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Abstract

The parametrized model of the Unmanned Aerial Vehicle (UAV) is a crucial part of control algorithms, estimation processes
and fault diagnostic systems. Among plenty of available methods for model structure or model parameters estimation, there
are a few, which are suitable for nonlinear UAV models. In this work authors propose an estimation method of parameters
of the coaxial quadrotor’s orientation model, based on the Square Root Unscented Kalman Filter (SRUKF). The model
structure with different aerodynamic aspects is presented. The model is enhanced with various friction types, so it reflects the
real quadrotor characteristics more precisely. In order to validate the estimation method, the experiments are conducted in a
special hall and essential data is gathered. The research shows that the SRUKF, can provide fast and reliable estimation of the
model parameters, however the classic method may lead to serious instabilities. Necessary modifications of the estimation
algorithm are included, so the approach is more robust in terms of numerical stability. The resultant method allows for
dynamics of selected parameters to be changed and is proved to be adequate for on-line estimation. The studies reveals
tracking properties of the algorithm, which makes the method more viable.

Keywords Parameter estimation - Coaxial quadrotor - Mathematical model - Nonlinear filtration -
Square root unscented Kalman filter

1 Introduction

In recent years Unmanned Aerial Vehicles have been widely
used. The most popular UAVs configurations are fixed-wing
and multi-rotor [20, 21]. They are applied in such tasks
like: mapping, surveillance and reconnaissance, search and
rescue, agriculture and others [30, 40]. Today one may hear
about growing number of projects, where drones play the
main role: from the flying cameras, through the personal
observer to the sophisticated hardware simulator for the
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Mars lander [33]. Researchers develop improved control
mechanisms as well as refined estimation techniques.
Currently drone constructors are facing new problems:
safety and security. The question is not about how to control
the UAV or estimate its parameters, but about reliability and
robustness of the proposed systems.

Among many, in literature, one can distinguish three differ-
ent type of systems: remotely-guided, semi - autonomous,
and fully-autonomous. Often these three are distributed into
ten-point scale, namely Autonomous Control Level (ACL)
[5]. In order to achieve higher level of the autonomy it is
necessary to incorporate real time self-health diagnostic and
mechanisms of adaptation to faults or even failures. As a
consequence, specialized control algorithms with adaptive
or robust structure are being applied [2, 23]. In most cases,
the control scheme needs prior parametrization, usually -
based on a mathematical model [3, 15, 32, 34]. Similar
needs may appear during the usage of observers for fault
tolerant system in quadrotors (Fig. 1) [17].

Various approaches are used in case of model parameters
estimation, namely identification. Since a quadrotor model
is highly nonlinear and internally-coupled system which
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Fig. 1 The Falcon V5 coaxial quadrotor developed at the Institute of
Control, Robotics and Information Engineering of Poznan University
of Technology

has many physical as well as aerodynamic effects, the
identification task is challenging. There are two major
strategies in system identification: online and offline, both
in frequency-domain (FD) and in time-domain (TD). The
difference between online and offline [25, 36] methods may
be understood in terms of needs or availability of onboard
computational power, however the choice between time or
frequency domain is not yet so trivial.

In frequency domain, e.g. in UAV, the time flight data
is converted to frequency domain data. The procedure may
by explained based on popular software for identification
CIFER®! [36, 43]. Firstly, the flight data is gathered during
the flight (CIFER® is an offline, batch method), then, the
frequency response for each input-output pair is calculated
together with the coherence coefficients (on this stage
the model has already defined structure). Next, the multi-
variable frequency analysis is carried out; which removes
all cross effects in SISO models. Also partial coherence
coefficients are calculated. Afterward, the optimization
processes are being applied to time window lengths, so
the accuracy for low and high frequencies is at a proper
level. Finally, the state-space model is identified based
on optimization method, driven by frequency response
matching. Additionally, the parametrized model is validated
at time domain.

Identification in frequency domain is claimed to have
several advantages. Firstly, it stem from linear system the-
ory, because of that it gives simple insight in itself and
has strong foundations. Also, one has eventuality to choose
the range of frequencies in input sequence for the iden-
tification (with accordance to an information content and

IComprehensive Identification from FrEquency Responses, software
developed by the U.S. Army and NASA specifically for rotor-craft
applications
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signal-to-noise ratio). Furthermore, in frequency domain,
the model reveals much more information about its charac-
teristics compared to time domain. Therefore it is in general
more universal. Models identified in frequency domain are
suitable in a case of simulation, control law design or
model structure analysis. This approach was successfully
used in the case of UAV models in [11] for an insect-
like micro aerial vehicle, [10] for fixed-wing UAV or in
[19] in a test of flight flutter, namely: vibration, resonance
and damping. The most popular methods for an identifi-
cation in frequency domain are Least Square (LS), recur-
sive Least Squares (RLS) [37, 38], Maximum Likelihood
(ML) and Recursive Maximum Likelihood (RML) [6, 26].

In frequency domain the identification process is able
to exploit the MIMO model structure, although each and
every sub-model (pair of input-output) must be linear. This
is the main feature yet disadvantage of the FD approach.
Nonlinear models need to be linearized at an equilibrium
point prior to identification. In a case of specialized software
like CIFER®, the identified model will be automatically
described by the best linear fit to the response, based on
the first harmonic approximation in Fourier series [36].
That does not satisfy the requirements for the quadrotor
UAV model which is, as already stated, highly nonlinear
and has a coupled structure. The model cannot be simply
approximated with linear model, and the linearization is
only valid for a hoover state.

