
Machine Learning (2019) 108:687–715
https://doi.org/10.1007/s10994-018-5758-5

Corruption-tolerant bandit learning

Sayash Kapoor1 · Kumar Kshitij Patel1 · Purushottam Kar1

Received: 28 January 2018 / Accepted: 9 August 2018 / Published online: 29 August 2018
© The Author(s) 2018

Abstract
We present algorithms for solving multi-armed and linear-contextual bandit tasks in the face
of adversarial corruptions in the arm responses. Traditional algorithms for solving these
problems assume that nothing but mild, e.g., i.i.d. sub-Gaussian, noise disrupts an otherwise
clean estimate of the utility of the arm. This assumption and the resulting approaches can
fail catastrophically if there is an observant adversary that corrupts even a small fraction of
the responses generated when arms are pulled. To rectify this, we propose algorithms that
use recent advances in robust statistical estimation to perform arm selection in polynomial
time. Our algorithms are easy to implement and vastly outperform several existing UCB and
EXP-style algorithms for stochastic and adversarial multi-armed and linear-contextual bandit
problems in wide variety of experimental settings. Our algorithms enjoy minimax-optimal
regret bounds, as well as can tolerate an adversary that is allowed to corrupt upto a universally
constant fraction of the arms pulled by the algorithm.

Keywords Robust learning · Online learning · Bandit algorithms

1 Introduction

The recent years have witnessed a surge in the applications of online learning, especially
those of explore-exploit techniques such as multi-armed bandits and linear-contextual ban-
dits, to online recommendation (Li et al. 2010), online advertising (Chakrabarti et al. 2008),
web analytics (Tang et al. 2013), crowdsourcing (Padmanabhan et al. 2016), and even mobile
health (Tewari and Murphy 2017). The result has been a diverse and rich literature, accom-
panied by a deep understanding of how these algorithms work on large-scale data. However,
the point of application of these techniques to real-world data throws up several unforeseen

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmann.

B Purushottam Kar
purushot@cse.iitk.ac.in

Sayash Kapoor
sayash@cse.iitk.ac.in

Kumar Kshitij Patel
kishinmh@cse.iitk.ac.in

1 Indian Institute of Technology Kanpur, Kanpur, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5758-5&domain=pdf
http://orcid.org/0000-0001-5695-280X
http://orcid.org/0000-0002-6886-6826
http://orcid.org/0000-0003-2096-5267

688 Machine Learning (2019) 108:687–715

challenges, such as those of scale and data quality. In particular, when working with con-
sumer/user data, it is inadvisable to assume clean theoretical models for data to hold ground
beyond a point. Some concrete examples are outlined below.

Click fraud via malware: malware present on user systems can be used to effectively
sabotage an advertisement campaign run by a competitor by suppressing clicks on the ads
pertaining to that campaign, causing a typical online advertising platform to reject those ads
from consideration.

Fake reviews and ratings via automated bots: automated bots can alternatively be used
to artificially boost products by posting fake reviews or simulating clicks on a compromised
website, which can cause recommendation platforms to get tricked into giving those products
more visibility.

Transient socio-political effects: for companies that employ celebrity brand ambassadors,
actions taken by those ambassadors in their personal lives can often adversely affect brand
popularity (Times, 2015) and cause a large number of users to post negative reviews or
downgrade their ratings in a short period. This can adversely affect the functioning of rec-
ommendation systems, as well as the experience of users unconcerned with the event, in the
short term.

Outlier behavior: not all data corruption need be malicious or even intended, but may
nevertheless adversely affect the functioning of the decision making systems operating on
that data. For example, in mobile health applications, temporary issues with the mobile
device or mobile connectivity may cause the algorithm to conclude that a patient has become
unresponsive and then target that patient more aggressively, which may adversely affect
patient cooperation.

Multi-armed and linear-contextual bandits algorithms are two of the most popularly used
techniques in recommendation and advertising settings. If executed in the above settings with
data corruption, these bandit algorithms will encounter corrupted arm rewards/responses and
their performance may degrade.

Now, note that in all the settings mentioned above, the corruptions/aberrations to the data
are sparse, and sometimes even transient. For example, it is reasonable to assume that only a
fraction of clicks can be suppressed bymalware or be synthesized by bots. Even in the mobile
health and brand-ambassador examples, the effects of data corruption are transient, hence
sparse when viewed as a fraction of long-term data. Thus, a direct solution to the problems
mentioned above would be to make these bandit algorithms robust to sparse corruptions in
arm responses.

The recent years have indeed seen a resurgence of interest in developing algorithms that
are resilient to data corruption. We will review these shortly. These contemporary lines of
work trace their origin at least half a century back to the area of robust statistics (Huber 1964;
Tukey 1960; Maronna et al. 2006). However, recent works have focused more on developing
robust algorithms that are scalable and efficient, whereas classical works usually paid scant
attention to scalability.

In our work, we develop online learning algorithms for two settings, namely multi-armed
and linear-contextual bandit problems, that are tolerant to sparse corruptions in the arm
responses that they receive. Our algorithms enjoy minimax-optimal regret bounds in the face
of fully adaptive adversaries, as well as vastly outperform several existing approaches to
both stochastic, as well as adversarial multi-armed and linear-contextual bandit problems, in

123

Machine Learning (2019) 108:687–715 689

experiments. We believe our results come at an opportune moment, at a time when scalable
robust algorithms are being actively investigated, as are online algorithms.

1.1 Organization

We address two bandit settings and present a total of three new algorithms. In Sect. 2, we give
a brief overview of bandit literature, and discuss related work from three areas: adversarial
bandits, robust algorithms, and heavy-tailed bandits. In Sect. 3, we introduce the notation we
use in the rest of the paper.

In Sect. 4, we discuss the multi-armed bandits (MAB) setting that is popular when the
set of actions is small and fixed, e.g., in web analytics and mobile health. We introduce two
algorithms rUCB- MAB and rUCB- Tune for this setting.

In Sect. 5, we discuss linear contextual bandits, a more general setting which allows arms
to be parametrized, as well as the set of available arms to change from time step to time step.
This is most applicable in online advertising and recommendation settings where the set of
available ads/products may change across time. We introduce rUCB- Lin for this setting.

In Sect. 6, we perform extensive experimentation, comparing our proposed algorithms
against stochastic bandit algorithms such as UCB, KL-UCB, UCBV and many others, adver-
sarial bandit algorithms such as EXP3 and SAO, and algorithms for heavy-tailed bandits
from Medina and Yang (2016). We conclude with an overview of interesting directions for
future work in Sect. 7.

2 Related works and our contributions

Literature on bandits is too vast to be surveyed here. Starting with the early work of Auer
et al. (2002a) on multi-armed bandits (MAB), the field has seen progress in linear bandits
(Abbasi-Yadkori et al. 2011), contextual bandits (Chu et al. 2011), as well as applications
to recommendation (Li et al. 2010), advertising (Chakrabarti et al. 2008), web analytics
(Tang et al. 2013), crowdsourcing (Padmanabhan et al. 2016), and mobile health (Tewari and
Murphy 2017).

The three lines of work that relate most closely to ours are (1) those on adversarial bandits
where arm rewards/responses need not be stochastic at all, (2) those on developing corruption-
resilient learning and estimation algorithms, and (3) those on bandits that suffer heavy-tailed
albeit still stochastic and non-adversarial noise (since these algorithms are also sometimes
referred to as “robust”). We review all three lines of work below and clarify our contributions
in context.

2.1 Adversarial bandits

Given the presence of an adversary in our setting, it is tempting to utilize algorithms designed
to work with non-stochastic arm reward assignments. There does exist a large body of work
on EXP-style algorithms starting with Auer et al. (2002b), namely EXP3 for multi-armed
bandits and EXP4 for linear contextual bandits, as well as variants such as EXP3++ (Bubeck
and Slivkins 2012) and SAO (Seldin and Slivkins 2014), that are indeed able to offer sub-
linear regret even if all (not just a fraction of) arm responses are chosen by an adversary.

This in itself is too pessimistic a view given that we have observed in Sect. 1 that in real-
life settings, it is reasonable to expect only a fraction of the arm responses to be corrupted.

123

690 Machine Learning (2019) 108:687–715

Moreover, their attractive regret bounds notwithstanding, there is a price to pay for using
EXP-style algorithms. Indeed,most recentworks on adversarial bandits (Bubeck and Slivkins
2012; Lykouris et al. 2018; Seldin and Slivkins 2014) focus only on multi-armed bandits and
not linear-contextual bandits. This is possibly because EXP-style algorithms (such as EXP4)
rapidly become infeasible to execute in practice for linear-contextual bandits.

However, we propose rUCB- Lin, a practical and efficient algorithm for linear-contextual
bandits that can tolerate adversarial corruptions. Moreover, we also experimentally compare
to EXP3 and SAO in the MAB setting and show that our proposed algorithms rUCB- MAB
and rUCB- Tune outperform it. We also note that from a theoretical standpoint, the regret
bounds offered by EXP-style algorithms do not compare directly to the pseudo-regret style
bounds prevalent for stochastic bandits that we provide for our algorithms.

The recent work of Lykouris et al. (2018) deserves special mention since it considers a
problem setting similar to ours wherein the adversarial corruption is not rampant. Our work
is independent and indeed, our algorithms and analyses differ significantly from those of
Lykouris et al. Their work considers only multi-armed bandits whereas we consider multi-
armed bandits as well as the more challenging case of linear-contextual bandits. Indeed, arm
elimination, the strategy adopted by Lykouris et al., cannot be reliably practiced in contextual
settings where the set of available “arms” may change arbitrarily from time step to time step.
Moreover, in experiments, we find that rUCB- MAB and rUCB- Tune beat strategies such
as SAO that also use a form of arm-elimination.

From a theoretical standpoint, Lykouris et al. do not explicitly model the fraction of arm
responses that are corrupted but instead consider the total amount of corruption introduced
by the adversary during the entire online process, say Ctot. Their regret bounds are of the
form Ctot · K · log2(KT) ·∑i �=i∗

1
Δi

where K is the number of arms, i∗ is the optimal arm,
Δi is the sub-optimality in arm i and T is the time horizon. Since we can have Ctot = Ω (T)

if a constant fraction of responses are corrupted, it is not desirable that the regret bound have
Ctot and the number of arms K in a multiplicative union.

In contrast, we explicitly model the fraction η of arm responses that are corrupted and
offer regret bounds of the form (see Theorem 2) R̄T (rUCB- MAB) ≤∑i �=i∗

log T
Δi

+η · B ·T
where B is an upper bound on the corruption magnitudes. Note that the term η · B · T plays
the same role as Ctot does for Lykouris et al. Also notice that in our bound, this term is
completely independent of the number of arms and that our bound is additive in this term,
not multiplicative.

