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Abstract This paper describes the development of a novel metaheuristic that com-
bines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD)
for the University course timetabling problem. This well-known timetabling problem
assigns lectures to specific numbers of timeslots and rooms maximizing the over-
all quality of the timetable while taking various constraints into account. EM is a
population-based stochastic global optimization algorithm that is based on the theory
of physics, simulating attraction and repulsion of sample points in moving toward
optimality. GD is a local search procedure that allows worse solutions to be accepted
based on some given upper boundary or ‘level’. In this paper, the dynamic force
calculated from the attraction-repulsion mechanism is used as a decreasing rate to
update the ‘level’ within the search process. The proposed method has been applied
to a range of benchmark university course timetabling test problems from the litera-
ture. Moreover, the viability of the method has been tested by comparing its results
with other reported results from the literature, demonstrating that the method is able
to produce improved solutions to those currently published. We believe this is due
to the combination of both approaches and the ability of the resultant algorithm to
converge all solutions at every search process.
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1 Introduction

Course timetabling is a multi-dimensional assignment problem in which students
and faculty members are assigned to courses (or events), and courses are assigned
to classrooms and timeslots. Course timetabling problems can be classified into two
categories; post-enrollment and curriculum-based timetabling problems. The main
difference is that the post-enrollment course timetabling problems concentrate on stu-
dents’ preferences’ such as “a student should only have one course per day”, while
curriculum-based course timetabling focuses on lecturers’ preferences such as “lec-
turer only wants their lectures in the morning”. This area of research has long at-
tracted the attention of the Operational Research and Artificial Intelligence commu-
nities. In addition, variations of the problem have been the subject of two competi-
tions (http://www.metaheuristics.org and www.cs.qub.ac.uk/itc2007, McCollum et al.
2010). In the past, a wide variety of approaches for constructing course timetables
have been described and discussed in the literature. Carter (1986) categorized these
approaches into four types: sequential methods, cluster methods, constraint-based
methods and generalized search. Petrovic and Burke (2004) added the following cat-
egories: hybrid evolutionary algorithms, meta-heuristics, multi- criteria approaches,
case based reasoning techniques, hyper-heuristics and adaptive approaches.

In this paper, the discussion on the previous work on the course timetabling prob-
lem is divided into two prevalent groups i.e. (i) algorithms in solving enrollment-
based course timetabling problems and (ii) algorithms that are employed to tackle
curriculum-based course timetabling problem. Full descriptions of the two types of
problems are outlined in Sect. 2, highlighting the main differences between them.

1.1 Enrollment-based course timetabling problems

In 2002, the International Metaheuristic Network organized the First International
Timetabling Competition (ITC2002). This used artificially generated enrollment-
based course timetabling problems which have become a standard within the re-
search area, used within novel techniques being trialed by many researchers within
their work. The details of these instances are available at http://www.idsia.ch/Files/
ttcomp2002.

Using the same data generator, Socha et al. (2002) introduced a further eleven
course timetabling problem data sets, and applied local search and ant based ap-
proaches to the problem. Rossi-Doria et al. (2003) considered evolutionary algo-
rithms for the same datasets and presented a comparison of a number of metaheuris-
tic methods. Burke et al. (2003) introduced a tabu-based hyperheuristic and applied
it to university course timetabling in addition to nurse rostering. Burke et al. (2007)
employed tabu search within a graph based hyper-heuristic and applied it to both
examination and course timetabling benchmark datasets with the aim of raising the
level of generality by operating on different problem domains. Abdullah et al. (2005)

http://www.metaheuristics.org
http://www.cs.qub.ac.uk/itc2007
http://www.idsia.ch/Files/ttcomp2002
http://www.idsia.ch/Files/ttcomp2002
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developed a variable neighborhood search approach which used a fixed tabu list to
penalize particular neighborhood structures. Abdullah et al. (2007a) applied a ran-
domized iterative improvement approach using a composite of eleven neighborhood
structures. Abdullah et al. (2007b) combined this with a mutation operator, introduc-
ing a hybrid approach to the problem. Asmuni et al. (2005) employed a fuzzy method
to order three different heuristics. McMullan (2007) applied the extended great del-
uge algorithm to the datasets introduced by Socha et al. (2002). Landa-Silva and Obit
(2008) introduced non-linear great deluge which generates non-linear decay rate for
three different categories of datasets. The combination of genetic algorithm and local
search has been employed by Abdullah and Turabieh (2008) and is able to produce
promising results on the same test instances.

1.2 Curriculum-based course timetabling problems

Curriculum-based course timetabling was first introduced in The 2nd International
Timetabling Competition (ITC2007) by Gaspero et al. (2007). ITC2007 consists
of three tracks representing educational timetabling problems. Track 1 represents
an examination timetabling problem; Track 2 represents a post-enrollment case
study which focuses on students enrollment for courses; and Track 3 represents a
curriculum-based course timetabling problem which focused on lecturers’ prefer-
ences rather than students’ preferences (as in Track 2). There are a number of papers
available in the literature that focus on curriculum-based course timetabling. Müller
(2007) applied a constraint-based solver to the curriculum-based course timetabling
problems in the 2nd International Timetabling Competition, ITC2007 (Track 1 and
Track 3) and achieved the first place in this competition. Lü and Hao (2010) ap-
plied a hybrid heuristic algorithm called Adaptive Tabu Search (ATS) to the same in-
stances. Clark et al. (2008) applied repair-based heuristic search on Track 3 datasets
in the ITC2007 timetabling competition. Geiger (2008) applied a stochastic neigh-
borhood method based on threshold acceptance criteria to overcome the local optima
to the same instances. Atsuta et al. (2007) applied the constraint satisfaction problem
(CSP) which implemented a hybridization of tabu search and iterated local search
algorithms to handle weighted constraints. This solver has been applied on Track 1,
Track 2 and Track 3 in ITC2007.