In some cases that problem can be solved with special
techniques. To address this, Adams and Allemang [1]
proposed method where model is divided into linear and
non-linear parts. In terms of simplicity, the overall method
boils down the non-linear state-space model to linear one
with the non-linear input function (excitation). The non-
linear input function depends on current input of the
prior model and the non-linear function which links the
subsequent derivatives of the state. As a result the FNSI
gives linear model parameters as well as non-linear model
part coefficients. The novel approach was successfully
adopted in [37] and [38] under the name: Frequency-domain
non Linear Subspace Identification (FNSI). Although the
FNSI was proved to be efficient, only one work describes
practical use of this method [38]. The method can be used
to all models with previously mentioned structure, though
a conversion from a UAV dynamic model is challenging.
The most laborious part of the conversion is to obtain
the linear sub-model. In the worst case scenario the linear
part is given as an identity matrix, while the nonlinear
part forms the overall previously defined model. The FD
system identification gives many possibilities, however the
cost is disproportionately high. To authors best knowledge,
there are not many articles devoted to non-linear quadrotor
model identification in frequency domain. In contrast, time-
domain methods seem to be more promising.
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The most popular and famous method for time-domain
identification is Kalman Filter (KF) [29], a recursive
algorithm, which works as a two-stages process. In a survey
[22] one finds that the KF was successfully applied in
various UAVs applications. Primarily, it was designed for
linear systems, expressed in a space-state form. Later, its
nonlinear version was developed, namely Extended Kalman
Filter (EKF). Although the EKF has been used for more than
40 years [12] and has been applied successfully in many
works [18, 41, 44], it is an imprecise method. It suffers from
approximations, which are made during the linearization
procedure. The EKF approximates mean and covariance up
to the first order of the Taylor series. In case of highly
non-linear problems it does not reflect the statistical values
properly. It is also believed that in extreme cases it exhibits
divergence and may be hard to tune when dealing with
significant nonlinearities [7].

The EKF was applied for UAV parameters estimation
in numerous works. In [28], authors presented results from
fixed-wing UAV identification methods, based on EKF and
Error Mapping Identification (EMId). In order to verify
proposed algorithm, the basic 3-DOF UAV model was
given with the assumption that only angular velocities are
measured. The experiment was carried out in hardware in
the loop (HIL) and in simulations. The obtained results
indicate, that the EKF is stable and its uncertainties are
at bounded levels (evaluated based on main diagonal
elements of the EKF covariance matrix). The EKF proved
its effectiveness at presence of partially corrupted sensory
data and lower sampling rate. In [8], authors have dealt
with online parameters estimation of Vertical Take Off and
Landing (VTOL) UAYV, by use of the EKF. Identification
results were used for Riccatti equation solver in control
procedure, providing optimal control even with prominent
sensors noise or biases. Common and noticeable for all
of the previous works is superiority of the EKF method,
however, as already mentioned, the EKF may fail in case
of highly non-linear and coupled models. That was partially
proven in [7], where authors have proposed two Kalman
Filter versions: the Extended and the Unscented.

The Unscented Kalman Filter (UKF) was firstly pro-
posed by Julier and Uhlmann [27] as a solution for EKF
problems. The main concept behind the UKF is Unscented
Transformation (UT). During the Unscented Transforma-
tion a set of carefully chosen points (actually vectors) called
sigma points are passed through the nonlinear function. The
set of sigma points are chosen in that way, so the mean
and covariance of the transformed function can be captured
properly. The UT uses the re-sampling technique, so the
statistic is calculated based on the set of points. Techni-
cally, if the noise distribution is Gaussian, the UKF provides
approximation up to the third order, if the input is non-
Gaussian the filter still holds the approximation accuracy at

least to the second order of the Taylor series [35]. The UKF
has been applied in different works, focusing mainly on
attitude estimation [9], position estimation [42] or parame-
ters estimation [24], though the last one remains practically
unexplored. According to [22], the UKF in identification
was used only in one work [4]. In [4] Brunke and Campbell
have introduced the architecture for a model and state (joint)
estimation of a fixed-wing plane. It is important to note that,
the solution proposed by them was preliminary explained
and proven. Firstly the authors have shown that the prob-
lem is non-linear and two most popular techniques including
Extended Kalman Filtering and Maximum Likelihood are
inadequate. Also by citing different authors, arguments for
and against the EKF and the proposed UKF were presented.
In conclusion Brunke and Campbell have suggested that
the most reliable, viable, elegant and numerically stable is
the Square Root version of the UKF (SRUKF), proposed
by Merwe and Wan [35]. In addition, the authors have
presented promising results obtained via the SRUKF method.
It is important to remind, that completely different way,
which adds an extension to the well-known time and
frequency domain horizon also exist. The most popular
among others are heuristic techniques. In their scope, two
main types of algorithms are placed: evolutionary and
swarm. In [45] Yang and Liu used the Particle Swarm
Optimization (PSO) method in a quadrotor UAV inertia
parameters estimation. The research involved simple model
derivation without aerodynamic effects. Also an interesting
framework for PSO-based identification was given. The
authors emphasized the problem associated with higher
dimensions PSO (falling into the local optimum trap). In
order to prevent it, two parallel PSOs were used in the same
model identification procedure. This ultimate approach
seems to be adequate in case of multimodal problems.
However, the authors have not mentioned about model’s
non-stationarity. In different work regarding the PSO in
an identification of UAV parameters [16] one finds similar
model, enhanced with aerodynamic effects, though limited
to one axis. The authors have given comprehensive study
on the PSO, with different kind of cost functions and
various model and parameters structures. They proved also
that only switched models can be used, since the classic
models with assumption of parameters constancy cannot
properly reflect quadrotor’s behavior. Furthermore, when
dealing with switched models, it is crucial to introduce few
of them as the accuracy needs to be at appropriate level.
This involves increased number of parameters to be found
and significantly extends the PSO’s computational time. In
the literature, one will find numerous applications where
evolutionary or swarm algorithms are used for identification
or simply model parameters estimation, however none of
them are suitable for online tracking in case of non-stationary
models (numerous parameters, computational burden).
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To conclude: in order to identify the model parameters
of a quadrotor UAV the time-domain method should be
choose. Among many available methods, only a few are
suitable for highly non-linear and coupled models. The most
popular estimation methods are within the scope of Kalman
Filters, where the highest accuracy, robustness and stability
are expected to be achieved by the Square Root version of
the Unscented Kalman Filter (SRUKF) [35].

