
J Electron Test (2017) 33:751–767

Evaluating the Effectiveness of D-chains in SAT-based
ATPG and Diagnostic TPG

Pascal Raiola1 · Jan Burchard1 · Felix Neubauer1 ·Dominik Erb2 ·Bernd Becker1

Received: 9 August 2017 / Accepted: 10 November 2017 / Published online: 8 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract The ever increasing size and complexity of
today’s Very-Large-Scale-Integration (VLSI) designs
requires a thorough investigation of new approaches for
the generation of test patterns for both test and diagno-
sis of faults. SAT-based automatic test pattern generation
(ATPG) is one of the most popular methods, where, in
contrast to classical structural ATPG methods, first a
mathematical representation of the problem in form of
a Boolean formula is generated, which is then evalu-
ated by a specialized solver. If the considered fault is
testable, the solver will return a satisfying assignment, from
which a test pattern can be extracted; otherwise no such
assignment can exist. In order to speed up test pattern gen-
eration, the concept of D-chains was introduced by several
researchers. Thereby supplementary clauses are added to
the Boolean formula, reducing the search space and guiding

Responsible Editor: L. M. Bolzani Pöhls

� Pascal Raiola
raiolap@informatik.uni-freiburg.de

Jan Burchard
burchard@informatik.uni-freiburg.de

Felix Neubauer
neubauef@informatik.uni-freiburg.de

Dominik Erb
dominik.erb@infineon.com

Bernd Becker
becker@informatik.uni-freiburg.de

1 Computer Architecture, University of Freiburg,
Freiburg (Breisgau), Germany

2 Infineon Technologies AG, Neubiberg, Germany

the solver toward the solution. In the past, different variants
of D-chains have been developed, such as the backward
D-chain or the indirect D-chain. In this work we perform
a thorough analysis and evaluation of the D-chain variants
for test pattern generation and also analyze the impact
of different D-chain encodings on diagnostic test pattern
generation. Our experimental results show that depending
on the incorporated D-chain the runtime can be reduced
tremendously.

Keywords Automatic test pattern generation · D-chain ·
SAT-based ATPG · Test pattern generation for diagnosis

1 Introduction

With the increasing size of today’s VLSI designs, classi-
cal automatic test pattern generation (ATPG) algorithms as
used in state-of-the-art commercial tools start to run into
scalability issues. Thus, test pattern generation – even for
standard stuck-at tests – may require several weeks on a
whole server-farm in order to guarantee a high fault cover-
age and a compact test set. Consequently, new algorithms
are required that may reduce the runtime significantly. In
this context, SAT-based algorithms are getting more and
more popular [4, 5, 7, 10, 11, 13, 20, 25, 27, 31, 32,
34, 37]. These algorithms promise a remarkable perfor-
mance even on large industrial benchmarks [29, 34] and are
clearly superior compared to classical algorithms as soon as
faults are processed for which no test pattern exists. Fur-
thermore, they support higher valued logics [13, 14, 27],
waveform accurate encoding of timing information [24] and
integration of sophisticated fault models [4, 11, 25, 37]
in a convenient way. Algorithms to solve Pseudo-Boolean
Optimization (PBO) problems [1] are often built on top

https://doi.org/10.1007/s10836-017-5693-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-017-5693-6&domain=pdf
http://orcid.org/0000-0003-1630-5952
mailto:raiolap@informatik.uni-freiburg.de
mailto:burchard@informatik.uni-freiburg.de
mailto:neubauef@informatik.uni-freiburg.de
mailto:dominik.erb@infineon.com
mailto:becker@informatik.uni-freiburg.de


752 J Electron Test (2017) 33:751–767

of SAT-algorithms. Using so-called PBO-SAT allows the
handling of non-trivial constraints and as such is also appli-
cable to ATPG for advanced fault models [9].

In contrast to classical structural ATPG, a SAT-based
algorithm first generates a mathematical representation of
the problem. Afterwards, the resulting equation is evalu-
ated by a specialized solver to determine the testability of a
fault and to extract a test pattern in case a satisfying assign-
ment was found. The concept of D-chains, which extend
the mathematical model with additional information, was
introduced [20, 31] to increase the solving speed. D-chains
drastically reduce the search space by forcing the solver to
only consider assignments that could lead to a valid test
pattern. With the advent of incremental solving [8] new con-
cepts like backward D-chains [12] or indirect D-chains [2,
5] were introduced.

In [2] we furthermore analyzed different D-chain con-
cepts for test pattern generation and evaluated their benefits
depending on the considered fault model and circuit type for
the first time. In this work we elaborate on the investigation
of [2] and expand it by an analysis on the impact of differ-
ent D-chain concepts on SAT-based diagnostic test pattern
generation. In particular, we present:

– A thorough investigation of the different D-chain concepts
that have been proposed so far to evaluate which is the
best method for different kinds of problems for ATPG.

– An indirect D-chain algorithm with two novel hybrid
extensions that not only achieves good overall speed-
ups but is especially well suited for cryptographic
circuits.

– Experimental results for ATPG considering stuck-at and
transition-delay faults, for different kinds of academic
and industrial benchmarks.

– An investigation on diagnostic test pattern generation
(DTPG), where the new concept of the Early Target
Backward Implication D-chain is introduced and exper-
imental results for academic and industrial benchmarks
are presented.

Our experimental results show that depending on the
incorporated D-chain the total solve time can be signif-
icantly reduced by over 90% compared to an algorithm
that does not include a D-chain. Furthermore, the notable
advantages of the backward, indirect and hybrid D-chain
approaches compared to the standard forward D-chain are
demonstrated.

The rest of the paper is organized as follows: Section 2
introduces the fault models as well as SAT-based ATPG
and DTPG. Afterwards, in Section 3 we present the differ-
ent D-chain techniques for ATPG and introduce our new
hybrid indirect D-chains. In Section 4 we transfer the D-
chains to DTPG and propose the new early target backward
D-chain. Subsequently, we evaluate the different D-chains

in Section 5 and conclude with a short summary and outlook
in Section 6.

2 Preliminaries

2.1 Automatic Test Pattern Generation

In the area of circuit test, fault models are widely used to
abstract from real physical defects toward a formal model.
Based on such a fault model, the circuit can be tested for
the presence or absence of the modeled faults using input
stimuli, so-called test patterns.

Automatic test pattern generation (ATPG) algorithms
compute such test patterns for a given fault if they exist
and are utilized throughout the industry. Historically, struc-
tural methods like the D-algorithm [22] or its improvements
[15, 18] proved to be successful in generating test patterns
and have been studied in great detail. A newer technique is
SAT-based ATPG which leverages the ever increasing power
of Boolean satisfiability (SAT) solvers to generate test pat-
terns. Unlike structural methods which work directly on the
circuit, methods based on SAT convert the entire ATPG
problem into a mathematical representation, a Boolean for-
mula. This formula is then evaluated by a SAT solver and
a test pattern can be extracted from the satisfying variable
assignment. If there is no satisfying assignment (the formula
is unsatisfiable), it is proven that no test pattern for the fault
exists.

2.2 Fault Models

In this article, we focus on the two widely used fault mod-
els stuck-at [16] and transition-delay [3, 19] which can both
be easily handled by a SAT-based ATPG. In more complex
fault models the difficulty of a successful fault propaga-
tion or justification might be much larger and D-chains
even more important [12, 13]. Generally, the pattern gener-
ation for most fault models can be transformed to the SAT
problem with ease and efficiently solved with ever more
powerful SAT-solvers, which is one of the great benefits of
this approach.

In the (single) stuck-at fault model a single line in the
circuit is always ‘0’ or ‘1’ (referred to as stuck-at-0 and
stuck-at-1, respectively) independent of the line’s true value.
The transition-delay model further refines these strict con-
ditions by instead considering slow-to-rise and slow-to-fall
faults evolving over two time frames. A line with a slow-to-
rise fault that is ‘0’ in the first time frame will maintain this
‘0’ even if it switches to ‘1’ in the second time frame in a
fault-free circuit. Similarly, a line with a slow-to-fall fault
maintains a ‘1’ of the first time frame even if it switches
to ‘0’ in the second one. Hence, the transition-delay fault



J Electron Test (2017) 33:751–767 753

model also covers defects where lines are not stuck at a fixed
value but also do not react to value changes at the required
speed. Not all such defects can be detected with the stuck-at
model. However, the transition-delay model comes with the
additional cost of modeling two time frames instead of only
one.

2.3 Conversion to SAT

The general conversion of a circuit into a Boolean formula
is well studied and mainly consists of introducing variables
for the circuit inputs and every gate output and subsequently
applying the Tseitin transformation [35] to every gate. The
resulting formula represents the circuit and a satisfying vari-
able assignment corresponds to an input assignment to the
circuit as well as a valid propagation of this assignment.
It should be noted that our approach is capable of directly
mapping standard gates with more than two inputs into
CNF as well. This offers a much more efficient encoding
than a decomposition of these gates into multiple two-
input gates. Complex cells (e.g., AND-OR-Invert cells) are
mapped to standard gates based on their description in the
cell library.

