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Abstract The main aim of this paper is to demon-

strate the benefit of the application of high-perfor-

mance computing techniques in the field of non-linear

science through two kinds of dynamical systems as

test models. It is shown that high-resolution, multi-

dimensional parameter scans (in the order of millions

of parameter combinations) via an initial value

problem solver are an efficient tool to discover new

features of dynamical systems that are hard to find by

other means. The employed initial value problem

solver is an in-house code written in C?? and CUDA

C software environments, which can exploit the high

processing power of professional graphics cards

(GPUs). The first test model is the Keller–Miksis

equation, a non-linear oscillator describing the dynam-

ics of a driven single spherical gas bubble placed in an

infinite domain of liquid. This equation is important in

the field of cavitation and sonochemistry. Here, the

high-resolution parameter scans gave us the opportu-

nity to lay down the basis of a non-feedback technique

to control multi-stability in which direct selection of

the desired attractor is possible. The second test model

is related to a pressure relief valve that can exhibit a

special kind of impact dynamics called grazing

impact. A fine scan of the initial conditions revealed

a second focal point of the grazing lines in the initial-

condition space that was hidden in previous studies.

Keywords High-performance computing � GPU
programming � Non-linear dynamics � Control of
multi-stability � Keller–Miksis equation � Impact

dynamics � Grazing impact

1 Introduction

Non-linear dynamics has received a lot of attention

since the discovery of the chaotic Lorenz attractor [1].

It opened Pandora’s box that led to a series of further

discoveries of other phenomena such as, additional

kinds of bifurcations [2, 3], multi-stability and its

control [4–8], various routes to chaos and its control

[9–13], transient chaotic behaviour [14, 15] or the

characterisation of non-linear resonance phenomena
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[16–21], to name a few. Investigating a large number

of classical low-dimensional equations, the above

mentioned phenomena turned out to be universal

features of non-linear systems. The corresponding

emerging theories still play an important role in the

qualitative understanding of many real-life phenom-

ena in a large variety of scientific fields, for instance,

in climate dynamics [22], social sciences [23], neuro-

biology [24], fluid dynamics [25], mechanical engi-

neering [26] or in laser physics [27].

Although the aforementioned studies are important,

they are carried out usually on low-dimensional systems

by performing investigations only in low-dimensional

parameter spaces or in the local flow of the state space.

That is, they require relatively low computational

resources compared to an up to date personal computer.

However, in order to explore the complex bifurcation

structure in parameter space with high resolution

[28–32], the necessary computational power can

increase by orders of magnitude. For instance, even in

a two dimensional parameter plane—employing an

initial value problem solver (IVP) with a resolution of

1000� 1000—the computational requirements are

increased by three orders of magnitude compared to

conventional 1D bifurcation plots with the same

resolution of 1000. Not to mention if other important,

‘‘secondary’’ control parameters are involved or the

application of several initial conditions is mandatory

(e.g. to investigate multi-stability). The total number

of the parameter combinations can easily blow-up to

tens or even hundreds of millions; for instance, see our

recent paper about control of multi-stability [4].

At first, it might seem impractical to try to solve a

two-dimensional problem with high-resolution IVP

computations, since many clever techniques exist (e.g.

the pseudo-arclength continuation using a boundary

value problem solver (BVP) [33]) that can explore the

evolution of bifurcation points even in two dimensions

fast and easily. Indeed, in this way, valuable informa-

tion can be obtained about the bifurcation structures

[4, 20, 34–37]. Nevertheless, these techniques need an

already found orbit to initiate the computation.

Moreover, they are usually not capable to find a new

set of co-existing solutions. Thus, the BVP computa-

tions are always combined with IVP simulations, see

the aformentioned references. In the present paper, we

demonstrate that the application of parameter scans

with quite high resolution using IVP solvers can be the

source for new ideas and discoveries. For this purpose,

computations are carried out on two quite different test

models, for details see Sect. 2.