In this work, authors have proposed quadrotor model
described in [15] (adapted to coaxial quadrotor schame),
enhanced with additional effects: flapping, induced, trans-
lational and profile drags and friction model. Then the
identification method based on Square Root Unscented
Kalman Filter (SRUKF) is presented as well as the
results obtained via this method. Furthermore, the SRUKF
method, proposed by Merwe and Wan [35] is modified,
so it can be more robust in terms of numerical stabil-
ity - regardless of initial settings and conditions. Also
the universal framework for non-linear dynamic mod-
els parameters identification is given. Studies on differ-
ent model structure and identifier input-output depen-
dency are also presented. In addition, the comparison
of identification results for the same model, based on
PSO method [16] and the SRUKF method is included.
The novelty of the paper lies in the improved SRUKF
method applied to online model parameters estimation,
which is assumed to be non-stationary. It also lies in the
presented framework, as it gives capabilities in the field of
identification, especially in UAV. To our best knowledge
there are no works where an issue of online UAV quadrotor
non-stationary models parameters estimation was raised.

The article is organized as follows: in the second section
the coaxial quadrotor model is derived and described.
In the third section, the SRUKF method as well as its
modifications are presented. In the fourth section the
experiment and all assumptions undertaken prior to the
experiment are described. Finally, in the last section; results,
conclusions and summary are presented.

2 The Coaxial Quadrotor Model

The basic quadrotor’s model has six degrees of freedom
(DOFs) (zero-order derivatives). First three DOFs describe
position, the rest denotes orientation (Euler or Tait-Bryan
angles) expressed in global reference system {E F'} (Robot
local reference system is denoted as {BF}). The global
{EF} reference is configured as the NED (North-East-
Down). In the paper, authors derive the model of the coaxial
quadrotor, which has eight propellers mounted co-axially on
a frame of the quadrotor (Fig. 1). Compared to the classic
quadrotor, this leads to the similar mechanical structure with
increased payload. It is often called octarotor, though it
may be confusing since octarotors have in general planar
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mechanical structure. In order to simplify the vocabulary,
authors use the coaxial quadrotor as a name of that sort
of robots. In addition, authors would like to point out that
planar octarotors are more efficient, but consume more space
and are larger. Coaxial quadrotors provide a reasonable
trade off between size and payload, especially when applied
indoors. In the paper, the discussion is narrowed to the
orientation part of the coaxial quadrotor model. The basic
equation, which describes the angular acceleration (for
convention from the Fig. 2) has the following structure:

R = R[0?7]y, )
105" = —[0" 1" + ) 7, )
mvPF = —om[wPF ], vBF + mRTg+ ) °f, A3)

wherethe R : {BF} — {EF}, BF —angular velocity given
in {BF}, []x — skew symmetric span, m — robot total mass,
I - robot inertia matrix,  — torques acting on the robot, V2%
— linear velocity (€ {BF}), g — gravitational acceleration, f
— forces acting on the robot.

It is important to note, that, in order to retrieve the robot’s
orientation in {EF}, one is forced to integrate angular
acceleration (@®F) and transform the result into the Euler
rates (4):

0 = PiLo®r. )

Although other methods exist, including quaternions, this
one remains simple, yet intuitive. Second integration of the
Euler rates gives the Euler (or Tait-Bryan) angles. Matrix
PLE is defined in Eq. 5 (detailed in [15]):

1 sin¢tan® cos ¢ tand

ng =0 cos¢ —sin¢ ) (5)
sin ¢ cos ¢
cos0) cos 6

The overall definition of P££ depends on the Euler or Tait-

Bryan representation, here the “3-2-1” convention is used

Fig. 2 The quadrotor skeleton and kinematic model (propellers
marked by light gray circles have clockwise rotation)
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(“flight notation” with roll, pitch and yaw angles). The
propellers generate forces, which (in simplest version) can
be expressed as product of scalar parameter b; and a second
power of rotor’s angular velocity w;, thus the force due to
the i-th rotor may be given as in Eq. 6:

f;=[00b?]" . (6)

Thrust is generated only in Z-axis of the local reference
system {B F}. The input torque t is a sum of torques, due
to subsequent propeller. The i-th torque is a cross product
of the i-th propeller position in respect to the { BF'} and the
i-th force, Eq. 7.

T =Pi X fl', (7)
[ 1w —ly

pip=|lw | p3a=| lu |, (8
| +h +h
[ —1, lw

Psj6=| —lw | Ps=| —lw |, 9)
| +h +h

where [,, is equal to 41 , | stands for arm’s length in
the quadrotor cross frame and i is a distance between
propeller’s plane and the center of mass in respect to Z axis
of the { BF'}. The Eq. 7 covers torques generated in X and Y
axis of the { B F'}, while the Z axis suffers from the reaction
torques, given as:

T, = di (@] + 0] + @2 +©3) +da (w3 + 3 + @2 +3). (10)

In Eq. 10 parameter d; refers to reaction torque gain. Two
of them are introduced, which stems from the opposite type
of propellers system. Propeller 1, 4, 5 and 8 have clockwise
rotation and the rest are counter-wise.

This simple notation can be extended to additional effect
like different types of drags. The better insight is presented
in [3]. As it can be found, there are few types of drag-
like effects: blade flapping, induced drag, translational drag,
profile drag and parasitic drag (which for speeds up to 10
m/s may be ignored [3]).

Blade flapping effect is ubiquitous in rotor vehicles. It
occurs when the rotor undergoes translational motion. It
simply changes the rotor’s tip path plane, deflecting it by
the flapping angle B ;4. Here, the explanation is narrowed
only to the final form of the force generated by the flapping
effect, though one may find detailed explanation in [31].
Flapping force due to the i-th rotor is given in Eq. 11:

\Y4 wBF
8§ =1 (Aﬂap—” +B ﬂap—> , (11)

wj wj

where V, is a horizontal velocity in the {BF}

(Vy = [Vi Vy 0]"), while the A 14, and By, are the
matrices with parameters to be identified:

A A O
Aflap =-| A A1 0|, (12)
"L o o0 o0
—B, B; 0
By = By =By 0 |, (13)
0 00

where r refers to rotor radius.