Based on this conversion, a SAT-based ATPG algorithm
utilizes two representations of the circuit: A fault-free ver-
sion is used to evaluate the circuit under normal conditions
and a fault-affected version tracks the influence of the cur-
rent fault. If an output of the two versions differs for the
same input assignment, the fault is detected and the input
assignment can be used as a test pattern. The difference
between outputs is encoded through one XOR gate per
output, resulting in a miter circuit (see Fig. 1) which is trans-
formed into a Boolean formula. In addition, the variables
representing the outputs of the XOR clauses are combined
into a single clause. This ensures that the formula is only
satisfiable if at least one of the outputs shows a difference.

2.3.1 Cones of Influence

For efficiency, only the required parts of the circuit are
transformed into the formula. These parts are marked by a
cone of influence computation (see Fig. 2) which greatly
reduces the overall size of the formula.

Fig. 1 A miter circuit consisting of the fault-free and fault-affected
circuit and an XOR gate for each output

Fig. 2 The cones of influence which need to be modeled

The justification cone of the fault site and the support
for the fault propagation are only required once since they
are independent of the fault. Thus, only the propagation
cone needs to be modeled in two different versions repre-
senting the fault-free and faulty circuit. Here, signals are
represented not only by a G variable (for the good circuit)
but also an additional B variable for the bad version.

For the transition-delay fault model the first time frame
needs to be modeled as well. In this time frame the faulty
line has to be charged to the required value. In addition,
assuming a launch-on-capture test architecture [26], all flip-
flop values required in the second time frame need to be
set in the first time frame. This requires additional cones of
influence, but the overall modeling remains unchanged.

2.3.2 Modeling the Fault

For the stuck-at fault model, the fault-affected line is simply
cut into two parts (represented by two variables): The sec-
ond part is forced to the value that the line is stuck at. The
first part of the line is forced to the inverse of the stuck-at
fault (to ‘1’ for a stuck-at-0 and vice-versa) which ensures
the fault activation.

Similarly, the line affected by a transition-delay fault is
also split into two parts in both time frames. The first part
is forced to the required transition (e.g., for a slow-to-rise
fault to ‘0’ in the first time frame and to ‘1’ in the second),
whereas the second part behaves like a stuck-at fault (e.g,
for a slow-to-rise fault the line will stay at ‘0’ in both time
frames).

2.4 Incremental Solving

To be able to detect a fault, its effect has to be visible on at
least one output. The incremental solving approach [33] first



754 J Electron Test (2017) 33:751–767

generates a formula which is satisfiable if the fault effect
can be seen at the first output in the propagation cone of
the fault. This formula is usually much smaller because it
only contains the gates in the input cone of the modeled
output. If the formula is satisfied, the fault is detected and
the ATPG can continue with the next fault. Otherwise the
formula is extended with clauses representing the input cone
of the second output, reusing all previously modeled gates.
This approach continues until a test pattern was found or
all outputs have been tried, in which case the fault is not
detectable.

Incremental solving provides the benefits of initially
smaller formulas and of guiding the search process because
the fault effect has to be propagated to a single output.
Therefore, especially for easy to solve instances it provides
large increases in solving speed.

2.5 Diagnostic Test Pattern Generation (DTPG)

In contrast to fault detection, the objective of fault diagnosis
is to investigate the location of the fault. Faults at differ-
ent locations can be distinguished by applying a test pattern
that causes different output signal values for the given faults
– such a test pattern is called a diagnostic test pattern. We
implemented a SAT-based approach to generate diagnostic
test patterns with the goal of distinguishing all faults, that
can be distinguished.

For the generation of such a diagnostic test pattern, a
miter circuit (see Fig. 3) similar to the miter circuit for
ATPG is utilized and transformed into a Boolean formula.
Note that in contrast to the miter for the generation of a
fault detection test pattern, here a difference between two
faulty circuit versions is considered. The XOR gates encode
an output difference between the respective propagated fault
effect, thus the corresponding Boolean formula is satisfiable
if a pattern exists which allows the detection of only one
fault at least at one output.

Similar to the encoding described in Section 2.3.1, we
only encode the required parts of the circuit. However, in
the context of DTPG two faults with their respective cones
need to be encoded (see Fig. 4).

In general, a diagnostic test pattern generation algo-
rithm uses classification to distinguish every distinguishable

Fig. 3 A miter circuit consisting of two representations of the circuit,
each affected by a different fault, and an XOR gate for each output

Fig. 4 The cones of influence which need to be modeled for diagnos-
tic test pattern generation. The two faults fα and fβ are marked with
red crosses

fault-pair. It hereby starts with one class containing all faults,
picks two faults out of that class and aims at generating a
diagnostic test pattern which distinguishes the two faults.
If no such test pattern can be found, the faults are marked
as indistinguishable; in case a distinguishing test pattern is
found, every fault is simulated once for the given pattern.
The respective output values are used to divide the current
classes into multiple classes of (yet) indistinguishable faults.
Note that indistinguishable faults form equivalence classes
for two-valued logic [21, 23], thus an indistinguishable fault
pair can be merged for diagnostic classification.

This process is repeated for every class until no class
contains any distinguishable faults.

3 D-chains in ATPG

The general SAT-based ATPG algorithms introduced in the
previous chapter can generate all possible test patterns.
However, a drawback of utilizing a SAT solver is that the
structural information of the circuit is not directly used by
the solver. Hence, it might occur that the solver spends a
large fraction of the solve time in regions of the search space
which will never lead to a valid test pattern.

D-chains add redundant information based on structural
information to the Boolean formula which helps to guide
the solve process [20]. This is achieved by augmenting each
gate output with a new variable D which encodes whether
there is a difference between the fault-free and fault-affected
version of the circuit.

Examples for such augmentation based D-chains are the
forward [20, 31] and backward [12] implication D-chains as
well as a combination of the two. In addition we presented



J Electron Test (2017) 33:751–767 755

in [2] an indirect D-chain [5] implementation and two novel
hybrid variants which reduce the amount of redundant infor-
mation. All of these D-chain types are described in detail in
the following subsections.

3.1 Forward Implication D-chain

The forward implication D-chain attempts to enforce the
propagation of the difference along paths to an output. For
each gate output a new variable Df is introduced. Assigning
Df to ‘1’ implies that there is a difference at this output:

Df ⇒ (G ⊕ B) (1)

or equivalently in conjunctive normal form (CNF):

(Df ∨ G ∨ B) ∧ (Df ∨ G ∨ B) (2)

Assuming that the gate output is connected to n succes-
sor gates with the difference variables Df 1, . . . , Df n

the
following D-chain clause is added to the formula:

Df ⇒ (Df 1 ∨ Df 2 ∨ · · · ∨ Df n
) (3)

A difference at the current gate output implies that the dif-
ference will propagate to at least one output of a successor
gate. In case it is not possible to propagate the difference to
any successor output Df cannot be assigned to ‘1’.

As an example consider the gate Gt1 in Fig. 5. The gate’s
output is connected to two gates and the D-chain clause
becomes Df1 ⇒ (Df2 ∨Df3) as indicated by the red arrows.

When combined with incremental solving, extra care has
to be taken to ensure the forward D-chain implies only D

variables of gates that are actually modeled. This is achieved
by forcing all D variables of gates which are not modeled
but occur in the forward D-chain to ‘0’.

3.2 Backward Implication D-chain

While the forward implication D-chain adds a chain which
implies the Df values of succeeding nodes, the backward
D-chain implies the D values of preceding nodes.

Fig. 5 Circuit with an example for the forward implication D-chain in
red and an example for the backward implication D-chain in blue

Assuming that a gate has m inputs with the difference
variables D1, . . . , Dm, its output can only show a difference
if at least one of the inputs also shows a difference:

D ⇒ (D1 ∨ D2 ∨ · · · ∨ Dm) (4)

This also allows for a strengthening of the difference vari-
able:

D ⇔ (G ⊕ B) (5)

Should one of the gate’s inputs be outside the fault propaga-
tion cone it cannot have a difference and the corresponding
D variable is simply omitted from Formula (4). In the exam-
ple circuit in Fig. 5, the backward D-chain is indicated in
blue and creates the clause D4 ⇒ (D2 ∨ D3) for the gate
Gt4.

The backward D-chain can be easily implemented in
combination with incremental solving, which considers all
gates in the input cone of the current output. The entire
backward D-chain for this cone can be created because all
these gates are guaranteed to be part of the current iteration.

3.3 Combined D-chains

When a backward D-chain is already in place, a cheaper
forward D-chain can be added. This is because Formula (1)
which requires two clauses can then be replaced by the
single clause

Df ⇒ D (6)

Thus, the combination of both D-chains requires slightly
fewer clauses than the sum of the single implementations of
both D-chains.