De Cesco et al. (2008) applied a dynamic tabu search to curriculum-based course
timetabling, a short term tabu exclusion with variable size tabu length, with dynamic
weight adjustment for hard and soft constraints. Lach and Lübbecke (2008) applied
an integer programming method on the same instances. Burke et al. (2009) intro-
duced a new solver based on a hybrid metaheuristic to tackle scheduling problems.
They applied it first on Udine data sets (based on Track 3 of ITC2007), achieving
good solutions within a practical timeframe. Lü and Hao (2010) reported that the re-
sults obtained by Schaerf were from the employment of a tabu search with a relaxed
stopping condition.

A survey of practical approaches to the problem, up to 1998, can be seen in Carter
and Laporte (1996). The following papers represent a comprehensive list of surveys
and overviews on educational timetabling (which include issues related to university
course timetabling) i.e. Bardadym (1996), Burke and Petrovic (2002), Burke et al.
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(1996), Carter (1986), Petrovic and Burke (2004), Schaerf (1999), de Werra (1985)
and McCollum (2007) that discussed issues of bridging the gap between theory and
practice in university timetabling.

The paper is organized as follows: The next section describes the post-enrollment
and curriculum-based course timetabling problem. Section 3 describes our algorithm
and its application to the course timetabling problem. Experimental results are dis-
cussed in Sect. 4. Some brief concluding comments are presented in Sect. 5.

2 Problem description

2.1 Problem A: post-enrollment-based course timetabling

The problem involves the assignment of lecture events to timeslots and rooms sub-
ject to a variety of hard and soft constraints. Hard constraints represent an absolute
requirement. A timetable which satisfies the hard constraints is known as a feasible
solution. The problem description that is employed in this paper is adapted from the
description presented in Socha et al. (2002) and was the same as the description used
in the first international timetabling competition (ITC2002). The following hard and
soft constraints are presented:

• No student can be assigned to more than one course at the same time.
• The room should satisfy the features required by the course.
• The number of students attending the course should be less than or equal to the

capacity of the room.
• No more than one course is allowed in each room during each timeslot.

Soft constraints that are equally penalized are as follows:

• A student has a course scheduled in the last timeslot of the day.
• A student has more than 2 consecutive courses.
• A student has a single course on a day.

The problem has:

• A set of N courses, e = {e1, . . . , eN }
• 45 timeslots
• A set of R rooms
• A set of F room features
• A set of M students.

The objective is to satisfy the hard constraints and to minimize the violation of the
soft constraints. In real-world situations, it is usually impossible to satisfy all soft
constraints, but minimizing the violations of soft constraints represents an increase in
the quality of the solution.

The experiments for the standard course timetabling problem were tested on the
benchmark course timetabling problems proposed by the Metaheuristics Network1

1http://www.metaheuristics.org/.

http://www.metaheuristics.org/
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Table 1 Parameter values for the course timetabling problem categories (Socha datasets)

Category Small Medium Large

Number of events 100 400 400

Number of rooms 5 10 10

Number of features 5 5 10

Number of students 80 200 400

Maximum courses per student 20 20 20

Maximum student per courses 20 50 100

Approximation features per room 3 3 5

Percentage feature use 70 80 90

that involve scheduling 100–400 events/courses into a timetable with 45 timeslots
corresponding to 5 days of 9 hours each, whilst satisfying room features and room
capacity constraints. In this work, we considered two cases of post-enrollment course
timetabling problems i.e. (i) the first case was proposed by Socha et al. (2002) and
(ii) the second case was proposed by the first international timetabling competition
(ITC2002).

Socha et al. (2002) datasets are divided into three categories: small, medium and
large. We deal with 11 instances: 5 small, 5 medium and 1 large. The parameter values
defining the categories are given in Table 1. These parameters consists of number
of events, rooms, features, students, maximum number of courses for each student,
maximum number of students for each course, approximation (average) features for
each room and percentage of features used in each category.

The first international timetabling competition (ITC2002) introduced 20 instances.
The parameter values defining the categories are given in Table 2.

2.2 Problem B: curriculum-based course timetabling

The curriculum-based course timetabling problem deals with the weekly assign-
ment of a set of lectures for several university courses to specific timeslots and
rooms, where conflicts between courses are set according to curricula published
by the university and not on the basis of enrollment data. The curriculum-based
course timetabling problem is considered as the third track in the 2nd International
timetabling competition (ITC2007). The main reason for wide acceptance of this for-
mulation is that it can represent real problems that often arise in real higher ed-
ucational institutions. In this paper, we consider the same curricula-based course
timetabling problem as described in Gaspero et al. (2007) that consist of the follow-
ing entities: Days, Timeslots and Periods. We are given a number of teaching days in
the week from 5 to 6.