2 The history of the choice of the test models

The first test model is the periodically excited Keller–

Miksis equation that is a second order ordinary

differential equation describing the radial pulsation

of a single spherical gas bubble placed in an infinite

domain of liquid [38]. During the radial oscillation of

the bubble, due to the external forcing, its contraction

phase can be so rapid (collapse) that the temperature

inside can reach thousands of degrees of Kelvin

inducing chemical reactions [39–41]. Therefore, this

model is extensively used in the field of sonochemistry

[42–51] to estimate the collapse strength and the

chemical yield of a single bubble. In one of our

previous papers [4], we extended the investigation to

dual-frequency driving using two harmonic compo-

nents in the external excitation. Therefore, the number

of control parameters was increased to four: two

driving amplitudes and two driving frequencies (for

simplicity, the phase shift between the components

was assumed to be zero). Our purpose was to

investigate the effect of dual-frequency driving on

the dynamics and the collapse strength of a bubble.

The main strategy was to create high-resolution bi-

parametric maps in the parameter plane of the

amplitudes at several fixed frequency pairs. However,

during the evaluation of the results, due to the high

resolution of the parameter space, special features of

the bifurcation structure could be observed. They

helped to reveal that with a special choice of the

frequencies, specific periodic orbits can be smoothly

transformed into each other; for instance, a period-2

and a period-3 attractor. This observation inspired us

to develop a non-feedback technique to control multi-

stability, in which direct selection of the desired

attractors is possible. To the best knowledge of the

authors, such a technique was not proposed in the

literature before. The present study presents the

procedure of the discovery of the technique via an

extension of our original work [4].

The second test model (adapted from [52])

describes the dynamics of a pressure relief valve that

can exhibit impact dynamics. It is a system of three

first-order ordinary differential equations. Our main

purpose was to test the special features of the
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numerical GPU code for non-smooth dynamical

systems and reproduce some of the results presented

in the original paper [52]. For some additional

information about the code, the reader is referred to

Sect. 3. There is a special type of impact called

grazing impact related to the oscillation of the valve

body. It means that the valve body approaches the

valve seat, makes contact with the valve seat with zero

velocity and then moves away from the seat. At a

specific parameter set, the sets of initial conditions

from which the pressure relief valve exhibit grazing

impact are called grazing lines. They have a focal

point in the initial condition space, at which an

impacting Shil’nikov-like orbit exist. The grazing

lines are computed by means of a BVP solver in the

paper of H}os and Champneys [52], which was a

cumbersome task that needed special care due to the

discontinuous trajectories caused by the impact

dynamics. According to the personal communication

with the authors, the assembly of their MATLAB code

took weeks. Comparing their grazing lines with our

GPU accelerated IVP solver, the simulation time is

reduced from a couple of hours to seconds. Moreover,

the high-resolution scan of the initial conditions

revealed a second focal point of the grazing lines that

had been overlooked before.

It must be stressed, that in both cases, the original

objective was to investigate the collapse strength of a

single bubble or to reproduce some results corre-

sponding to a pressure relief valve. The aforemen-

tioned discoveries are the ‘‘side effects’’ of the

computations of high-resolution multi-dimensional

parameter/initial condition scans.

3 The GPU accelerated solver: MPGOS

The usage of an IVP solver performing high-resolution

parametric scans is sometimes called the ‘‘brute force’’

technique. It is easy to tune up the number of the

parameters, their resolution and the number of the

initial conditions; however, to write efficient computer

code to do the task within a reasonable time is far from

obvious. It is especially true in our case, as we intend

to employ the high processing power of professional

graphics cards (GPUs). It is not trivial how to use their

massively parallel hardware architecture and

distribute the workload evenly to tens of thousands

of parallel threads.

