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Abstract
In this paper we examine the concept of complexity as it applies to generative and 
evolutionary art and design. Complexity has many different, discipline specific defi-
nitions, such as complexity in physical systems (entropy), algorithmic measures of 
information complexity and the field of “complex systems”. We apply a series of 
different complexity measures to three different evolutionary art datasets and look at 
the correlations between complexity and individual aesthetic judgement by the art-
ist (in the case of two datasets) or the physically measured complexity of generative 
3D forms. Our results show that the degree of correlation is different for each set 
and measure, indicating that there is no overall “better” measure. However, specific 
measures do perform well on individual datasets, indicating that careful choice can 
increase the value of using such measures. We then assess the value of complexity 
measures for the audience by undertaking a large-scale survey on the perception of 
complexity and aesthetics. We conclude by discussing the value of direct measures 
in generative and evolutionary art, reinforcing recent findings from neuroimaging 
and psychology which suggest human aesthetic judgement is informed by many 
extrinsic factors beyond the measurable properties of the object being judged.
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1  Introduction

Complexity is a topic of endless fascination in both art and science. For hun-
dreds of years scholars, philosophers and artists have sought to understand what 
it means for something to be “complex” and why we are drawn to complex phe-
nomena and visual complexity. Today, there are many different understandings 
of complexity, from information theory, physics, psychology, neuroscience and 
aesthetic theory [1–5].

In this paper we revisit the concept of complexity, with a view to understand-
ing if it can be useful for the generative or evolutionary artist. The application 
of complexity measures and their relation to aesthetics in generative and evolu-
tionary art are numerous (see e.g. [6] for an overview). A number of researchers 
have tested complexity measures as candidates for fitness measures in evolution-
ary art systems for example. We are interested in the value of complexity for both 
the individual artist or designer, and the audiences experiencing their work. Put 
another way, we are asking what complexity can tell us about an individual art-
ist’s personal aesthetic taste or judgement, and how individual notions of com-
plexity and aesthetics differ from general audience perceptions.

A long held intuition is that visual aesthetics are related to an artefact’s order 
and complexity [7–9]. From a human perspective, complexity is often regarded 
as the amount of “processing effort” required to make sense of an artefact. Too 
complex and the form becomes unreadable, too ordered and one quickly looses 
interest. Birkhoff famously formalised an aesthetic measure M = O∕C , the ratio 
of order to complexity [10], and similar approaches have built on this idea. Ber-
lyne and colleagues defined visual complexity as “irregularities in the spatial ele-
ments” that compose a form [11], which lead to the formalisation of the rela-
tionship between pleasantness and complexity as an “inverted-U” [7]. That is, by 
increasing the complexity of an artefact beyond the “optimum” value for aesthetic 
preference, its appeal starts to decline [12]. However, researchers have noted the 
“poor predictive validity” of Berlyne’s model [2]. Another example is Biderman’s 
theory of “geons”, which proposes that human understanding of spatial objects 
depends on how discernible their basic geometric components are [13, 11] Thus, 
the harder an object is to decompose into primary elements, the more complex we 
perceive it is. This is the basis for some image compression techniques, which are 
also often used as a measure of visual complexity [14].

More recent surveys and analysis of computational aesthetics trace the history 
[15, 16] and current state of research in this area [6]. Some approaches introduce 
symmetry as a counterbalance to complexity, situating aesthetic appeal some-
where within the range spanning between these two properties [11]. The most 
recent approaches combine measures of algorithmic complexity with different 
forms of filtering or processing to eliminate visual noise but retain overall detail 
[14, 17].

Multiple attempts to craft automated methods for the aesthetic judgement of 
images have made use of complexity measures. Moreover, some of these show 
encouraging results. In this paper we test a broad selection of these methods on 
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three different image datasets produced using generative evolutionary art sys-
tems. All of the images in these datasets have their own “aesthetic” score as a 
basis for understanding the aesthetic judgements of the system’s creator. We then 
extend our analysis from the relationship between complexity measures and the 
individual artist to that of human perception more generally. Using a public sur-
vey of people’s judgements on the complexity and aesthetics of the same three 
datasets, we analyse the relationship between general perceptions and complexity 
measures. We also analyse the relationship between individual artist evaluations 
and more general human perception of complexity and aesthetics.

