
Form Methods Syst Des (2010) 37: 265–294
DOI 10.1007/s10703-010-0106-9

Model-based construction and verification of critical
systems using composition and partial refinement

Ralph D. Jeffords · Constance L. Heitmeyer ·
Myla M. Archer · Elizabeth I. Leonard

Published online: 28 December 2010
© Springer Science+Business Media, LLC (Outside the USA) 2010

Abstract This article introduces a new model-based method for incrementally constructing
critical systems and illustrates its application to the development of fault-tolerant systems.
The method relies on a special form of composition to combine software components and
a set of proof rules to obtain high confidence of the correctness of the composed system.
As in conventional component-based software development, two (or more) components are
combined, but in contrast to many component-based approaches used in practice, which
combine components consisting of code, our method combines components represented as
state machine models. In the first phase of the method, a model is developed of the normal
system behavior, and system properties are shown to hold in the model. In the second phase,
a model of the required fault-handling behavior is developed and “or-composed” with the
original system model to create a fault-tolerant extension which is, by construction, “fully
faithful” (every execution possible in the normal system is possible in the fault-tolerant sys-
tem). To model the fault-handling behavior, the set of states of the normal system model is
extended through new state variables and new ranges for some existing state variables, and
new fault-handling transitions are defined. Once constructed, the fault-tolerant extension is
shown, using a set of property inheritance and compositional proof rules, to satisfy both the
overall system properties, typically weakened, and selected fault-tolerance properties. These
rules can often be used to verify the properties automatically. To provide a formal foun-
dation for the method, formal notions of or-composition, partial refinement, fault-tolerant
extension, and full faithfulness are introduced. To demonstrate and validate the method, we
describe its application to a real-world, fault-tolerant avionics system.
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1 Introduction

It is widely agreed that building a critical software system that is correct (i.e., satisfies its
requirements) is challenging. Many proposed approaches at both the theoretical level and
the practical level apply a divide-and-conquer approach to tackling this difficult problem.
Proposed at the theoretical level are a wide range of techniques, including composition, as
proposed by Abadi and Lamport [2], for assembling individual software components into
programs; refinement, such as stepwise refinement as proposed by Dijkstra [15] and refine-
ment mappings as proposed by Abadi and Lamport [1], for developing a concrete program
from an abstract one; and formal verification using, e.g., model checking [14] or theorem
proving [40], for proving that models of programs satisfy properties of interest. At the more
practical level are techniques for developing software incrementally, such as component-
based software development (see, e.g., Szyperski [41]), model-driven engineering [17], and
aspect-oriented programming as defined by Kiczales et al. [30, 31].

The goal of this article is to describe and illustrate a sound, practical component-based
method, based on composition and refinement, for developing software that satisfies its re-
quirements. However, rather than describe a general method for component-based software
development, the article describes a software engineering method for constructing a criti-
cal class of software systems—fault-tolerant systems—which (1) is supported by a formal
theory and (2) can be generalized and customized to build other critical systems, such as se-
cure systems. While in practice, component-based software engineering typically combines
pieces of code, using software development environments such as Eclipse, the components
in our method are state machine models. An underlying assumption of our research is that
such models can be automatically or semi-automatically transformed into executable code.

Similar to others [5, 9, 10, 33], our approach to developing fault-tolerant systems is to
specify the required system behavior in two phases. In the first phase, a model is developed
of the normal (also called ideal) system behavior, the system behavior when no faults can
occur. In the second phase, the no-faults assumption is removed, and a model of the sys-
tem’s required fault-tolerant behavior is developed. Our approach can be viewed as a special
case of the transformational approach, an approach which transforms a model of normal
behavior into a fault-tolerant model using, for example, some form of composition [19]. As
in aspect-oriented programming [30, 31], our method weaves certain aspects, specifically,
the “fault-tolerant” aspects, into the original system. In contrast to process algebra-based
approaches [9], which model systems in terms of abstract transitions and synchronization,
our approach describes systems in terms of concrete states defined by valuations of state
variables and transitions modeled as state pairs. Moreover, in contrast to those who model
fault handling transparently and focus on masking fault-tolerance under particular fault hy-
potheses (e.g., [9]), we focus on a different notion of masking fault-tolerance, called partial
masking fault-tolerance,1 which includes externally visible fault detection, fault-handling
and recovery behavior.

This article, a revised and expanded version of a conference paper presented at Formal
Methods 2009 [29], makes five contributions. The article (1) introduces a new component-
based method for developing a special class of fault-tolerant systems, called masking fault-
tolerant systems, which uses composition and property inheritance to obtain high confidence
of system correctness; (2) describes partial masking fault-tolerance as a variant of masking
fault-tolerance; (3) presents formal notions of or-composition, partial refinement, and fully

1This was called “eventual masking fault tolerance” in [29].
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faithful fault-tolerant extension to provide a formal foundation for developing and reasoning
about fault-tolerant systems; (4) defines a set of sound property inheritance and composi-
tional proof rules for establishing properties of a fault-tolerant extension either automatically
or interactively; and (5) illustrates the method, the new formal notions, and the application
of the proof rules on the real-world avionics example of [10, 37]. These contributions make
it possible to develop fault-tolerant systems whose common attributes, e.g., full faithfulness
and other notions defined in Sect. 4, are “correct by construction.” Although the method for
constructing software proposed in this article is top-down in that the user applies a forward-
engineering approach, our formal foundation also provides a solid basis for a reverse engi-
neering approach, where a model and/or code of the fault-tolerant system already exist, and
the user needs to demonstrate that the fault-tolerant system satisfies the properties of a fully
faithful fault-tolerant extension. Both the method of Sect. 3 and the general theory in Sect. 4
are applicable in any software development which represents systems as state machine mod-
els, including Abstract State Machines (ASMs) [12], I/O Automata (IOA) [18], Lustre [20],
Requirements State Machine Language (RSML) [22], Software Cost Reduction (SCR) [23],
StateCharts [21], and Temporal Logic of Actions (TLA) [34].

The article’s organization is as follows. As background, Sect. 2 reviews the Four Variable
Model and defines our notions of fault, failure, and masking fault-tolerance. Section 3 intro-
duces our component-based method for developing fault-tolerant systems, an extension of
the approach to software development introduced in [10]. To establish a formal foundation
for the method, Sect. 4, motivated in part by the theory of fault tolerance in [33] and the no-
tion of retrenchment in [7], presents our new notions of or-composition, partial refinement,
fault-tolerant extension, and full faithfulness; and our proof rules. To demonstrate and val-
idate our approach and to show how our method supports the approach, Sect. 5 applies the
method to a device controller in an avionics system [37]. Section 6 discusses verification,
incremental development, and other issues regarding automation of our method. Finally,
Sects. 7 and 8 discuss related work and present some conclusions.

2 Background

2.1 Four variable model

Our two-phase method for developing a fault-tolerant system is an adaptation [24, 37] of
Parnas’ Four Variable Model (FVM) [38]. In the FVM, the required system behavior is spec-
ified in terms of two sets of environmental variables—monitored and controlled variables—
and two relations on these variables—REQ and NAT. A monitored variable represents an
environmental quantity that influences the system behavior, while a controlled variable rep-
resents an environmental quantity that the system controls. NAT specifies the natural con-
straints on monitored and controlled variables, such as constraints imposed by physical laws
and the system environment. REQ specifies the required relation the system must maintain
between the monitored and controlled variables under the constraints defined by NAT. In
our adaptation of the FVM, two other sets of variables, input and output variables, repre-
sent the values read from input devices (for example, sensors) from which the values of the
monitored variables are estimated; and the values written to output devices computed from
the values of the controlled variables [10, 37]. For example, in an avionics system, such as
the Altitude Switch (ASW) described in Sect. 5, the aircraft altitude may be represented as
a monitored variable; to estimate the altitude, the system software may use three altimeters,
each represented by an input variable.
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In specifying the normal system behavior, two assumptions of NAT are that (1) no faults
can occur, and (2) the system can obtain perfect values of the monitored quantities and
compute perfect values of the controlled variables. In specifying the fault-tolerant behavior,
these two assumptions are removed from NAT, new monitored and controlled variables are
introduced to represent faults and the required system response to faults, and NAT and REQ
are extended to specify the required fault handling and recovery behavior. In addition, input
and output variables are introduced to represent the values read by the software from input
devices and written by the software to output devices.

2.2 Faults, failures, and masking fault-tolerance

In this article, we have simplified the widely accepted definitions of Avizienis et al. [6] to
describe our notions of the terms fault and failure. Unlike [6], we do not distinguish the
cause of a fault from its effect (Avizienis et al. call the latter an error). Instead, we use
the term fault to refer to either a hardware problem, e.g. faulty behavior by a sensor, or a
symptom of a fault, e.g., the environment fails to provide the system with expected data by a
given deadline. As in [6], we use the term failure to refer to a system failure, i.e., the failure
of the system to satisfy some requirement due to a fault. The goal of a fault-tolerant design
is to eliminate system failures that occur because of faults.