The developed program package (also used here) is

called Massively-Parallel-GPU-ODE-Solver

(MPGOS) written in C?? and CUDA C software

environments and capable to distribute the tasks to

multiple GPUs. It supports explicit solvers: the classic

Runge–Kutta solver with fixed time-stepping, and the

adaptive Runge–Kutta–Cash–Karp method with

embedded error estimation of orders 4 and 5. During

the simulations of the present study, the adaptive

solver is used. Event handling is also incorporated into

the program package. It is mandatory to be able to

detect the impact in case of the pressure-relief-valve

test model. In addition, with specialized user-defined

functions, it is possible to manipulate the trajectories

by the user after every successful time step or event

detection during the GPU computations. In this way,

the impact law can be immediately applied upon the

detection of an impact and the integration can be

continued. Thus, it is not necessary to stop the

integration or perform expensive memory transactions

to apply the impact law via the CPU. The code is quite

efficient, a simulation is approximately about 50 times

faster on an Nvidia GTX GeForce Titan Black card

(1707 GFLOPS peak performance) than on a four-core

Intel Core i7-4790 CPU (115 GFLOPS peak perfor-

mance) using double precision floating point arith-

metic. The parallelisation strategy in the GPU code

follows the ‘‘per-thread’’ approach; that is, to each

GPU thread, a different instance of the investigated

system is associated having different initial conditions

or parameter sets. In the case of the CPU code, the

different instances of the system were distributed

amongst the CPU cores via the OpenMP application

programming interface (API). A single CPU core

solved a single instance of a system at a time. It must

be emphasised that the proposed speed-up is an

estimation using the Keller–Miksis equation intro-

duced in Sect. 4; the achievable factor in the reduction

of the runtime can highly depend on the investigated

ODE system (handling of special events like impact,

or the number of the evaluation of transcendental

functions or divisions). The detailed description of the

code is beyond the scope of the present paper;

however, it has to be stressed that such a fast and

efficient solver was the key to achieve the
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aforementioned discoveries. For more details, the

interested reader is referred to the official website of

the program package: www.gpuode.com or to its

GitHub repository [53]. It is free to use under an MIT

license and it has a detailed manual [54] with tutorial

examples.

4 Mathematical model of the dual-frequency

driven single bubble

The first test model is the Keller–Miksis equation [38])

describing the radial pulsation of a single spherical

bubble placed in an infinite domain of liquid. The

equation reads as

1�
_R

cL

� �
R €Rþ 1�

_R

3cL

� �
3

2
_R
2

¼ 1þ
_R

cL
þ R

cL

d

dt

� �
pL � p1ðtÞð Þ

qL
;

ð1Þ

where R(t) is the time dependent bubble radius. The

values of the material properties of the employed

liquid (water) are cL ¼ 1497:3m=s (sound speed) and

qL ¼ 997:1 kg=m3 (density). According to the gen-

eral, dual-frequency treatment, the pressure far away

from the bubble,

p1ðtÞ ¼ P1 þ PA1 sinðx1tÞ þ PA2 sinðx2t þ hÞ;
ð2Þ

is the sum of a static ambient pressure, P1, and

periodic components with pressure amplitudes PA1

and PA2, angular frequencies x1 and x2, and with a

phase shift h. The connection between the pressures at
the bubble interface can be written as

pG þ pV ¼ pL þ
2r
R

þ 4lL
_R

R
; ð3Þ

where the total pressure inside the bubble is the sum of

the partial pressures of the non-condensable gas, pG,

and the vapour, pV ¼ 3166:8 Pa at ambient tempera-

ture of 25 �C. The surface tension is r ¼ 0:072N=m

and the liquid kinematic viscosity is

lL ¼ 8:902�4 Pa s. The gas inside the bubble obeys a

simple polytropic relationship

pG ¼ P1 � pV þ 2r
RE

� �
RE

R

� �3c

; ð4Þ

where the polytropic exponent c ¼ 1:4 (adiabatic

behaviour), the equilibrium bubble radius is RE lm
and the static pressure is P1 ¼ 1 bar.

System (1)–(4) is written into a dimensionless form

by introducing the dimensionless variables

s ¼ x1

2p
t; ð5Þ

y1 ¼
R

RE
; ð6Þ

y2 ¼ _R
2p

REx1

: ð7Þ

The equations are rearranged in order to minimize the

number of its coefficients. The final form is

_y1 ¼ y2; ð8Þ

_y2 ¼
NKM

DKM
; ð9Þ

where

NKM ¼ C0 þ C1y2ð Þ 1

y1

� �C10

�C2 1þ C9y2ð Þ

� C3

1

y1
� C4

y2
y1

� 1� C9

y2
3

� � 3

2
y22

� C5 sinð2psÞ þ C6 sinð2pC11sþ C12Þð Þ 1þ C9y2ð Þ
� y1 C7 cosð2psÞ þ C8 cosð2pC11sþ C12Þð Þ;