• Each day is divided into a fixed number of timeslots, which is equal for all days.
• A period is a pair composed of a day and a timeslot. The product of the days and

the timeslots represent the total number of periods.
• Each course consists of a fixed number of lectures to be scheduled in distinct peri-

ods which is taught by a teacher and attended by a number of students. Each course
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Table 2 Parameter values for the first international timetabling competition (ITC2002)

Instance
Identifier

Number of
events

Number of
Students

Number of
Rooms

Rooms/event Events/
Students

Students/
Event

1 400 200 10 1.96 17.75 8.88

2 400 200 10 1.92 17.23 8.62

3 400 200 10 3.42 17.70 8.85

4 400 300 10 2.45 17.43 13.07

5 350 300 10 1.78 17.78 15.24

6 350 300 10 3.59 17.77 15.23

7 350 350 10 2.87 17.48 17.48

8 400 250 10 2.93 17.58 10.99

9 440 220 11 2.58 17.36 8.68

10 400 200 10 3.49 17.78 8.89

11 400 220 10 2.06 17.41 9.58

12 400 200 10 1.96 17.57 8.79

13 350 250 10 2.43 17.69 11.05

14 350 350 10 3.08 17.42 17.42

15 350 300 10 2.19 17.58 15.07

16 440 220 11 3.17 17.75 8.88

17 350 300 10 1.11 17.67 15.15

18 400 200 10 1.75 17.56 8.78

19 400 300 10 3.94 17.71 13.28

20 350 300 10 3.43 17.49 14.99

has a minimum number of days within which the lecture for that particular course
should be spread. There are some periods in which the course cannot be scheduled.

• Each room has a capacity and location. Capacity is represented in terms of avail-
able seats. Location is represented as an integer value corresponding to a separate
building. Some rooms are not suitable for some courses due a lack of required
equipment.

• A curriculum represents a group of courses such that any pair of courses in the
group has students in common. Based on curricula, we have the conflicts between
courses and other soft constraints.

The solution of the problem is an assignment of a period (day and timeslot) and
a room to all lectures of each course. The following hard and soft constraints are
presented:

Hard constraint
There are four hard constraints considered in this paper as in Gaspero et al. (2007):

H1: Lectures: All lectures of a course must be scheduled, and assigned to distinct
periods. A violation occurs if a lecture is not scheduled or two lectures within a
course are scheduled in the same period.

H2: Conflicts: All lectures of courses in the same curriculum or taught by the same
teacher must be scheduled in different periods. Two conflicting lectures in the
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same period represent one violation. Three conflicting lectures count as 3 viola-
tions: one for each pair.

H3: Availability: If the teacher of the course is not available to teach that course at a
given period, then no lecture of the course can be scheduled at that period. Each
lecture scheduled in a period unavailable to that course is one violation.

H4: Room Occupation: Two lectures cannot be assigned to the same room at the
same period. Two lectures in the same room at the same period represent one
violation. Any extra lecture in the same period and room counts as one more
violation.

Soft Constraint
The soft constraints are also taken from Gaspero et al. (2007):

S1: Room Capacity: The number of students that attend the course for each lecture
must be less than or equal to the number of seats of the rooms hosting its lectures.
Each student above the capacity counts as 1 violation.

S2: Minimum Working Days: The lectures of each course must be spread over the
given minimum number of days. Each day below the minimum, counts as 1
violation.

S3: Isolated Lectures: Lectures belonging to a curriculum should be adjacent to each
other (i.e., in consecutive periods). For a given curriculum we account for a vio-
lation every time there is one lecture not adjacent to any other lecture within the
same day. Each isolated lecture in a curriculum counts as 1 violation.

S4: Room stability. All lectures of a course should be delivered in the same room.
Each distinct room used for the lectures counts as 1 violation.

The experiments for the curriculum-based course timetabling problem discussed in
this paper were tested on the twenty one real-world instances provided by the Uni-
versity of Udine. The main features of the instances used are given in Table 3. The
details of all instances can be found in http://tabu.diegm.uniud.it/ctt/index.php.

3 The algorithm

3.1 Hybrid construction heuristic

A construction algorithm proposed by Chiarandini et al. (2006) and Landa-Silva and
Obit (2008) is used to generate large populations of random initial solutions. The
construction algorithm consists of three phases as presented in pseudo code form in
Fig. 1.

We called this construction a hybrid constructive algorithm. This approach was
chosen in particular because it was able to produce feasible solutions for all datasets
due to the combination of the strength from three phases involved (see Landa-Silva
and Obit 2008).

3.1.1 Phase 1: Largest degree heuristic

In this phase, we start with an empty timetable. The courses with the largest num-
ber of conflicts are scheduled first. All courses are scheduled by randomly selecting

http://tabu.diegm.uniud.it/ctt/index.php
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Table 3 Curriculum-based instances

Instance Course Total
Lectures

Rooms Period per
Day

Days Curricula Min and Max
Lectures per
Days per
Curriculum

comp01 30 160 6 6 5 14 2–5

comp02 82 283 16 5 5 70 2–4

comp03 72 251 16 5 5 68 2–4

comp04 79 286 18 5 5 57 2–4

comp05 54 152 9 6 6 139 2–4

comp06 108 361 18 5 5 70 2–4

comp07 131 434 20 5 5 77 2–4

comp08 86 324 18 5 5 61 2–4

comp09 76 279 18 5 5 75 2–4

comp10 115 370 18 5 5 67 2–4

comp11 30 162 5 9 5 13 2–6

comp12 88 218 11 6 6 150 2–4

comp13 82 308 19 5 5 66 2–3

comp14 85 275 17 5 5 60 2–4

comp15 72 251 16 5 5 68 2–4

comp16 108 366 20 5 5 71 2–4

comp17 99 339 17 5 5 70 2–4

comp18 47 138 9 6 6 52 2–3

comp19 74 277 16 5 5 66 2–4

comp20 121 390 19 5 5 78 2–4

comp21 94 327 18 5 5 78 2–4

Fig. 1 The pseudo code for
construction algorithm Set population size, Popsize

Set Solution_counter ← 0;
Set Event_counter ← 0;
do while (Solution_counter < Popsize)

do while(Eventcounter < Number of events)
Phase 1:Apply largest degree heuristic

end do
do while (timetable infeasible)