2 � Complexity and aesthetic measure

Computational methods used to calculate image complexity are based on the defi-
nitions of complexity described the previous section (Sect.  1): i.e.  the amount of 
“effort” required to reproduce the contents of the image, as well as the way in which 
the patterns found in an image can be decomposed. Some methods have been pro-
posed as useful measures of aesthetic appeal, or for predicting a viewer’s prefer-
ence for specific kinds of images. In this section we outline those relevant for our 
research.

In the late 1990s, Machado and Cardoso proposed a method to determine aes-
thetic value of images derived from their interpretation of the process that humans 
follow when experiencing an aesthetic artefact [18]. Their method used the ratio 
of Image Complexity—a proxy for the complexity of the art itself—to Processing 
Complexity—a proxy of the process humans use to make sense of an image—as an 
approximation of how humans perceive images.

In 2010, den Heijer and Eiben compared four different aesthetic measures on 
a simple evolutionary art system [19], including Machado and Cardoso’s Image 
Complexity/Processing Complexity ratio, Ross & Ralph’s colour gradient bell curve, 
and the fractal dimension of the image. Their experiments demonstrated that, when 
used as fitness functions, different metrics yielded stylistically different results, indi-
cating that each assessment method biases the particular image features or proper-
ties being evaluated. Interestingly, when interchanged—when the results evolved 
with one metric are evaluated with another—metrics showed different affinities, sug-
gesting that regardless of the specificity of each individual measure, there are some 
commonalities between them.

A study by Forsythe and colleagues looked at the relationship between percep-
tions of complexity and computable measures [2]. Using a database of 800 images 
composed of abstract artistic, abstract decorative, figurative representational, figu-
rative decorative and environmental scene photographs, participants ( N = 240 ) 
were shown stratified samples for 5 s on a computer display and asked to rate each 
image’s complexity (“the amount of detail or intricacy”) on a Likert scale. The 
results showed “significant correlation” between image compression and perceived 
complexity ( rs = 0.51, p < 0.01 for jpeg compression and abstract artistic images, 
for example). The researchers also noted that familiarity with an image reduces its 
perceived complexity. The study also looked at the relationship between perceptions 



538	 Genetic Programming and Evolvable Machines (2022) 23:535–556

1 3

of beauty and complexity, and complexity and fractal dimension, finding “fractal 
dimension alone cannot account for judgements of beauty”.

3 � Experiments

To try and answer our question about the role and value of complexity measures in 
developing generative or evolutionary art systems, we compared a variety of com-
plexity measures on three different generative art datasets, evaluating them for cor-
relation with human or physical measures of aesthetics and complexity.

3.1 � Complexity measures

We tested a number of different complexity measures described in the literature to 
see how they correlated with individual evaluations of aesthetics. We first briefly 
introduce each measure here and go into more detail on specific measures later in 
the paper.

Entropy (S): the image data entropy measured using the luminance histogram 
(base e).
Energy (E): the data energy of the image.
Contours (T): the number of lines required to describe component boundaries 
detected in the image. The image first undergoes a morphological binarisation 
(reduction to a binary image that differentiates component boundaries) before 
detecting the boundaries.
Euler ( � ): the morphological Euler number of the image (effectively a count 
of the number of connected regions minus the number of holes). As with the T 
measure, the image is first transformed using a morphological binarisation.
Algorithmic Complexity ( Ca ): measure of the algorithmic complexity of the 
image using the method described in [14]. Effectively the compression ratio of 
the image using Lempil–Ziv–Welch lossless compression.
Structural Complexity ( Cs ): measure of the structural complexity, or “noiseless 
entropy” of an image using the method described in [14].
Machado-Cardoso Complexity ( Cmc ): a complexity measure used in [20], without 
edge detection pre-processing.
Machado-Cardoso Complexity with edge detection ( CE