ð10Þ

and

DKM ¼ y1 � C9y1y2 þ C4C9: ð11Þ

For completeness and reproducibility, the coefficients

are summarised below

C0 ¼
1

qL
P1 � pV þ 2r

RE

� �
2p

REx1

� �2

; ð12Þ

C1 ¼
1� 3c
qLcL

P1 � pV þ 2r
RE

� �
2p

REx1

; ð13Þ

C2 ¼
P1 � pV

qL

2p
REx1

� �2

; ð14Þ
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C3 ¼
2r

qLRE

2p
REx1

� �2

; ð15Þ

C4 ¼
4lL
qLR

2
E

2p
x1

; ð16Þ

C5 ¼
PA1

qL

2p
REx1

� �2

; ð17Þ

C6 ¼
PA2

qL

2p
REx1

� �2

; ð18Þ

C7 ¼ RE
x1PA1

qLcL

2p
REx1

� �2

; ð19Þ

C8 ¼ RE
x1PA2

qLcL

2p
REx1

� �2

; ð20Þ

C9 ¼
REx1

2pcL
; ð21Þ

C10 ¼ 3c; ð22Þ

C11 ¼
x2

x1

; ð23Þ

C12 ¼ h: ð24Þ

The angular frequencies x1 and x2 are normalized by

the linear, undamped eigenfrequency [55]

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cðP1 � pVÞ

qLR
2
E

� 2ð3c� 1Þr
qLR

3
E

s
¼ 340 kHz

ð25Þ

of the unexcited system that defines the relative

frequencies as

xR1 ¼
x1

x0

; ð26Þ

xR2 ¼
x2

x0

: ð27Þ

4.1 The global Poincaré section

Due to the dual-frequency driving, the external forcing

is not purely harmonic. In Eq. (10), the two dimen-

sionless angular frequencies are 2p and 2pC11, here

C11 ¼ x2=x1 ¼ xR2=xR1 is the frequency ratio. The

corresponding periods are T1 ¼ 1 and

T2 ¼ 1=C11 ¼ xR1=xR2. For simplicity, the relative

phase shift between the harmonic components is set to

h ¼ C12 ¼ 0. During the computations, the main

control parameters are the pressure amplitudes while

the frequency combinations are kept fixed. The ratio of

the employed frequency pairs is always rational; thus,

the dual-frequency driving is still periodic (quasiperi-

odic forcing is excluded). This period T, which is the

smallest common multiple of T1 and T2 can be used as

the global Poincaré section of the system. That is, the

trajectories are sampled at time instances sn ¼ n � T
(n ¼ 0; 1; 2; . . .).

5 The discovery of a non-feedback technique

to directly control multi-stability

In order to represent the dynamical properties of a

bubble in a four-dimensional parameter space, our

strategy is to compute high-resolution bi-parametric

plots with the pressure amplitudes PA1 and PA2 as

control parameters applying fixed relative frequency

pairs (xR1, xR2). The pressure amplitudes are varied

between 0 and 5 bar with 501, uniformly distributed

values. In order to explore the co-existing attractors,

10 randomly chosen initial conditions are used. In our

experience, it was enough to find the most relevant

attractors to draw meaningful conclusions. Thus, a

single bi-parametric computation consists of approx-

imately 2.5 million initial value problems. In the first

part of the investigation, the relative frequencies are

selected from the following set of values:

1

10
;
1

5
;
1

3
;
1

2
;
1

1
;
2

1
;
3

1
;
5

1
and

10

1
: ð28Þ

Bi-parametric computations are performed at every

possible relative frequency combination, meaning a

total number of 36 frequency pairs (taking into

account the symmetry property of the driving). In

order to explore the subharmonic resonance region in

more detail, an additional series of simulations were

performed with every possible combination of the

frequency values

2

1
;
3

1
;
4

1
� � � 9

1
: ð29Þ

This means 22 additional high-resolution bi-paramet-

ric plots (taking into account again the symmetry

property and the already computed pairs of
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frequencies during the first computation period). Thus,

the overall number of the solved initial value problems

is approximately 145 millions.

At each parameter combination, the first 2048

iterations are regarded as transients and discarded.