Another effect is induced drag. It may occur in small
quadrotors, where rotors blades are rigid or semi-rigid
which cause an unbalanced in flapping forces. This effect
can be simply described as a product of planar velocity and
a scalar parameter:

D, = K;V,. (14)

Similarly to induced drag, it is also possible to distinguish
translational drag. This effect occurs, when the air
is redirected from any translational movement to the
downward of the { B F}. In accordance with [3], this effect
depends on a speed in the air. For slow movements, the
translational drag is equal to:

D7 = K7, V), (15)

while for fast maneuvers, it is necessary to incorporate the
air velocity v; induced by i-th rotor:

Dr = K, (=V; + v)*V,, (16)

where the K7, and the K, are scalar parameters.

The last two drag effects are profile drag and parasitic
drag. Since the parasitic drag comes from non-lifting
surfaces of a quadrotor and occurs only for high speeds
(> 10m/s) it may be ignored [3]. Profile drag is gained with
the transverse velocity of the rotor blades in the air:

Dy = KpV,, (17)

where K p is a lumped parameter.
Finally, the total drag force acting on the i-th rotor can be
formulated as a sum of individual drags:

D; =4; +D; +Dr + Dp, (18)

while the torque due to drag effect, classified for i-th rotor
is defined as:

p; = Ppi x Di. (19)

The net torque 7p, added to model (1) is a sum of all 7p,,
where i €< 1 : 8 >. In the model, the friction is composed
of three main elements:

T = hgw + by sign(w) Ow O w + cyw O w O w, (20)

where the hg, by, and ¢, are friction coefficients, while ©
stands for Hadamarda product.
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Final equation for angular acceleration is given as:

8
C'UBF — I—l <—[a)BF]XI(1)BF + Z T+71p+ Tgyro — Tt) s

i=1

2y

where g4, is a gyroscopic torque due to the rotors and
frame velocity.

3 Model Parameter Estimation - the SRUKF
Method

In the Introduction comprehensive study on different
methods which are adopted for model parameter estimation
was given. In conclusion, authors stressed the role of
the time-domain methods based on Kalman Filters by
showing their superiority. Among them, probably the most
interesting one is the Square Root Unscented Kalman Filter.
It was firstly proposed by Merwe and Wan [35] as an
extension to well known Unscented Kalman Filter method
[27], though it has to be noted that some first attempts
in Square-Root filters date back to 1995 [39]. As all
Kalman Filter methods, the SRUKF is a recursive two-
stages procedure and in case of parameter estimation it
has simplified structure (compared to the state estimation
variant). It is important to recall the SRUKF equations since
the algorithm is partially changed. The parameter estimator
or observer operates on the basic model, given as:

Wil = W + Iy, (22)

di = G(xx, wi) + e, (23)

where wy, are the parameters to be found, ry refers to process
noise, G(.) is the non-linear mapping function, dg is a
desired output and e; constitutes an error.

The notation (22)—(23), clarifies the roles which are
assigned to the subsequent vectors and function, however
it has to be explained where the non-linear UAV model
(discretized by the forward Euler method) is placed. First of
all, one needs to assess the measurement system applied in
a UAV. Based on that it is possible to choose the observed
values. The UAV is equipped with the Inertial Measurement
Unit (IMU) or Attitude and Heading Reference System
(AHRS) and in case of orientation these quantities are
available: angular velocities, angles or quaternions. The
model given in Eq. 21 has direct impact on the angular
acceleration, thus it is highly important to observe or
measure this quantity. In the best case scenario, the dy
represents the angular acceleration, while the G(.) transfers
the previous state vector and parameters to the desired
angular acceleration, however dy may also include angular
velocities and angles or quaternions.

@ Springer

The SRUKEF starts from initialization:
wo = E[w], 24)
Su, = chol { El(w — o) (w — W) "1} 25)

During the first recursive stage, namely prediction,
operations (26)—(30) are being executed.

W, = W1, (26)
S;k = X;I{/stwk—l’ (27)
Wi—1 = [W, W, +vS,, W, —¥S, ] (28)
Dijk—1 = G[xk, Wji—11, (29)
2L
d; = Z WDy -1 (30)
i=0

where Agps and y are internal parameters (to be set based
on a process knowledge). In the second stage (measurement
phase), the (31)—(37) are used:

S¢, = qr { |:\/ Wi(c) I:DI:ZL’k — &k] A/ R{H , 31
Sy, = cholupdate {sdk , Dox — dy Wg“)}, 32)

2L
. L 1T
Puia, = E W,-(C) [Wikik—1 — W ] [@i,k\kfl - dk] ,(33)
i=0

Ki = (Pua/Sh,) /Sa (34)
Wi = W K (de—dy ). (35)
U = KiSq,, (36)

Su, = cholupdate {S U, -1}, 37)

wg
where L refers to the number of parameters, Wl.(c) and Wl.(m)
are the method’s parameters which need to be properly
chosen and R is a measurement noise — according to [35]
and can be set arbitrary, though it has a big influence on
convergence speed (to be proven in the next section).