3.4 Indirect D-chain

The previously discussed D-chains add extra information
to the formula to guide the solver. In contrast, we present
an indirect D-chain which reduces the amount of redundant
information by completely removing the B value. Instead,
for every signal in the fault propagation cone only the good
value G and the difference D are computed. The idea for
such an indirect D-chain was first introduced in [5]. How-
ever, the presented D-chain is limited to gates with at most
two inputs only. The indirect D-chain presented in this work
is applicable to all gates, including those with more than two
inputs.

While the computation of the G value can be easily
performed by converting the gate with the Tseitin transfor-
mation, the D value at a gate output cannot be derived so
easily. As an example consider Formula (7) which shows



756 J Electron Test (2017) 33:751–767

the required clauses for a two input AND gate with inputs
represented by the variables G1 and G2, differences D1 and
D2, and an output with the difference variable D.

D ⇒ ((D1 ∨ D2) ∧ (D1 ∨ G1) ∧ (D2 ∨ G2) (7)

∧ (G1 ∨ G2 ∨ D2) ∧ (G2 ∨ G1 ∨ D1)
)

D ⇒ (
(G1 ∨ D1 ∨ D2) ∧ (D1 ∨ G2 ∨ D2)

∧ (G1 ∨ D1 ∨ G2 ∨ D2) ∧ (G1 ∨ G2 ∨ D2)
)

Directly deriving the D value instead of first comput-
ing B and using an XOR to obtain it, can result in a
smaller overall formula. This is especially the case on the
outer perimeter of the fault propagation cone where many
gates have only one input which can be different. How-
ever, the number of clauses grows exponentially with the
number of gate inputs potentially showing a difference.
Therefore the overall formula size could grow significantly
large, depending on the structure of the circuit.

3.5 Hybrid Indirect D-chain

Based on the previous observations, the hybrid D-chain
modeling attempts to combine the conventional D-chain
concept with the indirect method. Generally, the gates in
the fault propagation cone are encoded using the indirect
method. However, for gates with a large number of inputs
that can potentially show a difference between the fault-
free and the faulty circuit, a B value is derived from these
inputs (B ⇔ G ⊕ D) and the gate is encoded through the
Tseitin transformation. The gate output’s D value is then
re-computed as in Formula (5).

For the selection of gates which are to be encoded in the
classical manner we developed two heuristics. They are both
based on the number of circuit inputs that can potentially
have a difference between the good and bad version of the
circuit.

– Static Selection: Models all gates where more than one
input can have a difference in a conventional man-
ner. This heuristic is based on the observation that the
indirect encoding is especially beneficial when only
few circuit inputs can have a difference. When, on
the other hand, many gate inputs have a difference,
the conventional encoding might be cheaper and more
efficient.

– Dynamic Selection: The dynamic selection heuristic
extends the static selection based on the observation
that any change from indirect to conventional encod-
ing (and back) is rather expensive since additional XOR
operations have to be performed. Nodes are selected
for conventional modeling in a three step approach. In
the first step the score of each node is computed. The

score is the number of inputs that can show a differ-
ence. Next, the combined successor score css for each
node is computed as the sum of the score of all succes-
sor nodes. Each node with a css of two or larger has to
provide a B value at its output. This can be achieved in
two ways: Either the node is modeled conventionally or
an XOR gate is added to re-create it. In the last step,
the final decision regarding the conventional modeling
is performed. When a node has more than one input
that can have a difference, and for at least all but one of
these inputs a B value is available, it will be encoded
conventionally.

Both heuristics attempt to strike a balance between the two
modeling methods with the hope of resulting in a smaller
and more efficient overall formula and faster solving speed.

4 D-chains in Diagnostic TPG

While in the context of automatic test pattern generation
a difference between the fault-free and the fault-affected
circuit is targeted, a diagnostic test pattern is required to pro-
duce a difference between two circuits, which are affected
by different faults fα and fβ .

As only the required parts of the circuit are encoded in the
Boolean formula (see Fig. 4), the targeted difference at the
outputs varies depending on the propagation cone an output
is contained in:

– If an output is contained in the propagation cone of
solely one fault, the given fault pair can be distin-
guished, if the fault can be detected at that output.

– If the output is in the propagation cone of both faults,
the faults can be distinguished at that output, if only one
fault is detected.

The respective targeted differences are given in Table 1.
In the following we present different D-chain concepts

for diagnostic test pattern generation, which are derived
from the D-chains presented in Section 3. This work further-
more introduces the concept of the early target backward
implication D-chain, which aims at guiding the solver from
the outputs toward a fault-site, while distinguishing two
faults. This D-chain is unique to diagnostic pattern genera-
tion and cannot be applied to ATPG.

Table 1 Variation of difference encoding for diagnostic TPG

prop. cone fα prop. cone fβ targeted difference

3 7 G ⊕ Bα

7 3 G ⊕ Bβ

3 3 Bα ⊕ Bβ



J Electron Test (2017) 33:751–767 757

4.1 Forward Implication D-chain

In diagnostic test pattern generation the forward implication
D-chain aims at propagating a fault difference – if existent
– from a fault site to succeeding nodes, introducing the new
variables Dα

f and D
β
f for each gate output in the respective

fault cone:

Dα
f ⇒ (G ⊕ Bα) and D

β
f ⇒ (G ⊕ Bβ) (8)

Thus, depending on which propagation cone a signal line is
contained in, it potentially has 5 variables corresponding to
the signal (see Table 2).

Assume that Dα
f1

, Dα
f2

, . . . Dα
fn

and D
β
f1

, D
β
f2

, . . . D
β
fn

are
the difference variables of all n successor gates. Then the
following D-chain clauses are created, formalizing, that a
fault effect is propagated to at least one output of a successor
gate:

Dα
f ⇒ (Dα

f1
∨ Dα

f2
∨ · · · ∨ Dα

fn
) (9)

D
β
f ⇒ (D

β
f1

∨ D
β
f2

∨ · · · ∨ D
β
fn

) (10)

A test pattern distinguishes the two faults fα and fβ if the
targeted difference from Table 1 holds for one output. Some
targeted differences can be equivalently described on the
basis of the D-values, as displayed in Table 3.

4.2 Backward Implication D-chain

Contrary to the forward implication D-chain, the backward
implication D-chain targets propagating a fault difference –
if existent – to preceding nodes, introducing the new vari-
ables Dα and Dβ for each gate output in the respective fault
cone:

Dα ⇔ (G ⊕ Bα) and Dβ ⇔ (G ⊕ Bβ) (11)

Thus, for each signal line there are potentially 5 variables
corresponding to the signal (see Table 4).

Assume that Dα
1 , Dα

2 , . . . Dα
m and D

β

1 , D
β

2 , . . . D
β
m are

the difference variables of all m predecessor gates. Simi-
lar to the creation of Eqs. 9 and 10, the following D-chain
clauses are generated, formalizing, that a gate output can

Table 2 Values used for the forward implication D-chain in diagnostic
test pattern generation

prop. cone fα prop. cone fβ encoded signals

7 7 G

3 7 G, Bα , Dα
f

7 3 G, Bβ , D
β
f

3 3 G, Bα , Bβ , Dα
f , D

β
f

Table 3 Variation of difference encoding for diagnostic TPG

prop. cone fα prop. cone fβ targeted difference

3 7 Dα
f

7 3 D
β
f

3 3 Bα ⊕ Bβ

only show a fault effect, if a fault effect shows at least at one
of the gate’s inputs:

Dα ⇒ (Dα
1 ∨ Dα

2 ∨ · · · ∨ Dα
m) (12)

Dβ ⇒ (D
β

1 ∨ D
β

2 ∨ · · · ∨ Dβ
m) (13)

The targeted differences can be equivalently described on
the basis of the D-values, as displayed in Table 5. Note
that all targeted differences are expressed by using solely
D-Literals.

4.3 Early Target Backward Implication D-chain

As an alternative to checking the targeted difference only at
the outputs, a variable DT can be introduced for each gate
g. The definition of DT depends on which fault propagation
cone contains g, similarly as for the targeted difference in
Table 1:

DT :=
⎧
⎨

⎩

Bα ⊕ Bβ if both prop. cones contain g

G ⊕ Bα if prop. cone of fα contains g

G ⊕ Bβ if prop. cone of fβ contains g

(14)

Then there is no need to separately compute the fault dif-
ferences, as it was the case for Eqs. 12 and 13. Instead both
equations can be replaced by Eq. 15. Thereby the target con-
dition DT is transferred from the output of the current gate
to one of its predecessors and the solver guided toward an
early distinction of the faults:

DT ⇒ (DT
1 ∨ DT

2 ∨ · · · ∨ DT
m) (15)

Note that in the shared propagation cone of both faults, DT

is defined as Bα ⊕Bβ . Hence there is no need to encode the
G value, reducing the maximal number of encoded values
per signal to 3 (see Table 6).