In our approach, similar to that of other researchers (see, e.g., [5, 19, 33, 36]), the sys-
tem’s normal behavior is clearly distinguished from its fault-tolerant behavior; the system’s
fault-handling behavior is solely responsible for detecting and recovering from faults. The
form of fault-tolerance of interest in this article is masking fault-tolerance. Two variants of
masking fault tolerance are considered. In the first, transparent masking, critical properties
of the system are preserved even in the presence of faults, and the effect of faults on the
system behavior is invisible.2 In the second variant, which we refer to as partial masking,
some subset of the set of critical properties is preserved during fault handling, while other
critical properties guaranteed during normal behavior may be violated. Moreover, the sys-
tem always recovers from a fault in bounded time.3 In transparent masking, the component’s
fault-tolerant behavior is a full refinement of its normal behavior. In partial masking, the sys-
tem behavior is a “partial refinement” since refinement holds for the normal system behavior
but may not hold during fault-handling. For example, in a fault-handling state, the system
may not respond to certain user requests for service. This article focuses mainly on partial
masking fault-tolerance and its relation to our theory of partial refinement and fault-tolerant
extensions. In another form of fault-tolerance, called fail-safe fault-tolerance, a component
responds to a fault by halting in a safe state. In practice, the design of many fault-tolerant
systems combines masking fault-tolerance with fail-safe behavior.

The Altitude Switch (ASW) example in Sect. 5 illustrates both variants of masking fault-
tolerance. In the design of the ASW, if at least one of the three altimeters is working, the
system uses the good altimeter(s) to estimate the value of the aircraft altitude. In contrast,
if all three altimeters are faulty for some specified time interval, the ASW turns on a fault
indicator light, initiates fault handling, and recovers in bounded time. The fault handling
behavior in the first case is an example of transparent masking because the effect of the
faulty sensor is hidden. In contrast, in the second case, the fault handling behavior is an
example of partial masking because the system (1) enters a fault-handling mode, i.e., no

2Many researchers use “masking fault-tolerance” to refer only to what we call “transparent masking.”
3Kulkarni’s definition of masking covers both transparent and partial masking, but with unbounded recovery
time [32].
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longer exhibits normal behavior, (2) turns on a fault indicator light, thus making the effects
of the fault externally visible, and (3) recovers in bounded time.

3 A formal method for building fault-tolerant systems

This section introduces a new incremental, model-based method for building fault-tolerant
systems. Motivated by concepts in the Four Variable Model [38] and the approach to soft-
ware development described in [10], our method is applied in two phases. In the first phase,
a state machine model is formulated to represent the normal system behavior and verified
to satisfy critical system properties, most commonly, safety properties [3]. In the second
phase, I/O devices, such as sensors and actuators, are selected, hardware and other faults
which may occur are identified, and an extended state machine model representing the sys-
tem’s fault-tolerant behavior is designed. This extended, fault-tolerant model, referred to as
a fault-tolerant extension, is then shown to satisfy (1) the critical system properties verified
in the first phase, typically weakened, and (2) new properties related to fault detection, fault
handling, and recovery. While each phase is described below as a sequence of steps, the
precise ordering of the steps may vary, and some steps may occur in parallel.

3.1 Specify and verify the normal system behavior

In the first phase, the system behavior is specified under the assumption that no faults can
occur, and essential system properties are formulated and verified. A state machine model
ID = (SID, θID, ρID), where SID is the set of possible states of ID, and θID and ρID are ID’s
initial state set and transition set, respectively, is formulated to represent the “normal” be-
havior. The model ID of normal behavior omits any mention of I/O devices, or of hardware
failures and other system malfunctions.

3.1.1 Specify the normal behavior in terms of NAT and REQ

The state machine model ID of the normal system behavior is specified in terms of (1) moni-
tored and controlled variables and (2) the two relations—REQ and NAT—defined in Parnas’
Four Variable Model. Monitored and controlled variables represent the required externally
visible behavior of the system, while any additional variables are considered to be internal
and hidden. As stated in Sect. 2.1, in the first phase, two assumptions of NAT are (1) no
faults occur, and (2) the system can obtain perfect values of the monitored quantities and
compute perfect values of the controlled variables.

3.1.2 Formulate and verify system properties

Finally, critical system properties are formulated as properties of the state machine model
ID. These properties are often safety properties. Once formulated, the properties are verified
to hold in the state machine model ID, using special proof rules or other proof techniques,
such as model checking or theorem proving.

3.2 Specify and verify the fault-tolerant behavior

In the second phase, the NAT assumption that the system can perfectly measure values of
monitored quantities and perfectly compute values of controlled quantities is removed, and
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I/O devices are selected to estimate values of monitored quantities and to report values of
controlled quantities. Also removed is the assumption in NAT that no faults occur. Possible
faults are identified, and the system is designed to tolerate some of these faults. Finally, the
fault-tolerant behavior is specified as a fault-tolerant extension FT (see Sect. 4) of the state
machine model ID which adds extra behavior to handle faults and which may include new
externally visible behavior, e.g., operator notification of a sensor failure. The fault-tolerant
extension is represented as a state machine model FT = (SFT , θFT , ρFT), where SFT is the set
of FT’s possible states, and θFT and ρFT are the initial state predicate and set of transitions
of FT, respectively.

3.2.1 Select I/O devices

In the second phase, the first step is to select a set of I/O devices, such as sensors and actu-
ators, and to document device characteristics and how the I/O devices are used to estimate
values of the monitored quantities and to report the values of the controlled quantities.

3.2.2 Identify likely faults

Once the I/O devices are selected, possible faults are identified. Examples of faults include a
single faulty sensor, the failure of an event to occur within some time interval, and an ex-
ception raised in the system’s software environment. For practical reasons, the system is
designed to handle only some possible faults.

3.2.3 Design and specify the fault-tolerant behavior

Once a set of faults is selected, a design is developed that, in response to a fault, makes the
system tolerant of the fault and, in the case of some faults, reports the fault so that corrective
or mitigating action may be taken. A wide range of fault-tolerance techniques are used
in practice. One common technique is hardware redundancy, where two or more versions
of a single sensor are available, but only one is operational at a time. If the operational
sensor fails, the system switches control to a back-up sensor. In another version of hardware
redundancy, each of three (or any odd number of) sensors samples a monitored quantity’s
value, and a majority vote determines the value of the quantity. As noted in Sect. 2.2, some
fault-tolerance techniques make faults transparent. For example, if three sensors measure the
value of a monitored quantity, a majority vote may be used to estimate the value and thus
mask faults as long as two sensors are functioning correctly. Transparent masking of sensor
faults by a similar method is described in [10]. In contrast to [10], this article focuses on
partial masking, where, in response to a fault, new fault-handling behavior is required that
is externally visible. For example, in response to a fault, the system may notify an operator
of the fault, who in turn may take some corrective action.

Our approach to adding fault-handling behavior to a state machine model ID of the sys-
tem’s normal behavior leads to an extension FT of the original model that is “faithful” in
the sense that every execution possible in ID is possible in FT (with essentially the same
observable behavior). To construct the fault-tolerant extension, the specification of ID is
extended in three ways:

1. New variables are added to the set of existing variables. These variables may include
new monitored variables, e.g., to signal that a fault occurred or a time-out expired (often
a symptom of a fault). Other variables may also be added—for example, a new controlled
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variable to warn a system operator that a fault has been detected, or new “history vari-
ables,” such as internal variables which record the time a system has been in a given
state.

2. New values may be added to ranges of existing variables. For example, to describe a
fault-handling state, the range of some existing variable may be extended to allow an
extra value fault.

3. New transitions are added to the existing set of transitions. Two classes of additional
transitions are possible. One class consists of brand new transitions—for example, a tran-
sition from a state in the original system to a new fault-handling state, or a transition from
a new fault state back to some normal state (i.e., recovery from the fault). The other class
of new transitions arise from a “split,” i.e., a transformation of an original transition in
ID into two new transitions based on the value of a given predicate: if the predicate is
true, then the transition in the fault-tolerant system corresponds to the transition in the
original system; if false, then the transition is to a new fault-handling state.

Once the three extensions above have been specified, the user may “compose” them
with the original specification of the state machine model ID to obtain a specification of
the extended state machine model FT. First, the new variables are inserted into the set of
original variables to produce a new set of state variables. Next, the type sets of variables with
new values are modified to include the new values. These two extensions lead to the set SFT

of possible states in FT. Finally, the new transitions are inserted into the set of transitions
of the original state machine model to form a new set ρFT of transitions. The state set SFT

can be naturally partitioned into N , the set of normal operating states augmented with the
new variables, and F , the set of fault-handling states. The faithfulness to ID of the extension
FT follows because the extensions to the specification of FT satisfy the “non-interference”
notion of Arora and Kulkarni [5], i.e., do not interfere with the original system behavior
described by ID.

3.2.4 Formulate and verify properties of the fault-tolerant specification

In this step, the critical properties verified to hold for the normal system behavior ID must
be shown to hold for the fault-tolerant behavior FT. In some cases, properties of the normal
system will not hold throughout the fault-tolerant system but may only remain true during
the normal system behavior. A new notion of partial refinement, defined in Sect. 4.1, de-
scribes the conditions which must be established for the fault-tolerant system to partially
inherit properties of the normal system. Also in this step, new properties are formulated to
describe the required behavior when a fault is detected and when the system recovers from
a fault. It must then be shown that the fault-tolerant specification satisfies these new proper-
ties, which can often be established as invariants with the aid of property inheritance rules
and compositional proof rules. Examples of these rules appear in Sect. 4.3.