2.2 The best of both worlds?

Given the wide gap between settings with stochastic arm responses and those with adversarial
responses, there has been interest in developing algorithms that can seamlessly address both:
offer a superior log T regret bound if all arm responses are stochastic and regress to a more
conservative

√
T bound if arm responses are adversarial. Existing works achieve this either

by starting out optimistically assuming a stochastic setting and then switching to EXP-style
policies upon detecting signs of adversarial behavior, e.g., SAO (Bubeck and Slivkins 2012),
or else carefully tuning EXP-style policies so as to offer log T regret if arm responses are
completely stochastic, e.g., EXP3++ (Seldin and Slivkins 2014).

Experimentally, we compare to both SAO and EXP3 and find that rUCB- MAB and
rUCB- Tune outperform both. From a theoretical standpoint, we too can provide “best-of-
both-worlds” style guarantees for rUCB- MAB and rUCB- Lin (see Theorems 2, 7). This
is because our bounds for both, multi-armed as well as linear contextual bandits, gracefully

123

Machine Learning (2019) 108:687–715 691

upgrade to minimax-optimal bounds for stochastic bandits if the corruption rate η goes to
zero. η = 0 is the case when there is no malicious adversary and all rewards are truly
stochastic. Thus, we are indeed able to recover the “best of the stochastic world”.

Moreover, we offer minimax-optimal regret bounds even if a bounded fraction of the arm
responses are corrupted, thus offering the “best of the adversarial world” too. Our bounds
cannot handle a totally rampant adversary that, for example, corrupts all the rewards, i.e.,
when η → 1. This is because our algorithms are robust versions of UCB whereas “best-of-
both-worlds” style results typically choose EXP3 as the base algorithm but this choice has
drawbacks as discussed earlier.

2.3 Robust learning and estimation algorithms

Robust algorithms have recently attracted a lot of attention in several areas of machine
learning, signal processing, and algorithm design. Some prominent applications for which
robust algorithms have been investigated are statistical estimation (Diakonikolas et al. 2018;
Lai et al. 2016), optimization (Charikar et al. 2017), principal component analysis (Candès
et al. 2009), regression (Bhatia et al. 2015; Chen et al. 2013; Nguyen and Tran 2013) and
classification (Feng et al. 2014).

Our algorithms make novel use of recent advances in robust estimation techniques viz
moment estimation (Lai et al. 2016) and linear regression (Bhatia et al. 2015). However,
these adaptations are not immediate or trivial, especially for linear bandit settings where the
proof progression of OFUL-style analyses has to be adapted in a novel way to accommodate
the complex estimation steps carried out by robust linear regression algorithms.

2.4 Heavy-tailed bandits

There has been recent interest in developing bandit algorithms where the arm responses are
samples from heavy-tailed distributions such as the works of Bubeck et al. (2013), Medina
and Yang (2016), Padmanabhan et al. (2016). A point of confusion may arise here since
these algorithms are also sometimes referred to as “robust” algorithms. However, crucial
differences exist in our problem setting that makes these results inapplicable directly.

We note that in heavy-tailed settings, arm responses are still generated from a static
distribution. However, in our problem setting, there will be an adaptive adversary which
need not follow any predeclared distribution heavy-tailed or otherwise, when introducing
corruptions. For example, our experiments consider an adversary that flips the sign of the
response of an arm tomake that arm seem unnaturally good or bad. Heavy-tailed distributions
cannot model such a sentient and malicious adversary and as such, existing analyses do not
apply.

Thus, works on heavy-tailed bandits do not apply in our setting. We nevertheless exper-
imentally compare to these algorithms and show that our proposed algorithm rUCB- Lin
outperforms them. Moreover, our algorithms tolerate as much as a constant fraction of cor-
rupted responses, e.g., η · n out of a total of n responses for some constant η > 0, whereas in
heavy-tailed analyses, due to assumptions made on the arm distributions, often only a loga-
rithmic number of the total responses, e.g., log n, come from “the tail”, a fact often exploited
by these analyses.

Another work of interest is that of Gajane et al. (2018), which considers privacy-
preserving bandit algorithms. To achieve privacy-preservation, the algorithm transforms the
arm responses using a known and invertible stochastic corruption process. However, there

123

692 Machine Learning (2019) 108:687–715

is no external malicious adversary in this process and the reward transformations are indeed
known to the algorithm.

3 Notation

We will denote vectors using boldface lower case Latin or Greek letters, e.g., x, y, z and
α,β, γ . The i th component of a vector x will be denoted as xi . Upper case Latin letters will
be used to denote random variables and matrices, e.g., A, X , I .

[n] will denote the set of natural numbers {1, 2, . . . , n}. We will use the shorthand {vi }S
to denote the set {vi : i ∈ S}. In particular {vi }[n] will denote the set {v1, . . . , vn}. I {·} will
denote the indicator operator signaling the occurrence of an event, i.e., I {E} = 1 if event E
takes place and I {E} = 0 otherwise. The expectation of a random variable X will be denoted
by E [X].

Given a matrix X ∈ R
d×n and any set S ⊂ [n], we let XS := [xi]i∈S ∈ R

d×|S| denote
the matrix whose columns correspond to entries in the set S. Also, for any vector v ∈ R

n we
use the notation vS to denote the |S|-dimensional vector consisting of those components that
are in S. We use the notation λmin(M) and λmax(M) to denote, respectively, the smallest and
largest eigenvalues of a square symmetric matrix M .

4 Robust multi-armed bandits

In this section, we will discuss the classical multi-armed bandit, introduce various adversary
models and present the rUCB- MAB and rUCB- Tune algorithms.

4.1 Problem setting

The K -armed bandit problem is characterized by an ensemble of K distributions ν =
{ν1, . . . , νK } over reals, one corresponding to each arm, with corresponding means μ =
{μ1, . . . , μK } ∈ R

K . At each time step, the player selects and pulls an arm It ∈ [K]
guided by some arm-selection strategy π . In response, a reward rt ∈ R is generated (see
below for details). Let Ht = {I1, r1, . . . , It−1, rt−1, It } denote the past history of the plays,
i∗ ∈ argmaxi∈[K] μi denote an arm with the highest expected reward, μ∗ = μi∗ denote
the highest expected reward, Δi = μ∗ − μi denote the sub-optimality of arm i , and
Δmin := minΔi>0 Δi denote the sub-optimality of the closest competitor to the best arm(s).

Problem Setting 1 Adversarial Multi-armed Bandits

for t = 1, 2, 3.. do
Player plays an arm, It ∈ [K]
Adversary tosses a coin, zt = Ber(η) ∈ {0, 1}
Adversary chooses a corruption ζt
Clean reward is generated r∗

t ∼ νIt conditioned on Ht

Player receives reward, rt = I {zt = 0} · r∗
t + I {zt = 1} · ζt

end for

123

Machine Learning (2019) 108:687–715 693

4.2 Adversary model

In the stochastic setting, after the player pulls the arm It at time t , the reward is generated
(conditioned on Ht) from the distribution νIt so that E

[
rt |Ht

] = μIt . Thus, in this “clean”
setting, the reward obtained for an arm is always an unbiased estimate of its mean reward.
Previous works such as those of Bubeck et al. (2013), Medina and Yang (2016) have studied
settings where the distributions νi are heavy-tailed. However, we are more interested in cases
where occasionally, the reward that is generated for the played arm is not the one received
by the player at all, for applications to click fraud and other settings.

Several adversary models are prevalent in literature. To present the essential aspects of
our methods, we choose a simple stochastic adversary model for the first discussion. We
will consider a much more powerful fully adaptive adversary in the next section on linear-
contextual bandits. We note that although algorithms for heavy-tailed bandits can handle
stochastic adversaries, we will be able to handle polynomially many corruptions and, as we
point out later, we can modify our algorithms to handle adaptive adversaries in this setting
itself as well.

Let η denote the corruption rate. A stochastic adversary closely follows the progress of the
arm pulls and reward generation. At each time step t , after the algorithm has decided to pull
an arm It , the adversary first decides whether to corrupt this arm pull or not by performing a
Bernoulli trial zt ∈ {0, 1} with bias η, i.e., if Ht = {I1, z1, r1, . . . , It−1, zt−1, rt−1, It }, then
E
[
zt |Ht

] = η. Then it generates a corruption ζt arbitrarily but independent of Ht . After
this, the “clean reward” is generated in the classical manner satisfying E

[
r∗
t |Ht

] = μIt and
the reward received by the player is calculated as follows

rt = I {zt = 0} · r∗
t + I {zt = 1} · ζt .

Let B denote the largest magnitude of any corruption, i.e., |ζt | ≤ B. This bound B need not be
known to the learner. Note that we allow the adversary to generate the corruption completely
arbitrarily and that too after it is known which arm will be pulled. This allows the adversary
to give different corruptions if it knows that the best arm is being played, i.e., It = i∗ than if
a non-best arm is being played. We will later study more powerful adversarial models where
the adversary can choose to corrupt the arm pull and even decide the corruption after the
clean reward r∗

t has been generated and even in a manner dependent on the complete history
Ht .

4.3 Notions of regret

In classical bandit learning, the goal of the algorithm is to minimize regret or alternatively,
maximize the cumulative reward

∑T
t=1 rt accumulated over the entire play of T rounds.

However, in our corrupted setting, this, may not be the most appropriate. To address this, we
consider two notions of regret.

The first notion, which we simply refer to as Regret in this paper, captures how the
expected cumulative reward actually received by algorithm compares to the expected cumu-
lative reward that it could have gotten had it only played the best arm again and again and
had there been no adversary to corrupt those fictional arm pulls. We define this notion for an
algorithm over a sequence of T plays as

R̄T (π) =
T∑

t=1

μ∗ − E [rt] = μ∗ · T − E

[
T∑

t=1

rt

]

.

123

694 Machine Learning (2019) 108:687–715

However, one may complain that this notion of regret is unfair since it pits uncorrupted
rewards of the best arm against the corrupted rewards of the arms that are played. To address
this concern, we also look at the notion of Uncorrupted Regret, defined below, which is a
more fair comparison since it compares expected uncorrupted rewards of the arms played
with those of the best arm:

R̄∗
T (π) =

T∑

t=1

μ∗ − E
[
r∗
t

] = μ∗ · T − E

[
T∑

t=1

r∗
t

]

.

We note that this notion exactly corresponds to the popular notion of pseudo-regret which
looks at the expected performance of a single best arm in hindsight.