Phase 2:Apply neighborhood search
Phase 3:Apply tabu search

end do
end do
Return population of feasible timetables

the timeslot and the room that satisfy the hard constraints. If the course cannot be
scheduled to a specific room, then it will be inserted in any randomly selected room.
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In some cases, a feasible timetable is obtained by only employing Phase 1, in which
case Phase 2 and Phase 3 are not required. However, feasibility from this Phase is
not guaranteed, and Phase 2 and Phase 3 are then employed until feasibility has been
achieved.

3.1.2 Phase 2: Neighborhood search

Two neighborhood moves are employed in order to reduce the violations of hard
constraints i.e.:

Nbs1: Select a course at random and move to another random feasible timeslot-room.
Nbs2: Select two courses randomly and swap their timeslots and rooms while ensur-

ing feasibility is maintained.

The process stops if there is no improvement on the current timetable after 20 itera-
tions. Here we stop after 20 iterations because we want to give more time for Phase 2
to successfully reach feasible solutions. Note that in Chiarandini et al. (2006) and
Landa-Silva and Obit (2008), the process will stop after 10 non improving iterations.

3.1.3 Phase 3: Tabu search

This phase is implemented if the second phase is still not able to generate feasible
solutions. Similar neighborhood structures (Nbs1 and Nbs2) are employed with the
aim of reducing the time taken in generating feasible timetables. A FIFO structure
of tabu list is used in this search. The length of the tabu list, tl, is calculated as in
Landa-Silva and Obit (2008) i.e. tl = rand(10) + δ ∗ nc where:

• rand(10) is a random number between 0 and 10.
• nc is the number of events (in the current timetable) that violate the hard con-

straints.
• δ is a constant which is set to 0.6

This step will terminate after 1000 non-improving iterations.

3.2 An electromagnetism-like mechanism

The main idea of an electromagnetic-like mechanism (EM) that was introduced by
Birbil and Fang (2003) stems from electromagnetic-like behavior observed within the
field of physics, simulating attraction and repulsion of sample points in order to move
towards a promising solution. It begins with a population of randomly generated fea-
sible timetables. The method uses an attraction-repulsion mechanism to move a popu-
lation of timetables toward optimality. Ideally, the algorithm is based on two particles
experiencing forces of mutual attraction or repulsion depending on their individual
penalty. The strength of the attraction/repulsion is directly proportional to the product
of their charges and inversely proportional to the square of the distance between them.
Each particle (in this paper, each particle is considered as a timetable) represents a
solution and the charge of each particle relates to its solution quality. The better the
solution quality of the particle, the higher charge the particle has. Moreover, the elec-
trostatic force between two point charges is directly proportional to the magnitudes
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of each charge and inversely proportional to the square of the distance between the
charges (see Birbil and Fang 2003). Maenhout and Vanhoucke (2007) presented a
novel meta-heuristic technique based on Electromagnetic like mechanism to tackle
the nurse scheduling problem. Debels et al. (2006) applied EM algorithm to enhance
the movement of a scatter search scheduling algorithm. EM also has been applied
successfully by Debels and Vanhoucke (2006) for a project scheduling problem. In
our problem, the fixed charge of timetable (particle) i is shown as follows:

qi = exp

(
−T

f (xi) − f (xbest )∑m
k=1(f (xk) − f (xbest ))

)
(1)

where:

qi : the charge for timetable i

f (xi): penalty of the timetable i

f (xk): penalty of the timetable k

f (xbest ): penalty of the best timetable
m: population size
T : number of timeslots

The solution quality or charge of each individual timetable determines the mag-
nitude of an attraction and repulsion effect in the population. A better solution en-
courages other particles to converge to attractive valleys while a bad solution dis-
courages particles to move toward this region. These particles move along with the
total force and so diversified solutions are generated. The following formulation is
the total force, TF on particle i:

TFi =
m∑

j �=i

⎧⎨
⎩

(f (xj ) − f (xi))
qiqj

‖f (xj )−f (xi )‖2 if f (xj ) < f (xi)

(f (xi) − f (xj ))
qiqj

‖f (xj )−f (xi )‖2 if f (xj ) ≥ f (xi)

⎫⎬
⎭ , ∀i (2)

The process of evaluating the total force TF, for the course timetabling problem
is illustrated in Fig. 2. As is shown resulting timetables 1, 2 and 3 have penalties
210, 165 and 170 respectively. Because Timetable 1 is worse than Timetable 3 while
Timetable 2 is better than Timetable 3, Timetable 1 represents a repulsion force which
is F13 and Timetable 2 encourages Timetable 3 to move to the neighborhood region of
Timetable 2 which is an attractive force F32. Consequently, incorporating the search
technique outlined in the next section, Timetable 3 moves along with total force TF
(calculated using the formulas (1) and (2)), to obtain for example Timetable 4.

