).

Proof Let G be the balanced grammar (V ,S,P,R). For each regular set RX,a in R, let
GX,a = (VX,a, SX,a,PX,a) be a right-linear grammar over V ∪ Σ such that L(GX,a) = RX,a .
We assume that for each X ∈ V and a ∈ A the sets VX,a are pairwise disjoint. Denote V ′ =⋃

X∈V
a∈A

VX,a , and P ′ = ⋃
X∈V
a∈A

PX,a .

From G we can easily obtain a language equivalent context-free grammar by simply
“linking” the grammars GX,a to the productions of G that place parenthesis out of the words
of RX,a . More precisely, we need to replace all the rules of the form X → aαā of G (α ∈
RX,a) with the sole rule X → aSX,aā, and then take the union of all the productions of
grammars GX,a (i.e., P ′). Denote with G′′ the resulting grammar. Clearly, L(G′′) = L(G),
|G′′| = O(|G|) and the productions of G′′ are of the forms: X → aSX,aā, Y → XZ, Y → cZ

and Y → ε (we have denoted with X a variable from V , with Y,Z variables from V ′, with
a a parenthesis in A and with c a symbol in Σ ).

Because of the productions of the forms X → aSX,aā and Y → XZ, grammar G′′ might
not be a VPG. Therefore we define a new grammar G′ where those productions are replaced.
In particular, each production of G′′ rewriting the axiom, i.e., of the form S → aSS,aā, is
replaced with S → aSS,aāΛ where Λ is a new variable from which only the empty word
can be derived. Each production of the form Y → XZ is combined with productions of the
form X → aSX,aā , thus obtaining productions of the form Y → aSX,aāZ. It is simple to
verify that such modifications of the grammar G′′ do not alter the generated language, and
the resulting grammar G′ is visibly pushdown. Also, all the variables of grammar G, besides
the axiom, are not used in the resulting productions.

Formally, define the pushdown alphabet Σ̃ as follows: A is the set of calls, Ā is the set
of returns and Σ is the set of local actions. The variable set of G′ is {S,Λ} ∪V ′ (where Λ is

2Here we consider right-linear grammars whose productions are of the following form: X → xY or X → ε,
for variables X,Y and terminals x.
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a new symbol). The variables of G′ derive only well-matched words (i.e., are all of the kind
V 0). The axiom is S (the axiom of G). The set of productions is the smallest set containing:

• a production S → aSS,aāΛ, for each a ∈ A such that RS,a is not empty;
• a production Λ → ε;
• a production Z → aSX,aāY for each production Z → XY in P ′, X ∈ V , Z,Y ∈ V ′, and

for each open parenthesis a such that RX,a is not empty;
• all productions of the form Z → cY and Z → ε of P ′, for c ∈ Σ .

For the above observations we get L(G′) = L(G). Moreover, the number of G′ variables
is 2 + |V ′|, and the number of G′ productions is at most |A| · |P ′|. Therefore, we obtain the
claimed bound. �

From Lemma 5 and Theorem 2, we have the following corollary.

Corollary 2 The membership problem for a word w and a balanced grammar G, over an
alphabet A ∪ Ā ∪ Σ , is decidable in O(|w| · |G| · |A|).

5 An application: validation of XML documents

In this section, we describe an interesting application of our membership problem for VPLs
to the validation of XML documents. We start giving the definition of what we call XML-
schema grammars which captures the syntactic structure of an XML schema. We use XML
schemas as they include the full capabilities of Document Type Definitions (DTDs) and in
addition they can define custom data types (besides primitive ones) using object-oriented
data modeling principles: encapsulation, inheritance, and substitution (in [8] a similar defi-
nition for the DTD was given).

Let Σ be a finite alphabet, we define by Σ̄ the set of symbols σ̄ such that σ ∈ Σ . A sym-
bol σ ∈ Σ denotes an “opening tag” and σ̄ its matching “closing tag”. In the XML schema
each tag has associated to itself a finite number of types (called also refinements or speci-
fications, of a given base type), let nσ be such a number. Call Σ̂ = Σ ∪ Σ̄ . XML schema
grammars are balanced grammars where opening and closing tags correspond to open and
closed parentheses (and there are no other terminal symbols). In XML schema Grammars,
the set V of non-terminal symbols is partitioned into subsets, each of them corresponding to
an opening tag.

Definition 4 (XML schema grammar) An XML schema grammar G = (V ,S,P,R), over
an alphabet Σ̂ is such that (nσ indicating the different types for each open tag σ ∈ Σ ):

• V = ⋃
σ∈Σ

1≤i≤nσ

Xi
σ (each non-terminal symbol is in a one-to-one correspondence to an

opening tag σ and a positive integer which is at most nσ );
• S ∈ V is the axiom;
• Ri

σ , σ ∈ Σ and 1 ≤ i ≤ nσ , is a regular language over V , such that no word in it contains
two different elements Xi

τ and Xj
τ , i �= j , for any τ ∈ Σ ;3

• R = {Ri
σ | σ ∈ Σ, i = 1, . . . , nσ }.