4 Formal foundations

This section presents formal definitions, theoretical results, and formal techniques that sup-
port the method described in Sect. 3 for developing provably correct fault-tolerant sys-
tems. The most important concepts and results include our notions of partial refinement,
or-composition, and fault-tolerant extension, together with two proof methods for establish-
ing properties of a fault-tolerant extension based on properties of the normal (fault-free)
system behavior it extends. We identify one subclass of fault-tolerant extensions as simple,
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Fig. 1 State diagram for the
Simple Heating System (SHS).
Unreachable states and
transitions are indicated by
dotted lines

and establish useful properties for extensions in this subclass. We also define a faithful fault-
tolerant extension (already discussed informally). Our first proof method describes prop-
erty inheritance under partial refinement and is based on Theorems 2 and 3 (see Sects. 4.3
and 4.1). Our second proof method is based on compositional proof rules for invariants, two
of which are shown in Fig. 4 of Sect. 4.3.

The section begins with general notions concerning state machines, formally defines the
notion of or-composition, and relates or-composition to the method presented in Sect. 3.2 for
adding fault-tolerant behavior to normal system behavior. It also introduces fault-tolerance
concepts, and discusses additional concepts and results that arise from added assumptions
about state machines—first, that states are determined by the values of a set of state vari-
ables, and second, that state transitions are triggered by a change in value of some input
variable. Each concept or result presented is introduced at the highest level of general-
ity possible. To illustrate the definitions, results, and techniques of this section, we use the
running example, illustrated in Fig. 1, of a simple heating system controlled by an on-off
switch:

Example 1 (Simple Heating System (SHS)) The behavior of the SHS is described in terms
of a set of variables whose values determine the current state of the system:

− Heater_Status, with possible values NoHeat and Heating, and
− Switch, with possible values on and off.

The goal in this example is to extend the behavior of the SHS to obtain SHS-FT, an
enhanced version of the Simple Heating System which is fault tolerant, and to relate the
properties of SHS-FT to the properties of the SHS. In Fig. 1, only the states Noff and Hon
are reachable; the states Non and Hoff are unreachable.

4.1 General definitions

We begin with the (well-known) definitions of state machine and invariant property (invari-
ant, for short). As is often customary, we consider predicates to be synonymous with sets;
thus, “P is a predicate on set S” ≡ “P ⊆ S”, “P (s) holds” ≡ “s ∈ P ”, etc.
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Definition 1 (State machine) A state machine A is a triple (SA,�A,ρA), where SA is a
nonempty set of states, �A ⊆ SA is a set of initial states, and ρA ⊆ SA × SA is a set of
transitions that contains the stutter step (sA, sA) for every sA in SA. An execution sequence
(execution) of A is a sequence of states s0, s1, . . . , sn (s0, s1, . . . , sn, . . .) in SA such that
(si−1, si) ∈ ρA for every i with 1 ≤ i ≤ n (1 ≤ i). A state sA ∈ SA is reachable if there is an
execution sequence s0, s1, . . . , sn of A such that s0 is an initial state and sn = sA. A transition
(sA, s ′

A) ∈ ρA is a reachable transition if sA is a reachable state. �

In the SHS (see Fig. 1),

− The set of states SSHS = {Noff, Hon, Non, Hoff}
− The set of initial states �SHS = {Noff}
− The set of transitions ρSHS = {(Noff, Hon), (Hon, Noff), (Noff, Noff), (Hon, Hon),

(Non, Noff), (Hoff, Hon), (Non, Non), (Hoff, Hoff)}

Only the states Noff and Hon are reachable. Four of the transitions in ρSHS are stutter
steps, and only the first four transitions listed are reachable.

Definition 2 (One-state and two-state predicates/invariants) Let A = (SA,�A,ρA) be a state
machine. Then a one-state predicate of A is a predicate P ⊆ SA, and a two-state predicate
of A is a predicate P ⊆ SA × SA. A one-state (two-state) predicate P is a state (transition)
invariant of A if all reachable states (transitions) of A are in P . �

The SHS has state invariants:

Heater_status = NoHeat ⇔ Switch = off
Heater_status = Heating ⇔ Switch = on

Its transition invariants include:

Switch = off ∧ Switch′ = on ⇒ Heater_status′ = Heating

The above transition invariant states that in the result state of any transition in which the
value of Switch changes from off to on, the value of Heater_status is Heating.

We next define two notions that describe how two state machines (e.g., two models of
a system) may be related. The well-known notion of refinement is especially useful in the
context of software development because the existence of a refinement mapping from a state
machine C to a state machine A at a more abstract level permits important properties—
including all safety properties (and hence all one-state and two-state invariants)—proved
of A to be inferred of C. A new notion, which we call partial refinement, is a generalization
of refinement useful in situations where the approximation by a detailed system model to a
model of normal system behavior is inexact.

Definition 3 (Refinement) Let A = (SA,�A,ρA) and C = (SC,�C,ρC) be two state ma-
chines, and let α : SC → SA be a mapping from the states of C to the states of A. Then α is a
refinement mapping if (1) for every sC in �C , α(sC) is in �A, and (2) ρA(α(sC),α(s ′

C)) for
every pair of states sC, s ′

C in SC such that ρC(sC, s ′
C). �

Definition 4 (Partial refinement) Let A = (SA,�A,ρA) and C = (SC,�C,ρC) be two state
machines and α : SC

◦→ SA be a partial mapping from states of C to states of A. Then α

is a partial refinement mapping if (1) for every sC in �C , α(sC) is defined and in �A, and
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Fig. 2 State diagram for
fault-tolerant version of Simple
Heating System (SHS-FT),
showing only the reachable states
and non-stutter steps. By
assumption, a fault in the heater
cannot arise when the switch is
off

(2) ρA(α(sC),α(s ′
C)) for every pair of states sC, s ′

C in the domain α−1(SA) of α such that
ρC(sC, s ′

C). When a partial refinement mapping α exists from C to A, we say that C is a
partial refinement of A (with partial refinement mapping α). �

The state variables of the fault-tolerant state machine SHS-FT, whose reachable part is
shown in Fig. 2, are:

− Heater_Status, with possible values NoHeat, Heating and Inoperative;
− Switch, with possible values on and off; and
− Fault, with possible values false and true.

The full set SSHS−FT of states of SHS-FT has twelve elements. The set of reachable states
of SHS-FT is {NoffOK, HonOK, IonFault, IoffFault}, and the initial state is NoffOK.
Figure 2 shows the seven reachable transitions that are not stutter steps. The partial map-
ping

αSHS : SSHS−FT
◦→ SSHS

defined by αSHS(HonOK) = Hon and αSHS(NoffOK) = Noff, with αSHS otherwise un-
defined, is easily seen to be a partial refinement mapping.

4.2 Or-composition

In the theory of automata (that is, state machines), most notions of composition are natu-
rally described in terms of how two (or more) state machines can be combined into one—for
example, sequential composition in process algebras, and various forms of parallel compo-
sition with synchronization on actions or through message passing. The motivation for per-
forming an or-composition is to create a state machine that allows two (or more) kinds of
behavior. Any particular behavior of the resulting machine is either of one kind or another;
hence the name or-composition. Thus, although or-composition also can be described in
terms of state machines working together (in this case, through shared variables), it is most
naturally thought of in terms of “behaviors” as represented by sets of possible transitions
(on corresponding sets of states). Formally:
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Definition 5 (Or-composition) Let A = (SA,�A,ρA) and B = (SB,�B,ρB) be two state
machines, where any of SA ∩ SB , �A ∩ �B , and ρA ∩ ρB may be nonempty. Then the or-
composition of A and B is the state machine

or(A,B)

= (SA ∪ SB,�A ∪ �B,ρA ∪ ρB). �

Given a state machine A with an associated set of transitions which describe the “old
behavior”, suppose one wishes to produce a new state machine C with all the capabilities
of A plus new capabilities—such as exception handling or fault tolerance—captured by
additional “new” behavior defined in terms of “new” possible states and transitions. Then,
one can use or-composition to obtain C as or(A,B), where B is the state machine whose
set of initial states is empty, whose transitions are the new transitions, and whose states are
the new states plus all states of A that are either the source or target point of some new
transition.

4.3 Concepts for fault tolerance

Our approach for including fault tolerance in the software development method described
in Sect. 3 begins with a model ID of the normal (software) system behavior. In the next
phase, ID is used as a basis for constructing a model FT of the system that is a fault-tolerant
extension of ID in the following sense:

Definition 6 (Fault-tolerant extension) Given a state machine model ID of a system, a sec-
ond state machine model FT of the system is a fault-tolerant extension of ID if:

− the state set SFT of FT partitions naturally into two sets: (1) N , the set of normal states,
which includes �FT , and (2) F , the set of fault-handling states that represent the system
state after a fault has been detected, and

− there is a map π : N → SID and a two-state predicate O ⊆ N × N such that
s ∈ N ⇒ O(s, s), and s1, s2 ∈ SFT ∧ O(s1, s2) ∧ ρFT(s1, s2) ⇒ ρID(π(s1),π(s2)) and
π(�FT) ⊆ �ID.