3.3 A Standard great deluge algorithm

The great deluge algorithm was introduced by Dueck (1993). It is a local search pro-
cedure which has certain similarities with simulated annealing by Kirkpatrick et al.
(1983) but has been introduced as an alternative. This approach is far less dependent
upon parameters than simulated annealing. It needs just two parameters: the amount
of computational time that the user wishes to “spend” and an estimate of the qual-
ity of solution that a user requires. McMullan and McCollum (2007) proved that
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Fig. 2 An example of attract-repulse effect on Timetable 3

the great deluge algorithm is more effective than a simulated annealing algorithm to
avoid from being trap in local optima. Apart from accepting a move that improves
the solution quality, the great deluge algorithm also accepts a worse solution if the
quality of the solution is less than (for the case of minimization) or equal to some
given upper boundary value B (in the paper by Dueck it was called a “level”). The
“level” is initially set to be the objective function value of the initial solution. During
its run, the “level” is iteratively lowered by a constant β where β is a decreasing rate.
Examples of research on great deluge algorithms can be found in Burke and Newall
(2003) and Petrovic et al. (2007).

3.4 A dynamic force decay rate great deluge based electromagnetic-like mechanism

This algorithm is a combination of two meta-heuristics: (1) electromagnetic-like
mechanism and (2) great deluge algorithm. The hybridization is done with the aim
of combining the strength of these two algorithms in tackling the two types of course
timetabling problem outlined in the previous section. The electromagnetic-like mech-
anism is used to calculate a total force TF and later will be used within the great
deluge algorithm to calculate a decreasing rate. This mechanism enables the great
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Step 1: Initialization:
Generate a population of initial solution as Soli where i = size of the
population;
Calculate the initial penalty cost, f(Soli);
Find the best solution among Soli, called Solbest
Set total number of iterations, NumOfIte;
Set number of iteration in great deluge algorithm, NumGD (note that
NumGD is set to 1000 in our experiments)
Set iteration ← 0;
Set iterationGD ← 0;

Step 2: Evaluation:
do while (iteration < NumOfIte)

for each population i where i = 1 to population size;
Calculate total force, TFi, based on electromagnetic-like

mechanism;
Set initial level: level ← f(Soli);
do while (iterationGD < NumGD || f(Soli) < level)

Apply a dynamic force decay rate great deluge algorithm;
end do

end for;
end do

Fig. 3 Generic pseudo-code for the algorithm

deluge algorithm to act as a multi-start Great Deluge (GD) in which the initial levels
are set based on the forces. The fundamental procedures of the algorithm are initial-
ization and evaluation, the later step involves the calculation of the total force and
modification of the timetable. The generic pseudo-code for the algorithm is shown in
Fig. 3.

The pseudo code for our implementation of the force decay rate great deluge al-
gorithm is adapted from Abdullah and Burke (2006) as presented in Fig. 4.

In Step 1 (see Fig. 3), for every population the quality of the solution Soli is mea-
sured, called f (Soli ). At the start, the best solution among Soli is set to be Solbest.
The initial level is set to be f (Soli ). In a do-while loop (which is in Step 2, Fig. 3),
for each population the total force, TFi , is calculated based on electromagnetic-like
mechanism. Note that, in the following explanation, please refer to Fig. 4. This value
(TFi ) is used to calculate estimated quality, EstimatedQuality, and decay rate, β .
A neighborhood structure which randomly assigns courses to a new valid timeslot
is applied. This move will generate a new solution, Sol∗i . The quality of the new so-
lution is measured, f (Sol∗i ). Sol∗i will be accepted if f (Sol∗i ) is better than the best
solution in hand, f (Solbest), or if f (Sol∗i ) is less than or equal to the “level”. Then,
the “level” will be decreased by the value β . The process is repeated and stops when
the termination criteria are met (the termination criteria are described for both types
of problem in the next section).
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Fig. 4 The pseudo code for the
dynamic force decay rate great
deluge algorithm

Calculate estimated quality of a solution,
EstimatedQuality = f(Soli) - TFi;
Calculate force decay rate, β =
EstimatedQuality/NumOfIte;
Define neighborhood of Soli by randomly assigning
course to a valid timeslot to generate a new solution
called Soli*;
Calculate f(Soli*);
if (f(Soli*) < f(Solbest))

Soli ← Soli*;
Solbest ← Soli*;

else
if (f(Soli*) ≤ level)

Soli ← Soli*;
level = level - β;

4 Experiments and results

The proposed algorithm was programmed using Matlab and simulations were per-
formed on an Intel Pentium 4 2.33 GHz computer and tested on eleven standard
benchmark course timetabling problem and twenty one datasets on curriculum-based
course timetabling problems. The parameters used were chosen after preliminary ex-
periments. The population size is set to 50, and is comparable to similar experimen-
tation in the literature (Birbil and Fang 2003).

4.1 Post enrollment-based course timetabling problem

The first series of experiments carried out in this section minimize the number of
students that has a course scheduled in the last timeslot of the day, a student that has
more than 2 consecutive courses and a student that has a single course on a day. The
following subsections illustrate two cases of the post-enrollment course timetabling
problems i.e. (i) Socha datasets and (ii) ITC2002 datasets.

4.1.1 Socha datasets

The details of these results can also be found in Turabieh et al. (2009). Termina-
tion is based on number of generations, and is initially set at 100,000 iterations. We
compare our approach with other algorithms on the eleven timetabling instances. The
algorithms compared in the table are described as follows:

M1: The genetic algorithm and local search by Abdullah and Turabieh (2008). They
tested a genetic algorithm with a repair function and local search on course
timetabling problems.

M2: The randomized iterative improvement algorithm by Abdullah et al. (2007a).
They presented composite neighborhood structures with a randomized iterative
improvement algorithm.
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M3: The graph hyper heuristic by Burke et al. (2007). They employed tabu search
with graph-based hyper-heuristics for the course and exam timetabling prob-
lems.