Behind the SRUKEF, there are few different parameters
that rule the algorithm (extensive description in [14, 35]).
The first one is «, it determines the spread of sigma
points around the estimated parameters (eg. value: 0.7). The
second is B, which describes the distribution (eg. value: 2.0).
Finally, there is the scaling parameter called « (eg. value:
0 for state-estimation and 3 — L for parameter estimation
[35]). The previously listed parameters depend on the o, 8
and « in a given form:

A =a’(L+x)—L, (38)
y = /L + A, (39
wm = w = 1/2(L + ), (40)
W™ = AL+ ), 1)
W = A/ (L + )+ (1 —a® +B), (42)
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where i = 1,..,2L. The SRUKF algorithm given in
Eqgs. 26-37 is controlled via the Agr s, which has the same
function as in case of Recursive Least Squares Method. It
simply introduces the forgetting feature to the estimation
process. It is commonly used and set close to 1 (e.g. 0.9995).
As it came out during the first investigation, the Agz s may
lead to significant numerical instabilities. In most cases, the
safety could be guaranteed by setting the Agz s to 0.99999,
but it was not necessarily the optimal. In order to make the
method more robust and less sensitive on the initial setting,
the Agps is changed in each iteration so it can reach 1.0 in
a certain time. Due to that, the algorithm has to be extended
with the following formula:

Ares, = AArLs,, + (1 —29), (43)

where the constant A’ change the characteristics of the
ARrLS, in the subsequent samples. The influence of the 2% on
the Agrps, is depicted in the Fig. 3, for different 20,

Further modifications of the SRUKF method address the
problem of the parameter convergence speed and confidence
for the measurements or reference given in dy.

When the correction phase of the algorithm is invoked,
results from the model given in &k are subtracted from
the reference dj (35). If the reference introduces errors,
the corresponding variance in the covariance matrix R®
has to be increased. Although, it has strong influence on
a speed of the parameters convergence, Authors of the
[35] recommend to set the R arbitrarily (e.g. to 5I). That
makes parameters partially immune to the errors added in
the reference. However, high covariance values slow down
the convergence speed. Because of this, the fast-changing
parameters cannot be tracked well — one will find it difficult
to properly choose the values of the R®. In order to find the
optimal settings of R®, the optimization is needed.

Although the R® has strong influence on the parameters
as well as convergence characteristics of the algorithm, it
cannot change parameter characteristic individually. The
influence of the R® remains implicit. For example, if d,

_— -
/! "’ ¢"-
-
: L 'o' —_—"
0.8 w1y
[T " P
v, .’
oy P
[
0.6/ ': l’ o"
o, .
< "oy e
[T s
0.4F mi
my ’
my P
L] 4
m ¢
0.2+ i "
w,
w,
L7
olx i I I i i i
0 5 10 15 20 25 30

sample

Fig.3 The influence of the 20 on the A LS,

d; € R™! and wy € RLX! where L > 1, the R® ¢
R!*! changes all the parameters equally. As it can be seen,
the user cannot incorporate the prior knowledge about the
parameters behavior into the estimation process. If one of
the parameters is supposed to change slowly, it would be
desirable to prepare the SRUKF algorithm, so it can cut off
all sudden changes in the subsequent track. Unfortunately
the original form of the algorithm, given in Eqs. 26-37 does
not provide such tune possibilities. In order to add this, one
simple operation is need to be improved. In Eq. 27, the
S, is enhanced with the square root of diagonal covariance
matrix Q, yielding the following:

_ —1/2
Su. = *xr's St + Q. (44)

This simple modification stem from the state estimation
algorithm, where Q is used as a process noise. In that
case, the Q € REXL | Note, that L parameters have the
corresponding constant variance on the main diagonal of
the Q. By increasing subsequent variances, the user is able
to set the parameters behavior to be volatile. The tracking
capabilities are adjusted by Q and R®, however only its
ratio explains how fast or how slow the tracking will be
carried on. The settings of Q as well as R® and the result
achieved by use of the modified SRUKF method are shown
and discussed in the next section.

4 The Experiment and Results

The paper concerns an orientation model of the coaxial
quadrotor identified by the SRUKF method. In the previous
sections the model and the method with improvements
were shown. In this section, authors present experiments,
restrictions (that are imposed) as well as the results achieved
with the proposed method.

4.1 Assumptions and Restrictions

It is important to recall that the model given in Eq. 21 is
in a continuous form, which cannot be applied directly in
the SRUKF. The overall discrete form (discretized by the
forward Euler method) was given as in Eq. 23, however that
does not suits to the general state-space model, where the
state vector X; has to be updated in each and every step. In
order to make these two forms equally, one has to introduce
the measurement system as the reference. As it has been
already stated, the reference dy is formed from the state
vector, where all angular accelerations, velocities and angles
are captured (provided by the AHRS system). The aim is to
minimize the error given in Eq. 45:

e = (dk - ak>2, (45)
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where the &k_l is equal to x. If the number of sigma points
is 2L + 1, there are 2L + 1 vectors in Z; yx—1, where all are
calculated based on x; and Wy ;_1. However the x; has to
be calculated in the previous iteration. The basic question is
how to calculate the x; so, that the state vector will form an
optimal trajectory. The solution can be provided based upon
the update procedure, which allows to compute the model
state vector in k + 1 iteration i.e. Xx41, when the x; and wy
are known:

X1 = G[xx, Wi]. (46)

The procedures sequence of model updating and its
parameters estimation is shown in the Fig. 4. As it can be
seen, the model is updated after the correction phase of the
SRUKEF, based on the estimated parameters vector wg.

The reference consists of three main components, i.e.
angular accelerations, angular velocities and angles. The
most important and required is the first one. Without the
angular accelerations it is not possible to perform the
estimation process. It is caused by the direct influence of
the angular momentum on angular acceleration. The angular
velocities and angels are less important. First tests proved
that the model where only velocities and angles are used
(as a reference) cannot be correctly identified. The SRUKF
failed to operate in all cases, where the angular acceleration
was not used. The reason is simple, though disputable. The
most important part of the SRUKEF lies in the calculation of
the covariance matrix (actually its decomposition product).
If the impact of the parameters to be estimated on the output

Initialization

SRUKF - prediction
v

SRUKF - correction

v
Model Update

Lyl = G[Ekaﬁk]

Fig.4 The SRUKF procedure and the model update
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of the model is slender, the covariance matrix is minimize
to close to zeros and the resulting Kalman gain is increased.
Finally the SRUKF becomes unstable and spoils parameter
estimation process. As a matter of fact, low influence of
the parameters on the model output is mostly caused by
the integration process that occurs when calculating the
angular velocities from the acceleration. Another important
factor is coupling that exists between the velocities and
acceleration. When calculating the integral, the angular
velocities are obtained, however in the next iteration those
velocities are used in the accelerations equations, where the
gyroscopic torques are calculated. This may lead to model
instabilities as the higher derivatives are not controlled
directly. To handle this, one may set the initial parameters as
close to optimal as possible, unfortunately most frequently
these are unknown. The second option is to control highest
derivatives, i.e. angular accelerations.