The map π and predicate O are called, respectively, the normal state map and normal tran-
sition predicate for FT. FT is a faithful fault-tolerant extension of ID if every execution in
ID is the image under π of an execution in FT. FT is a fully faithful fault-tolerant extension
of ID if for every state s0 of ID and every state s̄0 in π−1(s0), every execution in ID from s0

is the image under π of an execution in FT starting from s̄0. �

SHS-FT is easily seen to be a fault-tolerant extension of SHS, with

N = {s ∈ SSHS−FT : Heater_Status(s) = Heating ∨ Heater_Status(s) = NoHeat};
F = {s ∈ SSHS−FT : Heater_Status(s) = Inoperative};
O = N × N ; and
∀s ∈ N , π(s) = ŝ ∈ SSHS,

where Heater_Status(ŝ) = Heater_Status(s) ∧ Switch(ŝ) = Switch(s).
(Equivalently, π is αSHS restricted to N .)

Noting that whenever s̄0 is a state of SHS-FT that maps under π to a state s0 of SHS,
every SHS transition from s0 is the image under π of a transition in SHS-FT from s̄0, it is
not hard to see that SHS-FT is a fully faithful extension of SHS.
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Fig. 3 Transitions in the
fault-tolerant system FT, and
relating FT to ID

Remark 1 When FT is a fault-tolerant extension of ID, the normal state map π is a partial
refinement mapping from the state machine

FTO

= (SFT ,�FT ,O ∩ ρFT)

to ID.

Clearly, there is a strong connection between the notions of fault-tolerant extension and
or-composition. In fact, there are many ways to represent FT as an or-composition; Corol-
lary 1 shows one straightforward representation based on the normal transition predicate O .

Corollary 1 If FT is a fault-tolerant extension of ID with normal states N and fault-
handling states F , then FT is the or-composition of the state machines:

FTO-N

= (N,�FT ,O ∩ ρFT) and FTŌ


= (SFT ,�FT ,¬O ∩ ρFT).

Remark 2 FTO-N, which is FTO with a restricted state set, is a refinement of ID with
refinement mapping π .

Remark 3 The state machines FTO and FTŌ may be viewed as an or-decomposition of FT
with respect to O .

Figure 3 illustrates the structure of a fault-tolerant extension FT of ID and its relationship
to ID. There are five classes of transitions in FT:

1. transitions from N to N that map to transitions in ID (Normal Behavior),
2. transitions from N to N that do not map to transitions in ID (not shown in Fig. 3),
3. transitions from N to F (Fault Detection),
4. transitions from F to F (Fault Handling), and
5. transitions from F to N (Fault Recovery).

Definition 7 Let the state machine FT, with normal states N , fault-handling states F , and
normal state map π , be a fault-tolerant extension of the state machine ID. Then FT is simple
if all its transitions from N to N map under π to transitions in ID, that is, if it has no class 2
transitions. �

Since every transition between normal states of SHS-FT maps under π to a transition of
SHS, SHS-FT is a simple fault-tolerant extension of FT.

It is not difficult to prove the following:



Form Methods Syst Des (2010) 37: 265–294 277

Theorem 1 For any fault-tolerant extension FT of ID, the following are equivalent:

1. FT is a simple fault-tolerant extension of ID,
2. the normal state map π is a partial refinement mapping from FT to ID, and
3. the normal transition predicate can be chosen to be

O(s1, s2)

= N(s1) ∧ N(s2).

Even when π is not a partial refinement from FT to ID, there is still guaranteed to be
a partial refinement from FT to ID whose domain can be defined in terms of the normal
transition predicate O in Definition 6, provided O satisfies a certain condition. In particular,
given O , let Ô be the one-state predicate for FT defined by:

Ô(s1)

= (∀s2 ∈ SFT : ρFT(s1, s2) ⇒ O(s1, s2)).

(It is easily seen, as indicated in Fig. 3, that Ô ⊆ N .) Then, for any state s ∈ SFT, Ô(s)

implies that all transitions in FT from s map to transitions in ID. Therefore, provided O

includes every transition from a start state of FT so that �FT ⊆ Ô , restricted to the set Ô ,
the map π is a partial refinement map from FT to ID.

If (s1, s2) is a transition in FT of class 5, we refer to s2 as a reentry state. Further, if
(s1, s2) is of class 2, we refer to s2 as an exceptional target state. By a simple inductive
argument, we have:

Lemma 1 If every reentry state and every exceptional target state in N maps under π to a
reachable state in ID, then every reachable state in N maps under π to a reachable state
in ID, and every reachable transition from a state in Ô ⊆ N maps under π to a reachable
transition in ID.

Before stating Theorems 2 and 3 about property inheritance, we need one further defini-
tion:

Definition 8 (Inductive property) Let A = (SA,�A,ρA) be a state machine and P a one-
state property for A. Then P is inductive (in A) if ∀s1, s2 ∈ SA, P (s1) ∧ ρA(s1, s2) ⇒
P (s2). �

Theorem 2 (One-state property inheritance) Let FT be a fault-tolerant extension of ID with
normal states N , normal state map π , and normal transition predicate O; P be a one-state

invariant of ID; and Φ(P )

= P ◦ π . Then wP


= (N ⇒ Φ(P )) is a state invariant of FT if
either

1. every reentry or exceptional target state of FT maps under π to a reachable state in ID,
or

2. every reentry or exceptional target state of FT maps under π to a state in ID that satisfies
P and property P is inductive in ID.

Theorem 3 (Two-state property inheritance) Let FT be a fault-tolerant extension of ID with
normal states N , normal state map π , and normal transition predicate O; P be a transi-

tion invariant of ID; and Φ(P )

= P ◦ (π × π). Then wP


= (O ⇒ Φ(P )) is a transition
invariant of FT if either:
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(1) Q is a one-state predicate for FT such that Q respects π

(2) π(�FT ) ⊆ �ID ⊆ π(Q)

(3) s1, s2 ∈ SID ∧ π(Q)(s1) ∧ ρID(s1, s2) ⇒ π(Q)(s2)

(4) s1, s2 ∈ SFT ∧ ρFT (s1, s2) ⇒ [(Q(s1) ∧ ¬ O(s1, s2)) ⇒ Q(s2)]
(5) s1, s2 ∈ N ∧ ρFT (s1, s2) ⇒ [O(s1, s2) ⇒ ρID(π(s1),π(s2))]
Q is a state invariant of FT

(1) P and Q are two-state predicates for FT such that (P⇒Q) and (P respects π)

(2) s1, s2 ∈ SID ∧ ρID(s1, s2) ⇒ ((π × π)(P ))(s1, s2)

(3) s1, s2 ∈ SFT ∧ ρFT (s1, s2) ⇒ [¬O(s1, s2) ⇒ Q(s1, s2)]
(4) s1, s2 ∈ N ∧ ρFT (s1, s2) ⇒ [O(s1, s2) ⇒ ρID(π(s1),π(s2))]
Q is a transition invariant of FT

Fig. 4 Compositional proof rules for state and transition invariants of FT

1. every reentry or exceptional target state of FT maps under π to a reachable state in ID,
or

2. ρID ⇒ P .

As shown in Sect. 5, the fault-tolerant ASW behavior is a fault-tolerant extension of the
normal ASW behavior with natural definitions for N and F (see Sect. 5.3.2.3), and π and O

(see Sect. 4.4), such that all transitions from N to N are of class 1. Further, we have proven
that all reentry states in the fault-tolerant version of the ASW are reachable, and there are
no exceptional target states. Hence, for the ASW, the first cases in Theorems 2 and 3 can be
used to deduce properties of FT from properties of ID.

In general, however, to supplement Theorems 2 and 3, a method is needed for establishing
properties of FT in the case when it is difficult or impossible to establish either of the
sufficient conditions of Theorems 2 and 3. For this purpose, we provide compositional proof
rules analogous to those in our earlier work [28]. We first define what it means for a predicate
to respect a mapping:

Definition 9 Let π be a mapping from set S1 to set S2. Then (1) a predicate Q on S1

respects π if for all s, ŝ in S1, Q(s) ∧ (π(s) = π(ŝ)) ⇒ Q(ŝ), and (2) a predicate Q on
S1 × S1 respects π if for all s, ŝ, s ′, ŝ ′ in S1, Q(s, s ′) ∧ (π(s) = π(ŝ)) ∧ (π(s ′) = π(ŝ ′))
⇒ Q(ŝ, ŝ ′). �

Figure 4 gives proof rules for establishing that a one-state (two-state) predicate Q on FT
is a state (transition) invariant of FT. Note that line (5) of the first proof rule and line (4) in
the second proof rule are part of the definition of a fault-tolerant extension.

4.4 Fault tolerance concepts in terms of state variables

When we restrict our attention to state machine models whose state spaces are defined solely
in terms of state variables (with associated types), i.e., when the possible states of a state ma-
chine are exactly the (type correct) assignments of values to the state variables, the concepts
in Sects. 4.2 and 4.3 can be interpreted explicitly.

First, suppose we wish to construct a fault-tolerant extension FT of a state machine ID. In
the restricted context of state machines whose states are defined in terms of state variables,
there are two natural ways to extend the original set of states of ID (the “normal” states).
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The first way is to add new state variables, thus obtaining in a natural way a set N and a
map π that projects N onto SID. The second way is to extend the range of values of existing
variables, a natural way to add a set F of new, “abnormal” states. One can represent FT as
an or-composition of state machines FTO-N and FTŌ with state spaces N and N ∪ F (as
with the fault-tolerant extension FT of ID in Corollary 1), once one identifies the transitions
of each of FTO-N and FTŌ (and also the initial states in N shared by both). It is natural
to define the transitions in FTO-N as those agreeing with some transition of ID on all old
state variables and affecting none of the new state variables; these naturally map under π to
transitions in ID. Defining the transitions of FTO-N to be of this form ensures that FT will
be a fully faithful extension of ID. The transitions in FTŌ must cover all transitions in FT
of classes 2–5.