Then the system is integrated further by additional

8192 iterations to achieve convergence of averaged

quantities like the Lyapunov exponent or the winding

number. One iteration means the integration of the

system from 0 to the period of the excitation T, see

Sect. 4.1. To avoid code complexity, the numbers of

the iterations mentioned above are the same for all

instances of the initial value problems being solved,

and they turned out to be enough according to our

preliminary calculations. Thus, the convergence of the

transients and the average quantities are not moni-

tored. Besides the aforementioned averaged quanti-

ties, the period, the maximum bubble radius expansion

and the subsequent minimum bubble radius (important

to calculate the collapse strength of the bubble

oscillation) are also stored. Furthermore, 32 points of

the Poincaré section of the last 32 iterations are also

recorded. From the various quantities, only the period

and the points of the Poincaré section are used in the

present study.

Figure 1 shows four typical bi-parametric period-

icity diagrams at different relative frequency combi-

nations. The colour code represents the maximum

period up to period-6 found at a given parameter set.

Chaotic oscillations or orbits with periodicity higher

than six occupy the black regions. In the case of co-

existing attractors, only the highest period is plotted.

Keep in mind that the axes in the figures represent

single frequency driving since one of the pressure

amplitudes is zero in these cases. The bifurcation

structure in many of such diagrams shows extreme

complexity, where it is hard to find a clear regularity in

the bifurcation patterns, see e.g. the upper panels of

Fig. 1. However, at specific frequency combinations,

bridge shaped structures appear connecting periodic

segments from the vertical axis to the horizontal axis,

or vice-versa. Such bifurcation structure can be clearly

seen in the bottom panels of Fig. 1. Consequently,

periodic orbits of single frequency driving at different

relative frequencies can be transformed into each other

via a temporary dual-frequency driving. The bottom-

left panel of Fig. 1 is investigated in more detail in the

following to give an in-depth description of the

phenomenon.

Figure 2 shows a 3D representation of the period-1

orbits (yellow and gray surfaces) corresponding to

relative frequencies xR1 ¼ 4 and xR2 ¼ 3, where the

second component of the points of the Poincaré

sectionPðy2Þ is presented as a function of the pressure
amplitudes PA1 and PA2. Keep in mind that the global

Poincaré section is chosen according to the period of

the dual-frequency driving T that is different from the

period of the individual components T1 and T2. For the

present frequency combination, T ¼ 4, T1 ¼ 1 and

T2 ¼ 4=3 � 1:333 in terms of the dimensionless time

s. That is, the simulation defines every orbit as period-

1 that repeats itself after every Ds ¼ 4. Therefore, for

single frequency driving using xR1 ¼ 4 (T ¼ 4T1), all

period-1 and period-4 orbits are treated as period-1

solutions in the dual-frequency simulations. Similarly,

in case of single frequency driven system with xR2 ¼
3 (T ¼ 3T2), all period-1 and period-3 orbits are

regarded as period-1 solutions if the dual-frequency

Poincaré map is applied. For an exhaustive discussion

of the ‘‘period reduction’’ described above, the reader

is referred to our previous paper [4].

Let us summarise the colour code in Fig. 2. The red

curves represent period-3 orbits using a single fre-

quency Poincaré map if only the second frequency

component is active (xR2 ¼ 3, PA1 ¼ 0). The green

curves represent period-4 orbits of single frequency

driving (again using a single frequency Poincaré map)

with relative frequency xR1 ¼ 4 (PA2 ¼ 0). Finally,

the yellow and grey surfaces and both the red and

green curves are the second components of the

Poincaré section of period-1 orbits corresponding to

the dual-frequency driving (as already discussed

above). The surfaces are presented with different

colours (yellow and grey) only for the better visibility.

It can be clearly seen how these surfaces make

connections between the period-3 and period-4 orbits

related to different relative frequency values. That is,

these two kinds of orbits can be transformed into each

other via a temporary dual-frequency excitation.

Although the above-described orbits are related to

different relative frequency values, a special kind of

control of multi-stability can be achieved in this way if

the period-3 (red curves) and the period-4 (green

curves) attractors have overlapping domains in the
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frequency-amplitude parameter plane in case of single

frequency driving. However, the transformation works

well even if such overlapping domains do not exist.