mc
 ): the Cmc measure with 

pre-processing of the image using a Sobel edge detection filter.
Fractal Dimension (D): fractal dimension of the image calculated using the box-
counting method [2].
Fractal Aesthetic ( Da ) aesthetic measure similar to that used in [19], based on the 
fractal dimension of the image fitted to a Gaussian curve with peak at 1.35. This 
value is chosen based on an empirical studies of aesthetic preference for fractal 
dimension [21].
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While each of these measures is in some sense concerned with measuring image 
complexity, each measure’s underlying basis is different. Entropy (S) and Energy 
(E) measures are based on information theoretic understandings of complex-
ity but concern only the distribution of intensity, while Contours (T) and Euler 
( � ) try to directly count the number of lines or features in the image, some-
what in line with perceptual notions of complexity [22]. Lakhal et.  al’s Algo-
rithmic Complexity ( Ca ) and Machado & Cardoso’s Complexity ( Cmc ) measures 
use algorithmic or Kolmogrov-like understandings of complexity, relying on 
image compression algorithms to proxy for visual complexity. Lakhal et. al also 
define a Structural Complexity measure ( Cs ) designed to address the limitations 
of algorithmic complexity measures in relation to high frequency noise or many 
fine details. This is achieved by a series of “coarse-graining” operations, effec-
tively low-pass filtering the image to remove high frequency detail along with 
the quantisation of intensity. Finally, the fractal methods recognise self-similar 
features as proxies for complexity. They are based on past analysis of art images 
that claim to have demonstrated relationships between fractal dimension and 
aesthetics [2, 23, 24].

3.2 � Datasets

For the experiments described in this paper, we worked with three different gen-
erative art datasets (Fig. 1). As the goal of this work was to understand the effec-
tiveness of complexity measures in actual generative art applications, we wanted 
to work with artistic systems of demonstrated success, rather than invented or 
“toy” systems often used for validating research. This allows us to understand the 
ecological validity [25] of any system or technique developed. Ecological validity 
requires the assessment of creative systems in the typical environments and con-
texts under which they are actually developed and used, as opposed to laboratory 
or artificially constructed settings. It is considered an important methodology for 
validating research in the creative and performing arts [26]. Additionally, all the 
datasets are open access, allowing others to validate new methods on the same 
data.

Fig. 1   Example images from the Lomas (a), Line Drawings (b) and 3D DLA Forms (c) datasets
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3.2.1 � Dataset 1: Andy Lomas’ morphogenetic forms

This dataset [27] consists of 1,774 images generated using a 3D morphogenetic 
form generation system, developed by computer artist Andy Lomas [28, 29]. Each 
image is a two-dimensional rendering ( 512 × 512 pixels) of a three-dimensional 
form that has been algorithmically “grown” from 12 numeric parameters. The 
images were evolved using an Interactive Genetic Algorithm (IGA)-like approach 
with the software Species Explorer [28, 29]. As the 2D images, not the raw 3D 
models are evaluated by the artist, we perform our analysis similarly.

The dataset contains an integer numeric aesthetic rating score for each form 
(ranging from 0 to 10, with 1 the lowest and 10 the highest, 0 meaning a failure 
case where the generative system terminated without generating a form or the 
result was not rated). These ratings were all performed by Lomas, so represent his 
personal aesthetic preferences. Additionally, each form is categorised by Lomas 
into one of eight distinct categories (these categories were not used in the experi-
ments described in this paper).

3.2.2 � Dataset 2: DLA 3D prints

This dataset [30] consists of 2,500 3D forms created using a Differential Line 
Algorithm (DLA)-based method [31, 32]. Multiple closed 2D line segments 
develop over time. At each time-step, the geometry is captured and forms a 
sequential z-layer in a 3D form. After several hundred time-steps, the final 3D 
form is generated, suitable for 3D printing (Fig. 2). Each image is 600 × 600 pix-
els resolution. Images in this set are 3D line renderings of the final form, from a 
perspective projection and orthographic projection in the xy plane. In the experi-
ments described here, we tested both the top-down orthographic images and per-
spective images, finding the perspective images gave better results and so are the 
ones reported here.

Fig. 2   Example 3D printed form 
from the DLA 3D Prints dataset
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Rather than a artist-designated aesthetic measure, this dataset has a physically 
computed complexity measure. This measure is based on two geometric aspects of 
the 3D form: convexity (how much each layer deviates from its convex hull) and the 
quartile coefficient of dispersion of angles between consecutive edges that make up 
each layer in the 3D form. These measures are calculated for each layer (weighted 
equally) and the final measure is the mean of all the layers in the form. This physical 
complexity measure appears to be a reasonable proxy to the visual complexity of the 
forms generated by the system.