4.4 Aminimax regret lower bound

The presence of an adversary (even a stochastic one) can make life difficult for a player.
Indeed, consider a setting where μ∗ > 0 and we have an adversary that, whenever allowed
to, corrupts the reward to a default value of rt = 0. For this simple setting, even for the
optimal policy that always plays It ≡ i∗, the expected regret is still R̄T = ημ∗ · T . The
following result demonstrates this crisply by establishing a minimax regret lower bound for
the stochastic adversary model.

Theorem 1 Let K > 1 and T ≥ K − 1. Then for any policy π , and any constant c ∈ (0, 1),
there exists an MAB instance characterized by K distributions ν = {ν1, . . . , νK } all of
which are Gaussian with unit variance and means that lie in the the interval [0, 1], i.e.,
νi = N (μi , 1) where μi ∈ [0, 1], and a stochastic adversary with corruption rate η such
that

R̄T (π) ≥ 1

27

√
(K − 1)T + cη · T .

Algorithm 1 rMEst: Robust Mean

Input: Set S = {xi }[n]
Output: An estimate of mean(S)

1: return median(S)

Algorithm 2 rVUCB: Robust Variance Upper Confidence Bound

Input: Set S = {xi }[n], horizon estimate T , upper bound η0 < 1/2 on corruption rate
Output: A UC estimate of var(S)

1: Let y j = (x j−x j+�n/2
)2
2 for j ∈ [�n/2�]

2: Let σ̃ ← median(y1, y2, . . . , y�n/2�)

3: Let c ← D

(

η
1/2
0 +

(

η0 +
√

log T
n

)3/4
)

//see (3)

4: return σ̃ /(1 − min {2η0, c})

123

Machine Learning (2019) 108:687–715 695

Algorithm 3 rUCB- MAB: A Robust Algorithm for MABs

Input: Upper bound σ0 on reward variances
1: Initialization: Play each arm i ∈ [K] once
2: for t = K + 1, K + 2, . . . , T do
3: μ̃i,t ← rMEst (Ri (t)) //median

4: Play arm It = argmax
i∈[K]

μ̃i,t +
√

log t
Ti (t)

eσ0

5: end for

Algorithm 4 rUCB- Tune: A Tuned Robust Algorithm for MABs

Input: Upper bound η0 on corruption rate
1: Initialization: Play each arm i ∈ [K] once
2: for t = K + 1, K + 2, . . . , T do
3: μ̃i,t ← rMEst (Ri (t)) //median
4: σ̃i,t ← rVUCB (Ri (t)) //variance UCB
5: Play arm

It = argmax
i∈[K]

μ̃i,t +
[
η0 +

√
log t
Ti (t)

]
eσ̃i,t

6: end for

4.5 RUCB-MAB: a minimax-optimal robust algorithm for MAB

For any arm i ∈ [K] let Ii (t) := {τ < t : Iτ = i} denote the set of past time steps when arm
i was pulled, let Ti (t) := |Ii (t)| denote the number of times the arm was pulled in the past,
let Ri (t) := {rτ : τ ∈ Ii (t)} denote the (possibly corrupted) rewards that were received by
this arm so far, and let μ̃i,t := median(Ri (t)) denote the median of these rewards.

The rUCB- MAB algorithm described in Algorithm 3 builds upon the classic UCB algo-
rithm by Auer et al. (2002a). At every step it computes an upper confidence estimate of the
mean of every arm i ∈ [K] and pulls the arm with the highest estimate. However, it makes a
two crucial changes to the classical estimate.

Whereas UCB uses the mean and a simple agnostic variance term to construct its upper
confidence bound, rUCB- MAB uses the median, and a variance-aware estimate (notice the
use of a variance upper bound σ0 in the algorithm) to construct its upper confidence bound.
This helps overcome the confounding effects of the adversarial rewards that may be present
in the sets Ri (t). We show that rUCB- MAB enjoys the following regret bound for Gaussian
reward distributions.

Theorem 2 When executed on a collection of K arms with Gaussian reward distributions
νi ≡ N (μi , σi) with σi ≤ σ0 and a stochastic adversary with a corruption rate η ≤ Δmin

4eσ0
and |ζt | ≤ B, the rUCB- MAB algorithm ensures a gap-dependent regret bound

R̄T (rUCB- MAB) ≤ C
∑

i �=i∗

σ 2
0 ln T

Δi
+ η · (μ∗ + B)T ,

as well as a gap-agnostic regret bound

R̄T (rUCB- MAB) ≤ C ′√KT ln T + η · (μ∗ + B)T ,

for constantsC,C ′ clarified in the proof.Moreover, in the stochastic settingwith noadversary,
i.e., η = 0, we recover the following regret bounds

123

696 Machine Learning (2019) 108:687–715

R̄T (rUCB- MAB) ≤ C
∑

i �=i∗

σ 2
0 ln T

Δi
,

R̄T (rUCB- MAB) ≤ C ′√KT ln T .

We note that for η = 0 we indeed recover minimax-optimal regret bounds for stochastic
bandits. Also note that if η = Ω(1), Theorem 1 rules out sub-linear regret bounds for any
algorithm and hence the linear regret offered by Theorem 2 is no surprise. However, it is also
important to note that for small values of η such as η ≈ 1

T a for a > 0, which still allow as
many as T 1−a number of the samples to be corrupted, rUCB- MAB actually gets sub-linear
regret Tmax{0.5,1−a}.

However, belowwe establish a much stronger, sub-linear uncorrupted regret guarantee for
rUCB- MAB. This shows that rUCB- MAB is able to identify the best arm after sub-linearly
many pulls and incur vanishing regret thereafter.

Theorem 3 When executed on a collection of K arms with Gaussian reward distributions
νi ≡ N (μi , σi) with σi ≤ σ0 and a stochastic adversary with a corruption rate η ≤ Δmin

4eσ0
,

the rUCB- MAB algorithm ensures an uncorrupted regret bound

R̄∗
T (rUCB- MAB) ≤ C ′√KT ln T .

Improving the upper bound on η Theorem 2 requires the corruption rate to be bounded
as η ≤ Δmin

4eσi
which may be very stringent if Δmin = minΔi>0 Δi is very small. Although

the need to assume such bounds on the corruption rate is very common in robust learning
and robust statistics literature (Bhatia et al. 2015; Diakonikolas et al. 2018) and represents
the breakdown point of the algorithm, we can improve this upper bound on η to a problem-
independent, universal constant.

To do so, a standard sieve is applied by separating arms that satisfyΔi > 4eησi (for which
Theorem 2 itself applies) and those that do not (for which Δi ≤ 4eησ0). The total regret due
to the second set of arms cannot exceed 4eησ0T . Bounding the regret separately for these
arms gives us the following regret bound which puts a much milder requirement on η.

Corollary 1 If initialized with σ0 = maxi σi with the corruption rate satisfying η ≤ 1/4,
rUCB- MAB incurs a regret,

R̄T (rUCB- MAB) ≤ C(1 − η)
√
KT ln T + η · (μ∗ + B)T + 4eησ0T .

We note that the constraint η < 1/4 involves a universal constant and is required to satisfy the
requirements for the results of Lai et al. (2016) to hold. Note that even this new regret bound
becomes sub-linear if η = o(1) such as η = 1/

√
T . We note that all the above results can

be extended to several useful non-Gaussian, and indeed heavy-tailed distributions including
those studied by Bubeck et al. (2013). This is because Lai et al. (2016, Theorem 1.3) show
that the median estimator, with some modifications, is able to recover the mean faithfully for
general distributions with bounded fourth moments.

4.6 RUCB-TUNE: robust tunedMABs

The rUCB- MAB algorithm assumes access to a uniform bound on the variances of the
different arms. In their early work itself, Auer et al. (2002a) noticed that performing variance
estimation can greatly boost the accuracies of the estimation procedure. This intuition was
taken up by Audibert et al. (2007) who developed algorithms that automatically tune to the

123

Machine Learning (2019) 108:687–715 697

variance of the arms. We present one such “tuned” algorithm for the MAB settings with
adversarial corruptions.

The robust estimates are not as straightforward in this case, as most variance estimates
available in literature are relative estimateswhereas theUCB frameworkworks primarilywith
estimates which incur bounded additive error. To handle this, we propose a novel variance
upper confidence bound algorithm rVUCB based on a robust variance estimation technique
by Lai et al. (2016).

The rVUCB estimator turns out to be crucial for the regret bound to be established. For
sake of simplicity, we present the regret bound for Gaussian reward distributions but remind
the reader that these results readily extend to several interesting families of non-Gaussian
and heavy distributions with minor changes to the procedure. This is because the underlying
result of Lai et al. (2016, Theorem 1.3) can be adapted to show that median-based mean and
variance estimation techniques do work for non-Gaussian, heavy-tailed distributions too.

Theorem 4 When executed on a collection of K arms with Gaussian reward distributions
νi ≡ N (μi , σi) and a stochastic adversarywith a corruption rateη ≤ Δmin

4eσi
, therUCB- Tune

algorithm, when executed with a setting η0 ≥ η, ensures a regret bound

R̄T (rUCB- Tune) ≤ C(1 − η)
√
KT ln T + η0 · (μ∗ + B)T ,

for a constant C clarified in the proof.

Note that rUCB- Tune requires an estimate of an upper bound η0 the corruption rate in order
to operate. This can be done in practice via an (online) grid search. In our experiments, we did
not find rUCB- Tune to be sensitive to imprecise setting of η0. As before, we can introduce
two improvements: show a truly sub-linear uncorrupted regret bound for the rUCB- Tune
algorithm, and remove the constraint on the corruption rate η ≤ Δmin

4eσi
, here as well.

Theorem 5 When executed on a collection of K arms with Gaussian reward distributions
νi ≡ N (μi , σi) and a stochastic adversarywith a corruption rateη ≤ Δmin

4eσi
, therUCB- Tune

algorithm, when executed with a setting η0 ≥ η, ensures an uncorrupted regret bound

R̄∗
T (rUCB- Tune) ≤ C ′√KT ln T .

Corollary 2 When executed on a collection of K arms with Gaussian reward distributions
νi ≡ N (μi , σi) and a stochastic adversary with a corruption rate η ≤ 1/4, the rUCB- Tune
algorithm, when executed with a setting η0 ≥ η, ensures a regret bound

R̄T (rUCB- Tune) ≤ C(1 − η)
√
KT ln T + η0 · (μ∗ + B)T + 4eησmaxT ,

where σmax = maxi σi . Note that rUCB- Tune does not require knowledge of σmax.

Before concluding, we note that rUCB- MAB and rUCB- Tune can be made robust
against stronger, adaptive adversaries, that can decide their corruptions based on the entire
history of the play rather than independently of it, by replacing the simple median-based
estimators with more detailed, convex optimization-based estimators of Diakonikolas et al.
(2018, 2016). However, these algorithms, as well as their analyses are much more intricate,
and we defer these to future work.