Now, consider the context of input-driven state machine models in which the state vari-
ables include a set of input variables and every state transition is triggered by an “input
event” (a change in the value of an input variable). This notion is not uncommon: many
specification languages, including StateCharts [21], RSML [22], Lustre [20], and SCR [23],
support the specification of input-driven models. For input-driven state machine models, it is
possible to say more about the new transitions. For example, while the transitions in FTO-N
(which go from N to N ) may be triggered by input events of ID, any new transition from a
state in N to a state in F requires a new triggering input event, requiring in turn the extension
of the range of some input variable of ID or the introduction of a new input variable.

Hence, when states are defined by the values of state variables and transitions are trig-
gered by input events, constructing a fault-tolerant system model FT from a normal system
model ID using or-composition is naturally done by adding new variables, new values to
types of existing variables, and new transitions to describe the triggering and subsequent
handling of faults. We refer to the original variables as normal variables and the added vari-
ables as fault-tolerance variables; for any normal variable, we refer to its possible values
in ID as normal values, and any new possible values added in FT as extended values. In
this terminology, the states in N ⊆ SFT are those for which all normal variables have normal
values. The map π : N → SID is then chosen to be the projection map with respect to the
normal variables.

More can also be said about specific predicates and predicates in general when states are
determined by the values assigned to state variables. First, although Definition 2 represents
predicates abstractly as sets, most predicates of interest can be represented syntactically
as relations among state variables and constants. Further, on a syntactic level, the maps Φ

defined in Theorems 2 and 3 are both the identity map. Finally, since, by Theorem 1, the
predicate N can be expressed simply as an assertion that no normal variable has an ex-
tended value, when states are defined by the values assigned to state variables, computing
O automatically is possible for any FT defined as a simple fault-tolerant extension of ID.4

5 Example: The Altitude Switch (ASW)

This section shows how the method and concepts presented in Sects. 3 and 4 can be applied
to a practical system, an Altitude Switch (ASW) controller in an avionics system [37]. Sec-
tion 5.1 briefly summarizes the ASW’s normal and its fault-tolerant behavior. The goal of
the ASW example is to demonstrate how one can use our method to specify a state machine

4In the context of SCR, we have also shown that O can be automatically computed for some examples in
which FT is not a simple fault-tolerant extension of ID.
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model ID of normal behavior and a separate state machine model FT that extends ID with
fault-tolerant behavior such that FT is a simple fault-tolerant extension of ID.

In this section, both models of the ASW’s required behavior, ID and FT, are specified in
the tabular SCR notation. To make the SCR specifications understandable, Sect. 5.2 briefly
reviews the SCR model, its constructs, and its tabular notation. Section 5.3 illustrates how
we applied the method of Sect. 3, step by step, to the ASW, and shows how the theoretical
results in Sect. 4, in particular, the property inheritance and compositional proof rules, can
be used to prove properties of FT. Although many ways of specifying state machine models
of systems can be used in conjunction with the method of Sect. 3, Sect. 5.4 describes how
certain features of SCR have important advantages when applying our method.

5.1 Behavior of the ASW

The primary function of the ASW, i.e., its normal behavior, is to power on a generic Device
of Interest (DOI) when an aircraft descends below a threshold altitude. In the ASW, the pilot
can set an inhibitor button to prevent the powering on of the DOI or press a reset button
to reinitialize the ASW. By design, the ASW system must tolerate a number of faults. In
response to each fault, the ASW enters a fault-handling mode and turns on a Fault Indicator
Lamp. In the fault-handling mode, the ASW’s response to certain inputs is different from its
response in one of its normal operational modes. After a specified non-zero time in the fault-
handling mode, the system recovers, i.e., makes a transition back to a normal operational
mode. Thus, the ASW’s fault-handling behavior is an example of partial masking.

5.2 Overview of SCR

Any SCR state machine model A = (SA, θA,ρA) is a special case of the Four Variable Model
(FVM). In SCR as in the FVM, monitored and controlled variables represent the externally
visible behavior of the system. SCR also has additional “hidden” variables—namely, mode
classes, terms, input variables, and output variables.5 Mode classes and terms allow con-
cise representations of the relations NAT and REQ. Two other important SCR constructs
are conditions and events; a condition is a predicate on a single state, while an event is
a two-state predicate on an old state and new state indicating a change in some variable
value. If condition c’s values in the old and new states are denoted c and c′, then the se-
mantics of the basic event @T(c) is defined by ¬c ∧ c′, and the semantics of @F(c) by
c ∧ ¬c′. A conditioned event, denoted @T(c) WHEN d, adds a qualifying condition d to
an event and has the semantics ¬c ∧ c′ ∧ d . A monitored event represents a change in
value of a monitored variable. In SCR, each transition in ρA is uniquely determined by a
state s in SA and a monitored event permitted in s, and an execution, which starts in some
initial state in θA, is driven by a nondeterministic sequence of monitored events. Each new
state in the execution is defined by the new value of the monitored variable that changed,
no change in the values of other monitored variables,6 and updates to the remaining state
variables deterministically determined by the SCR tables. This process is synchronous: the
system completely processes one monitored event before processing the next monitored
event.

5In the ASW specification presented in this article, the input and output variables have been omitted.
6SCR’s One Input Assumption allows a change in only a single monitored variable.
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Table 1 Condition table
defining cWakeUpDOI

In specifying the required behavior of fault-tolerant systems, mode classes are especially
useful because they partition the system state space in an intuitive way. Each mode corre-
sponds to a “mode of operation” of the system; the system behaves differently in one mode
than in another. Thus, for example, in flight software, the software behaves differently when
an engine has failed than when all its engines are operating normally. As described later
in this section, a mode class has a special role in an SCR specification of a fault-tolerant
system—it is a concise means of partitioning the system into N , the set of normal states,
and F , the set of fault-handling states. For more on the SCR modeling language and the
tools available for representing, validating, and verifying an SCR model, see [23, 26].

5.3 Applying the method to the ASW

5.3.1 Specify and verify the normal system behavior

This section presents an SCR specification of the normal behavior ID of the ASW expressed
in terms of the relations NAT and REQ. It also presents a set of critical system properties
expected to hold in ID and describes how they are verified.

5.3.1.1 Specify the normal behavior in terms of NAT and REQ In SCR, the normal ASW
behavior ID is specified in terms of (1) controlled and monitored variables, (2) environ-
mental assumptions, and (3) the required relation between the monitored and controlled
variables. The relation NAT is defined by (1) and (2) and the relation REQ by (3). Speci-
fying the system modes, which partition the possible system states (each mode represents
a subset of system states), and how the modes change in response to monitored events is
useful in specifying REQ.

The ASW has a single controlled variable cWakeUpDOI, a boolean, initially false,
which signals the DOI to power on, and five monitored variables: (1) mAltBelow, true
if the aircraft’s altitude is below a threshold; (2) mDOIStatus, which indicates whether
the DOI is on; (3) mInitializing, true if the DOI is initializing; (4) mInhibit, which
indicates whether powering on the DOI is inhibited; and (5) mReset, true when the pilot has
pressed the reset button. The ASW also has a single mode class mcStatus containing three
system modes: (1) init (system is initializing), (2) awaitDOIon (system has requested
power to the DOI and is awaiting a signal that the DOI is operational), and (3) standby
(all other cases).

In the SCR specification of ID, the normal system behavior, the relation REQ is defined
by two tables, Tables 1 and 2. Table 1, a condition table, defines the value of ID’s single con-
trolled variable cWakeUpDOI as a function of the mode class mcStatus. The table states
that if mcStatus= awaitDOIon, then cWakeUpDOI is True; otherwise, it is False.

Table 2, an event table, defines ID’s mode transitions. Figure 5, a different but equivalent
representation of ID’s mode transitions, uses a finite state diagram to describe the transi-
tions. In row 2 of Table 2 and in Fig. 5, the event “@T(mReset)” indicates that the pilot
has switched the Reset button to on. Both Table 2 and Fig. 5 show that when this event
occurs, the ASW makes a transition from mode standby to mode init. In row 3 of
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Table 2 SCR table showing the mode transitions in the ASW normal system behavior

Fig. 5 Finite state diagram of
mode transitions in the ASW
normal system behavior

Table 2 and in Fig. 5, the conditioned event “@T(mAltBelow) WHEN (NOT mInhibit
AND mDOIStatus= off)” means that the aircraft’s altitude dropped below some thresh-
old when powering on the DOI was not inhibited and the DOI was off. As shown in both
Table 2 and Fig. 5, when this event occurs, the ASW makes a transition from standby to
awaitDOIon.

5.3.1.2 Formulate and verify system properties Table 3 defines three required properties,
P1, P2, and P3, of the ASW’s normal behavior.7 Property P1, a transition invariant, states that
pressing the reset button always causes the system to return to the initial mode. Property P2,
another transition invariant, specifies the event and conditions that must hold to wake up the
DOI. Property P3, a state invariant, states that when the system is in mode awaitDOIon,
the DOI is powered off. Applying the property checker Salsa [11] easily verifies that the
specification of the ASW’s normal behavior satisfies all three properties.