Thus, one can still drive the system from one attractor

to another regardless of their co-existence. Observe

that such a control technique is a non-feedback

method, but the direct selection of the desired attractor

is nevertheless possible. Up to now, this was possible

only by feedback control techniques [6]. A thorough

discussion of the advantages and the drawbacks can be

found in our already mentioned previous work [4];

however, only for the transformation between period-

2 and period-3 orbits. Therefore, the results presented

here indicate that the control technique can be

generalised for other pairs of periodic orbits.

It must be emphasized that the high-resolution,

multi-dimensional parameter scans have played a vital

role in the discovery of the new non-feedback control

technique. Since not all the bi-parametric plots show

even the sign of the transformation possibility (see e.g.

the top panels of Fig. 1), it is very likely that

investigating only a few frequency combinations or

using coarse resolutions for the pressure amplitudes,

we might have missed the special bifurcation structure

that led to the discovery. Moreover, as the total

number of parameter combinations is of the order of a

hundred million, the high-performance GPU comput-

ing was a prerequisite of this success.

Fig. 1 Periodicity diagram of bi-parametric plots with pressure

amplitudes as control parameters at different relative frequency

pairs. The colour code represents the highest period (up to

period-6) found at a given parameter set. Inside the black

domains, there are chaotic solutions or obits having period

higher than six. In the case of co-existing attractors, only the

highest period is plotted

Fig. 2 The second component of the Poincaré sectionPðy2Þ of
the period-1 orbits versus the pressure-amplitude parameter

plane of the dual-frequency driving. (Color figure online)
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6 Mathematical model of the pressure relief valve

exhibiting impact dynamics

The second test case describes the behaviour of a

pressure relief valve that can exhibit impact dynamics.

The dimensionless governing equations are adopted

from [52] and are written as

_y1 ¼ y2; ð30Þ

_y2 ¼ �jy2 � ðy1 þ dÞ þ y3; ð31Þ

_y3 ¼ bðq� y1
ffiffiffiffiffi
y3

p Þ; ð32Þ

where y1 and y2 are the displacement and the velocity

of the valve body, respectively. The pressure relief

valve is attached to a reservoir chamber in which the

dimensionless pressure is y3. The fixed parameters in

the system during the computations are as follows:

j ¼ 1:25 is the damping coefficient, d ¼ 10 is the

precompression parameter, b ¼ 20 is the compress-

ibility parameter and q ¼ 0:3 is the dimensionless flow

rate.

In Eqs. (30)–(32), the zero value of the displace-

ment (y1 ¼ 0) means that the valve body is in contact

with the seat of the valve. If the velocity of the valve

body y2 has a non-zero, negative value at this point, the

following impact law is applied:

yþ1 ¼ y�1 ¼ 0; ð33Þ

yþ2 ¼ �ry�2 ; ð34Þ

yþ3 ¼ y�3 ð35Þ

That is, the velocity of the valve body is reversed by

the Newtonian coefficient of restitution r ¼ 0:8 that

approximates the loss of energy of the impact.

7 The discovery of a new focal point of grazing

lines

During the oscillation of the valve body of a pressure

relief valve, it can exhibit impact dynamics (the valve

body is in contact with the valve seat) that can be

categorised as follows. The transversal impact has a

non-zero velocity during the impact (y2\0); that is, it

is a ‘‘normal’’ impact. Whereas, the so-called grazing

impact occurs when the impact happens with a zero

velocity (y2 ¼ 0). In this case, the impact law has no

real effect as the valve body only touches the valve

seat. Figure 3 shows the y1 component of two

trajectories that exhibit impacts (y1 ¼ 0). The red dots

denote the grazing impacts. The simulations are

stopped at the next impact. In both cases, the initial

conditions for the first two components are y10 ¼ 0

and y20 ¼ 0:4. The only difference is in the third initial

condition: y30 ¼ 8:66 and y30 ¼ 8:58 depicted also in

the figure. The employed parameter set is summarized

in Sect. 6. The grazing impact can also be labelled (for

a specific initial condition) according to how many

transversal impacts there were before. Thus, in Fig. 3,

the grazing impacts are denoted asG0 (zero transversal

impact) and G2 (two transversal impacts).