Table 4 Values used for the backward implication D-chain in diag-
nostic test pattern generation

prop. cone fα prop. cone fβ encoded signals

7 7 G

3 7 G, Bα , Dα

7 3 G, Bβ , Dβ

3 3 G, Bα , Bβ , Dα , Dβ



758 J Electron Test (2017) 33:751–767

Table 5 Variation of difference encoding for diagnostic TPG

prop. cone fα prop. cone fβ targeted difference

3 7 Dα

7 3 Dβ

3 3 Dα ⊕ Dβ

This reduction of encoded values results in a reduction of
both search space and formula size compared to the standard
backward implication D-chain.

4.4 Indirect D-chain

The indirect D-chain completely refrains from using B val-
ues, utilizing instead both the G and D value of a signal.
For the context of diagnostic test pattern generation, the
used values depend on the propagation cone(s) a signal is
contained in, as described in Table 7.

4.5 Hybrid Indirect D-chain

As described in Section 3.5, the hybrid indirect D-chain
partly re-calculates the B value, based on an either dynamic
or static selection heuristic. The heuristics can be indepen-
dently calculated and applied for both faults and thereby
directly translated to the concept of pattern generation for
diagnosis.

5 Evaluation

We evaluated the impact of all previously discussed D-
chains on automatic test pattern generation for combina-
tional variants of the largest ITC’99 benchmarks [6], large
industrial circuits by NXP as well as artificial cryptographic
benchmark circuits based on the advanced encryption stan-
dard (AES) [17]. The circuits were synthesized with the
45 nm version of the NanGate cell library [36] which con-
tains a large selection of complex cells. Further information
on the benchmarks is listed in Table 8. It should be noted
that the AES benchmark circuits are not highly optimized
cipher implementations but artificial benchmarks that were

Table 6 Values used for the early target backward implication D-
chain in diagnostic test pattern generation

prop. cone fα prop. cone fβ encoded signals

7 7 G

3 7 G, Bα , DT

7 3 G, Bβ , DT

3 3 Bα , Bβ , DT

Table 7 Values used for the indirect D-chain in diagnostic test pattern
generation

prop. cone fα prop. cone fβ encoded signals

7 7 G

3 7 G, Dα

7 3 G, Dβ

3 3 G, Dα , Dβ

generated for the analysis of fault attacks. As such they
are purely combinational and without any flip-flops; they
are ideal to gage the performance of the presented algo-
rithms on highly complex and deep circuits with many
reconvergences.

All computations were performed on an Intel Xeon E5-
2643 CPU clocked at 3.3 GHz with 64 GB of main memory.
The SAT solver antom [28] with a timeout of 10 seconds
was used as back-end. All methods were incorporated under
the phaeton framework, introduced in [25].

The ATPG algorithm is used without fault simulation to
evaluate the unbiased impact of the different D-chain imple-
mentations. Thus, a new Boolean formula is created for
every single fault resulting in considerably higher runtimes
than those observed in an ATPG with fault simulation. How-
ever, only with this strategy a fair comparison of different
algorithms is possible, as otherwise the different D-chains
would result in different test patterns – as the formulas eval-
uated by the solver are different – and hence fault simulation
could lead to the problem that completely different faults
are considered by the different approaches.

Furthermore, for the initial experiments incremental
solving is not utilized. While incremental solving does not
change the order of computation, it does enforce the prop-
agation of the fault effect to a single specific output. As
such it limits the possibilities for the fault propagation
and thereby potentially the influence of the D-chains. The
influence of incremental solving is analyzed in Section 5.3.

Experimental results for the impact of different D-chain
concepts on the total solve time are presented for the stuck-
at ATPG, transition-delay ATPG and stuck-at DTPG in
Tables 9, 10 and 11 respectively. Changes in total runtime
are listed in Table 12 for the stuck-at ATPG.

5.1 Solve Time (ATPG)

For each D-chain type we measured the change in total
solve time compared to the basic SAT-based ATPG without
any D-chain. The difference between the different ATPG
modes lies only with the addition or absence of a D-chain.
The experiments were performed for the stuck-at as well as



J Electron Test (2017) 33:751–767 759

Table 8 Detailed information about the benchmark circuits used for the evaluation

Stuck-at ATPG Transition-delay ATPG

Circuit #Inputs #Outputs #Gates #Fault #Undetectable Fault #Fault #Undetectable Fault

Instances coverage Instances coverage

ITC’99 b15 485 519 3 395 15 724 199 98.73 % 24 132 2 407 90.03 %

b17 1 451 1 511 11 345 52 455 642 98.78 % 80 192 10 319 87.13 %

b18 3 307 3 293 34 936 153 374 75 99.95 % 226 488 36 658 83.81 %

b20 522 512 5 844 25 202 49 99.81 % 36 444 2 505 93.13 %

b21 522 512 5 899 25 522 42 99.84 % 37 170 2 437 93.44 %

b22 735 725 8 144 35 247 68 99.81 % 50 716 3 688 92.73 %

NXP p35k 2 861 2 229 8 591 43 714 4 99.99 % 63 092 303 99.52 %

p45k 3 739 2 550 11 413 48 268 5 99.99 % 69 870 1 836 97.37 %

p78k 3 148 3 484 25 740 129 972 0 100.00 % 171 212 2 080 98.79 %

p81k 4 029 3 952 44 559 182 916 5 100.00 % 272 158 25 780 90.53 %

p89k 4 628 4 481 25 209 111 850 120 99.89 % 166 930 11 461 93.13 %

p100k 5 557 5 489 25 633 115 379 193 99.83 % 166 286 3 888 97.66 %

p267k 15 426 14 721 47 986 229 405 20 99.99 % 336 164 3 628 98.92 %

p295k 16 398 16 414 52 366 262 631 1 609 99.39 % 395 860 22 370 94.35 %

p330k 12 893 12 639 54 287 239 793 695 99.71 % 337 670 3 145 99.07 %

p378k 15 732 17 420 125 824 653 972 0 100.00 % 851 306 12 404 98.54 %

p388k 20 449 19 643 118 920 538 848 135 99.97 % 791 748 68 385 91.36 %

AES 2-2-2-8 d 64 32 5 597 23 579 0 100.00 % 35 244 2 99.99 %

2-2-2-8 e 64 32 4 887 20 916 0 100.00 % 31 362 0 100.00 %

2-4-4-4 d 128 64 2 056 8 569 0 100.00 % 9 844 0 100.00 %

2-4-4-4 e 128 64 1 726 7 181 0 100.00 % 8 502 0 100.00 %

10-2-2-4 d 32 16 1 923 7 947 0 100.00 % 9 886 0 100.00 %

10-2-2-4 e 32 16 1 936 8 153 0 100.00 % 10 132 0 100.00 %

10-2-4-4 d 64 32 3 462 14 453 0 100.00 % 17 696 0 100.00 %

10-2-4-4 e 64 32 3 515 14 974 0 100.00 % 18 286 0 100.00 %

the transition-delay fault model with results summarized in
Tables 9 and 10 as well as Figs. 6 and 7.

Generally, most D-chain types provide a large benefit to
the overall solve time. The choice of the optimum D-chain
depends on both the benchmark class as well as the fault
model.

For the ITC’99 and NXP circuits the backward and
indirect D-chains usually provide very good results. The
cryptographic AES based circuits on the other hand gain the
most from an indirect hybrid chain with a dynamic node
selection heuristic. The AES circuits have a high combina-
tional depth and only few outputs. The design of the AES
cipher furthermore ensures that even a single bit flip can
quickly spread through the entire cipher state. This leads
to many reconverging paths on which fault effects might
cancel each other out. For such circuits, the conventional
D-chains appear to be less well suited. The static node selec-
tion heuristics gives the fastest results for some of the NXP
circuits but is generally slightly outmatched by the other
indirect variants.

On average across all circuits, the dynamic hybrid indi-
rect chain also provides the largest gains overall with a
speed increase of 71.0% for the stuck-at and 69.5% for the
transition-delay fault model.

5.2 Formula Size (ATPG)

Adding information to the original formula increases its
size. The respective formula size for each benchmark in
stuck-at ATPG is appended in Table 13. Figure 8 shows
the average increase across all benchmarks for the different
D-chain types.

The backward D-chain is more expensive in terms of
additional clauses than the forward D-chain because it uti-
lizes the full equivalence (see Formula (5)) instead of only
an implication (Formula (1)) for the D variable.