3This requirement is a requirement of W3C that practically forbids to use two or more different types, derived
from the same base type tag, as siblings in the document.
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• productions in P are of the form Xi
σ → σασ̄ where α ∈ Ri

σ . (Note that, the tag on the
right-hand side of the production is uniquely determined by the non-terminal on the left-
hand side.)

An XML schema language is the language generated by an XML schema grammar. In the
following, we assume that each regular language is represented by a right-linear grammar
that generates it. Let us underline that an XML schema grammar with just one type for each
tag suffices to describe DTD’s, cf. [8].

Any XML schema language can be seen as a visibly pushdown language where opening
tags correspond to call symbols and closing tags to their matching return symbols. Thus, an
XML schema language over Σ̂ can be generated by a visibly pushdown grammar over the
alphabet Σ̃ = (Σ, Σ̄,∅) as shown in the following lemma.

Lemma 6 Given an XML schema grammar GXML over an alphabet Σ̂ , there exists a vis-
ibly pushdown grammar G over Σ̃ = (Σ, Σ̄,∅) such that L(G) = L(GXML) and |G| =
O(|GXML|).

Proof Let GXML be the XML schema grammar (VXML, SXML,PXML,RXML). For each set
Ri

σ , let Gi
σ = (V i

σ , Si
σ ,P i

σ ) be a regular right-linear grammar over VXML such that L(Gi
σ ) =

Ri
σ . (We return on this assumption after completing the proof of the lemma.)

We construct a visibly pushdown grammar G = (V ,S,P ) such that L(G) = L(GXML)

as follows. The set V = V 0 is {S,Λ} ∪ ⋃
σ∈Σ

1≤i≤nσ

V i
σ where S and Λ are new symbols. The

set of productions P is the smallest set containing:

• a production S → σSi
σ σ̄Λ, if SXML = Xi

σ (i.e., SXML is the non-terminal symbol corre-
sponding to tag σ and type i);

• a production Λ → ε;
• a production Z → σSj

σ σ̄Y for each opening tag σ and 1 ≤ j ≤ nσ and for each production
Z → Xj

σ Y of Gi
σ ;

• a production Z → ε for each production Z → ε of Gi
σ , where σ ∈ Σ and 1 ≤ i ≤ nσ .

The cardinality of V is 2 + ∑
σ∈Σ

1≤i≤nσ

|Vσ |, and the number of productions in P is 2 +
∑

σ∈Σ1≤i≤nσ
|Pσ |. Therefore, we obtain the claimed bound. �

In the above proof, we have assumed that each regular language Ri
σ is given as a right-

linear grammar. According to W3C recommendation [26], such regular languages are re-
quired to admit a deterministic regular expression, that is an expression for which the corre-
sponding Glushkov finite automaton, see [13], is deterministic. In [5], it has been shown that
this finite automaton can be constructed in time linear in the size of the deterministic regular
expression.4 Therefore, it is without loss of generality to assume, that the size of right-linear
grammars Gi

σ generating languages Ri
σ have linear size in the size of the regular expression

used in the XML schemas (or DTDs).
Given an XML document D and an XML schema, or equivalently a DTD, H , the XML

type-checking problem is the problem of checking if D syntactically conforms to H . This

4A Glushkov automaton for a regular expression E is an automaton whose states correspond to the positions
(occurrences) of symbols in E and whose transitions connect positions that can be consecutive on a path
through E. Such automaton can be obtained with standard algorithms (independently given by McNaughton
and Yamada [21] and Glushkov [13]).
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problem can be formalized as a membership problem for XML languages. From the above
lemma and Theorem 2, we have the following corollary.

Corollary 3 The type-checking problem for XML documents is decidable in time linear in
the length of the document and in the size of the XML schema (or DTD).

6 Complexity of other approaches

In literature VPL languages have been represented also with visibly pushdown automata
(VPA). In this section, we first recall the definition of such automata and some basic results.
Then we briefly discuss on the computational time complexity of other solutions to the
membership problem for VPLs considering as a starting representation either VPGs or VPAs.
We use translations from one representation to the other or more trivial algorithms, without
explicitly giving the proofs.

In a Visibly Pushdown Automaton over Σ̃ , call, return and local symbols determine the
stack operations.

Definition 5 (Visibly pushdown automata) A (nondeterministic) Visibly Pushdown Au-
tomaton (VPA) on finite words over 〈Σc,Σr,Σ�〉 is a tuple M = (Q,Qin,Γ, δ,QF ) where
Q is a finite set of states, Qin ⊆ Q is a set of initial states, Γ is a finite stack alphabet that
contains a special bottom-of-stack symbol ⊥, δ ⊆ (Q × Σc × Q × (Γ \ {⊥})) ∪ (Q × Σr ×
Γ × Q) ∪ (Q × Σ� × Q), and QF ⊆ Q is a set of final states.