The final restriction refers to traceability of the parame-
ters. The model given in Eq. 21, cannot be fully-identified
as there are infinity sets of parameters. It is why, some of
them must be given prior to an identification. The first set
includes the inertia tensor parameters (six elements of the
symmetric matrix I), the second group consists of the rotor-
propellers gains b; and d;. The propellers parameter or the
gain will probably change during the flight, while the iner-
tia parameters remain constant, this is way the authors have
decided to seek for the gain parameters instead of inertia
parameters, which are determined before the identification.

4.2 The Experiment, Gathered Data

The UAV used in the research (Fig. 5) was equipped with the
AHRS (ADIS16488 by Analog Devices) recording samples
at a frequency of 400 Hz. It provides the state estimation
based on the built-in EKF estimator (400 Hz frequency),
however the filter settings are not adjustable. That is why the
custom algorithm that provides unbiased angular velocities

Fig.5 The Falcon V5 coaxial quadrotor (start from a safety net)
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and angles was used instead. The authors have used the
sport hall (Fig. 6) as the air disturbances (assuming that
the distance from the ceiling, floor and walls is sufficiently
high) are lowest and the wind effects can be neglected.

It is important to notice that the research concerns
estimation in open-loop system, where in the control
the commands were sent with a period of 30ms. A
detailed verification of the balance between the control
and estimation frequencies (in a closed-loop system with
observer) will be provided in next (separate) publication.

As it has already been stated, the reference consists of
angular accelerations, velocities and angles (X,Y and Z
axis), where accelerations are necessary. Unfortunately, in
a great majority of AHRS, the angular acceleration is not
available. In order to acquire it, the velocity derivative has to
be calculated. This method has two disadvantages, the first
one is the undesirably noise gain, and the second one is an
introduced delay (at least one sample). In order to minimize
the first effect, authors have applied the first-order, low-pass
Butterworth FIR filter to velocities measurements (cut-off
frequency equal to 0.1 of half of the normalized sampling
rate). It strongly reduces the errors, though the same filter
must be applied for all derivatives (same delay). As it came
out, the introduced delay in angular acceleration has minor
influence and could be neglected.

During the experiment the UAV coaxial quadrotor has
operated in the closed area in all three axes with low linear
speed (Figs. 7-8). The date gathered during the experiment
consists of set values for BLDC motors (for eight
propellers), estimated angles, speed in Z axis (€ {EF}),
estimated height (€ {E F}), angular velocities (gyroscope-
based), linear accelerations, magnetometers readings and
the sample time (sample rate equal to 400Hz).

One of the most important aspects of the measurement
system, is an unavailability of the propeller speed. These
velocities are not measured, however they are needed as
they are used in the force calculation. In order to possess
the knowledge about the rotors speed, necessary calculation

Fig.6 The sport hall and the UAV coaxial quadrotor

0
x [m]

Fig.7 3-D plot of the flight trajectory

must be made. The rotor-propeller model can be given as the
second-order inertial object [13], where the gain is included
in the force (6) as b;. It is important to note that, the second
order inertia relation describes how the BLDC controller’s
set value (duty cycle in %) affects the propeller’s speed. This
simple procedure allows to estimate the rotors velocities.

4.3 The Results

The experiment involved coaxial quadrotor with main board
equipped with STM microprocessor and internal memory.
Data collected during flights was stored in the memory.
After a flight the data was downloaded on a stationary
computer and was used in further processing. The SRUKF
estimation algorithm was used together with the discrete
version of the model given in Eq. 21, fed with gathered and
filtered data. The discrete version of the model was obtained
via explicit forward Euler method. Similarly, the discrete
integration was realized with the same approximation.

The discrete model of the coaxial quadrotor has sixteen
gains b; in X and Y axes (eight per axis, two per propeller),
eight gains d; in Z axis (one per propeller), nine friction
coefficients hgy, bwy, cwy, hgy, bwy, cw,, hg;, bw,, cw,
(three per axis, for first, second and third power of the
velocity in the subsequent axis), two coefficients of the
flapping effect By, B, and six offsets for velocities and
angles in X, Y and Z axis. The quadrotor has also constant
parameters, which are calculated or measured prior to the
experiment (Table 1).

After the first estimation trial it was observed that some
of the parameters are redundant. The coaxial propellers have
the same gain, which reduces the number of b; to eight.
Similar applies to d;, where only four of them are necessary.
The final equation for t has a following form:

71=CDwOw, 47)
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Fig.8 Visualization of the flight
trajectory in 3-D - available at
http://uav.put.poznan.pl and
https://youtu.be/H4KuRLZ

kpuM
where:
(12 0 0
C = 0 l«/Tf 01l (48)
| 0 0 1
T
w:[w1 Wy W3 W4 W5 W W7 wg] , 49)
by by by by —b3 —b3z —bs —ba
D= | —-bs —bs bg b¢ b7 by —bg —bg |. (50)
di dydyds dy di3 dy da

As it can be seen, the coaxial propellers pairs in X and
Y axis differ with the gains. This is crucial, as the model
with further simplification cannot be identified properly.
The most important question is why some of the naturally
or theoretically equal parameters like b1, bs or by, b cannot
be simplified? The answer may lie in the side effects when
maneuver in the air. Some of the drag-like effects (induced,
translational) are not accounted as the linear velocity is not
available. Also the propellers may deflect, which results in
different torques in X and Y axis. In the Z axis, that problem
did not occur. The d; parameters cover the doublets of upper
and lower propellers with the same rotary direction.