5 Robust linear contextual bandits

In this section, we discuss the linear contextual bandit problem under a much stronger adver-
sary model and present the rUCB- Lin algorithm.

123

698 Machine Learning (2019) 108:687–715

5.1 Problem setting

The stochastic linear contextual bandit framework (Abbasi-Yadkori et al. 2011; Li et al.
2010) extends to settings where every arm a is parametrized by a vector a ∈ R

d (abusing
notation). However, the set of all arms is potentially infinite, and moreover, not all arms may
be available at every time step.

At each time step t , the player receives a set of nt arms (called contexts) At ={
xt,1, . . . , xt,nt

} ⊂ R
d . These are the only arms that can be pulled in this round. A good

example from the advertising world is a limited number of items that are available for
display at the moment the user arrives at the website. Items that are not available can-
not be displayed to the user at that time instant. The set, as well as the number nt of
contexts available can vary from time step to time step. The player selects and pulls an
arm x̂t ∈ At as per its arm selection policy. In response, a reward rt is generated. Let
Ht = {A1, x̂1, r1, . . . , At−1, x̂t−1, rt−1, At , x̂t

}
.

5.2 Adversary model

In the stochastic linear bandit setting, the reward is generated using a model vector w∗ ∈ R
d

(that is unknown to the algorithm) as follows: rt = 〈w∗, x̂t
〉+εt , where εt is a noise value that

is typically assumed to be (conditionally) centered and σ -sub-Gaussian, i.e., E
[
εt |Ht

] = 0
(centering), as well as for some σ > 0, for any λ > 0, we have E

[
exp(λεt) |Ht

] ≤
exp(λ2σ 2/2) (sub-Gaussianity).

Here we consider an adaptive adversary that is able to view the on-goings of the online
process and at any time instant t , after observing the historyHt and the “clean” reward value,
i.e.,

〈
w∗, x̂t

〉+ εt , able to add a corruption value bt to the reward. For notational uniformity,
we will assume that for time instants where the adversary chooses not to do anything, bt = 0.
Thus, the final reward to the player at every time step is rt = 〈

w∗, x̂t
〉 + εt + bt . For sake

of simplicity we will assume that, for some B > 0, the final (possibly corrupted) reward
presented to the player satisfies rt ∈ [−B, B] almost surely.

Note that this is a much more powerful adversary than the stochastic adversary we looked
at earlier. This adversary is allowed to look at previous rewards and arm pulls, as well as the
currently pulled arm and its clean reward before deciding if to corrupt and if so, by howmuch.
There are no independence restrictions on this adversary. The only constraint we place is that
at no point in the online process, should the adversary have corrupted more than an η fraction
of the observed rewards. Formally, let Gt = {τ < t : bτ = 0} and Bt = {τ < t : bτ �= 0}
denote the “good” and “bad” time instances. We insist that |Bt | ≤ η · t for all t .

Problem Setting 2 Adversarial Linear Bandits

for t = 1, 2, 3.. do
Player receives a set of contexts At =

{
xt,1, . . . , xt,nt

}
⊂ R

d

Player plays an arm, x̂t ∈ At
Clean reward is generated r∗

t = 〈w∗, x̂t
〉+ εt conditioned on Ht

Adversary chooses a corruption bt after inspecting x̂t , r∗
t andHt

while making sure that |τ ≤ t : bτ �= 0| ≤ η · (t + 1).
Player receives reward, rt = r∗

t + bt
end for

123

Machine Learning (2019) 108:687–715 699

5.3 Notion of regret

The goal of the algorithm is to maximize the cumulative reward it receives over the time
steps

∑T
t=1 rt . However, a more popular technique of casting this objective is in the form

of cumulative pseudo regret. At time t , let xt,∗ = argmaxx∈At 〈w∗, x〉 be the arm among
the available contexts that yields the highest expected (uncorrupted) reward. The cumulative
pseudo regret of a policy π is defined as follows

R̄T (π) =
T∑

t=1

〈
w∗, xt,∗

〉− E [rt] .

Note that unlike the MAB case, the best arm here may change across time-steps. For sake
of simplicity, we assume that ‖w∗‖2 ≤ 1, and ‖x‖2 ≤ 1 almost surely for all x ∈ At for
all t . We postpone introducing and analysing a notion of uncorrupted regret, as we did for
multi-armed bandits, to future work.

Note that the regret lower bound in Theorem 1 applies to the linear bandit setting as well
due to a reduction of the MAB problem to the linear bandit problem (let d = K where K is
the number of arms in the MAB problem, w∗

i = μi and contexts At ⊆ {e1, . . . , ed} where
ei are canonical vectors). Thus, any policy for linear bandits under an adversary must incur
regret at least Ω (η · T) which rules out sub-linear regret bounds for robust linear bandits if
η = Ω (1).

5.4 RUCB-LIN: a robust algorithm for linear contextual bandits

We use the notation ‖x‖M = √
x�Mx for a vector x ∈ R

d and a matrix M ∈ R
d×d . The

rUCB- Lin algorithm is described in Algorithm 5 and builds upon the OFUL algorithm
(Abbasi-Yadkori et al. 2011) for linear contextual bandits. At every step, the algorithm per-
forms an estimation wt of the true model vector w∗, as well as creates a confidence set to
explicate the region of uncertainty. At prediction time, it uses the Optimism in the Face of
Uncertainty principle to select an arm to pull.

However, unlike OFUL that uses a simple ridge regression estimator for wt and a direct
ellipsoidal confidence set constructed using all arms pulled so far, rUCB- Lin needs to do a
much more refined job. Neither can it use a simple estimator due to the adaptive adversarial

Algorithm 5 rUCB- Lin: A Robust Algorithm for Linear Contextual Bandits

Input: Upper bound σ0 on the noise sub-Gaussian parameter, upper bound η0 on the corruption rate, tolerance
ε, horizon T

1: for t = 1, 2, . . . , T do
2: Receive set of arms At
3: Play arm x̂t = argmax

x∈At ,w∈Ct−1

〈x,w〉
4: Receive reward rt
5: ŵt ← Torrent (

{
x̂i , ri

}

[t] , η0, ε)

6: Ĝt ← {
τ ≤ t : ∣∣rτ − 〈ŵt , xτ

〉∣
∣ ≤ σ0 log T

}

7: Mt ←∑
τ∈Ĝt

xτ (xτ)�

8: w̄t ← M−1
t XĜt

yĜt
9: Ct ← {w : ∥∥w − w̄t

∥
∥
Mt

≤ σ0
√
d log T + ηBT }

10: end for

123

700 Machine Learning (2019) 108:687–715

Algorithm 6 The Torrent algorithm for Robust Regression (Bhatia et al. 2015)

Input: Training data {xi , yi } , i = 1 . . . n, thresholding parameter η0, tolerance ε

1: w0 ← 0, S0 = [n], t ← 0, r0 ← y

2: while
∥
∥
∥rtSt

∥
∥
∥
2

> ε do

3: wt+1 ← argmin
w

∑

i∈St
(yi − 〈w, xi 〉)2

4: rt+1
i ←

(
yi −

〈
wt+1, xi

〉)

5: // BOT chooses the (1 − η0)n points with the smallest residual
∣
∣
∣rt+1
i

∣
∣
∣

St+1 ← BOT(rt+1, (1 − η0)n)

6: t ← t + 1
7: end while
8: return wt

corruptions, nor can it use all arms pulled so far in its confidence ball creation. We describe
how to overcome these challenges below.

For model estimation, we chose the Torrent algorithm of Bhatia et al. (2015). Even
though there are several approaches to robust regression (Chen et al. 2013; Nguyen and Tran
2013), we chose Torrent since it is simple to implement yet offers guarantees against an
adaptive adversary. This method requires a technical condition called subset regularity to be
satisfied which we will address shortly.

Given themodel estimate, rUCB- Lin performs a pruning step and constructs a confidence
set, which, as we shall see, has a noise removal effect. It lets in previously pulled arms whose
rewardswere not corruptedbut stops thosewhich experienced severe corruptions.Wenote that
step 8 in Algorithm 6, although inexpensive, was not found to greatly affect the performance
of the algorithm. However, including this step makes our analysis much more convenient.

rUCB- Lin is extremely simple to implement and scales to large problems with ease.
Extensions of rUCB- Lin to high dimensional settings where the model w∗ is sparse are
possible by using high-dimensional variants of Torrent. However, we postpone these to
future work. Before presenting the regret analysis, we first address the subset regularity
condition required by Torrent.

5.5 Data hardness

Given the powerful adaptive adversary model in our setting, it would not be possible to make
much headway unless we have some niceness in the problem structure given to us. More
specifically, if the set of arms At that are supplied to us at each step is skewed (for instance,
if they are chosen by the adversary as well), then we cannot hope to do much. To prevent
this, we require the set of contexts to satisfy some regularity conditions. We note that there
exist past works in linear bandit settings, such as those of Gentile et al. (2014, 2017), that
do place restrictions on the context sets. The following notion of subset regularity succinctly
captures the notion of a well-conditioned set of arms being presented during the course of
the play. In the following, for n > 0, γ ∈ (0, 1], let Sγ = {S ⊂ [n] : |S| = γ · n} denote the
set of all subsets of S of size γ · n.

Definition 1 (SSC and SSS properties Bhatia et al. 2015) A matrix X ∈ R
d×n satisfies the

Subset Strong Convexity Property (resp. Subset Strong Smoothness Property) at level γ with
strong convexity constant λ (resp. strong smoothness constant Λ) if we have:

123

Machine Learning (2019) 108:687–715 701

λ ≤ min
S∈Sγ

λmin(XSX
�
S) ≤ max

S∈Sγ

λmax(XSX
�
S) ≤ Λ.

Definition 2 (Subset regularity) A sequence of context sets A1, A2, . . . , AT satisfies the
(η, {λt }[T] , {Λt }[T] , T0) subset regularity property if for some T0 > 0, for every t ≥ T0, and
every possible choice of xτ ∈ Aτ for τ = 1, . . . , t , the matrix [x1x2 . . . xt] ∈ R

d×t satisfies
the SSC and SSS properties at level η with constants λt and Λt respectively.