3.2.3 � Dataset 3: line drawings

A set of 53 line drawings from a system designed by the first author, generated using 
an agent-based method based on the biological principles of niche construction [33, 
34]. Each image is 1024 × 1024 pixels resolution. The dataset [35] also contains art-
ist-assigned aesthetic scores normalised to the range [0, 1].

3.3 � Settings and measure details

Our preliminary investigations showed that some measures are sensitive to param-
eter settings. The structural complexity measure ( Cs ) has two parameters: rcg , a 
coarse-grain filter radius (in pixels), � ∈ [0, 0.5] a threshold for determining the 
black to white pixel ratio, � ∈ [0, 1] (white if � ≤ � , grey if 𝛿 < 𝜂 ≤ 1 − 𝛿 , black 
for 𝜂 > 1 − 𝛿 ). In the original study, the authors [14] used values (rcg, �) = (7, 0.23) 
for one set of test images (abstract textures generated by Fourier synthesis) and 
(13, 0.12) for the second set (abstract random boxes placed using an inverse of the 
fractal box counting method) for 256 × 256 pixel resolution images. For the experi-
ments described here, we used (rcg, �) = (5, 0.23) as our image sizes were larger and 
the images contain significant high frequency detail.

For the fractal dimension measurements ( D,Da ), images are pre-processed using 
a local adaptive binarisation process to convert the input image to a binary image 
(typically used to segment the foreground and background). A radius, r, is used 

Fig. 3   The effect of different adaptive binarisation radii on an image from the Lomas dataset. The fractal 
dimension ( D

a
 ) changes with different r values
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to compute the local mean and standard deviation over (2r + 1) × (2r + 1) blocks 
centered on each pixel. Values above the mean of the r-range neighbourhood are 
replaced by 1, others by 0. Figure 3 shows a sample image from the Lomas dataset 
(left) with binary versions for r = 2 (middle) and r = 200 (right). Higher values of r 
tend to reduce high frequency detail and result in a lower fractal dimension measure-
ment. For the DLA 3D prints and Line Drawings datasets, which are already largely 
comprised of lines, the value of r has negligible effect on the measurement.

Our Fractal Aesthetic Measure ( Da ) is defined as:

where p is the peak preference value for fractal dimension and � the width of the 
preference curve. Da returns a normalised aesthetic measure ∈ [0, 1] . For the results 
reported here we used (p, �) = (1.35, 0.2) , based on prior findings for this preference 
[36].

The Machado-Cardoso Complexity measure ( Cmc) ) is defined as:

where i is the input image, RMS a function that returns the root mean squared error 
between its two arguments, f a lossy encoding scheme for i and s a function that 
returns the size in bytes of its argument.1 For the lossy encoding scheme, we used 
the standard JPEG image compression scheme with a compression level of 0.75 (0 is 
maximum compression).

4 � Results

For each dataset we computed the full set of complexity measures (Sect.  3.1) on 
every image in the dataset, then computed the Pearson correlation coefficient 
between each measure and the human assigned aesthetic score (Lomas and Line 
Drawings datasets) or physically calculated complexity measure (DLA 3D Prints 
dataset).

The results are shown for each dataset in Tables 1 (Lomas), 2 (DLA 3D Prints) 
and 3 (Line Drawings) with the highest correlation measure shown in bold.

The results show that a different complexity measure performed best for each 
dataset. For the Lomas dataset there is a strong correlation (0.873) between the 
artist assigned aesthetic score and the Cmc complexity measure. Additionally, all the 
algorithmic and structural complexity measures are highly correlated. This is to be 
expected since they all involve image compression ratios and is further highlighted 

(1)Da(i) = exp(
−(D(i) − p)2

2�2
),

(2)Cmc(i) = RMS(i, f (i)) ×
s(f (i))

s(i)
,

1  We adopted this measure as it specifically deals with complexity as defined in [9]. Machado and Car-
doso also define an aesthetic measure as the ratio of image complexity to processing complexity [18], as 
used by den Heijer and Eiben in their comparison of aesthetic measures [19].
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in Fig. 4, which shows a plot of aesthetic score vs Cmc (a) and Cs vs Cmc (b). The 
banding in 4a is due to the aesthetic scores being integers. A clear non-linear rela-
tionship between the complexity measures Cs and Cmc can be seen in 4b.

Also of note is that fractal measures performed the worst of the measures tested. 
This seems to be confirmed visually: while certainly the images are complex (many 
are composed of 1 million or more cells) and have patterns at different scales, the 
patterns are not self-similar.