During the first stage of the research, data gathered in the
experiment was filtrated and used in the standard SRUKF
algorithm. The results are shown in Figs. 9, 10, 11 and 12.

Table 1 Parameters of the coaxial quadrotor

Constant Value Unit
Propeller distance in Z axis (h) 0.02 m
Frame arm length (/) 0.2 m
Rotor-propeller moment of inertia 7, 0.000001 kg - m?
Robot moment of inertia Iy, Iyy, I, 0.008 kg - m?
Robot product of inertia Iyy, Iyz, I;x 0.00001 kg - m?

@ Springer

The angular acceleration is well reconstructed. The
difference between the model and the reference can be
captured only during the first 20 ms. However these 20
ms has a huge impact on angular velocity which results in
the offset.? Similar situation occurred in case of the lowest
derivations, namely Tait-Bryan angles. Although the offsets
were estimated, the SRUKF could not follow its changes
sufficiently fast. Authors have tested the algorithm with
different settings for R® without positive results. Moreover,
the algorithm was stable only for R{; €< 0.01; 9 >. In order
to intentionally change the convergence for offsets and to
boost the robustness of the proposed method, modification
of the SRUKF was added. The +/Q was modified, so its
main diagonal elements responsible for the noise of the
offset parameters were set arbitrary to 0.01. The results are
shown in Figs. 13, 14, 15 and 16.

The applied modifications have allowed to follow the
offset properly. The estimation process takes less than
0.8s to fully reconstruct the reference. It also reveals high
stability, as the R® was changed from small to large values
(tested within the range: < 0.001; 50 >). As the R® was
decreased, the method started to be sensitive for small
changes in the reference signal. The advantage of the low
values in R can be visible as fast convergence, however
this may lead to errors while some sudden changes occur.
For example, when the reference is distorted by state
estimation or measurement noise, the SRUKF apace follows
this noise by appropriate changes in parameters, which
definitely corrupts the estimation. Although reliable method
for assessment of the hyperactive behavior of parameters
estimator do not exist, one is able to intentionally introduced
noise which should not have influence on parameters.
Authors have added the noise as a peak value in the

2the offset is also increased by the integration errors


http://uav.put.poznan.pl
https://youtu.be/H4KuRLZkpuM
https://youtu.be/H4KuRLZkpuM

JIntell Robot Syst (2019) 95:491-510 501
Fig.9 Angular acceleration, «— : : : :
velocity and Tait-Bryan angles 3 ok —_— o, |
% | —_— dwre'y
S P /) ———
= 0 /) A —_—do, ]
3 N/ do,
8 -2 —_— do, .
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Velocity [rad/s]
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reference of the velocity in the X axis. Recorded results for
different R® are shown in Figs. 17, 18 and 20.

An adverse effect is clearly observed for R{, = 0.005.
The most interesting case is depicted in the Figs. 19 and 20,
where in 150-th sample of data, sudden reference noise
occurred. It shows how simple data corruption changes
the overall characteristics of the estimation. As it can be

Fig. 10 Motor-Propellers gains
bi, d;

0.5 1 1.5 2 2.5
time [seconds]

deduced the process of the algorithm tuning requires opti-
mization. Authors have decided to use the PSO algorithm
with only two parameters to be tuned-optimized. The first
one is the Rfi, the second is Q;;. An optimization must
be performed in presence of noise, that have significant
influence on parameters estimation for small R{;. A trade

off is made between the SRUKF’s hyperactivity and the

Gain coefficients

Gain coefficients

Gain coefficients

| L | L

0.5 1 1.5 2 25
time [seconds]

@ Springer



502

JIntell Robot Syst (2019) 95:491-510

Fig. 11 Friction coefficients

friction X

friction Y

friction Z

convergence speed. The PSO’s settings are described in
[16]. In order to introduce fair evaluating factor, the cost func-
tion based on sum of the squared errors (SSE) for accelera-
tion, velocity and angles is adopted. One of the PSO simpli-
fication is a length of input data, which was shortened to 200
samples. This not only reduces an optimization time, but

Fig. 12 Flapping and offsets
coefficients

time [seconds]

also gives possibility to choose the most interesting scope
of flight data. The obtained trajectory of particles in a chase
for the global optimum is shown in the Figs. 21 and 22.
The SRUKEF settings found via PSO satisfy the esti-
mation performance, though the optimal performance
depends on many variables, which cannot be provided

Flapping coefficient
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Fig. 13 Angular acceleration, &
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in advance. The results for all tests are given in the
Table 2. The best performance is achieved for \/R_fl =
5.0658, «/Q;;i = 0.0978 and \/RY, = 6.4941, /Q;; =
0.0077 (data disrupted). Interestingly, the best settings
for disrupted reference data, which were found via
PSO, have low sum of errors (22.884) for undistorted

Fig. 14 Motor-Propellers gains
bi, d;
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data. Therefore settings: /RY, = 64941, /Q; =
0.0077 become optimal for SRUKF parameters estima-
tor. Note that the cost function given in Figs. 21 and 22
are significantly different as the PSO optimization operated
only on first two hundred samples, while the err,, was
calculated for one thousand input sequences.
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Fig. 15 Frictions coefficients
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Fig. 17 Angular acceleration,
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Fig. 19 Angular acceleration,
velocity and Tait-Bryan angles,
for RY; = 0.005 with distorted
velocity reference

Fig.20 Motor-Propellers gains
b;, d;, for Rf; = 0.005 with
distorted velocity reference
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Fig.22 Cost function versus R{; and Q;;, for disrupted reference

Table 2 SRUKEF results

\/lﬁ \/@ errdy erry errang errsum Al
5.0 0.00 0.4565 3.1548 141.90 145.51 -
5.0 0.01 0.4719  0.1058 22.164 22742 -
0.005 0.01 1765.4 100.30  22.075 1887.8 *
5.0 0.01 111.32 18.816 22.249 152.39 *
150 0.01 2.3000 3.3209 22.600  28.221 *
5.0658 0.0978  0.4349  0.0155 22.072  22.523 HE
6.4941 0.0077 53.999  9.3415 22.440 85.781 HkE
6.4941 0.0077 04732  0.1436 22.268 22.884 HE