Note that the (1−η, {λt }[T] , {Λt }[T] , T0) subset regularity property helps ensure that after
enough, i.e., T0 iterations have passed, at every time step t ≥ T0, no matter which arms we
have chosen till now, and no matter which of those arms have had their responses corrupted
by the adversary (so long as only an η fraction of the total number of arms pulled till now
have been corrupted), the matrix of arm vectors whose responses were not corrupted has
bounded eigenvalues. Such a property is immensely helpful in performing robust regression
in the face of an adaptive adversary. As Bhatia et al. comment, such a condition is in some
sense necessary if there is no restriction on which arms the adversary may corrupt. Recall
that the stochastic adversary in the previous section had less power as the arms to corrupt
were decided on the basis of a Bernoulli trial.
Satisfying subset regularity It might be worrisome as to how a property such as Subset
Regularity may be satisfied. However, it turns out that if the arm sets At are generated i.i.d.
(conditioned on the history) from some sub-Gaussian distribution over Rd then the property
is satisfied with high probability for a value T0 that has only poly-logarithmic dependence
on T . To avoid notational clutter we show this result below for the case when contexts are
drawn from the standard multivariate Gaussian distribution but stress that similar results do
hold for all sub-Gaussian distributions as well. Indeed, the reader may refer to the work of
Bhatia et al. (2015) for proofs of such results in the batch setting which can be extended to
the online setting using the technique used to prove Lemma 1.

Lemma 1 For any η > 0, and each round t, suppose the context vectors At ={
xt,1, . . . , xt,nt

}
are generated i.i.d. (conditioned on nt and past historyHt) from the standard

multivariate normal distributionN (0, Id×d). Let nt = O (1) for all t . Then with probability
at least 1−δ, the sequence A1, A2, . . . , AT satisfies the (η, {λt }[T] , {Λt }[T] , T0) subset reg-
ularity property with T0 ≥ O (log2 (Td

δ

))
. Moreover, with the same confidence, we have λt ≥

t/4−O
(
log(T /δ) +√T log(T /δ)

)
, as well asΛt ≤ t/4+O

(
log(T /δ) +√T log(T /δ)

)
.

We are now ready to prove the regret bound for rUCB- Lin. The proof hinges on a crucial
confidence ellipsoid result which does not follow directly from existing works, e.g., that
of Abbasi-Yadkori et al. (2011), since existing works never have to selectively throw away
points due to them being corrupted. Since rUCB- Lin does perform such a pruning step, we
have to prove this result afresh.

Theorem 6 For any δ, η > 0, if the sequence of context sets is generated such
that it satisfies the two subset regularity properties (η, {λt }[T] , {Λt }[T] , T0) and (1 −
η,
{
λ̃t

}

[T] ,
{
Λ̃t

}

[T] , T0) such that Λt

λ̃t
≤ 1

16 for all t ≥ T0, then for all t ≥ T0,

∥
∥w∗ − w̄t

∥
∥
Mt

≤ σ0
√
d log T + ηB · T ,

where Mt is obtained after the pruning step (see Algorithm 5 Steps 6-9).

The above result at first glance seems weaker than that for OFUL by Abbasi- Ypadkori
et al. (2011, Theorem 2) that offers a radius logarithmic in the horizon

√
d log T whereas

123

702 Machine Learning (2019) 108:687–715

Theorem 6 offers
√
d log T + η · T . This is no accident and simply another confession that

even an algorithm that does have complete knowledge of the model w∗, cannot achieve
sub-linear regret, given the regret lower bound.

Theorem 6 gives a formal reasoning for this. Since corruptions abound, rUCB- Lin can
never decrease the size of its confidence ball for fear of excluding w∗. However, notice that
for small values of η ≈ 1/

√
T , the radius of the ball used in Theorem 6 does shrink to√

d log T + η · √
T , while still allowing

√
T corruptions. We now state a regret bound for

rUCB- Lin.

Theorem 7 If the sequence of context sets is generated (conditionally) such that it satisfies

the (η, {λt }[T] , {Λt }[T] , T0) and (1− η,
{
λ̃t

}

[T] ,
{
Λ̃t

}

[T] , T0) subset regularity properties

such that Λt

λ̃t
≤ 1

16 for all t ≥ T0, then rUCB- Lin ensures

E
[
R̄T (rUCB- Lin)

] ≤ C · d√T log T + ηB · T ,

for a constant C clarified in the proof. Moreover, in the stochastic setting with no adversary,
i.e., η = 0, rUCB- Lin ensures E

[
R̄T (rUCB- Lin)

] ≤ C · d√
T log T .

Breakdown point analysis If we are generating arms from a standard Gaussian distribution,
then Λt

λ̃t
≤ 1

16 can be ensured, for instance, when η < 1
100 (Bhatia et al. 2015). Also note that

for small values of η such as η ≈ 1
T a for a > 0, which still allow as many as T 1−a number

of the samples to be corrupted, rUCB- Lin actually gets sub-linear regret Tmax{0.5,1−a}. We
note that we have not attempted to optimize constants such as 1/100 in the above result. In
practice, we find rUCB- Lin to be able to tolerate very well upto 10–15% of arm pulls being
corrupted.

6 Experiments

We discuss the experimental design and results for rUCB- MAB/rUCB- Tune and rUCB-
Lin here. The experiments show that these algorithms are robust to corruptions and
significantly outperform other UCB-style algorithms.1

6.1 Robust multi-armed bandit experiments

We compare the empirical performance of rUCB- MAB and rUCB- Tune against several
algorithms for stochastic, adversarial, and “best-of-both-world” bandits.
Data For each arm i, the arm means were sampled as μi ∼ U(0, 1) and the arm variances
as σi ∼ U(0, 1). The arm rewards were sampled for each arm from N (μi , σi). Experiments
were run with the number of arms set to 100 and 10, and for 1100 and 11,000 iterations
respectively.
Adversary The corruptions were generated by conducting Bernoulli trials with bias η. If
given a chance to corrupt an arm, our adversary offered a zero reward if the selected arm
was the best arm and a corrupted reward of s

η
if the selected arm was not the best arm. We

used s = 0.04 to prevent the adversary from rewarding the bad arms too much and hence
violating the goodness order of the arms. We note that while other adversary models are

1 Code and datasets for our experiments are available at https://github.com/purushottamkar/rUCB.

123

https://github.com/purushottamkar/rUCB

Machine Learning (2019) 108:687–715 703

(a) (b)

(d) (e)

(c)

Fig. 1 Variation in regret R̄T for various algorithms across time T and error η. a R̄T versus η; K = 100. b
R̄T versus T ; η = 0.1 K = 100. c R̄T versus T ; η = 0.3 K = 100. d R̄T versus T ; η = 0 K = 10. e R̄T
versus T ; η = 0.1 K = 10

indeed possible, we believe the adversary model used here does not unfairly benefit any
particular algorithm.
Algorithms We tested rUCB- MAB and rUCB- Tune against a large number of Upper
Confidence Bound algorithms popular in literature including KL-UCB (Garivier and Cappé
2011), UCB1, UCB2, UCB-Normal, UCB-Tuned (Auer et al. 2002a) and UCB-V (Audibert
et al. 2009). The last three algorithms estimate the variance of the arms, while UCB-Normal
is an algorithm specially designed for cases when the reward distributions are normal. We
tuned the value of the α parameter in UCB2 as suggested by Auer et al. (2002a) and found
α = 0.14 to work well. We also run tests against the EXP3 and SAO algorithms (Bubeck and
Slivkins 2012) which offer regret bounds in adversarial and best-of-both-world settings. We
set a default value of σ0 = 1 as the upper bound on standard deviations for rUCB- MAB.2

For EXP3 we tuned the γ value and found it to be optimal at about 0.2. The variant of UCB-
V used was taken from the original work of Audibert et al. (2007), with the constants and
exploration function as suggested by the authors. For finding the median in an online fashion,
we used a two heaps, which allowed us to getO(log n) time complexity for finding themedian
at each time step. This made the algorithm very efficient for extensive experiments.
Evaluation metricWe compare the regret R̄T and uncorrupted regret R̄∗

T for all algorithms.
All results are averaged over 50 repetitions of the same experiment.
Results The results are shown in Figs. 1 and 2.We observe that while rUCB- MAB performs
poorly when compared to UCB2 and UCB-Tuned for low values of error rate, it quickly
overtakes them with an increase in error rate. On the other hand, rUCB- Tune enjoys much
lower regret than all other algorithms as the number of iterations and the corruption rate
increase. However, for the zero corruption case, the performance is very closely followed by
KL-UCB. We credit this result to the fact that the exploration term estimates are typically
lower for rUCB- Tune which reduces performance for such small number of arms. For the
case of uncorrupted regret, results are similar. As evident in both the graphs, the slope of

2 This value can be further improved by tuning the parameter.

123

704 Machine Learning (2019) 108:687–715

(a) (b) (c)

(e)(d)

Fig. 2 Variation in uncorrupted regret R̄∗
T for various algorithms across time T and error η. a R̄∗

T versus η;
K = 100. b R̄∗

T versus T ; η = 0.1 K = 100. c R̄∗
T versus T ; η = 0.3 K = 100. d R̄∗

T versus T ; η = 0
K = 10. e R̄∗

T versus T ; η = 0.1 K = 10

regret versus iterations (or regret vs. the corruption rate) decreases as we plot the uncorrupted
rewards.

It is interesting to note that we outperform EXP3 and SAO in this setting, since neither
is able to reconcile the fact that not all, but only a fraction of arms are corrupted by the
adversary, and end up choosing arms as though every pullwere corrupted.Variance estimating
algorithms (UCB-Normal,UCB-Tuned,UCB-V,rUCB- Tune) performbetter than those that
don’t estimate variance. Overall, it seems that rUCB- MAB, rUCB- Tune work well even
for high corruption rates with hundreds of arms, which is a setting of interest.

6.2 Robust linear contextual bandit experiments: comparison with LINUCB

We also compare the empirical performance of rUCB- Linwith LINUCB across error rates,
the dimension of the context vectors, and the magnitude of corruption.
Data The true model vector w∗ ∈ R

d was chosen to be a random unit norm vector with
d = 10. The arms at each time-step were sampled as xt,i ∼ N (0, Id), and the reward for
the selected arm was generated as yi = 〈w∗, xi 〉 + εi where εi ∼ N (0, σ 2). All experiments
used nt = 50 arms being generated afresh at each time step, a corruption rate of η = 0.1,
d = 10, and the scale of the corruptions to be ct = 10, unless stated otherwise. All results
reported are averaged over 50 repetitions of the same experiment.
Adversary The corruptions were generated as bt = −r∗

t − ct · 〈w∗, xt,∗
〉
, where xt,∗ is the

best possible arm and ct is the magnitude of corruption. We note that while other adversary
models are indeed possible, we believe the adversary model used here does not unfairly
benefit any particular algorithm.
Algorithms We compared rUCB- Lin to LINUCB (Abbasi-Yadkori et al. 2011) and used
the Torrent-FC implementation by Bhatia et al. (2015).
Evaluation metricWe measured regret R̄T and uncorrupted regret R̄∗

T over 1000 iterations.