5.3.2 Specify and verify the fault-tolerant behavior

This section describes how the normal behavior ID of the ASW can be extended to handle
faults, thus producing the fault-tolerant extension FT. First, the I/O devices are selected.
Next, the faults that the ASW system will be designed to handle are identified, and the
fault-tolerant and failure notification behavior of the ASW is designed. Finally, new ASW

7In this article, the primed variable mcStatus′ in Table 3 and other primed expressions refer to the expres-
sion’s value in the new state; any unprimed expression refers to the expression’s value in the old state.



Form Methods Syst Des (2010) 37: 265–294 283

Table 3 System properties of the ASW’s normal behavior ID

properties are formulated to capture the required fault-tolerant behavior, and these new prop-
erties as well as the ASW properties proven for the normal behavior, possibly reformulated,
are proven to hold in the fault-tolerant specification.

5.3.2.1 Select I/O devices As described above, to estimate whether the aircraft is below
the threshold altitude, three altimeters are selected, one analog and the other two digital. For
a description of the other I/O devices selected for the ASW, see [10].

5.3.2.2 Identify likely faults In addition to its transparent handling of up to two altimeter
failures, the ASW is designed to tolerate three additional faults: (1) the failure of all three
altimeters, (2) remaining in the initialization mode too long, and (3) failure to power on the
DOI on request within some time limit. These three additional faults are all handled using
partial masking—the system enters a fault handling state but eventually recovers to normal
behavior. To notify the pilot that a fault has occurred, the ASW turns on a Fault Indicator
Lamp.

5.3.2.3 Design and specify the fault-tolerant behavior To describe the ASW’s fault-
tolerant behavior, the state machine ID, whose SCR specification is presented in
Sect. 5.3.1.1, is extended with fault-handling behavior to produce a new state machine FT,
the fault-tolerant extension of ID. Fault-handling in the ASW consists of two parts. First,
when any of the three faults handled with partial masking (see Sect. 5.3.2.2) is detected, the
ASW makes a transition to a new fault mode. Second, when the pilot hits the reset switch,
the system recovers (i.e., returns to its normal behavior). Adding fault-handling behavior to
the specification of normal behavior requires the three extensions described in Sect. 3.2.3:

1. Add new variables. Two new monitored variables are added to represent the detection
of faults: mAltimeterFail, a boolean signaling the failure of all three altimeters,8

and mTime, the time measured by the system clock. Also added are a new controlled
variable, cFaultIndicator, which turns on a Fault Indicator Lamp to warn the pilot
of a fault, and several “history variables,” which record the time since an event of interest
occurred.

2. Add new values to ranges of existing variables. To indicate that the ASW has detected a
fault, a new mode fault is added to the mode class.

3. Add new transitions to the existing set of transitions. The definition of the existing con-
trolled variable cWakeUpDOI is extended to indicate that when the system makes a
transition to the fault mode, the value of cWakeUpDOI is False. In addition, several
new transitions are added to the original set of mode transitions: new transitions from

8Because this article focuses on the partial masking fault-tolerance aspects of the ASW, it omits the details
of how the value of mAltimeterFail is computed from the values of input variables which represent the
altimeters. For these details, see [10].



284 Form Methods Syst Des (2010) 37: 265–294

Table 4 Assumptions in the specification of the fault-tolerant extension FT

Fig. 6 Finite state diagram
showing new mode transitions in
the ASW fault-tolerant behavior

Table 5 New table defining
cFaultIndicator

each normal operating mode to the new fault mode, and a single new transition from
the fault mode to a normal operating mode (i.e., recovery).

Adding new variables To further define the values of the new variables, the following
extensions are needed. First, mTime is defined as an integer with initial value zero, and an
assumption A1 is added (see Table 4) stating that time never decreases, and if time increases,
it increases by one time unit. Second, to indicate when the Fault Indicator Lamp is turned
on, a new table, Table 5, is defined stating that the lamp, represented by controlled variable
cFaultIndicator, is on when the system is in fault mode and off otherwise. To in-
dicate recovery in bounded time, an assumption A2 (see Table 4) states that the lamp is on
for at most FaultDur time units. This means that when the pilot sees that the Fault Indi-
cator Lamp is on, he or she always responds in FaultDur time units by pressing the reset
switch. This returns the ASW to its initialization mode, thus turning the lamp off (as shown
in Table 5). Assumption A2 is defined in terms of SCR’s DUR operator, which used to define
timing constraints. Informally, if c is a state predicate and k a positive integer, the predicate
DUR(c) = k holds in state i of the specification if in state i predicate c is true and has been
true for exactly k time units. Thus, the expression “DUR(cFaultIndicator= on) ≤
FaultDur” in Table 4 states that A2 is true when the lamp has been on for at most
FaultDur time units, and false otherwise. Associated with this expression is a (hidden)
history variable, which records the time since the lamp was turned on.9

Adding new values to ranges In adding the new mode fault to the set of modes,
we observe that the normal states of the fault-tolerant ASW may be described by N :
mcStatus �= fault and the fault-handling states by F : mcStatus= fault. In Fig. 6,

9History variables derived from expressions containing the DUR operator are normally hidden from the SCR
toolset user.
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Table 6 Revised table for
cWakeUpDOI

Table 7 New SCR table showing the mode transitions in the ASW fault-tolerant behavior

the set SFT of system states is naturally partitioned into N and F , where N contains the
states in the original system behavior and F contains the fault-handling states.

Adding new transitions To complete the SCR specification of fault-handling in the
ASW, new mode transitions are added to the existing set of mode transitions. In the SCR
specification of FT, new transitions are added by extending two tables in the original spec-
ification of ASW, Tables 1 and 2. The first new table, Table 6, states that when the ASW
enters the fault mode, the value of cWakeUpDOI is False. The second new table, Ta-
ble 7, describes the extended set of mode transitions.

Figure 6 shows the four new mode transitions in FT: Three transitions, each triggered
by a fault, from a normal operating mode to the new fault mode; and a fourth transition,
triggered by a recovery action, from fault to a normal operating mode, init. To capture
the four new transitions, a new mode transition table, Table 7, is created which extends
Table 2. Table 7 contains rows 1, 2, 4, and 5 of Table 2 and three new rows 6, 7, and 8; and
replaces row 3 of Table 2 with rows 3a and 3b. The third column of rows 3b, 6, and 7, each
marked by a simple arrow, shows the three events which trigger ASW entry into the fault
mode. Row 3b states that the ASW goes from standby to fault when the altitude falls
below the threshold and other conditions are true (e.g., all altimeters have failed). The events
in rows 6 and 7 of Table 7 are defined using SCR’s DUR operator. Row 6 states that when the
ASW has been in the init mode for more than InitDur time units, it enters the fault
mode. Similarly, row 7 states that if the ASW is in awaitDOIon and either the time in
this mode, or the time since all three altimeters failed, exceeds FaultDur time units, the
ASW enters the fault mode. Row 8 of Table 7, marked by a squiggly arrow, describes
recovery: The ASW makes a transition from fault to init when the pilot pushes the
reset button.
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Fig. 7 Types of transitions in the fault-tolerant ASW system

Two ways to add new transitions The fault-tolerant extension FT of the ASW adds new
transitions to the original set of transitions in the two ways described in Sect. 3.2.3. First, FT
adds a set of brand new transitions. In Fig. 7, the transitions from awaitDOI to fault,
from init to fault, and from fault to init are all brand new. FT also adds transitions
that arise from a “split” transition. A split transforms the original transition from standby
to awaitDOI (defined in row 3 of Table 2) into two new transitions, both dependent on the
new monitored variable mAltimeterFail. As shown in Fig. 7 (and row 3a of Table 7,
marked by a ‘†’), if the altitude drops below the threshold when the DOI is not inhibited
and turned off, and all three altimeters have not failed, then the fault-tolerant behavior FT
is the same as the normal behavior ID—the ASW makes the transition from standby to
awaitDOI. As shown in Fig. 7 (and row 3b of Table 7), if instead the same event occurs
when all three altimeters have failed, the fault-tolerant extension FT makes a transition from
standby to fault.

5.3.2.4 Formulate and verify properties of the fault-tolerant specification Table 8 defines
several desired properties of the fault-tolerant extension of the ASW. Properties P1, P2, and
P3, which have been shown to hold in the normal ASW behavior ID, are also candidate
properties of the ASW’s fault-tolerant extension FT. In addition, two new properties H1,
and H2,10 are desired properties of FT. Property H1 states that if the ASW is currently in
fault mode, then in the next state it either stays in fault mode or transitions to init
mode. Satisfaction of this property guarantees that once the ASW enters fault mode, it
stays there until recovery (i.e., entry into init mode). Property H2 states that if the ASW
is in standby mode and all altimeters have failed, then it is not possible for the ASW to
enter awaitDOIon mode in the next state. Satisfaction of this property ensures that when
the altimeters have all failed, the ASW does not power on the DOI. Of these properties,

10Properties H1 and H2 were formulated by Ebnenasir [16].
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Table 8 Properties of the ASW’s fault-tolerant extension FT

only P3 is a state invariant. The other properties, P1, P2, H1, and H2, are all transition
invariants.