* disrupted
** PSO
*#% PSO, disrupted

5 Discussion and Conclusions

In the article the method of coaxial quadrotor model
parameter estimation was presented. The method is based
on Square Root Unscented Kalman Filter which has better
stability compared to Unscented Kalman Filter (UKF).
Authors have shown the orientation model of coaxial
quadrotor, extended with additional drag-like effects. In the
experiment the data was gathered at a sport hall, from the
AHRS system, applied in onboard measurement system.
The AHRS provided an unbiased estimation of the angular
velocity, angular acceleration and Tait-Bryan angles. The
coaxial quadrotor has flown within the area, where the
distance from the walls ceiling and floor was sufficiently
high (the risk of reflected air was minimized), the drone
operated in three axes, i.e. X, Y and Z.

In the paper, a complex analysis of the presented method
was introduced. The main modifications provided by the

authors concerned the Agrs and S, upgrade. By intro-

duction of the A%, the algorithm acts more stable, even
though the input settings are within a wide range. On the
other hand, carefully chosen and modified elements of the
+/Q allows to change the characteristics of the subsequent
parameters. During the research, twenty-nine model param-
eters were estimated (based on nine reference signals). Into
the reference signals, acceleration, velocity and angles for
X, Y and Z axes signals were included. The basic SRUKF
algorithm (without proposed modifications) has given poor
results, as the offsets added in the model could not be fol-
lowed fast enough. Later, dynamics of the offsets parameters
were changed by increasing subsequent values in the /Q.
The results of the modified and improved SRUKF method
were considerably better than in case of classic SRUKF. As
it was revealed in a track of studies, the best performance
is achieved when the \/RY; is substantially decreased. The
SRUKF could get on a track of the reference signal fast and
the errors were smallest, however the cost was extremely
high, as small values of \/RY; lead to estimator’s hyperac-
tivity. This feature manifests as a sudden overreact on the
noise or disruption in the reference data. The shown figures
present how the estimator reacts on data disruption. When
authors have introduced a peak value in the reference value,
the parameters were dramatically changed, even though the
changes were physically impossible (e.g. gains). Authors
have distinguished two settings to be optimized. The first
one was +/Q;;, the second was \/R_fl . When increasing the
@ , the offsets parameters are estimated faster. On the
other hand when \/R_fl is decreased the algorithm is getting
more sensitive on reference. Parameters, for which the +/Q;;
is equal to zero, are influenced only by the \/R_l‘l . For param-
eters, which has 4/Q;; > 0 the behavior is determined by
the ratio +/Q;;/,/R¢,. The tuning process remains difficult
as those parameters cannot be changed independently.
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In order to find optimal settings, authors have used the
PSO method. Two different cases were studied. The first
one is a standard estimation, the second has intentional peak
value in reference signal acting as a data disruption. The
optimization has provided sets of tuning parameters, where
the optimal reduced cost function markedly. Among many
SRUKEF setting parameters, the most important are Agyrs,
VR€ and /Q, the rest like sigma points spread «, B and «
are less important. Authors could not record their influence
on algorithm performance, as they play minor role (the
actual influence was observed in the first milliseconds of the
estimation, though the overall performance was similar).

One of the major advantages of the presented method
is the natural ability of data tracking. The SRUKF can
be applied in case of non-stationary models. The proved
study shows how the estimation process can be set to
individual parameters, where feature like rate of change
are crucial in dynamic simulation. Furthermore, the given
modified estimation method is suitable either in offline or
online application. The tested batch method was validated
in terms of parameters estimation accuracy, where the
computational complexity factor was not essential, however
this may become most important for online application.
Two main operations which are executed in the SRUKF
are: QR decomposition (complexity (N L?)) and Cholesky
factor update (¢/(L?)). The algorithm is in general ¢(L?),
which is less than in case of the EKF (&(L3)) [35]. As
it has already been stated, presented coaxial quadrotor
model had twenty-nine model parameters to be found. This
lead to significant computational load, which for most of
the on-board single-core computers may cause difficulties.
Also, authors would like to emphasize the role of an
implementation of the decomposition algorithm as well as
the Cholesky factorization, which should be prepared to
close to non-positive-definite matrix forms.

Finally authors would like to compare the obtained
estimation results with the results from the PSO, presented
in [16]. One of the most fundamental difference between
the SRUKF and the PSO lies in the model structure. In
the case of PSO, one is obliged to follow the rule of
stationarity of the parameters, otherwise the method will
not be able to find the solution. Technically, the PSO for
parameter estimation is an off-line method, though one
is able to introduce finite number of sets of parameters
forming a switched model (with conditions for parameters
to be switched). The second disadvantage of the PSO is
computational inefficiency. As it was already stated, the
method for large problems suffers from the local optima and
in order to find best parameters, at least few swarms must
be incorporated. The SRUKF uses the non-stationary model
which is definitely better, especially in case of the coaxial
quadrotor. As it was proved, the model parameters are fast-
changing, which makes the SRUKEF suitable for this group
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of models. It is important to note, that all of the parameters
are required in model and further redundancy cannot be
introduced. In the paper, authors have also demonstrated
that the proposed framework (subsequent derivatives, model
structure, data filtration, added offsets) is universal and can
be applied in most of the multirotor UAVs. The improved
SRUKEF in coaxial quadrotor model parameters estimation
has proved to have good performance.

Comparison of the proposed observer to other existing
methods is essential for the future investigation, as this will
help to decide whether the SRUKF is the most effective
method for the given model and data. Authors would like
to raise the issue in the upcoming paper. In the future,
authors will also apply this method in a dual estimation, in
simultaneous estimation of the quadrotor state vector and
model parameters.
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