The size of the indirect encoding is similar to the back-
ward D-chain which is due to the high expenses for gates
with many inputs that can have a difference. Utilizing a
hybrid encoding slightly reduces the size of the overall



760 J Electron Test (2017) 33:751–767

Table 9 Change in total solve time for the different D-chains in the stuck-at ATPG

Time Difference (%)

Circuit #Fault Total Time (s) Forward Backward Backward Indirect Hybrid Hybrid

Instances Memory + Forward Dynamic Static

(MB)

ITC’99 b15 15 724 95.45 348.46 39.65 −91.84 −90.46 −92.34 −93.01 −89.34

b17 52 455 204.99 847.59 22.80 −92.27 −90.15 −91.58 −91.35 −87.56

b18 153 374 488.17 3 147.57 −6.42 −87.91 −85.21 −87.90 −87.52 −83.58

b20 25 202 116.83 141.13 35.53 −85.53 −80.34 −86.24 −82.56 −80.12

b21 25 522 117.76 162.70 38.46 −85.73 −80.92 −87.79 −84.63 −80.44

b22 35 247 145.93 217.04 31.24 −86.83 −81.39 −87.93 −85.00 −79.59

Average: 26.88 −88.35 −84.75 −88.97 −87.34 −83.44

NXP p35k 43 714 203.66 1 834.64 −41.04 −79.01 −73.81 −78.66 −77.68 −79.97
p45k 48 268 217.98 34.14 1.37 −67.62 −64.19 −63.24 −63.75 −61.59

p78k 129 972 379.65 96.71 −3.47 −69.65 −63.69 −75.70 −72.29 −45.96

p81k 182 916 539.28 542.58 −5.93 −78.31 −75.59 −75.72 −79.33 −77.59

p89k 111 850 401.66 290.37 10.86 −81.76 −77.07 −77.85 −78.95 −78.87

p100k 115 379 422.50 138.56 23.62 −69.51 −67.60 −57.34 −63.32 −30.16

p267k 229 405 888.62 1 243.88 5.35 −89.61 −89.42 −91.68 −90.42 −89.60

p295k 262 631 1 069.65 630.46 15.20 −77.45 −74.03 −64.38 −66.20 −66.20

p330k 239 793 857.55 3 659.29 43.01 −90.22 −89.32 −90.76 −89.78 −90.14

p378k 653 972 1 782.50 1 798.10 15.40 −83.60 −80.27 −85.90 −84.64 −47.68

p388k 538 848 1 753.60 3 768.05 21.23 −79.29 −75.73 −83.40 −84.66 −78.95

Average: 7.78 −78.73 −75.52 −76.78 −77.36 −67.88

AES 2-2-2-8 d 23 579 109.98 429.20 46.44 14.34 123.95 −38.15 −47.36 8.96

2-2-2-8 e 20 916 100.20 357.05 −1.10 −58.46 −42.39 −77.92 −76.81 −18.99

2-4-4-4 d 8 569 61.39 30.47 102.57 75.24 337.07 27.71 −25.62 3.91

2-4-4-4 e 7 181 58.60 19.33 −2.13 −65.47 −61.29 −84.90 −81.96 −55.22

10-2-2-4 d 7 947 60.75 119.84 46.51 −9.25 38.93 17.05 −46.47 36.83

10-2-2-4 e 8 153 60.39 85.65 40.17 −16.46 3.84 −8.36 −35.73 13.77

10-2-4-4 d 14 453 76.89 712.56 50.99 −4.98 98.32 29.61 −43.39 35.83

10-2-4-4 e 14 974 73.09 619.73 46.36 −16.47 36.41 −20.62 −42.88 20.73

Average: 41.23 −10.19 66.85 −19.45 −50.03 5.73

Maximal solve time reductions are emphasized

formula because some of these expensive gates are handled
in the cheaper, conventional manner.

The relative impact of adding a D-chain turns out to be
lower for the transition-delay fault model, probably since
the formula also contains additional information for the first
time frame.

5.3 Incremental Solving

Utilizing the SAT solver in an incremental manner greatly
increases the overall speed of the ATPG algorithm. Unlike
the normal SAT-based ATPG discussed in Section 2, the
fault propagation is much stronger enforced, since the fault
has to be visible at one particular output out of the modeled
outputs. Hence, the gain of adding a D-chain as, yet another,
fault propagation support mechanism is lower. Nonetheless,

both the total computation time as well as the total solve
time are generally improved by adding D-chains.

The total solve time for the stuck-at ATPG is improved
by 35% on average for the ITC’99 and NXP circuits with
both the backward implication or indirect D-chain (with-
out incremental solving the total solve time is improved by
about 89% and 79% for these circuit classes, respectively).
For the AES benchmarks, the largest gain of 25% on aver-
age was, again, achieved with the hybrid indirect chain with
the dynamic selection heuristic (50% without incremental
solving).

For the transition-delay ATPG the results are similar,
with an average decrease of around 46% for the ITC’99 and
NXP circuits (86% and 74% without incremental solving,
respectively) and 25% for the AES circuits (51% without
incremental solving).



J Electron Test (2017) 33:751–767 761

Table 10 Change in total solve time for the different D-chains in the transition-delay ATPG

Time Difference (%)

Circuit #Fault Total Time (s) Forward Backward Backward Indirect Hybrid Hybrid

Instances Memory + Forward Dynamic Static

(MB)

ITC’99 b15 24 132 98.88 1 179.73 29.48 −91.77 −90.89 −92.58 −92.37 −89.67

b17 80 192 207.64 2 704.74 14.60 −89.19 −88.07 −89.50 −89.44 −86.44

b18 226 488 521.85 9 848.01 −11.69 −85.73 −83.67 −86.78 −86.28 −82.23

b20 36 444 133.67 572.17 20.73 −83.63 −80.94 −84.56 −83.47 −80.63

b21 37 170 134.57 696.17 15.89 −83.53 −81.11 −85.15 −83.51 −80.22

b22 50 716 157.46 884.72 19.19 −80.29 −78.26 −81.21 −80.51 −76.66

Average: 14.70 −85.69 −83.82 −86.63 −85.93 −82.64

NXP p35k 63 092 213.20 16 097.94 −35.01 −77.40 −76.08 −74.86 −76.67 −77.51
p45k 69 870 221.97 123.54 4.77 −64.95 −60.71 −61.79 −64.43 −57.22

p78k 171 212 382.83 300.30 45.16 −70.41 −68.69 −70.93 −67.16 −50.25

p81k 272 158 553.68 4 779.02 9.10 −74.80 −73.47 −71.79 −72.85 −73.07

p89k 166 930 412.86 1 276.92 2.72 −69.88 −69.50 −66.92 −70.00 −70.73
p100k 166 286 434.80 520.99 6.64 −63.57 −62.53 −51.66 −61.01 −41.32

p267k 336 164 905.25 7 867.02 −8.27 −80.77 −81.55 −84.25 −83.99 −83.76

p295k 395 860 1 099.52 3 513.08 −1.27 −68.66 −66.67 −65.81 −66.69 −66.25

p330k 337 670 887.60 28 862.20 −8.66 −90.06 −89.95 −89.72 −89.89 −89.91

p378k 851 306 1 845.67 7 600.83 37.43 −89.36 −88.31 −89.61 −89.24 −67.32

p388k 791 748 1 785.75 32 292.94 −2.61 −66.69 −63.44 −65.64 −67.60 −64.31

Average: 4.55 −74.23 −72.81 −72.09 −73.59 −67.42

AES 2-2-2-8 d 35 244 110.23 762.86 43.63 7.49 107.75 −43.05 −49.92 7.64

2-2-2-8 e 31 362 104.54 635.88 −4.49 −63.89 −49.45 −80.15 −78.88 −24.89

2-4-4-4 d 9 844 61.31 43.04 99.72 48.42 296.25 18.42 −37.73 −0.63

2-4-4-4 e 8 502 58.54 29.20 −4.02 −70.10 −65.28 −86.46 −85.13 −57.89

10-2-2-4 d 9 886 63.65 220.80 33.30 −17.54 18.19 0.85 −44.30 15.66

10-2-2-4 e 10 132 60.37 152.21 34.04 −18.95 −5.32 −14.25 −35.50 14.37

10-2-4-4 d 17 696 74.18 1 470.09 36.00 −14.35 62.17 6.74 −38.49 18.70

10-2-4-4 e 18 286 75.82 1 242.51 31.54 −27.58 9.32 −29.34 −42.17 12.68

Average: 33.72 −19.56 46.70 −28.40 −51.51 −1.80

Maximal solve time reductions are emphasized

These results clearly show that even with more advanced
modeling and solving techniques, D-chains still provide a
substantial increase in solving speed.

5.4 DTPG Results

Similar to the ATPG algorithm, DTPG is evaluated without
fault simulation to get the unbiased impact of the different
D-chain implementations, as a coincidental number of fault
pairs could accidentally be distinguished with simulation of
a calculated test pattern.

Thus, a new Boolean formula is created for every single
fault pair (except for already merged faults), which is not
feasible. To give a comprehensive analysis on large bench-
mark sets, we therefore evaluated the different D-chain

concepts for DTPG without simulation for a fixed set of
100,000 random fault pairs for each benchmark.

Similar to the ATPG solve time evaluation, we mea-
sured the change in total solve time compared to the basic
SAT-based DTPG without the use of any D-chain. For
the experiments we focus on the stuck-at fault model, as
we already presented a comparison between different fault
models for ATPG.