123

Machine Learning (2019) 108:687–715 705

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Variation of regret R̄T and uncorrupted regret R̄∗
T incurred by rUCB- Lin and LINUCB against time

T , error rate η, dimension of the context vector d and the magnitude of corruption introduced ct . Note that
while LINUCB has a slight edge over rUCB- Lin when the error η = 0, rUCB- Lin overtakes LINUCB by
a large margin in presence of adversarial corruption. a R̄T versus T . b R̄T versus η. c R̄T versus d. d R̄T
versus ct . e R̄∗

T versus T . f R̄∗
T versus η. g R̄∗

T versus d. h R̄∗
T versus ct

Results Figure 3 shows that rUCB- Lin incursmuch lower regret as compared toLINUCB as
the corruption rate increases.WhileLINUCBhas a slight edge in the casewithout corruptions,
it quickly starts losing out to rUCB- Lin when the error rate increases. A more interesting
result is in the case of uncorrupted regret. From the graph of uncorrupted regret plotted
against time we can see the true gains rUCB- Lin has over LINUCB. While the LINUCB
algorithm continues to incur linearly increasing uncorrupted regret with time, rUCB- Lin
eventually converges to the best model vector. The ability of rUCB- Lin to retrospectively
mark points as corrupted allows it to make increasingly better decisions as the number of
iterations increases, since it can identify the correct model vector. LINUCB is not able to
determine the correct model vector.

6.3 Robust linear bandit experiments: comparison with heavy-tailedmethods

In this section, we compare empirical performance of rUCB- Lin with the algorithms for
heavy-tailed bandits proposed by Medina and Yang (2016):

– cr- Trunc- 1 represents the Confidence-Region algorithm of Medina and Yang (2016)
(Algorithm 1 therein) with the Truncation estimator defined in the paper, and parameter
αt = √

t . We found no significant improvement in performance of cr- Trunc- 1 even
upon carefully tuning the exponent of t in αt .

– cr- Trunc- 2 represents our alternate implementation of the same algorithmwhich offers
better empirical performance. While cr- Trunc- 1 has truncation levels that increase
with time as O (√t

)
, for cr- Trunc- 2 we fix the truncation levels to be a constant

value α = 20, set equal to the largest magnitudes any uncorrupted reward could take.
This amounts to giving cr- Trunc- 2 an unfair advantage by revealing to it the optimal
truncation level.

– cr- MoM represents the Mini-Batch Confidence Region algorithm of Medina and Yang
(2016) (Algorithm 3 therein) which uses the median of means estimator defined in the
paper. We run this algorithm with δ = 0.1 and r = 10 ≈ T 1/3.

Executing the cr- MoM algorithm requires a modification to the experimental setup.
Recall that our algorithms are presented with a set of available arms (contexts) at each step

123

706 Machine Learning (2019) 108:687–715

(a) (b)

(c) (d)

Fig. 4 Time evolution of regret R̄T and uncorrupted regret R̄∗
T of rUCB- Lin, LINUCB, cr- Trunc- 1, cr-

Trunc- 2 and cr- MoM. Note that while a, b are run for the original experimental setting defined in the text, c,
d require a slightly different experimental setting to allow for a comparison with cr- MoM (see Sect. 6.3) for
details. a R̄T versus T , dynamic contexts. b R̄∗

T versus T , dynamic contexts. c R̄T versus T , static contexts.
d R̄∗

T versus T , static contexts

and only those arms can be pulled. However, the cr- MoM algorithm likes to pull the same
arm repeatedly, in order to take the median of means of the observed pulls. To satisfy this
need, we ensured that the context set stayed constant at all time steps, i.e., the same set of
arms was available for pulls at all steps which allowed cr- MoM repeated pulls of the same
arm. Thus, whereas the experimental setup remains the same as Sect. 6.2 for Fig. 4a, b, the
change for Fig. 4c, d in that we do not change the set of arms at each time-step, with the rest
of the experiment setting same as Sect. 6.2.
Results In Fig. 4a, b, we observe that rUCB- Lin maintains its lead. Both cr- Trunc-
1 and cr- Trunc- 2 are unable to discern the true model vector (as evidenced by their
uncorrupted regret R̄∗

T increasing linearlywith time). Figure 4c, d similarly showcase rUCB-
Lin maintaining its lead. However, given enough iterations, cr- MoM is able to recover the
true model vector, despite performing poorly in the cold-start region. This is because cr-
MoM needs to collect repeated pulls of arms in order to get discern the true rewards from
the corrupted rewards set by the adversary. This leads to poor performance in the beginning,
but it does eventually converge to the true model vector.

7 Discussion and future work

In this work, we reported three algorithms – rUCB- MAB, rUCB- Tune and rUCB- Lin
to address the task of corruption-tolerant bandit learning in the multi-armed and linear-
contextual settings. All our algorithms are extremely scalable and easy to implement and

123

Machine Learning (2019) 108:687–715 707

enjoy crisp and tight regret bounds, as well as superior performance to a wide range of
competitor methods in experiments.

Using more powerful estimators, e.g., those by Diakonikolas et al. (2016, 2018) within
rUCB- MAB and rUCB- Tune should offer stronger results, albeit at the cost of making
the algorithms more expensive. Extending the analysis for rUCB- MAB to non-Gaussian
distributions and deriving high probability regret bounds [as Lykouris et al. (2018) do] would
be interesting. For rUCB- Lin, extending the algorithm to high-dimensional settings as well
as deriving sub-linear uncorrupted regret bounds by making additional assumptions on the
corruption rate η (as we did in Theorem 3 for rUCB- MAB) would be useful.

From an applications standpoint, it is of interest to apply rUCB- MAB and rUCB- Lin to
recommendation settings. As our experiments indicate, these algorithms tend to outperform
existing methods not only when corruptions abound, but also in when there is no adversary
present. This may put rUCB- Lin in an advantageous position wherein it is able to neglect
non-adversarial variations in user behavior to capture the core user profile. The applications to
settings where we suspect click-fraud or other malicious behavior are of course, immediate.

Acknowledgements The authorswould like to thank the reviewers and editors for pointing out several relevant
works, as well as helping improve the presentation of the paper. S.K. is supported by the National Talent Search
Scheme under the National Council of Education, Research and Training (Ref. No. 41/X/2013-NTS). K.K.P.
thanks Honda Motor India Pvt. Ltd. for an award under the 2017 Y-E-S Award program. P.K. is supported by
the Deep Singh and Daljeet Kaur Faculty Fellowship and the Research-I foundation at IIT Kanpur, and thanks
Microsoft Research India and Tower Research for research grants.

A Proofs from Sect. 4

Proof of Theorem 1 Fix a policy π and let the reward distributions be Gaussians with unit
variance ui = N (μi , 1). Let Δ > 0 be a constant to be determined later. Given a
constant c ∈ (0, 1), consider two settings, one where the vector of the arm means is
μ = {c + Δ, c, c, . . . , c} ∈ R

K for the K arms and the other where the arm means are
μ′ = μ + 2Δ · e j where e j = (0, . . . , 0, 1, 0, . . . , 0) ∈ R

K is the j th canonical vector. The
coordinate j will be decided momentarily.

Clearly, in the first setting, the first arm is the best and in the second setting the j th arm
is the best. In both settings, the adversary acts simply by assigning a (corrupted) reward of
0 whenever it gets a chance to corrupt an arm pull. Clearly such an adversary is a stochastic
adversary.

Let Ti (T , π) denote the number of times the player obeying a policy π pulls the i th arm
in a sequence of T trials. Also, for any μ ∈ R

K , policy π and T > 0, define Pμ,π,η,T to be
the distribution induced on the history HT by the action of policy π on the arms with mean
rewards as given by the vector μ and the adversary described above with corruption rate η (a
cleaner construction of the distribution Pμ,π,η,T is possible by properly defining filtrations
but we avoid that to keep the discussion focused).

Also let Eμ,π,η,T denote expectations taken with respect to Pμ,π,η,T and let R̄T (π,μ, η)

denote the expected regret with respect to the same. Also define

j := argmin
i �=1

Eμ,π,η,T [Ti (T , π)],

and use this to define μ′ = μ + 2Δ · e j . Note that j is taken to be the suboptimal arm in
the first setting least likely to be played by the policy π when interacting with the arms with
means μ and the adversary. Given the above, it is easy to see that since

123

708 Machine Learning (2019) 108:687–715

R̄T (π,μ, η) = Δ ·
K∑

i=2

Eμ,π,η,T [Ti (T , π)] + cη · T ,

we have

R̄T (π,μ, η) ≥ Pμ,π,η,T [T1(T , π) ≤ T /2] · TΔ

2
+ cη · T

R̄T (π,μ′, η) ≥ Pμ′,π,η,T [T1(T , π) > T /2] · TΔ

2
+ cη · T

(1)

We now apply the Pinkser’s inequality (Tsybakov 2009)[Lemma 2.6] to get

Pμ,π,η,T

[

T1(T , π) ≤ T

2

]

+ Pμ′,π,η,T

[

T1(T , π) >
T

2

]

≥ exp
[−K L(Pμ,π,η,T ||Pμ′,π,η,T)

]
,

where K L stands for theKullback-Leibler divergence.Now, applying straightforwardmanip-
ulations we can get

K L(Pμ,π,η,T ||Pμ′,π,η,T) = Eμ,π,η,T [Tj (T , π)] · K L(N (μ j , 1),N (μ′
j , 1)).