Let us remark that the acceptance is only on final states (not by empty-stack) and ε-
transitions are not allowed. The languages accepted by a VPA over Σ̃ is a context-free
language over an alphabet Σ = (Σc ∪ Σr ∪ Σ�).

Now we recall some known results about VPL languages.

Theorem 3 [4] For a pushdown alphabet Σ̃ , a language L is VPL if and only if it can be
accepted by a visibly pushdown automaton.

Theorem 4 [4] For any VPA M over Σ̃ , there is a deterministic VPA M ′ over Σ̃ such that
L(M ′) = L(M). Moreover, if M has n states, we can construct M ′ with O(2n2

) states and
with stack alphabet of size O(2n2 · |Σc|).

In what follows, we fix a VPG G = (V ,S,P ) over an alphabet Σ , a VPA A =
(Q,Qin,Γ, δ,QF ) and a word w = w1w2 . . .wn, where wi ∈ Σ for i = 1, . . . , n and n ≥ 0.

When a VPL language is given as a VPA A, since this class of automata is determinizable
(see Theorem 4), we can use the determinization construction on-the-fly while checking
for language membership. From the construction given in [4], it is easy to see that this
approach leads to an algorithm that takes time which is cubic in the number of states of the
nondeterministic automaton: O(|Q|2 · |Γ | + |Q|3).

Alternatively, we could transform a VPA A into an equivalent VPG GA and this, using
again the construction given in [4], amounts to a set of rules P of size |Q|4 · |Γ |2 · |Σc| · |Σr |.

Consider now the case when a VPL is represented by a VPG. A standard algorithm to
solve membership for context-free languages is the well known CYK algorithm [1]. Start-
ing from a grammar in Chomsky Normal Form and a word w = w1 · · ·wn, this algorithm
consists of computing for each subword wi · · ·wi+j−1 the set of all variables from which
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it can be derived. The main step of the computation consists of adding up a variable X,
to the set of variables for wi · · ·wi+j−1, whenever: (1) the grammar contains a production
X → YZ, and (2) there exists a k, 1 ≤ k ≤ j , such that wi · · ·wi+k−1 can be derived form
Y and wi+k · · ·wi+j−1 can be derived from Z. The algorithm can be implemented to run in
O(|P | · n3) time [1].

Since VPGs have productions with at most two variables on the right hand side, the CYK
algorithm can be easily adapted to solve also the membership problem for them. From the
definition of a VPG, we know that the splitting of a subword wi · · ·wi+j−1 according to
a rule of the form X → aYbZ is uniquely determined. Also, rules of the form X → aY

deterministically split the subword. Therefore, a simple adaptation of the CYK algorithm
can be implemented in O(|P | · n2) time. A further improvement can be achieved if we
choose to compute the sets of variables only for the subwords that are actually determined in
the parsing of the input word according to the rules of the grammar. According to the results
shown in Sect. 3 the number of such subwords is O(n), therefore the time complexity of the
algorithm reduces to O(|P | ·n), the same as for the solution we have proposed in this paper.
It is worth to mention that an efficient way of determining such subwords is to mimic the
construction of the game graph given in Sect. 3.

Alternatively, one can think of translating the VPG into an equivalent VPA, but this turns
out to be quite expensive in general. In fact, using also here the construction given in [4],
translating a VPG into a VPA costs O(|P | + |Pε| · |Σr | · |V |) time, where |Pε| is the subset
of the nullable productions (productions of the form X → ε). The size of the set of states
and the size of the stack alphabet of the VPA are respectively |V | and |V · Σr |.

7 Conclusions

The membership problem is a central decision problem in the formal languages theory. The
time complexity of the membership problem for subclasses of context-free languages has
been largely studied, mainly because of its importance in parsing (see also [1]).

In this paper, we have addressed the membership problem for visibly pushdown lan-
guages, a sub-class of deterministic context-free languages. Using the visibly pushdown
grammars from [4], we have given an algorithm to solve this problem in time linear in both
the length of the input word and the size of the grammar. Thus, checking for membership
in visibly pushdown grammars can be done faster than for general context-free grammars
(even in the case of unambiguous grammars [16]). (Recall that the membership problem in
regular languages is linear both in the size of the automaton/grammar and the length of the
input word.) As for the other decision problems, the complexity of checking for member-
ship confirms that visibly pushdown languages have nice features in terms of tractability and
robustness, and thus from this point of view are more alike the class of regular languages
than to the class of context-free languages. As shown in Sect. 5, our result on the member-
ship problem for VPLs has a natural application in the processing of XML documents. The
use of visibly push-down automata for solving problems for XML that involve processing
of documents from left to right (such as the type-checking problem we have considered in
this paper) has been recently proposed in [18]. There, the authors give an automaton coun-
terpart to XML-grammars that they call XVPA (a variant of visibly push-down automata)
and rephrase some typing and streaming problems for XML (including the type-checking
problem) as automata decision problems.
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