From a theoretical point of view, the generalization

of the grazing impacts to the y20 � y30 initial condition

plane is an interesting problem. The first component of

the initial condition is always set to y10 ¼ 0. In this

way, GðkÞ denotes a set of points in the y20 � y30 initial

condition plane, which leads to a grazing impact after

k transversal impacts. Throughout this paper, we shall

call such a set of points as grazing lines of order k. The

first seven grazing lines computed by H}os and

Champneys [52] are shown in the bottom-right panel

of Fig. 4. Their strategy was to use a BVP solver and to

employ the pseudo-arclength continuation technique

to follow the path of the curves initiated from the

Fig. 3 Time series exhibiting transversal and grazing impacts

applying different initial conditions. The grazing impacts are

marked by the red dots. (Color figure online)
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results of an IVP solver. This formalism is quite

complex, as for a single BVP, one needs to define sub-

BVPs for each of the k þ 1 segments divided by the

impacts. These are coupled via the impact law for the

internal connections. At one side of the full-BVP, the

grazing condition, while at the other side of the full-

BVP, the condition y1 ¼ 0 has to be prescribed.

Furthermore, the time instances of the intermediate

transversal impacts need to be tracked properly as

well. The main drawback of this approach is that for

different values of k, a different set of BVPs has to be

set up and solved. These are the main reasons why the

total computational time of a single grazing line was as

high as several hours (according to personal commu-

nications with the authors). In addition, the imple-

mentation of the solver took weeks. Themain outcome

of the results is that the grazing lines are organized as

spirals with a single focal point; and at this focal point,

a Shil’nikov-like orbit exists with impacts, see again

[52].

Another way to compute the grazing lines is to take

an IVP solver (like our GPU accelerated solver), solve

the system forward in time, stop the integration after

k þ 1 impacts and register the velocity of the endpoint

y2E. If this velocity is zero, the corresponding initial

condition lies on a grazing line of order k denoted as

GðkÞ. With a fine resolution of the set of initial

conditions in the y20 � y30 plane, the grazing lines can

be drawn easily by creating a contour plot of the y2E
value. Theoretically, the zero iso-lines shall represent

the corresponding grazing line.

The Gð1Þ curve computed with our GPU-ODE

solver is presented in the top-left panel of Fig. 4 via a

white-red colour-coded plot. Here the integrations are

stopped at the second impact (k ? 1 = 2). The

resolution of the initial conditions is 1024� 1024

and the total computation time is merely 4 s. The pure

white colour represents the zero value of y2E. The pure

red colour means y2E [ 1:5m=s. Between

1:5[ y2E [ 0, the transition is uniform in the colour

code. Interestingly, the zero values always lie at a

discontinuity, see the jump in the colour code labelled

byGð1Þ in the top-left panel of Fig. 4. Accordingly, the
grazing lines can be easily identified as a jump in the

value of y2E. In this sense, the task can be reduced to an

edge detection problem; this is beyond the scope of the

present study. The computations corresponding to the

Gð2Þ and Gð5Þ curves are shown in the top-right and

bottom-left panels of Fig. 4, respectively. In the case

of Gð2Þ, a second focal point already appears in the

initial condition plane which was not observed in the

BVP computations of H}os and Champneys [52]. The
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Fig. 4 Grazing lines

computed by the GPU

accelerated IVP solver

(colour-coded panels) and

the BVP solver with the

pseudo-arclength

continuation technique

(bottom-right panel,

reprinted with permission

from H}os and Champneys

[52]). The pure white colour

represents the zero value of

velocity of the valve body of

an impact (grazing impact).

The pure red colour means

the velocity of 1:5m=s or
higher. Between 1:5m=s
and 0m=s, the transition is

uniform in the colour code.