For the DLA 3D Prints the most highly correlated measure was structural 
complexity ( Cs ) with a correlation of 0.774. The structural complexity aims to 
give a “noiseless entropy” measure by filtering high frequency spatial and inten-
sity details. Given that the images are composed of many hundreds of thin lines 
stacked on top of each other, there is a significant amount of high frequency infor-
mation, hence filtering is likely to give a better measure of real geometric details 
in each form. As can be seen in Fig. 5a, a clear correlation can be seen between 
the physical complexity (Sc) and Structural2 Complexity measure ( Cs ). Again we 

2 4 6 8 10
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0.5

1.0

1.5

2.0

2.5

Cmc

Aesthetic Score vs Cmc
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Fig. 4   The relationship between aesthetic score and C
mc

 (a) and C
a
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 (b) for the Lomas dataset
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Fig. 5   The relationship between physical complexity score (Sc) and C
s
 (a) and D

a
 (b) for the DLA 3D 

Prints dataset

2  Readers should not assume any direct relation between the terms “structural” and “physical” in relation 
to the complexity measures used here. Structural refers to image structures, whereas physical refers to 
characteristics of the 3D form’s line segments.
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note that the fractal measures ( D,Da ) had the lowest correlation and that all the 
algorithmic complexity measures are highly correlated. As shown in Fig. 5b how-
ever, there appears to be a kind of bifurcation and clustering in the relationship 
between Sc and Da , indicating a more complex, non-linear relationship between 
fractal dimension and complexity for this dataset.

The Line Drawings dataset exhibited quite different results from the previous 
two. Here the Contours (T) measure had the highest, but only moderate, correla-
tion with artist-assigned aesthetic scores (0.565). Given the nature of the draw-
ings, measures designed to capture morphological structure seem most appropri-
ate for this dataset. It is also interesting to note that the algorithmic complexity 
measures perform relatively poorly in this case. The original basis for the draw-
ings came from the use of niche construction as a way to generate density varia-
tion in the images. The dataset contains images both with and without the use of 
niche construction, and generally those with niche construction are more highly 
ranked than those without. Figure  6 shows the entire dataset ordered in terms 
of artist-assigned aesthetic score (a) and structural complexity (b). The drawings 
with niche construction are easy to see as they are more highly ranked than those 
without. The structural complexity measure has greater difficulty in differentiat-
ing them (b).

With this in mind, we ran an additional image measure on this dataset that 
looks at asymmetry in intensity distribution (Skew, Sk ). Since the niche construc-
tion process results in contrasting areas of high and low density it was hypoth-
esised that this measure might be able to better capture the differences. This 
measure had a correlation of 0.583 ( p = 4.5 × 10−6) , so better than any of the 
other measures, but not as high as the best complexity measures for the other two 
datasets.

Fig. 6   Thumbnail grid of the entire Line Drawings dataset, ordered by (a) increasing aesthetic score 
(lowest top left, highest bottom right) and (b) by increasing structural complexity ( C

s
 ). As the size of the 

dataset is relatively small in comparison with the others, the images can be shown in the figure
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5 � General responses to complexity and aesthetics

Recall that so far, we have looked at the relationship between image complex-
ity measures and the artist-assigned perceived aesthetic value (Lomas and Line 
Drawings datasets) or measured physical complexity (DLA 3D Prints dataset). 
These aesthetic or physical complexity evaluations are specific to the individual 
artist who designed the generative system or to the generative system itself.

To gain a better understanding of how the measures presented in the preceding 
sections relate to the perception of aesthetics and complexity generally by human 
observers, we developed a browser-based, online survey in which participants are 
prompted to express their preference when presented with image pairs selected 
from our three datasets. The survey was open to the general public and partici-
pants were invited via social media posts on the authors’ personal accounts. Basic 
demographic information about participants—age range, gender, experience with 
visual arts—was collected. After 10 comparisons, participants were prompted to 
exit the survey or continue. Electing to continue allowed as many further com-
parisons as desired, participants could quit at any time by pressing the red “Exit” 
button, or by closing the browser window.

At the time of reporting 201 respondents provided a total of 5341 compari-
sons for the survey. The distribution of age-ranges, gender and expertise level are 
shown in Fig. 7.