To evaluate P1 and P2, both transition invariants, the compositional proof rule for tran-
sition invariants—the second rule in Fig. 4 of Sect. 4—is applied. Applying this rule to
P1 with P = Q = P1 shows that P1 also holds in FT. Applying the same proof rule, with
P = P2, shows that a weakened version of P2, called P̂2 (defined in Table 8), also holds
in FT. To evaluate P3, a state invariant, the compositional proof rule for state invariants,
the first rule in Fig. 4, is applied. Applying the proof rule shows that P3 also holds in FT.
Applying the property inheritance rules defined by Theorems 2 and 3 in Sect. 4 can be used
to prove that FT satisfies other weakened properties of the original normal behavior. As an
example, consider P2. Because P2 is a transition invariant, the property inheritance rule for
transition invariants, defined in Theorem 3, is applied. This shows that FT inherits, from
property P2 of ID, the weakened property wP2, which simplifies to N ′ ⇒ P2. That is, if the
new state is a normal state, then P2 holds.

The compositional proof rules presented in Fig. 4 can also be used to prove the new prop-
erties, H1 and H2. Property H1, a transition invariant, can be proven using the compositional
proof rule for transition invariants, with P = Q = H1. Although applying our proof rules to
prove property H1 and the other properties described above is straightforward, the proof
rules in Fig. 4 are insufficient to prove H2. To prove H2, a more elaborate “case split” rule
for proving invariants is applied: in one case we use the proof rule for transition invariants,
and in the other case we use another proof method (specifically, simple determination of a
transition invariant directly from the definition of the mode transitions).

To further evaluate the ASW specifications, we checked additional properties, includ-
ing the property DUR(mcStatus= standby ∧ mAltimeterFail) ≤ FaultDur,
whose invariance guarantees that the ASW never remains in the mode standby too long
when all altimeters have failed. Failure to prove this property led to the discovery (via sim-
ulation using SCR’s simulator [23]) that the ASW could reach a state where it remained in
standby forever—not a desired behavior. Although the SCR specification of FT in this ar-
ticle does not fix this problem, the example shows how checking properties with verification
and simulation is a useful technique for discovering errors in specifications.

5.4 Advantages of using SCR

Because SCR specifications describe the system states in terms of the values of state vari-
ables and because the system transitions are input-driven, the observations in Sect. 4.4 apply
when systems are modeled using SCR. In addition, as Sect. 5.3.2 illustrates, several aspects
of an SCR specification can be used to advantage in defining FT as a fault-tolerant extension
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of a normal system specification ID in the sense of Definition 6. These aspects include the
use of mode classes, the use of tables to define the values of variables, and the description
of transitions in terms of events.

As noted in Sect. 4.4, FT’s specification is obtained from that of ID by adding new
input (in SCR, monitored) variables and possibly other new variables, new values of exist-
ing variables, and new fault handling transitions. SCR’s notion of a mode class provides a
natural way to identify the added “fault-handling states” in FT, namely, through new “fault-
handling” modes added to the range of the mode class variable.

The SCR tabular organization makes the definition of new transitions straightforward. A
table that defines the value of a variable is typically organized around a mode class, whose
modes label the rows in the table describing the events (or conditions) which cause the value
of that variable to change. To add new transitions for an added mode, one simply adds new
rows to existing variable tables, labeling each new row with a new mode (as in Table 5). For
new transitions in an existing mode, one can either split an event or condition in the original
table on a condition described in terms of new variables or new variable values (as happens,
for example, in rows 3a and 3b of Fig. 7), or add a new event or condition described in terms
of new variables or values (e.g., rows 6, 7, and 8 of Fig. 7) .

For any fault-tolerant extension FT of ID obtained by the above techniques, establishing
that FT is a simple fault-tolerant extension is straightforward. Suppose each row split in a
table defining a normal variable produces new rows defining updated values of the variable
that are either (1) the same as in the original row for ID or (2) among the extended values
for that variable. (For example, row 3 of Table 2 splits in this way into rows 3a and 3b of
Table 7.) Then, every transition from N in FT either maps under π to a normal transition in
ID or is a transition from N to F (class 3), and hence FT is simple. Conversely, if the above
condition on row splits is not satisfied, then FT is not simple.

6 Discussion

6.1 Verifying properties

The use of property inheritance and compositional proof rules to verify properties of a fault-
tolerant system has a number of important benefits.

− The structured approach to property verification which such rules provide can yield use-
ful insights into the relationship of the extended system to the original system.

− Use of the rules can reduce the computational complexity of verifying properties of the
extended system by eliminating the need to analyze the extended system monolithically.
For example, applying the compositional proof rule for transition invariants, property Q

need only be proven when ¬O is true if Q is already a proven invariant of ID. This
approach should be particularly effective when the new fault-handling component is rel-
atively small compared to the original normal system component.

− The proof rules suggest a procedure, with strong potential for automated support, for
proving properties of the extended system from properties of the original system.

− The proof obligations identified in the rules can be established individually using any ap-
propriate technique, e.g., model-checking, theorem proving, or automatic invariant gen-
eration (see, e.g., [27]).

When a property of the normal system does not hold in the fault-tolerant system, weak-
ened versions of the property may be proposed. The inheritance theorems, Theorems 2 and 3,
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provide standard weakenings of state and transition invariants. Another way to weaken a
property is to consider the set of faults detected by FT, determine which faults are relevant
to the property, and weaken the property by adding a restriction that the relevant faults do
not occur. For example, in the ASW, property P2 was easily weakened into property P̂2 by
adding the restriction that the relevant fault (mAltimeterFail) has not yet occurred.

It is also possible that some desired properties of the fault-tolerant system capture be-
havior of only the fault handling portion of the system. For example, the property H1 of
the ASW describes the recovery phase of the system. In such cases, the proof effort only
requires looking at the fault handling portion of the system. This is reflected in the compo-
sitional proof rules when the proof obligations for the normal behavior are vacuously true.
Thus, in proving H1 using the transition invariant proof rule, part (2) of the rule is vacuously
true because (π × π)(H1) = true.

The SCR invariant generator [27], a tool in the SCR toolset, allows a user to automati-
cally derive a set of state invariants from an SCR specification. One issue to be explored is
the relationship between (1) the set of properties one can prove using our property inheri-
tance and compositional proof rules and (2) the set of properties provable using automati-
cally generated invariants. Although automatically generated invariants and other auxiliary
invariants were not used to prove the properties described above, such auxiliaries will be
needed to prove properties of real-world systems. Thus, new compositional proof rules need
to be investigated that admit the use of auxiliaries.

A problem our method does not currently address is what to do when proofs fail, either
for properties of the normal or the fault-tolerant system behavior. Many model-checkers can
demonstrate the invalidity of a property with a counterexample, but for theorem provers
a failed proof may simply indicate that proving the property requires additional auxiliary
invariants. Hence, dealing with failed proofs requires further investigation.

6.2 Composition

The concept of or-composition of state machines in Sect. 4.2 is designed to facilitate adding
new possible behaviors to an existing system model. When the model is specified in terms of
state variables, a fault-tolerant extension can be defined by adding a natural set of extensions
to the specification. These extensions can be used in more than one way to define a new state
machine that can be or-composed with the original state machine, augmented with new state
variables, to obtain a model of the extended system. The state set of any such new state
machine must include, at a minimum, (1) all new states in which either some new state
variable has a non-initial value or an existing state variable has a new value, and (2) any
state, old or new, which is an endpoint of some added transition. To avoid problems with
specifying this state set, we can simply choose it to be the full extended state set implied by
the addition of new variables and new values for existing variables. The transition relation
of the new state machine is the set of added transitions. The new machine need not have any
initial states, but if one uses the full extended state set as its set of states one can choose as its
initial state set the original initial state set extended with initial values for the new variables.

6.3 Incremental, model-based development

There are many advantages to developing a fault-tolerant system using an incremental ap-
proach. First, a specification of the normal behavior known to be correct can be reused if
the design of fault-tolerance changes. Second, if the fault-tolerant system can be expressed
as an extension of a system with normal behavior by adding a set of fault-handling compo-
nents, the specification is easier to understand and easier to construct than a fault-tolerant
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system specified as a single component. Third, by applying formal specification during two
separate phases, errors may be uncovered—e.g., by applying formal verification—that might
otherwise be overlooked. For example, our application of two-phase specification and verifi-
cation to a real-world avionics device [10] uncovered modeling errors previously unnoticed
(see Sect. 5.3.2.4). It is also possible that errors may be detected earlier than they would
have in a single phase development—some errors may be discovered during the specifica-
tion and analysis of the normal system behavior, before fault handling is modeled. Finally,
specifications of the fault-handling components may be reused in other systems.

The model-based approach to incrementally developing and verifying fault-tolerant sys-
tems and the formal foundation presented in Sects. 3 and 4 can be generalized to support
the development and verification of other classes of critical software systems. One obvious
extension of our method is to the design and verification of exception handling. Once the
normal system behavior has been specified, exceptions should be identified and a design to
handle these exceptions formulated. Exception handling may be viewed as a generalization
of fault-tolerance: Some exceptions will be tolerated; others will result in a notification, e.g.,
to an operator, that an exception has occurred which needs attention; and others, which may
be extremely serious, will cause the system to halt in some safe state. A second planned
extension of our method is to the design and verification of secure systems. While some se-
curity properties, such as data separation [25], can be modeled at the system level and thus
can be represented as part of the externally-visible normal system behavior, other security-
relevant properties, e.g., the correct management by the software of context switching, are
not externally visible and hence must be modeled at a lower level of abstraction. How to
develop software systems which satisfy both abstract and more concrete security properties
using an incremental, model-based approach, refinement, and compositional proof rules is
an open research question.