Figure 9 shows the total solve time results of the diagnos-
tic test pattern generation. It can be seen that except for the
forward implication D-chain every analyzed D-chain shows
a positive impact on the total solve time for the ITC’99 and
NXP benchmark set, reducing the total solve time on aver-
age by at least 67%. For the ITC’99 benchmarks alone, the
results are even better with an average reduction of the total



762 J Electron Test (2017) 33:751–767

Table 11 Change in total solve time for the different D-chains in the stuck-at DTPG

Time Difference (%)

Circuit #Fault Total Time (s) Forward Backward Early Target Indirect Hybrid Hybrid
Instances Memory (MB) Backward Dynamic Static

ITC’99 b15 15 724 78.04 3 201.62 33.94 −90.43 −90.91 −92.21 −92.01 −88.83
b17 52 455 152.58 2 715.00 26.45 −91.35 −91.49 −90.91 −91.37 −89.29
b18 153 374 323.27 3 060.34 5.13 −89.19 −89.58 −88.71 −89.15 −86.58
b20 25 202 94.50 1 342.66 31.64 −86.54 −87.12 −88.05 −86.60 −85.43
b21 25 522 96.61 1 521.35 25.86 −87.74 −88.03 −89.50 −87.69 −85.55
b22 35 247 114.85 1 515.95 15.33 −88.28 −88.61 −89.56 −88.35 −86.01
Average: 23.06 −88.92 −89.29 −89.82 −89.19 −86.95

NXP p35k 43 714 146.38 2 272.19 5.21 −56.93 −53.54 −54.87 −52.52 −53.26
p45k 48 268 157.05 127.47 12.37 −68.14 −70.73 −65.15 −68.62 −64.05
p78k 129 972 717.34 160.09 −10.00 −65.25 −66.21 −69.10 −65.70 −40.88
p81k 182 916 557.13 497.95 15.20 −76.51 −77.38 −78.03 −78.19 −77.27
p89k 111 850 1 121.20 384.15 14.17 −81.00 −81.76 −80.97 −81.61 −81.47
p100k 115 379 284.52 162.49 30.47 −66.46 −68.57 −51.60 −66.02 −49.83
p267k 229 405 574.03 731.08 19.09 −88.32 −88.84 −89.99 −89.60 −88.85
p295k 262 631 717.34 543.69 23.90 −83.06 −83.81 −79.74 −80.61 −80.93
p330k 239 793 557.13 2 035.46 20.42 −89.04 −89.91 −90.54 −89.80 −89.60
p378k 653 972 1 121.20 194.41 −6.78 −56.68 −60.56 −65.41 −65.40 −35.58
p388k 538 848 1 178.13 816.78 20.16 −74.14 −73.62 −80.43 −81.25 −78.37
Average: 13.11 −73.23 −74.08 −73.26 −74.48 −67.28

AES 2-2-2-8 d 23 579 101.41 2 905.68 47.85 26.88 4.40 −33.92 −45.75 43.48
2-2-2-8 e 20 916 104.06 2 500.78 17.29 −54.78 −55.63 −75.91 −75.03 −8.61
2-4-4-4 d 8 569 56.32 1 059.12 57.41 23.47 22.98 −19.63 −61.60 4.73
2-4-4-4 e 7 181 53.87 512.18 18.12 −53.66 −63.56 −86.49 −84.64 −48.90
10-2-2-4 d 7 947 59.39 1 619.37 25.43 63.75 40.61 59.73 20.24 56.65
10-2-2-4 e 8 153 61.47 978.10 49.55 61.92 45.89 35.08 30.51 54.94
10-2-4-4 d 14 453 66.37 6 032.42 44.63 104.87 60.09 63.49 40.95 72.43
10-2-4-4 e 14 974 65.98 4 846.07 56.16 50.80 29.17 22.81 21.93 62.26
Average: 39.56 27.90 10.49 −4.36 −19.17 29.62

Maximal solve time reductions are emphasized

solve time by around 87% to 89%. The hybrid static D-
chain shows the second least solve time improvement on the
industrial benchmark set (-67%, NXP), only outperforming
the forward implication D-chain, where the other 4 D-chains
provide an average solve time reduction of 73% to 75%. The
AES benchmarks present a strongly different result, where
only the indirect and the hybrid dynamic D-chain encodings
reduce the total solve time on average.

As additional information is added to the original for-
mula, the size increases. The conventional backward impli-
cation D-chain both has a comparably high number of
different signal values (see Table 4) and utilizes the full
equivalence (see Formula (11)) for each D-value, thus, as
Fig. 10 shows, needs the most additional clauses of all
presented DTPG D-chains for each benchmark set. In com-
parison to the other D-chains, the hybrid encodings and the
forward implication D-chain offer an overall small increase
in formula size.

5.5 Total Runtime

The previous results focused on the solve time which does
not include the generation of a Boolean formula for every
fault, transmitting this formula to the SAT solver, and finally
extracting the test pattern.

When taking this overhead into account, the influence
of the different D-chain versions decreases because the for-
mula generation often requires more time than the actual
solving, especially for the easy-to-solve stuck-at problems.

Nonetheless, D-chains still drastically increase the solv-
ing speed, with an average gain of 32.6% on the stuck-at
and 42.3% on the transition-delay ATPG for the dynamic
hybrid indirect chain and furthermore 35.9% on DTPG
for the early target backward D-chain. The total runtimes
for stuck-at ATPG are shown in Table 12, the total run-
times for transition-delay ATPG and DTPG are omitted for
brevity.



J Electron Test (2017) 33:751–767 763

Table 12 Change in total runtime for the different D-chains in the stuck-at ATPG

Time Difference (%)

Circuit #Fault Total Total Forward Backward Backward Indirect Hybrid Hybrid
Instances Memory Runtime (s) + Forward Dynamic Static

(MB)

ITC’99 b15 15 724 95.45 392.86 37.66 −77.59 −75.29 −76.63 −78.46 −75.16
b17 52 455 204.99 1 023.54 19.02 −73.53 −69.25 −71.99 −69.99 −68.56
b18 153 374 488.17 3 959.88 −6.44 −68.85 −64.92 −68.33 −67.97 −65.69
b20 25 202 116.83 196.72 32.35 −55.22 −44.54 −54.70 −48.52 −50.15
b21 25 522 117.76 221.37 34.36 −59.49 −50.96 −58.36 −54.81 −52.82
b22 35 247 145.93 297.34 28.61 −60.39 −48.26 −58.01 −54.50 −51.77
Average: 24.26 −65.85 −58.87 −64.67 −62.37 −60.69

NXP p35k 43 714 203.66 2 496.78 −39.01 −54.58 −46.82 −51.93 −50.94 −55.13
p45k 48 268 217.98 122.93 −6.50 −2.34 −2.06 −1.97 4.53 −7.46
p78k 129 972 379.65 453.45 −10.64 −1.84 8.20 −2.46 −6.26 5.01
p81k 182 916 539.28 1 429.63 −7.65 −15.31 −10.65 −12.05 −21.35 −17.33
p89k 111 850 401.66 668.33 5.21 −19.63 −9.58 −12.72 −12.17 −11.03
p100k 115 379 422.50 490.88 8.42 8.96 8.67 5.04 15.68 12.74
p267k 229 405 888.62 2 695.66 3.65 −24.31 −26.96 −29.25 −24.52 −29.63
p295k 262 631 1 069.65 2 659.09 2.41 −0.44 −0.40 4.62 2.63 −0.69
p330k 239 793 857.55 5 845.61 27.23 −47.89 −47.29 −49.11 −46.54 −48.50
p378k 653 972 1 782.50 8 163.10 2.93 −4.68 −4.67 −4.10 −3.27 1.44
p388k 538 848 1 753.60 9 906.86 5.39 −22.01 −20.19 −23.08 −22.35 −23.78
Average: −0.78 −16.73 −13.79 −16.09 −14.96 −15.85

AES 2-2-2-8 d 23 579 109.98 604.20 38.01 19.04 102.23 −9.64 −24.38 16.07
2-2-2-8 e 20 916 100.20 510.48 2.34 −36.16 −23.22 −48.04 −49.45 −8.82
2-4-4-4 d 8 569 61.39 42.75 79.70 60.96 252.53 25.76 −11.89 8.59
2-4-4-4 e 7 181 58.60 27.79 0.48 −43.16 −38.56 −57.29 −56.18 −37.47
10-2-2-4 d 7 947 60.75 139.63 43.84 −3.49 41.14 20.30 −34.89 36.32
10-2-2-4 e 8 153 60.39 103.35 36.50 −10.02 9.57 −1.12 −25.77 15.38
10-2-4-4 d 14 453 76.89 778.75 48.86 −1.98 94.25 30.23 −37.00 35.36
10-2-4-4 e 14 974 73.09 679.66 43.96 −13.07 36.50 −16.01 −37.19 20.89
Average: 36.71 −3.49 59.30 −6.98 −34.60 10.79

Maximal runtime reductions are emphasized

Fig. 6 The change in total solve time for the different D-chains and
circuit groups in the stuck-at fault model (ATPG)

Fig. 7 The change in total solve time for the different D-chains and
circuit groups in the transition-delay fault model (ATPG)



764 J Electron Test (2017) 33:751–767

Fig. 8 Increase in formula size for the different D-chains and fault
models (ATPG)

5.6 Results Summary

The experimental results in Tables 9 and 10 clearly show
that D-chains significantly reduce the total solve time as
well as the total computation time in SAT-based ATPG both
in the conventional mode and when utilizing the solver
incrementally. Our newly introduced indirect D-chain and
its variants often provide similar or even better results than
the previously known D-chains and achieve the highest
speedup on average.