M4: The variable neighborhood search with tabu by Abdullah et al. (2005). They
used a variable neighborhood search based on a random descent local search
with Monte-Carlo acceptance criterion.

M5: The hybrid evolutionary approach by Abdullah et al. (2007b). They used a
randomized iterative improvement algorithm as a local search with a mutation
operator.

M6: The extended great deluge by McMullan (2007).
M7: The non linear great deluge by Linda-Silva and Obit (2008).
M8: The local search method by Socha et al. (2002).
M9: The ant algorithm by Socha et al. (2002). They developed an ant colony opti-

mization algorithm with a construction graph model.
M10: The fuzzy algorithm by Asmuni et al. (2005). They focused on fuzzy based

methods in ordering three different heuristics.
M11: The evolutionary algorithm by Rossi-Doria et al. (2003).

The best results out of 5 runs obtained are presented. Table 4 shows the comparison
of our results in terms of penalty cost with other available approaches in the literature
on eleven instances. The term “x%Inf.” in Table 4 indicates a percentage of runs
that failed to obtain feasible solutions. The best results are presented in bold. Our
algorithm is capable of finding feasible timetables for all cases.

It can be seen that the extended great deluge by McMullan (2007) has better re-
sults compared to others, followed by non-linear great deluge by Landa-Silva and
Obit (2008). In general, our approach is able to obtain competitive results with other
approaches in the literature. We extended our experiments by increasing the number
of iterations (200,000 iterations) with the objective of demonstrating that our algo-
rithm is able to produce good results given extra processing time. We note that in
real world situations, course timetabling is an off line problem, and the processing
time is usually not critical. The emphasis in this paper is on generating good quality
solutions, the price to pay for this is that there may be required an extended amount
of computational time. In a real world situation, course timetables are created months
before they are required, thus finding a feasible solution is more important than pro-
longing the search in order to generate good solutions. Table 5 shows the comparison
of our approach by prolonging the computational time with best known results in the
literature. The average running time for small datasets is 90 seconds, medium datasets
is 2 hours and large dataset is 6 hours. The time taken here is considered acceptable
based on the complexity of each dataset. We use the same amount of iterations i.e.
200,000 as Landa-Silva and Obit (2008) (note that the authors set a different number
of iterations for different groups of datasets) and McMullan (2007). Note that only
medium and large datasets are considered in this extended experiment. The small
datasets are not considered here due to the ability of our approach in obtaining global
optima in the previous experiment (see Table 4).

Again, the best results are presented in bold. Our objective here is to show that
our approach is not only able to produce good quality solutions but improves on the
best known results on four datasets. The extended experiments are able to improve
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Table 4 Comparison of our results with other approaches in the literature

Dataset Our method M1 M2 M3 M4 M5

small1 0 2 0 6 0 0

small 2 0 4 0 7 0 0

small 3 0 2 0 3 0 0

small 4 0 0 0 3 0 0

small 5 0 4 0 4 0 0

medium1 175 254 242 372 317 221

medium2 197 258 161 419 313 147

medium3 216 251 265 359 357 246

medium4 149 321 181 348 247 165

medium5 190 276 151 171 292 130

large 912 1026 100% Inf 1068 100% Inf 529

Dataset M6 M7 M8 M9 M10 M11

small1 0 3 8 1 10 0

small 2 0 4 11 3 9 3

small 3 0 6 8 1 7 0

small 4 0 6 7 1 17 0

small 5 0 0 5 0 7 0

medium1 80 140 199 195 243 280

medium2 105 130 202.5 184 325 188

medium3 139 189 77.5% Inf 248 249 249

medium4 88 112 177.5 164.5 285 247

medium5 88 141 100% Inf 219.5 132 232

large 730 876 100% Inf 851.5 1138 100%Inf

Table 5 Comparison with best known results

Dataset Our approach % improve with Best

100K iterations 200K iterations long run known

medium1 175 96 45.14% 80

medium2 197 96 51.27% 105

medium3 216 135 37.50% 139

medium4 149 79 46.98% 88

medium5 190 87 54.21% 88

large 912 683 25.11% 529

the solutions between 25% to 54% compared to our previous results. This illustrates
the effectiveness of our approach given extra computational time. It is interesting
to find that the large dataset obtains the lowest improvement i.e. 25.11% compared
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Fig. 5 The result of the
algorithm applied on medium4
dataset

to medium datasets. It can be argued that a higher number of courses, students and
room feature requirements (see Table 1) would imply that we might have less of and
more sparsely distributed solution points (feasible solutions) in our solution space
given the hard constraints which must be satisfied. However, our approach shows an
impressive improvement for medium datasets in which we believe that there are much
more solution points in the solution space even given the same amount of courses
(and where the number of students, M , and the requirement of room features, F , are
less). This shows that these two parameters (i.e. M and F ) are significant factors that
influence the search process in exploring the search space.

Figure 5 shows the performance of our approach on the medium4 dataset. This
graph demonstrates how the algorithm explores the search space. The x-axis repre-
sents the number of iterations whilst the y-axis represents the penalty cost. The curve
shows that the algorithm begins with an initial solution and rapidly improves the re-
sults in less than 10,000 iterations. It is believed the quality of the solutions obtained
in these experiments can be attributed to the ability of the algorithm in effective ex-
ploration of different regions of the solution space, applied to 50 different solutions
for each iteration. The figure also shows that by prolonging the search process, our
approach is able to further improve resultant solutions. However, the longer the search
times, the slower the rate of improvement.