5.1 � Survey

The goal of our survey was to evaluate participants’ perception of complexity and 
aesthetic preference in relation to each of the three datasets. Pairwise compari-
sons were used, asking participants to compare two images from the same dataset 
and decide on a specific prompt by selecting one of the images. This method pro-
vides participants with points of reference and eliminates the uncertainties asso-
ciated with direct rating systems, such as Likert scales or judgements regarding 
the relative distance between items rated in isolation. Participants were presented 
with two randomly selected images from the same dataset and one of two pos-
sible comparison prompts: (a) Which one of these images do you like the most?, 

cba

Fig. 7   Distributions of demographic information collected for the survey
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or (b) Which of these images is more complex?, which is also selected randomly 
(Fig. 8a).

Visual cues were implemented in the user interface to help participants make a 
conscious decision. Firstly, when a prompt is presented to the user, the ‘Next’ button 
is greyed out, indicating that a preference has to be entered. Then, once a selection 
has been made, the selected image is highlighted and a text overlay related to the 
prompt is displayed, as a way to ensure that the answer being provided relates to 
the question (see Fig. 8b for reference). Discarding any comparison duration over 5 
minutes (only 16 comparisons), the median response time across all 5325 compari-
sons was 7.7 s (mean: 10.4 s, sd: 10.8).

5.2 � Rating and ranking dataset entries

The outcomes of the pairwise comparison method described in Sect. 5.1 were used 
to rank the images in our datasets. Rankings are determined using Glickman’s 
“Glicko System” [37, 38], originally developed to rate and rank chess players. The 
Glicko System incorporates a rating deviation (RD) measure that represents the 
reliability of a player’s rating, calculated as a function of game outcomes and time 
between rating periods, in order to account for any changes that may have occurred 
while a player has not participated in any rated games (e.g. improving their ability 
via intensive training).

For image rankings, we considered pairwise comparisons as contests between 
images, where each image is a “player” competing to win against the other in the 
pair. The selected image is the winner of that contest (the can’t decide option rep-
resents a tie). To compute the rating of an image, we introduced two minor modi-
fications to the standard Glicko System, tailoring the system to the nature of the 
data being processed. First, given that, unlike chess players, the images themselves 
do not improve or worsen over time, we disregard the time factor when calculating 
RD. The second modification is that we calculate rating and RD after every “match” 

Fig. 8   Screenshots of the survey question screen, in this example images from the Line Drawings dataset 
are displayed. a Question as presented to participant. b Question screen with option selected. A “Can’t 
decide” option is provided and answers to survey questions have to be submitted using the ‘Next’ button, 
giving participants the opportunity to review their selection



550	 Genetic Programming and Evolvable Machines (2022) 23:535–556

1 3

(comparison), instead of defining a rating period every n matches. RD still provides 
a measure of the confidence of a ranking, allowing us to filter those images with 
insufficient certainty regarding their ranking (for example too few comparisons or 
“noise” in the results).

At the start of the survey all images were initialised with the same rating and RD 
for their aesthetics ( Aa ) and complexity ( AC ). We used rating = 1500 and RD = 350 
(as recommended in [38]).

5.3 � Results

We analysed the survey responses to see if there was any correlation between per-
ceived complexity and aesthetics in the images. The results are summarised in 
Table 4. For the Lomas and DLA 3D Prints datasets, the survey results were first 
filtered, selecting only those images with an RD < 290 for both complexity and aes-
thetics to ensure sufficient confidence in the ranking. The Line Drawings dataset, 
being much smaller, had all images with an RD < 290 . The sample size (N) after 
filtering (also expressed as percentage of the full dataset), along with the Pearson 
correlation ( rs ) and p-value are shown for perceived complexity ( AC ) and aesthetics 
( Aa ) in the table.

As can be seen, the results do not confirm any significant correlation between the 
general perception of complexity and aesthetic value in an image. For the Lomas 
dataset, we can be reasonably confident that there is almost no correlation between 
perceived complexity and aesthetics. Figure  9 shows the relationship between AC 
and Aa for each dataset.