Now, using the fact that K L(N (c, 1),N (c+Δ, 1)) = 2Δ2, applying an averaging argument
to get Eμ,π,η,T [Ti (T , π)] ≥ T

K−1 , setting Δ = √
(K − 1)/4T , and using the sum of the two

inequalities in (1) shows that

R̄T (π,μ, η) + R̄T (π,μ′, η) ≥ 2

27

√
(K − 1)T + 2cη · T

which, by an application of another averaging argument, tells us that for at least one setting
μ̃ ∈ {μ,μ′}, we must have

R̄T (π, μ̃, η) ≥ 1

27

√
(K − 1)T + cη · T ,

which finishes the proof. ��

Proof of Theorem 2 First of all, note that step 4 in Algorithm 3 can be seen as executing the
strategy

It = arg max
i∈[K] μ̃i,t +

(

η +
√

log t

Ti (t)

)

eσ0

The only difference between the above expression and the one used by Algorithm 3 is an
additive term eησ0 which does not change the output of the argmax operation. We next note
that the corruption model considered by Lai et al. (2016) is exactly the stochastic corruption
model. Next, we note that in the uni-dimensional case, the AgnosticMean algorithm pre-
sented by Lai et al. (2016, Algorithm 3) is simply the median estimator. Given this, at every
time step t , Lai et al. (2016, Theorem 1.1) guarantee that with probability at least 1 − 4

t2

∣
∣μi − μ̃i,t

∣
∣ ≤
(

η +
√

log t

Ti (t)

)

eσi (2)

Now suppose we have played an arm i �= i∗ enough number of times to ensure Ti (t) ≥
16e2σ 2

0 log T

Δ2
i

, then we have the following chain of inequalities

123

Machine Learning (2019) 108:687–715 709

μ̃i,t +
(

η +
√

log t

Ti (t)

)

eσ0 ≤ μi +
(

η +
√

log t

Ti (t)

)

eσ0 +
(

η +
√

log t

Ti (t)

)

eσi

= μ∗ − Δi +
(

η +
√

log t

Ti (t)

)

eσ0 +
(

η +
√

log t

Ti (t)

)

eσi

≤ μ∗

≤ μ̃i∗,t +
(

η +
√

log t

Ti∗(t)

)

eσi∗

≤ μ̃i∗,t +
(

η +
√

log t

Ti∗(t)

)

eσ0

where the first and fourth steps follow from (2), the second step follows from the definitions,
the third step uses the fact that Ti (t) is large enough and η0 ≤ Δi

4eσ0
, and the final step uses

the fact that σi∗ ≤ σ0 by construction.
The above shows that once an arm is pulled sufficiently many times, it will never appear

as the highest upper bound estimate in the rUCB- MAB algorithm and hence will never
get pulled again. This allows us to estimate, using a standard proof technique, the expected
number of times each arm would be pulled, as follows

E [Ti (t)] = 1 +
T∑

t=K+1

I {It = i}

= 1 + E

[
T∑

t=K+1

I

{

It = i ∧ Ti (t) ≤ 16e2σ 2
0 ln T

Δ2
i

}

+ I

{

It = i ∧ Ti (t) >
16e2σ 2

0 ln T

Δ2
i

}]

≤ 1 + 16e2σ 2
0 ln T

Δ2
i

+
T∑

t=K+1

P

[

It = i ∧ Ti (t) >
16e2σ 2

0 ln T

Δ2
i

]

= 1 + 16e2σ 2
0 ln T

Δ2
i

+
T∑

t=K+1

P

[

It = i | Ti (t) >
16e2σ 2

0 ln T

Δ2
i

]

P

[

Ti (t) >
16e2σ 2

0 ln T

Δ2
i

]

≤ 1 + 16e2σ 2
0 ln T

Δ2
i

+
T∑

t=K+1

16

t2

≤ 16e2σ 2
0 ln T

Δ2
i

+ 35,

where in the first step, we use the fact that initially, each arm gets played once in a round-robin
fashion in step 1 of Algorithm 3. We now have

E

[
T∑

t=1

rt

]

= E

[
K∑

i=1

T∑

t=1

rt I {It = i}
]

=
K∑

i=1

T∑

t=1

E
[
E
[
rt I {It = i} |Ht]

I {It = i}]

123

710 Machine Learning (2019) 108:687–715

≥
K∑

i=1

T∑

t=1

(1 − η)μiE [I {It = i}] − Bη · T

= (1 − η)

K∑

i=1

μiE [Ti (t)] − Bη · T

Combining with the previous bound onE [Ti (t)] and using η > 0 gives us the gap-dependent
regret bound

R̄T (rUCB- MAB) ≤
∑

i �=i∗

16e2σ 2
0 ln T

Δi
+ 35Δi + η · (μ∗ + B)T

To convert to the gap-agnostic form claimed in Theorem 2, we simply use the Cauchy-
Schwartz inequality as follows

R̄T (rUCB- MAB) = (1 − η)μ∗ · T − E

[
T∑

t=1

rt

]

+ η · (μ∗ + B)T

= (1 − η)

K∑

i=1

ΔiE [Ti (t)] + η · (μ∗ + B)T

≤ (1 − η)

√
√
√
√

K∑

i=1

Δ2
i E [Ti (t)]

√
√
√
√

K∑

i=1

E [Ti (t)] + η · (μ∗ + B)T

= (1 − η)

√
√
√
√16e2σ 2

0 KT ln T + 35T
K∑

i=1

Δ2
i + η · (μ∗ + B)T ,

which establishes the result. ��

Proof (Sketch of Theorem 3)Notice that the proof of Theorem 2 shows that once a suboptimal
arm is pulled sufficiently many times, it will never appear as the highest upper bound estimate
in the rUCB- MAB algorithm and hence will never get pulled again. Hereon, the standard
analysis applies.

E

[
T∑

t=1

r∗
t

]

= E

[
K∑

i=1

T∑

t=1

r∗
t I {It = i}

]

=
K∑

i=1

T∑

t=1

E
[
E
[
r∗
t I {It = i} |Ht]

I {It = i}]

=
K∑

i=1

T∑

t=1

μiE [I {It = i}]

=
K∑

i=1

μiE [Ti (t)]

Notice that this result relies on the assumption that the corruption rate is bounded η ≤ Δmin
4eσ0

.
��

123

Machine Learning (2019) 108:687–715 711

Proof of Corollary 1 The proof of Theorem 2 assures us that for arms that satisfyΔi > 4eσ0η0
we have

E [Ti (t)] ≤ 16e2σ 2
0 ln T

Δ2
i

+ 35

The total contribution to the regret due to these arms is already bounded by Theorem 2 as

∑

i :Δi>4eσ0η0

Δi · E [Ti (t)] ≤ C(1 − η)
√
KT ln T + η · (μ∗ + B)T

For arms that do not satisfy the above condition, i.e., for whom we have Δi ≤ 4eσ0η0, the
above does not apply. However, notice that the total contribution to the regret due to these
arms can be at most

∑

i :Δi≤4eσ0η0

Δi · E [Ti (t)] ≤ 4eσ0η0
∑

i :Δi≤4eσ0η0

E [Ti (t)] ≤ 4eσ0η0T ,

since wemust have
∑

i :Δi≤4eσ0η0 Ti (T) ≤ T . Combining the two results gives us the claimed
bound. Notice that no assumptions are made regarding Δmin in this proof. ��

Proof of Theorem 4 In this case, we notice that the in the uni-dimensional case, the Covari-
anceEstimation algorithm proposed by Lai et al. (2016, Algorithm 4) is simply Step 1
and Step 2 of the rVUCB algorithm (see Algorithm 2). Given this, at every time step t , Lai
et al. (2016, Theorem 1.5) guarantee that with probability at least 1 − 4

t2

∣
∣σi − σ̃i,t

∣
∣ ≤ D

⎛

⎝η1/2 +
(

η +
√

log t

Ti (t)

)3/4⎞

⎠ σi , (3)

for some constant D, which establishes, with probability at least 1 − 4
t2
, that

σi ≤ σ̃i,t/(1 − c),

where c = D

(

η1/2 +
(
η +

√
log t
Ti (t)

)3/4)

. To avoid a divide-by-zero error, we set amaximum

bound 2η on c and assume that η < 1/2. This establishes that the algorithm rVUCB does
indeed provide a high confidence upper bound on the variance of the distributions.

After noticing this, the rest of the analysis is routine. Given that an arm i �= i∗ has been

pulled enough number of times to ensure that we have Ti (t) ≥ max

{
16e2σ 2

i (1+p) log T

Δ2
i

,
log T
η2

}

,

where p = D(
√

η + (2η)3/4), we have the following chain of inequalities

μ̃i,t +
(

η0 +
√

log t

Ti (t)

)

eσ̃i,t ≤ μi +
(

η0 +
√

log t

Ti (t)

)

eσ̃i,t +
(

η +
√

log t

Ti (t)

)

eσi

= μ∗ − Δi +
(

η0 +
√

log t

Ti (t)

)

eσ̃i,t +
(

η +
√

log t

Ti (t)

)

eσi

≤ μ∗

123

712 Machine Learning (2019) 108:687–715

≤ μ̃i∗,t +
(

η +
√

log t

Ti∗(t)

)

eσi∗

≤ μ̃i∗,t +
(

η0 +
√

log t

Ti∗(t)

)

eσ̃i∗,t

where the first step follows from (2), the second step follows from the definitions, the third
step uses the fact that Ti (t) is large enough and η0 is small enough, and the final step uses (3)
and the fact that η ≤ η0 by definition. The above shows that once an arm is pulled sufficiently
many times, it will never appear as the highest upper bound estimate in the rUCB- Tune
algorithm and hence will never get pulled again. The rest of the proof is routine now. ��

B Proofs from Sect. 5

Proof (Sketch of Lemma 1) The proof is similar to that of previous results by Gentile
et al. (2014, Lemma 2) and Gentile et al. (2017, Lemma 1). We need only show the result for
one specific value of t and one specific subset S ⊂ [t], |S| = (1 − η) · |S|. The result then
follows from first a union bound over all subsets, as is done by Bhatia et al. (2015), and then
a union bound over all t ≤ T which imposes an additional logarithmic factor.

For a fixed z ∈ R
d , and any t ∈ [T], Gentile et al. (2014, Claim 1) show that

E

[

min
k∈{1,...,nt }

(z�xt,k)2 | nt
]

≥ 1/4,

since we have assumed for sake of simplicity that the arms are being sampled from a standard
Gaussian. A similar result holds for general sub-Gaussian distributions too. Now for any
subset S ⊂ [t], the proof then continues as in the analysis of Gentile et al. (2014, Lemma 2)
by using optional skipping and setting up a Freedman-style matrix tail bound to get, as a
consequence of the above, the following high-confidence estimate, holding with probability
at least 1 − δ,

min
τ∈S

kτ ∈{1,...,nτ }
λmin

(
∑

τ∈S
xτ,kτ (xτ,kτ)�

)

≥ B

(

|S|, δ

2d

)

, (4)

where

B(T , δ) = T /4 − 8
(
log(T /δ) +√T log(T /δ)

)
.

Continuing with the union bounds as described above finishes the proof. ��

Proof of Theorem 6 To avoid clutter, we will replace Ĝt byG in the following. Let εG and bG
denote the noise and corruption values in those time instances so that rG = X�

Gw
∗+εG+bG .

Note that Mt = XG X�
G . We have

w̄t = (XG X�
G)−1X�

GrG

= (XG X�
G)−1X�

G (X�
Gw

∗ + εG + bG)

= w∗ + (XG X�
G)−1X�

G (εG + bG)

123

Machine Learning (2019) 108:687–715 713

Now, following the proof technique of Abbasi-Yadkori et al. (2011) requires us to bound
‖XG(εG + bG)‖Mt

. Using the fact that Mt = XG X�
G gives us

‖XG(εG + bG)‖Mt ≤ ‖XGεG‖Mt + ‖XGbG‖Mt .