However, the gain of the different D-chains depends on
the circuit type. For the analyzed ITC’99 and NXP circuits

Fig. 9 The change in total solve time for the different D-chains and
circuit groups (DTPG)

Fig. 10 Increase in formula size for the different D-chains (DTPG)

the backward and indirect D-chains generally give the best
results for ATPG, whereas for the cryptographic AES based
circuits only the hybrid indirect D-chain with the dynamic
selection heuristic results in large decreases in computa-
tion time. Furthermore, the analysis of the ATPG results
shows that fault model also affects the D-chain gains. For
the more difficult transition-delay ATPG the gain through
D-chains is on average about 9.6%. larger than for the
stuck-at ATPG.

Table 11 shows the experimental results for the diagnos-
tic test pattern generation.

Here, the influence of the circuit type is even more appar-
ent than it was in the ATPG analysis. For both ITC’99 and
NXP circuits every analyzed D-chain reduces the total solve
time for every single benchmark. In contrast to these results,
diagnosis for the cryptographic AES circuits benefits solely
from the indirect and the hybrid dynamic D-chains whereas
the remaining variants are actually slowing down the solver.

In addition to the underlying circuit type, the choice
of which D-chain to implement depends strongly on the
application. For both ATPG and DTPG we presented easy-
to-implement D-chains with a good overall speedup, as well
as complex D-chain variants, where the hybrid dynamic
D-chain shows the best overall solve time reduction. Addi-
tionally D-chains were presented, that offer a trade-off
between straightforward implementation and great overall
speedup, e.g. the indirect D-chain.

The gain of the early target backward D-chain in compar-
ison to the classic backward D-chain is surprisingly small,
considering how many fewer variables were used in the
encoding. Nonetheless, it still outperforms the backward
D-chain on almost any circuit and provides an easy-to-
implement alternative to the indirect D-chain variants that



J Electron Test (2017) 33:751–767 765

Table 13 Change in the number of clauses per fault in the stuck-at ATPG

#Clauses Difference

#Clauses Forward Backward Backward Indirect Hybrid Hybrid

+ Forward Dynamic Static

Circuit min avg max avg avg avg avg avg avg

ITC’99 b15 19 8 743.81 37 692 1 471.01 2 210.81 3 329.49 2 683.18 2 619.34 2 575.24

b17 19 7 458.15 44 577 1 252.18 1 897.73 2 835.07 2 325.42 2 307.05 2 269.66

b18 19 8 621.55 61 145 1 291.73 1 911.13 2 863.29 2 082.65 2 267.30 2 236.53

b20 11 6 061.82 42 804 1 217.74 1 793.58 2 670.90 1 990.78 2 096.26 2 024.11

b21 11 6 325.98 44 897 1 253.09 1 832.89 2 734.52 2 079.18 2 146.73 2 082.47

b22 14 5 500.05 57 669 1 037.80 1 515.43 2 272.45 1 604.19 1 726.85 1 670.85

NXP p35k 21 21 949.27 49 384 1 736.73 2 548.65 3 776.15 2 683.59 3 122.25 3 068.50

p45k 7 1 562.48 86 113 169.93 253.29 383.18 234.70 263.62 256.11

p78k 7 1 332.53 13 419 278.48 440.93 654.17 246.00 332.76 323.19

p81k 16 3 084.35 229 180 410.01 546.58 850.74 519.89 677.17 645.61

p89k 11 2 101.25 63 677 307.21 472.63 709.71 492.59 559.10 542.66

p100k 7 1 732.85 88 349 275.44 391.29 591.97 394.00 413.67 404.56

p267k 7 2 151.39 112 524 316.04 448.46 712.35 386.01 465.23 446.46

p295k 10 2 748.49 635 146 257.75 392.31 592.72 459.38 483.06 474.72

p330k 7 5 671.08 166 710 765.51 1 030.60 1 650.16 906.80 1 131.35 1 112.85

p378k 7 1 343.73 887 384 282.79 440.00 656.47 243.04 330.17 320.36

p388k 16 3 114.21 829 845 459.80 657.62 1 000.98 652.35 775.84 745.30

AES 2-2-2-8 d 13 722 26 572.04 50 323 7 430.36 11 071.23 16 063.42 21 376.40 11 417.71 11 380.97

2-2-2-8 e 14 461 24 407.16 39 924 2 412.80 3 798.63 5 453.43 6 201.28 3 891.84 3 899.27

2-4-4-4 d 2 697 5 884.01 13 895 1 483.70 2 192.25 3 241.86 1 357.99 1 521.26 1 511.26

2-4-4-4 e 2 437 4 647.26 8 523 342.01 628.10 918.38 0.43 68.28 66.72

10-2-2-4 d 6 425 10 311.83 14 076 3 529.69 4 844.21 7 231.55 4 912.37 4 259.65 4 252.92

10-2-2-4 e 6 240 9 122.88 13 334 2 229.62 3 121.34 4 641.84 3 537.33 2 615.93 2 688.07

10-2-4-4 d 10 318 17 591.45 25 194 5 721.80 7 875.93 11 752.51 7 812.29 6 825.15 6 817.57

10-2-4-4 e 10 241 15 713.68 23 536 3 584.45 5 013.15 7 465.57 5 515.02 4 107.18 4 225.80

Maximal and minimal differences in number of clauses are emphasized

require a more complex gate modeling. Furthermore in our
experiments the early target backward D-chain showed the
greatest reduction in total DTPG runtime, which can be
attributed to its lightweight structure; therefore it can be
quickly constructed.

6 Conclusion and Future Work

We analyzed the effect of different D-chain implementa-
tions on SAT-based ATPG for the widely used stuck-at and
transition-delay fault models and diagnostic TPG for the
stuck-at fault model.

In addition to already established D-chains we introduced
and analyzed different types of indirect D-chain imple-
mentations, which avoid overhead by removing redundant

information and only focusing on the difference between the
fault-free and faulty circuit.

We also introduced the early target backward implication
D-chain specifically for DTPG, which dynamically defines
a difference value depending on the topological position of
the corresponding signal line, to actively guide the solver
toward a fault-distinguishing test pattern.

Experimental results demonstrate the significant benefits
of the newly introduced D-chain concepts for ATPG and
DTPG on different benchmark sets, with an average solve
time reduction of 70% for ATPG and 54% for DTPG.

In the future we plan on extending the idea of indirect D-
chains both beyond simple Boolean logic and toward more
complex fault models and to analyze the gains of the differ-
ent D-chains in these areas. Furthermore, we want to eval-
uate the benchmark class of cryptographic circuits in more



766 J Electron Test (2017) 33:751–767

detail and investigate the impact of selecting solvers espe-
cially tuned for cryptographic circuits e.g. CryptoMiniSat
[30] on the effectiveness of D-chains.

Overall, this article clearly shows that D-chains are a
vital part of a fast and efficient SAT-based ATPG and DTPG
flow and are well worth the extra effort during the formula
generation.

References

1. Boros E, Hammer PL (2002) Pseudo-Boolean optimization.
Discret Appl Math 123(1-3):155. https://doi.org/10.1016/S0166-
218X(01)00341-9

2. Burchard J, Neubauer F, Raiola P, Erb D, Becker B (2017) Eval-
uating the effectiveness of D-chains in SAT-based ATPG. In:
Proceedings 18th IEEE Latin American Test Symposium, pp 1–6

3. Cheng KT (1993) Transition fault testing for sequential circuits.
IEEE Trans Comput Aided Des Integr Circuits Syst 12(12):1971

4. Chen H, Marques-Silva J (2009) TG-PRO: a new model for SAT-
based ATPG. In: Proceedings of the IEEE International High
Level Design Validation and Test Workshop, pp 76–81

5. Chen H, Marques-Silva J (2013) A two-variable model for SAT-
based ATPG. IEEE Trans Comput Aided Des Integr Circuits Syst
32(12):1943

6. Corno F, Reorda MS, Squillero G (2000) RT-level ITC’99
benchmarks and first ATPG results. IEEE Des Test 17(3):44.
https://doi.org/10.1109/54.867894

7. Drechsler R, Eggergluss S, Fey G, Glowatz A, Hapke F, Schlo-
effel J, Tille D (2008) On acceleration of SAT-based ATPG for
industrial designs. IEEE Trans Comput Aided Des Integr Circuits
Syst 27(7):1329

8. Eén N, Sörensson N (2004) An extensible SAT-solver. In: Pro-
ceedings Theory and Applications of Satisfiability Testing (SAT)