6.4 Automating verification and compositional extension

In reasoning about fault-tolerant extensions, automated support is clearly desirable. The
conceptual framework presented in Sect. 4 has allowed us to prove, using PVS [40], most
of the theoretical results on partial refinement and fault-tolerant extension (e.g., proofs of
the theorems and soundness of the compositional proof rules). Moreover, PVS was used
to develop the property inheritance and compositional proofs of the properties, listed in
Table 8, of the FT model of the ASW and to establish that the FT model of the ASW is a
simple fault-tolerant extension of ID. Much of this effort should be useful in our future plan
to develop tools supporting the specification and verification of fault-tolerant systems using
our method. Below, we describe several obvious targets for automation.

That a fault-tolerant extension is simple and fully faithful can often be demonstrated au-
tomatically. For example, for full faithfulness, it is sufficient to show that for every transition
(s1, s2) in ρID, and for every s̄1 in SFT for which π(s̄1) = s1, there is a transition (s̄1, s̄2) in
ρFT such that π(s̄2) = s2. This is usually straightforward in an input-driven system, where
one can compute the needed s̄2 as the result state from s̄1 in FT upon the same input event
that triggered the original transition in ID, and then check that π(s̄2) = s2. With automatic
checking of simplicity and full faithfulness, it is easy to infer that various results from Sect. 4
apply. For example, if FT is a simple extension of ID, then Theorem 1 implies that O(s1, s2)

can be computed as N(s1) ∧ N(s2), simplifying automated support for the compositional
proof rules in Fig. 4.

Automated support is also possible when the property inheritance rules are applied. In
particular, the proof using the second half of Theorem 2 that a weakened version of a one-
state invariant P of ID can be inherited by FT requires two automatable checks: that P is
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inductive in ID and that the images under π of all reentry and exceptional target states in
FT satisfy P . Applying the second half of Theorem 3 requires just one automatable check:
that ρID ⇒ P . (Automated support for the use of the first parts of Theorems 2 and 3 is not
as straightforward because establishing the reachability of certain states is required.)

The compositional proof rules can be used in a theorem prover to structure a proof of the
conclusion of the rule by setting up subgoals for the prover that correspond to the hypothe-
ses of the proof rule. Because each proof rule hypothesis is of a specific form, developing
specialized strategies in the theorem prover to provide additional automation for each sub-
goal proof should be possible. For example, the proof that a property P respects π (the first
hypothesis in both proof rules) is simply a check that P involves only variables and values
from the original system ID. In some cases, such as the proof of H1 in the ASW example,
respect of π is vacuously true.

Providing automated support for the construction of an FT-extension from an ideal sys-
tem is easier to perform at the specification level because templates can be designed that
take advantage of the structured format of the specification. For example, to provide auto-
mated support for constructing an extension in an SCR or other tabular specification, the
user could be provided with templates for defining new state variables, for augmenting the
set of values of existing variables, and for adding rows to and splitting rows in the tables
specifying variables (which adds transitions to the underlying model).

7 Related work

A number of researchers have developed formal approaches to the construction of
fault-tolerant systems. Our model fits the formal notion of masking fault-tolerance
of [5, 33], but instead of expressing recovery as a liveness property, we express recovery
in terms of bounded liveness, which is more practical. Other compositional approaches
to fault-tolerance describe fault-tolerant detectors and correctors that are composed with
the original system [5], and the automatic generation of fault-tolerant systems from fault-
intolerant ones [4, 33]. Arora, Attie, and Emerson [4] describe the generation of the entire
system (both normal and fault-tolerant behavior) from temporal logic (CTL) specifications.

Concepts closely related to partial refinement have also been developed. Cau and de
Roever [13] introduce the notion of relative refinement, meaning refinement restricted to
states when faults do not occur. This notion is somewhat weaker than our formulation of
fault-tolerant extension, which allows faults to occur as long as their effects have not caused
a discrepancy in behavior in the ideal system. For example, in the ASW, failure of all al-
timeters has no effect until initialization is complete. Arora and Kulkarni [5] require the
non-interference of the added detectors and correctors with the original system behavior.
That is, the original system behavior must be preserved in the fault-tolerant system. This is
similar to our construction of faithful fault-tolerant extensions.

Our notion of fault-tolerant extension is most closely related to the notion of retrench-
ment formulated by Banach et al. [8] and the application of retrenchment to fault-tolerant
systems [7]. General retrenchment is a means of formally expressing normal and excep-
tional behavior as a formula of the form A ⇒ B ∨ C, where A ⇒ B represents nor-
mal behavior when refinement holds, but when the refinement does not hold, the formula
must be extended with A ⇒ C to include the exceptional behavior. Our concept of the
relation of fault-tolerant behavior to normal behavior can also be described in this form:
ρFT(s1, s2) ⇒ [O(s1, s2) ∧ ρID(π(s1),π(s2))] ∨ [¬O(s1, s2) ∧ γ (s1, s2)], where γ repre-
sents the added transitions of classes 2–5. The novelty of our approach is recognition
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that this disjunction may be expressed equivalently as the conjunction of two implications,
O(s1, s2) ∧ ρFT(s1, s2) ⇒ ρID(π(s1),π(s2)) and ¬O(s1, s2) ∧ ρFT(s1, s2) ⇒ γ (s1, s2), thus
providing the basis for our theory of fault-tolerant extension and the development of com-
positional proof rules.

Many researchers only consider classical refinement of fault-tolerant systems [35, 36]
or “observational equivalence” [9] (i.e., refinement in both directions). Classical refinement
is well-suited to implementation of transparent masking fault-tolerance, often using redun-
dancy. In contrast, partial masking fault-tolerance tolerates weaker invariant properties when
the system is faulty, and thus requires a different approach based on the concepts of partial
refinement and full faithfulness.

In many formalisms, such as process algebras [9] and the method of Kulkarni and
Arora [33], faults are modeled by adding a non-deterministic choice between a normal tran-
sition and a fault transition. This should not be confused with our notion of or-composition,
which is our means of introducing new fault-handling behavior. Because our models are
input-driven, faults (not counting timeouts) are modeled by special monitored events.

Our extension of normal behavior with added fault-tolerant behavior may be viewed
as a transformation of the normal system into a fault-tolerant one. Gärtner [19] classifies
various formal transformational approaches, including [35, 36]. This approach is also found
in Katz’s formal treatment of aspect-oriented programming [30]. In addition, Katz describes
how various aspects affect temporal logic properties of a system and defines a “weakly
invasive” aspect as one implemented as code which always returns to some state of the
underlying system. The relationship of a weakly invasive aspect to the underlying system
is analogous to the relationship of F to N in Fig. 3 when there are no exceptional target
states and every entry state maps under π to a reachable state in ID. In this case, analogs of
Theorems 2 and 3 would hold for the augmented system.

8 Conclusions and future work

This article has presented a new method for specifying and verifying the required behavior
of a fault-tolerant system. This method provides a structured alternative to the monolithic
ad hoc construction and verification of fault-tolerant systems. Our theory of or-composition,
partial refinement, fault-tolerant extension, and full faithfulness provides a formal founda-
tion for the method and defines a set of property inheritance and compositional proof rules
which facilitate proving properties of fault-tolerant extensions. Formal proofs of state and
transition invariants capturing desired system behavior, together with properties inherited
through partial refinement or verified using our compositional proof rules, should lead to
high confidence that the specification of a given fault-tolerant system is correct. Our new
approach is supported by the SCR toolset [23], where increased confidence of correctness
can be obtained via simulation, model-checking, and proofs of invariants. The SCR specifi-
cation of the ASW presented in Sect. 5 demonstrates how the SCR language and tools can
be used to support our method. However, the method, its supporting theory, and the proof
rules are generally applicable to any software development framework in which components
are described using state machine models. SCR is only one such framework.

One major benefit of the compositional approach presented here is that it separates the
task of specifying the normal system behavior from the task of specifying the fault-tolerant
behavior, thus simplifying the specification of such systems and making their specifications
both easier to understand and easier to change. The theory in Sect. 4 provides the basis for
formulating additional compositional proof rules, a topic for future research. We also plan
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to explore the utility of our approach for fault-tolerance techniques other than masking. For
example, omitting recovery is a method for modeling fail-safe fault-tolerance.

In future research, we plan to extend our method for verification. As noted in Sect. 6.1,
new techniques are needed to handle failed proofs and to provide compositional proof rules
which allow the use of auxiliary invariants. Further, like Banach’s theory of retrenchment,
our theory of partial refinement and fault-tolerant extension applies not only to fault-tolerant
systems, but more generally to all systems with both normal and exceptional behavior.
Hence, as discussed in Sect. 6.3, we plan to explore the application and extension of our
model-based method and its formal foundation to other classes of critical systems, includ-
ing systems with exception handling and secure systems. How to develop critical software
systems in general using an incremental, model-based approach, refinement, and composi-
tional proof rules is an open research question.

We also plan to explore the use of tools which support our methods. For example, tools
which help a user extend a model of normal system behavior to capture fault-handling be-
havior would be extremely useful. Moreover, tools which facilitate the application of the
property inheritance and compositional proof rules described in Sect. 4 would also have
significant utility. Especially important are tools which reduce the amount of user ingenuity
needed to prove properties with our proof rules. Finally, automatic construction of efficient
source code from the FT specification using the SCR code generator [39] and other code
synthesis techniques is another planned research topic.
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