(Color figure online)
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two focal points are also connected with an additional

Gð2Þ curve. Interestingly, theGð1Þ curve also appears as
a discontinuity in the y2E values; however, in either

sides y2E 6¼ 0. Therefore, this curve can be seen only

as a ‘‘pale’’ dark red-light red transition. The reason

for the non-zero velocity is that the integration is

stopped at the third impact for Gð2Þ instead of at the

second one required for the detection of Gð1Þ. Never-
theless, an edge detection algorithm can find both the

Gð1Þ and Gð2Þ curves from a single computation with

k ¼ 2. The grazing lines corresponding to k ¼ 5 are

presented in the bottom-left panel in Fig. 4. Similarly,

as in the case of k ¼ 2, all the previous grazing lines

(k ¼ 1. . .4) are visible in the figure making it

extremely complex. Thus, to detect the edges properly,

a suitably fine resolution is necessary. This is not a

problem in our case, as a single computation with one

million initial conditions takes only a couple of

seconds. Observe that in the bottom-left panel, no

further focal points are discovered apart from the

second one.

In summary, high-resolution scans of the initial

conditions using our GPU accelarated IVP solver have

revealed an additional feature (second focal point) of

the grazing lines in the y20 � y30 initial condition

plane. This shows that fast ‘‘brute force’’ scanning is

nowadays able to discover features otherwise not

visible or overlooked—here by the available BVP

approach. At first sight, high-performance computa-

tion seems to be exaggerated. Even without using

GPUs, the above ‘‘brute force’’ computations can be

done within a few hours using MATLAB on a CPU.

However, the main message here is that considering

the usage of a ‘‘brute force’’ approach can lead to

unexpected discoveries. Although in this specific

example, high-performance computing is not really

mandatory, in general, to obtain results within rea-

sonable time for a detailed ‘‘brute force’’ computation,

the applications of high-performance GPU (and/or

CPU) clusters is usually a must.

8 Summary

In this paper, the efficacy of ‘‘brute force’’ technique

combined with high-performance GPU computing is

demonstrated through two test cases. The first model,

the Keller–Miksis equation, is related to the scientific

topic of sonochemistry and bubble dynamics. Apart

from mapping the dynamics of bubbles to obtain

approximate information about their chemical activ-

ity, the bifurcation structure of the high-resolution

plots led to a discovery of a new technique to control

multi-stability. The second model describes the

behaviour of a pressure relief valve that can exhibit

non-smooth impact dynamics. Results in the literature

revealed that the grazing lines—computed via a

boundary value problem solver—in the initial condi-

tion plane are organized around a spiral hub. The high-

resolution scans of the initial conditions using our

GPU accelerated initial value problem solver led to the

discovery of a new focal point of the grazing lines. In

summary, ‘‘brute force’’ technique can play an

important role in many fields of sciences, including

non-linear dynamics.

In general, the prerequisite to employ high-resolu-

tion parameter scans is a fast solver. If high compu-

tational capacities are required, a natural choice is the

usage of CPU clusters that are available in many

research institutes. The advantage of this approach is

that highly optimised libraries are available for CPUs.

However, GPUs have outstanding computational

capacity/price ratio, which makes them a good alter-

native over CPUs. Although the parallelisation strat-

egy for parameter scans seems to be straightforward

(assign a GPU thread to each parameter combination)

and libraries supporting solution of ODEs on GPUs are

already available, still there can bemany special issues

resulting in a large performance drop.

For instance, the extremely slow CPU-GPU mem-

ory transactions need to be avoided by all costs. This

can be a cumbersome task for example for systems

with impact dynamics, where thousands of parallel

threads (each having its own instance of the ODE with

a specific parameter combination) can encounter an

impact at any time. What should the programmer do if

a single thread is impacting? He/she can stop the

whole computation, apply the impact law on that

specific thread and continue the integration process.

This can be quite inefficient if the programmer has to

involve CPU computations (depending on the inter-

face and data structure of the package used), and there

is always an overhead to restart the simulation as well.

Thus, an efficient solver has to be able to detect impact

(via event handling) and manipulate the trajectory

immediately ‘‘on the fly’’ on the GPU for each thread

selectively.
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There can be several other issues that may have a

negative effect on code performance if GPUs are

involved. Thus, tuning up the number of the param-

eters is easy, but a fast and efficient GPU solver

usually needs a clever implementation. Such a detailed

discussion is beyond the scope of the present study.

Nevertheless, our GPU code is designed to efficiently

address the majority of these issues. For more details,

the reader is again referred to the manual of the

program package [54] and to its website www.gpuode.

com or to its GitHub repository [53].
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