Given the lack of a discernible relationship between perceived complexity and 
aesthetics, we next analysed the data for relationships between the computational, 
individual artist-assigned, and survey measures. The results are summarised in 
Table 5. The table shows the results for each dataset, first giving the Pearson score 

Table 4   Correlation between the 
audience survey perceptions of 
complexity and aesthetics

Dataset N (%) r
s
(A

C
,A

a
) p-value

Lomas 252 (14.4%) − 0.140 0.026
3D Forms 141 (5.64%) 0.034 0.687
Line Drawings 52 (100%) − 0.118 0.400

Fig. 9   Relationship between perceived complexity and aesthetics for each dataset
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correlations between the artist assigned score (or complexity measure in the case 
of the DLA 3D Prints), the best complexity measure (from Sect. 4) and the survey 
results. The highest correlations between perceived complexity and aesthetics are 
shown next.

The Lomas dataset had a high correlation between the the artist-assigned score 
(Sc) and the Machado-Cardoso Complexity measure ( Cmc ): 0.873. This was not 
reflected in the audience perceived complexity ( AC ) or aesthetics ( Aa ) correla-
tions, with only a low correlation with AC and no correlation with Aa . There is a 
mild correlation between audience perceptions of complexity with the Machado-
Cardoso Complexity measure with edge processing ( CE

mc
 ), which only just beat the 

other algorithmic complexity measures ( Cs , Cmc , C), which were correlated in the 
0.34–0.38 range. The Fractal Aesthetic measure had the highest correlation with 
perceived aesthetics, but the overall correlation is negligible for all the measures, 
suggesting no connection between audience perceived aesthetics and computational 
complexity measures.

Similar results are observed for the DLA 3D Prints dataset. A strong correla-
tion between the Structural Complexity measure ( Cs ) was less strongly reflected in 
the perceived complexity (0.327) and, again, no correlation between the score and 
perceived aesthetics. There were mild to weak correlations between the perceived 

Table 5   Correlation between the audience survey perceptions of complexity and aesthetics with compu-
tational complexity measures and artist assigned scores

Lomas dataset

Score correlations C
mc

A
C

A
a

Sc 0.873 0.327 0.025

Best correlations A B r
s
(A,B) p-value

A
C C

E

mc
0.407 < 10−5

A
a

D
a

0.085 0.177

DLA 3D Prints Dataset

Score correlations C
s

A
C

A
a

Sc 0.774 0.394 0.199

Best correlations A B r
s
(A,B) p-value

A
C

C
s

0.362 < 10−4

A
a

C
a

0.226 0.007

Line drawings dataset

Score correlations S
k

A
C

A
a

Sc 0.583 0.586 0.156

Best correlations A B r
s
(A,B) p-value

A
C

S
k

0.752 < 10−5

A
a

S − 0.467 0.0004
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complexity and aesthetics with the Structural Complexity ( Cs ) and Algorithmic 
Complexity ( Ca ) measures.

For the Line Drawings dataset, there was moderate correlation (0.583) between 
the artist-assigned score and Image Skew. A similar correlation was found with the 
audience perceptions of complexity (0.586), far less for aesthetics (0.156). The simi-
larities between Image Skew and perceived complexity are reflected in the best cor-
relations (0.752). Interestingly, an inverse correlation was the highest found between 
Image Entropy (S) and perceived aesthetics (− 0.467).

6 � Discussion

The results from Sect. 4 show that there appears to be no single measure that is best 
to quantify image complexity in the the context of generative art. Hence it seems 
wise to select a measure most appropriate to the style or class of imagery or form 
being generated. In general, the image information measures ( Cmc , Ca and Cs ) had 
the overall best results across all the datasets evaluated.

It is also important to point out that, in general, computer synthesised imagery 
and in particular images generated by algorithmic methods, have important charac-
teristics that differ from other images, such as photographs or paintings. Apart from 
any semantic differences or differentiation between figurative and abstract, inten-
sity and spatial distributions in computer synthesised images differ from real world 
images. This is one reason why we selected datasets that are specific to the applica-
tion of these measures (generative art and design), rather than human art datasets in 
general, for example. Our datasets are also exclusively greyscale images, eliminating 
colour as a consideration in our experiments.

In the second part of the paper, we compared the computational measures and 
individual artist-assigned scores with more general human perceptions of complex-
ity and aesthetics, using a pairwise ranking survey to order each dataset in terms of 
perceived complexity and aesthetic preference, with 201 participants and over 5,300 
comparisons. Based on the survey, we found no significant correlation between 
perceived complexity and perceived aesthetics for any of the datasets. General per-
ceptions of complexity were at best, only mildly correlated with computational or 
artist-assigned measures. Aesthetic perceptions fared the worst, with no significant 
correlation between either computational measures or individual artist evaluations. 
In short, the computational measures tested cannot predict what an audience will 
like, but neither can the artist! (at least in the case of the datasets we used).