4.1.2 ITC2002 datasets

The second experiments on the Post-enrollment course timetabling problems are per-
formed based on ITC2002 datasets where all the hard and soft constraints are same
as in Socha datasets. Table 6 shows the comparison of our final results in terms of
penalty cost (out of 5 runs) compared to other recent published results taken from
Chiarandini et al. (2006). The execution time is based on ITC2002 rules i.e. 547 sec-
onds for each instance.
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Table 6 Comparison results on ITC2002

Instance 1 2 3 4 5 6 7 8 9 10

Official winner 45 25 65 115 102 13 44 29 17 61

Best known result 45 14 45 71 59 1 3 1 8 52

Our results 52 20 78 74 71 6 6 15 32 58

Instance 11 12 13 14 15 16 17 18 19 20

Official winner 44 107 78 52 24 22 86 31 44 7

Best known result 30 75 55 18 8 5 46 24 33 0

Our results 30 88 105 51 34 10 121 26 57 5

Fig. 6 The result of the
algorithm applied on instance 11

From Table 6, we can see that our approach is able to obtain feasible solutions
for all datasets. We obtained better results on 13 instances than the official winner in
ITC2002, and ties on one instance with the best known result (i.e. instance 11).

Figure 6 shows the performance of our approach on instance 11. The x-axis rep-
resents the number of iterations whilst the y-axis represents the penalty cost. Again,
this graph represents how the algorithm explores the search space. The analysis of the
graph shows that there is a trend of the cost improvement as the number of generation
increases. The slope of the curve indicates a small decrease in the penalty cost as the
number of generation increases. It offers a high improvement at the early stage of the
search space.
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Fig. 7 Box plots of penalty costs

4.2 Curriculum-based course timetabling problem

The second series of experiments in this section deals with room capacity, minimum
working days, isolated lectures and room stability as stated in Sect. 2.2. The fol-
lowing subsections illustrate two cases of the Curriculum-based Course Timetabling
Problem; Basic Formulation (UD1) and ITC2007 Formulation (UD2).

4.2.1 Basic formulation (UD1)

The Basic formulation of the Curriculum-based Course Timetabling Problem was
released in 2006 by Gaspero et al. (2007), in which all hard constraints and three
out of four soft constraints i.e. S1, S2 and S3 (see Sect. 2.2) are considered. Table 7
shows the results obtained and the comparison with best known solutions.

The termination condition for each run is set to 600 seconds which is based on the
time allocated in the ITC2007.

The best results, average and standard deviation out of 10 runs are shown in Table 7
with varying random seeds. From Table 7, we can see that our approach is able to
obtain better or equal results on eight instances compared to best known results in the
literature.

Figure 7 shows the box plot of the penalty cost on some of the instances considered
in this experiment. The results from the figures show less dispersions of solution
points.

4.2.2 ITC2007 formulation (UD2)

The second experiments on Curriculum-based Course Timetabling Problem are per-
formed based on ITC2007 constraints: all hard and soft constraints are considered
(see Sect. 2.2). Table 6 shows the comparison of our final results in terms of penalty
cost compared to other recent published results in literature. Each run takes 600 sec-
onds for both construction and improvement phases based on our machine hardware
(as mentioned in Sect. 4) to make a reasonable comparison between other results.
The algorithms under comparison in the table comprise experiments tested during
the ITC2007 and other experiments under a greater computational time, and are de-
scribed as follows:
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Table 7 Comparison results on curriculum-based course timetabling-UD1

Instance Initial Our Approach Best known Solutiona

Solution Best Avg. Std Dev Time (s) Results Method Used

comp01 1869 4 5.9 2.28 346.85 4 Tabu Search

comp02 6776 12 18 4.69 462.81 20 Tabu Search

comp03 6041 40 46.1 4.17 372.21 38 Tabu Search

comp04 4429 23 28 4.42 299.61 18 Tabu Search

comp05 7513 230 237.4 6.25 173.25 219 Tabu Search

comp06 4310 14 19.7 3.33 267.46 16 Mathematical Programming

comp07 3119 10 17.6 4.37 422.36 3 Mathematical Programming

comp08 3007 25 29.4 3.37 530.20 20 Mathematical Programming

comp09 4537 65 73.9 6.04 493.06 54 Tabu Search

comp10 2479 10 13.1 3.28 236.80 2 Mathematical Programming

comp11 1212 0 0 0 155.42 0 Tabu Search

comp12 3155 252 265.2 10.95 142.25 239 Tabu Search

comp13 4828 40 47.8 5.90 537.96 32 Tabu Search

comp14 3254 33 39.3 4.47 583.32 27 Tabu Search

comp15 5717 39 41.4 2.67 534.82 28 Tabu Search

comp16 4888 11 19.7 6.66 428.27 16 Tabu Search

comp17 3808 30 38.6 5.54 455.78 34 Tabu Search

comp18 1495 38 46.5 5.85 483.71 34 Tabu Search

comp19 4609 37 44.1 5.62 338.72 32 Tabu Search

comp20 5852 2 8.3 5.01 399.59 11 Tabu Search

comp21 4459 43 54.5 8.94 367.91 52 Tabu Search

ahttp://tabu.diegm.uniud.it/ctt/index.php

A1: The repair-based timetable solver by Clark et al. (2008)
A2: The threshold acceptance metaheuristic by Geiger (2008)
A3: The tabu search approach by Lü and Hao (2010)
A4: The constraint-based solver by Müller (2009)
A5: The constraint satisfaction problem by Atsuta et al. (2007)
A6: The dynamic tabu search by De Cesco et al. (2008)
A7: The integer programming method by Lach and Lübbecke (2008)
A8: The tabu search with relaxed stopping condition by Schaerf (in Lü and Hao

2010)

Again, the best results out of 5 runs obtained are presented. Table 8 shows the
comparison of our results in terms of penalty cost with other available approaches
in the literature on twenty one instances. Note that the shaded areas represent results
from ITC2007. Other results were obtained under a different number of trials but
same computational time. The term “–” in Table 8 indicates that the instances have
not been attempted in the experiment. The best results are presented in bold.