Let Gt = {τ ≤ t : bτ = 0} be the set of clean points till time t . Since the results of Bhatia
et al. (2015, Theorem 10) ensure that the output of Torrent satisfies

∥
∥ŵt − w∗∥∥

2 ≤ O (σ0),

we are assured with probability at least 1 − 1
t2

that Gt ⊆ Ĝt . Thus, we get

‖XGεG‖2Mt
= ε�

G XG(XG X�
G)−1X�

GεG

= ε�
Gt

XGt (XG X�
G)−1X�

Gt
εGt

≤ ε�
Gt

XGt (XGt X
�
Gt

)−1X�
Gt

εGt

where the second step follows from the fact that we can canonically define ετ = 0 for the
corrupted time instances, i.e., if τ < t and τ /∈ Gt) by setting bt = bt + εt , and the last
step uses the fact that Gt ⊂ G. However, the quantity ε�

Gt
XGt (XGt X

�
Gt

)−1X�
Gt

εGt can be
bounded by σ0

√
d log T using the self normalized martingale inequality by Abbasi-Yadkori

et al. (2011, Theorem 1) as it is the set of uncorrupted points to which standard results keep
applying. The second quantity ‖XGbG‖Mt

can be similarly bounded by using the fact that
‖bG‖0 ≤ 2η · t and since

∥
∥ŵt − w∗∥∥

2 ≤ O (σ0) by Bhatia et al. (2015, Theorem 10), any

so, corrupted points τ that may have landed into the set Ĝt must satisfy |bτ | ≤ σ0
√
log T .

This finishes the proof. Note that the last argument |bτ | ≤ σ0
√
log T reveals that the pruning

step is indeed a noise-removal step. It prunes away any arm which had its reward excessively
corrupted. ��

Proof of Theorem 7 The proof is mostly routine and follows the proof of a similar result by
Abbasi-Yadkori et al. (2011, Theorem 3). Let us define (x̂t , w̃t) = argmax

x∈At

argmax
w∈Ct−1

〈x,w〉.
Then

E
[〈
w∗, xt,∗

〉− rt |Ht] ≤ (1 − η)
(〈
w∗, xt,∗

〉− 〈w∗, x̂t
〉)

+ η
(〈
w∗, xt,∗

〉+ B
)

≤ (1 − η)
(〈
w̃t , x̂t

〉− 〈w∗, x̂t
〉)+ η

(〈
w∗, xt,∗

〉+ B
)

= (1 − η)
〈
w̃t − w∗, x̂t

〉+ η
(〈
w∗, xt,∗

〉+ B
)

= (1 − η)
(〈
w̃t − w̄t , x̂t

〉− 〈w∗ − w̄t , x̂t
〉)

+ η
(〈
w∗, xt,∗

〉+ B
)

≤ (1 − η)
∥
∥x̂t
∥
∥
M−1

t

(∥
∥w̃t − w̄t

∥
∥
Mt

+ ∥∥w∗ − w̄t
∥
∥
Mt

)

+ η (1 + B) ,

Now, the SSC properties guarantee λmin(Mt) = Ω (t) which gives us
∥
∥x̂t
∥
∥
M−1

t
≤ O

(
1√
t

)
.

This finishes the proof upon using Theorem 6 and simple manipulations. ��

123

714 Machine Learning (2019) 108:687–715

References

Abbasi-Yadkori, Y., Pal, D., & Szepesvari, C. (2011). Improved algorithms for linear stochastic bandits. In
Proceedings of the 25th annual conference on neural information processing systems (NIPS).

Audibert, J.-Y., Munos, R., & Szepesvári, C. (2007). Tuning bandit algorithms in stochastic environments. In
Proceedings of the 18th international conference on algorithmic learning theory (ALT).

Audibert, J.-Y.,Munos, R.,&Szepesvári, C. (2009). Exploration-exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science, 410(19), 1876–1902.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47, 235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. (2002b). The nonstochastic multiarmed bandit problem.
SIAM Journal of Computing, 31(1), 48–77.

Bhatia, K., Jain, P., & Kar, P. (2015). Robust regression via hard thresholding. In Proceedings of the 29th
annual conference on neural information processing systems (NIPS).

Bubeck, Sébastian., & Slivkins, A. (2012). The best of both worlds: stochastic and adversarial bandits. In
Proceedings of the 25th annual conference on learning theory (COLT).

Bubeck, S., Cesa-Bianchi, N., & Lugosi, G. (2013). Bandits with heavy tail. IEEE Transaction on Information
Theory, 59(11), 7711–7717.

Candès, E. J., Li, X., & Wright, J. (2009). Robust principal component analysis? Journal of the ACM, 58(1),
1–37.

Chakrabarti, D., Kumar, R., Radlinski, F., & Upfal, E. (2008). Mortal multi-armed bandits. In Proceedings of
the 21st international conference on neural information processing systems (NIPS).

Charikar, M., Steinhardt, J., & Valiant, G. (2017). Learning from untrusted data. In Proceedings of the 49th
annual ACM SIGACT symposium on theory of computing (STOC) (pp. 47–60).

Chen, Y., Caramanis, C., & Mannor, S. (2013). Robust sparse regression under adversarial corruption. In
Proceedings of the 30th international conference on machine learning (ICML).

Chu, W., Li, L., Reyzin, L., & Schapire, R. (2011). Contextual bandits with linear payoff functions. In Pro-
ceedings of the 14th international conference on artificial intelligence and statistics (AISTATS).

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., & Stewart, A. (2016). Robust estimators in high
dimensions without the computational intractability. In Proceedings of the 57th IEEE annual symposium
on foundations of computer science (FOCS).

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., & Stewart, A. (2018). Robustly learning a gaus-
sian: Getting optimal error, efficiently. In Proceedings of the twenty-ninth annual acm-siam symposium
on discrete algorithms (SODA) (pp. 2683–2702).

Feng, J., Xu, H., Mannor, S., & Yan, S. (2014). Robust logistic regression and classification. In Proceedings
of the 28th annual conference on neural information processing systems (NIPS).

Gajane, P., Urvoy, T., & Kaufmann, E. (2018). Corrupt bandits for preserving local privacy. In Proceedings of
the 29th international conference on algorithmic learning theory (ALT).

Garivier, A., & Cappé, O. (2011). The KL-UCB algorithm for bounded stochastic bandits and beyond. In
Proceedings of the 24th annual conference on learning theory (COLT).

Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., & Etrue, E. (2017). On context-dependent clustering
of bandits. In Proceedings of the 34th international conference on machine learning (ICML).

Gentile, C., Li, S., & Zappella, G. (2014). Online clustering of bandits. In Proceedings of the 31st international
conference on machine learning (ICML).

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1),
73–101.

Lai, K. A., Rao, A. B., & Vempala, S. (2016). Agnostic estimation of mean and covariance. In Proceedings of
the 57th IEEE annual symposium on foundations of computer science (FOCS).

Li, L., Chu,W., Langford, J., & Schapire, R. (2010). A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international world wide web conference (WWW).

Lykouris, T., Mirrokni, V., & Leme, R. P. (2018). Stochastic bandits robust to adversarial corruptions. In
Proceedings of the 50th annual ACM SIGACT symposium on theory of computing (STOC) (pp. 114–
122).

Maronna, R. A., Martin, R. D., &Yohai, V. J. (2006). Robust statistics: Theory and methods. NewYork:Wiley.
Medina, A. M., & Yang, S. (2016). No-regret algorithms for heavy-tailed linear bandits. In Proceedings of the

33rd international conference on machine learning (ICML).
Nguyen, N. H., & Tran, T. D. (2013). Exact recoverability from dense corrupted observations via �1-

minimization. IEEE Transactions on Information Theory, 59(4), 2017–2035.

123

Machine Learning (2019) 108:687–715 715

Padmanabhan, D., Bhat, S., Garg, D., Shevade, S. K., & Narahari, Y. (2016). A robust UCB scheme for active
learning in regression from strategic crowds. In Proceedings of the international joint conference on
neural networks (IJCNN).

Seldin, Y., & Slivkins, A. (2014). One practical algorithm for both stochastic and adversarial bandits. In
Proceedings of the 31st international conference on machine learning (ICML).

Tang, L., Rosales, R., Singh,A. P.,&Agarwal,D. (2013).AutomaticAd format selection via contextual bandits.
In Proceedings of the 22nd ACM international conference on information and knowledge management
(CIKM).

Tewari, A., & Murphy, S. A. (2017).Mobile health, chapter From Ads to interventions: Contextual bandits in
mobile health (pp. 495–517). New York: Springer.

The Hindustan Times. #Appwapsi: Snapdeal gets blowback from Aamir Khan controversy, Nov 24,
(2015). https://www.hindustantimes.com/india/appwapsi-snapdeal-gets-blowback-from-aamir-khan-
controversy/story-N3HwOObJ0WMe9vz7GjXFBO.html. Accessed July 15, 2018.

Tsybakov, A. B. (2009). Introduction to nonparametric estimation. New York: Springer.
Tukey, J. W. (1960). A survey of sampling from contaminated distributions. Contributions to Probability and

Statistics, 2, 448–485.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.hindustantimes.com/india/appwapsi-snapdeal-gets-blowback-from-aamir-khan-controversy/story-N3HwOObJ0WMe9vz7GjXFBO.html
https://www.hindustantimes.com/india/appwapsi-snapdeal-gets-blowback-from-aamir-khan-controversy/story-N3HwOObJ0WMe9vz7GjXFBO.html

	Corruption-tolerant bandit learning
	Abstract
	1 Introduction
	1.1 Organization

	2 Related works and our contributions
	2.1 Adversarial bandits
	2.2 The best of both worlds?
	2.3 Robust learning and estimation algorithms
	2.4 Heavy-tailed bandits

	3 Notation
	4 Robust multi-armed bandits
	4.1 Problem setting
	4.2 Adversary model
	4.3 Notions of regret
	4.4 A minimax regret lower bound
	4.5 rUCB-MAB: a minimax-optimal robust algorithm for MAB
	4.6 rUCB-Tune: robust tuned MABs

	5 Robust linear contextual bandits
	5.1 Problem setting
	5.2 Adversary model
	5.3 Notion of regret
	5.4 rUCB-Lin: a robust algorithm for linear contextual bandits
	5.5 Data hardness

	6 Experiments
	6.1 Robust multi-armed bandit experiments
	6.2 Robust linear contextual bandit experiments: comparison with LINUCB
	6.3 Robust linear bandit experiments: comparison with heavy-tailed methods

	7 Discussion and future work
	Acknowledgements
	A Proofs from Sect. 4
	B Proofs from Sect. 5
	References