The rationale for this research was to further the question: how can complex-
ity measures be usefully employed in generative and evolutionary art and design? 
Based on the results presented in this paper, our answer is that—if chosen appro-
priately—they can be valuable aids for coarse-level discrimination for an individ-
ual artist. Additionally, they are relatively quick to compute and work without prior 
training or exposure to large numbers of examples or training sets, as would be the 
case for neural network discriminators for example. Hence, complexity measures 
could be useful in filtering or ranking individuals in an IGA or used to help clas-
sify or select individuals for further enhancement using other methods. However 
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they seem insufficient as fully autonomous fitness measures—the human designer 
remains a vital and fundamental part of any good aesthetic evaluation.

6.1 � Aesthetic judgement

In Sect. 1 we discussed possible relationships between complexity measures and 
aesthetics. It is worth reflecting further here on this relationship and the long-
held “open problem” for evolutionary and generative art of quantifying aesthetic 
fitness [39]. In contrast to studies that have looked at “art” images in general, we 
did not find a perceived correlation between complexity and aesthetics for the 
computer synthesised images in our datasets.

In the last decade or so, the biggest advances in the understanding of compu-
tational and human aesthetic judgements have come from (i) large, open access 
datasets of imagery with associated human aesthetic rankings and (ii) psycho-
logical and neuroscience discoveries on the mechanisms of forming an aesthetic 
judgement and what constitutes aesthetic experience.

In a recent paper, Skov summarised aesthetic appreciation from the perspec-
tive of neuroimaging [40]. Some of the key findings included neuroscientific 
evidence suggesting that “aesthetic appreciation is not a distinct neurobiological 
process assessing certain objects, but a general system, centered on the mesolim-
bic reward circuit, for assessing the hedonic value of any sensory object” [40]. 
Another important finding was that hedonic values are not solely determined by 
object properties. They are subject to numerous factors extrinsic to the object 
itself. Similar claims have come from psychological models [41]. These find-
ings suggest that any algorithmic measure of aesthetics that only considers an 
object’s visual appearance ignores many other extrinsic factors that humans use 
to form an aesthetic judgement (including context, prior knowledge and experi-
ence, emotional state and affect). Hence they are unlikely to correlate strongly 
with human judgements generally.

The results presented in this paper appear to tally with these findings. Com-
plexity measures, carefully chosen for specific styles or types of generative 
art can capture some broad aspects of personal aesthetic judgement, but they 
are insufficient alone to fully replace human judgement and discretion. Using 
other techniques, such as deep learning, may result in slightly better correlation 
to individual human judgement [42], however such systems require training on 
large datsets which can be tedious and time-consuming for the artist and still do 
not do as well as the trained artist’s eye in resolving aesthetic decisions.

While individual artists and designers may have a strong sense of complex-
ity and aesthetics in their own systems, the survey results do not support the 
hypothesis that such a sense generalises. Prior studies have shown that percep-
tual qualities such as complexity and aesthetics change according to familiarity 
[43]. A difference between artist assigned measures and perceptions generally 
is that artists work closely with their generative and evolutionary systems over 
long periods of time, meticulously studying thousands of similar images and 
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becoming attuned to their nuances and differences. A less educated eye may not 
share such detailed discrimination as our survey results suggest.

7 � Conclusion

Making and appreciating art is a shared human experience. Computers can expand 
and grow the creative possibilities available to artists and audiences. The fact that 
humans artists are successfully able to create and communicate artefacts of shared 
aesthetic value indicates some shared concept of this value between people and cul-
tures. Could machines ever share such concepts? This remains an open question, but 
evidence suggests that achieving such a unity would require consideration of factors 
beyond the quantifiable properties of objects themselves.

In this paper we have examined the relationship between complexity measures 
and personal or specific understandings of aesthetics. Our results suggest that some 
measures can serve as crude proxies for personal visual aesthetic judgement but the 
measure itself needs to be carefully selected. Complexity remains an enigmatic and 
contested player in the long-term game of computational aesthetics.
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