From Table 8, we can see that our approach is able to obtain better or equal re-
sults on four instances compared to best known results in the literature. In all of

http://tabu.diegm.uniud.it/ctt/index.php
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Table 8 Comparison results on curriculum-based course timetabling

Instance Our approach A1 A2 A3 A4 A5 A6 A7 A8 Besta

Best Ave known

comp01 5 5 9 5 5 5 5 5 13 5 5

comp02 39 53.9 103 108 34 43 50 75 43 56 29

comp03 76 84.2 101 115 70 72 82 93 76 79 66

comp04 35 51.9 55 67 38 35 35 45 38 38 35

comp05 315 339.5 370 408 298 298 312 326 314 316 292

comp06 50 64.4 112 94 47 41 69 62 41 55 28

comp07 12 20.2 97 56 19 14 42 38 19 26 6

comp08 37 47.9 72 75 43 39 40 50 43 42 38

comp09 104 113.9 132 153 99 103 110 119 102 104 96

comp10 10 24.1 74 66 16 9 27 27 14 19 4

comp11 0 0 1 0 0 0 0 0 0 0 0

comp12 337 355.9 393 430 320 331 351 358 405 342 310

comp13 61 72.4 97 101 65 66 68 77 68 72 59

comp14 53 63.3 87 88 52 53 59 59 54 57 51

comp15 73 88 119 128 69 84 82 87 – 79 68

comp16 32 51.7 84 81 38 34 40 47 – 46 22

comp17 72 86.2 152 124 80 83 102 86 – 88 60

comp18 77 85.8 110 116 67 83 68 71 – 75 65

comp19 60 78.1 111 107 59 62 75 74 – 64 57

comp20 22 42.9 144 88 35 27 61 54 – 32 4

comp21 95 121.5 169 174 105 103 123 117 – 107 86

ahttp://tabu.diegm.uniud.it/ctt/index.php

the cases, our approach is better than Clark et al. (2008), and Geiger (2008) (equal on
comp01 and comp11), better than Atsuta et al. (2007) (equal on comp01, comp04 and
comp11) and Müller (2009) (equal on comp01 and comp11) on seventeen instances,
and better than Lü and Hao (2010) on fifteen instances (also equal on comp01 and
comp11). Figure 8 shows the box plot of the penalty cost on some of the instances
considered in this experiment. The results from the figures show less dispersions of
solution points.

Additional experiments have been carried out to test the performance of our ap-
proach on additional instances coded as DDS1–DDS7, Test1–Test4 and Toy. The
details of these instances such as the data sets, solution checker, portfolio of formu-
lations for the curriculum-based course timetabling, and other solutions contributed
from the research community can be found at http://tabu.diegm.uniud.it/ctt/index.php.
The results from Table 9 show that our approach is able to obtain optimal solutions
on DDS2–DDS7 instances and able to beat best known results on the Test3 instance.

We believe that introducing a dynamic force value that is iteratively calculated
using EM algorithm (treated as a decreasing rate) helps the great deluge algorithm in
accepting or rejecting a new solution during the search process, rather than using a
fixed decreasing value as originally proposed in the standard great deluge algorithm.

http://tabu.diegm.uniud.it/ctt/index.php
http://tabu.diegm.uniud.it/ctt/index.php
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Fig. 8 Box plots of penalty costs

Table 9 Comparison with best known results on additional course timetabling instances

Dataset DDS1 DDS2 DDS3 DDS4 DDS5 DDS6 DDS7

Our approach 155 0 0 30 0 4 0

Best knowna 83 0 0 30 0 0 0

Dataset Test1 Test2 Test3 Test4 Toy

Our approach 224 16 67 82 0

Best knowna 224 16 73 73 0

ahttp://tabu.diegm.uniud.it/ctt/index.php

It also helps the great deluge algorithm to control the estimated value rather than
manually set (as in standard great deluge). This mechanism helps the search process
to explore more points in different directions. This can increase the possibility of
obtaining improved solutions.

5 Conclusion

This paper presents a force decay rate great deluge based electromagnetism-like
mechanism to solve the course timetabling problems, where a force calculated from
the electromagnetic-like mechanism is applied as a decreasing rate to be used within
the great deluge algorithm. To our knowledge, this is the first such algorithm aimed at
this problem domain. In order to test the performance of our approach, experiments
are carried out based on enrollment-based and curriculum-based benchmark prob-
lems and compared with state-of-the-art methods from the literature. The experimen-
tal results show that the proposed approach is competitive and works comparatively
well across all problem instances in comparison with other approaches studied in the
literature. The fact that the approach provides good solutions to two different models
of the UCTP points to the generality of the approach. With the help of the dynamic
force value, it is clear that our approach is effective in finding (near) optimal solutions
for the course timetabling problem and hence can act as one of the powerful tools in
solving difficult problems within this domain.

http://tabu.diegm.uniud.it/ctt/index.php
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