9. Eggersglüß S, Drechsler R (2011) As-Robust-As-Possible test
generation in the presence of small delay defects using pseudo-
Boolean optimization. In: Proceedings of the Design, Automation
Test in Europe, pp 1–6

10. Eggersglüß S, Krenz-Bååth R, Glowatz A, Hapke F, Drechsler R
(2012) A new SAT-based ATPG for generating highly compacted
test sets. In: IEEE DDECS, pp 230–235

11. Erb D, Scheibler K, Sauer M, Becker B (2014) Efficient SMT-
based ATPG for interconnect open defects. In: Proceedings of
the Design, Automation Test in Europe Conference Exhibition
(DATE), pp 1–6

12. Erb D, Scheibler K, Kochte MA, Sauer M, Wunderlich HJ, Becker
B (2014) Test pattern generation in presence of unknown val-
ues based on restricted symbolic logic. In: Proceedings of the
International Test Conference

13. Erb D, Scheibler K, Kochte MA, Sauer M, Wunderlich HJ, Becker
B (2016) Mixed 01X-RSL-Encoding for fast and accurate ATPG
with unknowns. In: Proceedings of the Asia and South Pacific
Design Automation Conference, pp 749–754

14. Fey G, Shi J, Drechsler R (2006) Efficiency of multi-valued
encoding in SAT-based ATPG. In: Proceedings of the 36th Interna-
tional Symposium on Multiple-Valued Logic (ISMVL’06), pp 25–
25

15. Fujiwara H, Shimono T (1983) On the acceleration of test genera-
tion algorithms. IEEE Trans Comput c-32(12):1137–1144

16. Galey JM, Norby RE, Roth JP (1961) Techniques for the diagno-
sis of switching circuit failures. In: Proceedings of the 2nd Annual
Symposium on Switching Circuit Theory and Logical Design
(SWCT 1961), pp 152–160

17. Gay M, Burchard J, Horacek J, Ekossono ASM, Schubert T,
Becker B, Polian I, Kreuzer M, Small scale AES (2016) Toolbox:
algebraic and propositional formulas, circuit-implementations and
fault equations. In: Proceedings of the FCTRU

18. Goel P (1981) An implicit enumeration algorithm to generate tests
for combinational logic circuits. IEEE Trans Comput C-30(3):
215

19. Hsieh ER, Rasmussen RA, Vidunas LJ, Davis WT Delay test
generation. In: Proceedings of the 14th Design Automation Con-
ference (IEEE Press, 1977), DAC ’77, pp 486–491

20. Larrabee T (1992) Test pattern generation using Boolean satisfia-
bility. IEEE Trans Comput Aided Des 11(1):4–15

21. Raiola P, Erb D, Reddy SM, Becker B (2017) Accurate diag-
nosis of interconnect open defects based on the robust enhanced
aggressor victim model. In: Proceedings of the 30th International
Conference on VLSI Design and 16th International Conference on
Embedded Systems, pp 135–140

22. Roth JP (1966) Diagnosis of automata failures: a calculus and a
method. IBM J Res Dev 10(4):278

23. Rudnick EM, Fuchs WK, Patel JH (1992) Diagnostic fault sim-
ulation of sequential circuits. In: Proceedings IEEE International
Test Conference, pp 178–186

24. Sauer M, Czutro A, Polian I, Becker B (2012) Small-delay-
fault ATPG with waveform accuracy. In: Proceedings of the Int’l
Conference on CAD, pp 30–36

25. Sauer M, Becker B, Polian I (2016) PHAETON: a SAT-based
framework for timing-aware path sensitization. IEEE Trans Com-
put 65(6):1869

26. Savir J, Patil S (1994) Broadside delay test. IEEE Trans Comput
Aided Des Integr Circuits Syst 13(8):1057

27. Scheibler K, Erb D, Becker B (2016) Accurate CEGAR-based
ATPG in presence of unknown values for large industrial designs.
In: Proceedings of the Design, Automation Test in Europe Confer-
ence Exhibition (DATE)

28. Schubert T, Reimer S (2016) antom, in https://projects.informatik.
uni-freiburg.de/projects/antom

29. Shi J, Fey G, Drechsler R, Glowatz A, Schloffel J, Hapke F
(2005) Experimental studies on SAT-based test pattern genera-
tion for industrial circuits. In: Proceedings of the 6th International
Conference on ASIC, vol 2

30. Soos M, Nohl K, Castelluccia C (2009) Extending SAT solvers
to cryptographic problems. In: Proceedings of the Theory and
Applications of Satisfiability Testing, pp 244–257

31. Stephan P, Brayton RK, Sangiovanni-Vincentelli AL (1996) Com-
binational test generation using satisfiability. IEEE Trans Comput
Aided Des Integr Circ Syst 15(9):1167–1176

32. Tafertshofer P, Ganz A (1999) SAT based ATPG using fast justi-
fication and propagation in the implication graph. In: Proceedings
IEEE/ACM International Conference on Computer-Aided Design,
pp 139–146

33. Tille D, Drechsler R (2008) Incremental SAT Instance generation
for SAT-based ATPG. In: Proceedings of the 11th IEEE Workshop
on Design and Diagnostics of Electronic Circuits and Systems,
pp 1–6

34. Tille D, Eggersglüß S, Drechsler R (2010) Incremental solving
techniques for SAT-based ATPG. IEEE Trans Comput Aided Des
Integr Circ Syst 29(7):1125

35. Tseitin G (1968) On the complexity of derivation in propositional
calculus studies in constructive mathematics and mathematical
logic

36. Si2. NanGate FreePDK45 generic open cell library, v1.3. http://
www.si2.org/openeda.si2.org/projects/nangatelib

37. Yang K, Cheng KT, Wang LC (2004) Trangen: a SAT-based ATPG
for path-oriented transition faults. In: Proceedings of the ASP-
DAC: Asia and South Pacific Design Automation Conference,
pp 92–97

https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1016/S0166-218X(01)00341-9
http://dx.doi.org/10.1109/54.867894
https://projects.informatik.uni-freiburg.de/projects/antom
https://projects.informatik.uni-freiburg.de/projects/antom
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib


J Electron Test (2017) 33:751–767 767

Pascal Raiola received the B.Sc. degree in mathematics and the M.Sc.
degree in computer science from the University of Freiburg, Breis-
gau, Germany, in 2012 and 2015, respectively. Since 2016 he has been
with the group of Computer Architecture of Prof. Bernd Becker. His
research interests include hardware security, test and diagnosis under
multi-valued logic, SAT applications and data dependence.

Jan Burchard received his bachelor and master degree in com-
puter science from the University of Freiburg, Breisgau, Germany,
in 2013 and 2015, respectively. Since 2015 he is pursuing his Ph.D.
under the supervision of Prof. Bernd Becker. His research interests
include automatic test pattern generation for advanced fault models
and SAT-solving techniques as well as hardware security.

Felix Neubauer received the B.Sc. degree and the M.Sc. degree in
computer science from the University of Freiburg, Breisgau, Germany,
in 2012 and 2015, respectively. Since 2015 he has been with the group
of Computer Architecture of Prof. Bernd Becker. His research interests
include SAT/SMT and its applications in verification and test.

Dominik Erb received the master’s and Ph.D. degree in computer sci-
ence from the University of Freiburg, Breisgau, Germany, in 2013 and
2016, respectively. His research interests include automatic test pat-
tern generation in presence of unknown values as well as interconnect
open defects, defect-based testing, and fault-diagnosis. He is cur-
rently working in the Project Management at Infineon Technologies,
Neubiberg, Bavaria, Germany.

Bernd Becker is a full professor at the Faculty of Engineering, Uni-
versity of Freiburg, Germany. His research activities include design,
test and verification methods for embedded systems and nanoelec-
tronic circuitry. He is a co-speaker in the DFG Transregional Research
Center “Automatic Analysis and Verification of Complex Systems”
and a director in the Centre for Security and Society, Freiburg. He is a
fellow of the IEEE and a member of Academia Europaea.


	Evaluating the Effectiveness of D-chains in SAT-based ATPG and Diagnostic TPG
	Abstract
	Introduction
	Preliminaries
	Automatic Test Pattern Generation
	Fault Models
	Conversion to SAT
	Cones of Influence
	Modeling the Fault

	Incremental Solving
	Diagnostic Test Pattern Generation (DTPG)

	D-chains in ATPG
	Forward Implication D-chain
	Backward Implication D-chain
	Combined D-chains
	Indirect D-chain
	Hybrid Indirect D-chain

	D-chains in Diagnostic TPG
	Forward Implication D-chain
	Backward Implication D-chain
	Early Target Backward Implication D-chain
	Indirect D-chain
	Hybrid Indirect D-chain

	Evaluation
	Solve Time (ATPG)
	Formula Size (ATPG)
	Incremental Solving
	DTPG Results
	Total Runtime
	Results Summary

	Conclusion and Future Work
	References


