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Abstract RGB-D data has turned out to be a very useful representation of an indoor scene
for solving fundamental computer vision problems. It takes the advantages of the color
image that provides appearance information of an object and also the depth image that is
immune to the variations in color, illumination, rotation angle and scale. With the inven-
tion of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later
became a popular device for computer vision, high quality RGB-D data can be acquired
easily. In recent years, more and more RGB-D image/video datasets dedicated to various
applications have become available, which are of great importance to benchmark the state-
of-the-art. In this paper, we systematically survey popular RGB-D datasets for different
applications including object recognition, scene classification, hand gesture recognition,
3D-simultaneous localization and mapping, and pose estimation. We provide the insights
into the characteristics of each important dataset, and compare the popularity and the dif-
ficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive
description about the available RGB-D datasets and thus to guide researchers in the selection
of suitable datasets for evaluating their algorithms.
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1 Introduction

In the past decades, there has been abundant computer vision research based on RGB images
[3, 18, 90]. However, RGB images usually only provide the appearance information of the
objects in the scene. With this limited information provided by RGB images, it is extremely
difficult, if not impossible, to solve certain problems such as the partition of the foreground
and background having similar colors and textures. Additionally, the object appearance
described by RGB images is not robust against common variations, such as illuminance
change, which significantly impedes the usage of RGB based vision algorithms in realistic
situations. While most researchers are struggling to design more sophisticated algorithms,
another stream of the research turns to find a new type of representation that can better
perceive the scene. RGB-D image/video is an emerging data representation that is able to
help solve fundamental problems due to its complementary nature of the depth informa-
tion and the visual (RGB) information. Meanwhile, it has been proved that combining RGB
and depth information in high-level tasks (i.e., image/video classification) can dramatically
improve the classification accuracy [94, 95].

The core of the RGB-D image/video is the depth image, which is usually generated by
a range sensor. Compared to a 2D intensity image, a range image is robust to the variations
in color, illumination, rotation angle and scale [17]. Early range sensors (such as Konica
Minolta Vivid 910, Faro Lidar scanner, Leica C10 and Optech ILRIS-LR) are expensive
and difficult to use for researchers in a human environment. Therefore, there is not much
follow-up research at that time. However, with the release of the low-cost 3D Microsoft
Kinect sensor1 on 4th November 2010, acquisition of RGB-D data becomes cheaper and
easier. Not surprisingly, the investigation of computer vision algorithms based on RGB-D
data has attracted a lot of attention in the last few years.

RGB-D images/videos can facilitate a wide range of application areas, such as computer
vision, robotics, construction and medical imaging [33]. Since a lot of algorithms are pro-
posed to solve the technological problems in these areas, an increasing number of RGB-D
datasets have been created so as to verify the algorithms. The usage of publicly available
RGB-D datasets is not only able to save time and resources for researchers, but also enables
fair comparison of different algorithms. However, it may not be practical and also not effi-
cient to test a designed algorithm on all available datasets. At certain situation, one has
to make a sound choice depending on the target of the designed algorithm. Therefore, the
selection of the RGB-D datasets becomes important for evaluating different algorithms.
Unfortunately, we fail to find any detailed surveys about RGB-D datasets and their col-
lection, classification and analysis. To the best of our knowledge, there is only one short
overview paper devoted to the description of available RGB-D datasets [6]. Compared to
that paper, this survey is much more comprehensive and provides individual characteristics
and comparisons about different RGB-D datasets. More specifically, our survey elaborates
20 popular RGB-D datasets coving most of RGB-D based computer vision applications.
Basically, each dataset is described in a systematic way, involving dataset name, ownership,

1http://www.xbox.com/en-US/xbox-360/accessories/kinect/, Kinect for Xbox 360.

http://www.xbox.com/en-US/xbox-360/accessories/kinect/
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context information, the explanation of ground truth, and example images or video frames.
Apart from these 20 widely used datasets, we also briefly introduce another 26 datasets that
are less popular in terms of their citations. In order to save the space, we only add them
into the summary tables. But we believe that the readers can understand the characteristics
of those datasets even though we only provide compact descriptions. Furthermore, this sur-
vey proposes five categories to classify existing RGB-D datasets and corrects some careless
mistakes on the Internet about certain datasets. The motivation of this survey is to provide a
comprehensive and systematic description of popular RGB-D datasets for the convenience
of other researchers in this field.

The rest of this paper is organized as follows. In Section 2, we briefly review the
background, hardware and software information about Microsoft Kinect. In Section 3, we
describe 20 popular publicly available RGB-D benchmark datasets according to their appli-
cation areas in detail. In total, 46 RGB-D datasets are characterized in three summary
tables. Meanwhile, discussions and analysis of the datasets are given. Finally, we draw the
conclusion in Section 4.

2 A brief review of kinect

In the past years, as a new type of scene representation, RGB-D data acquired by the
consumer-level Kinect sensor has shown the potential to solve challenging problems for
computer vision. The hardware sensor as well as the software package are released by
Microsoft in November 2010 and have a vast of sales until now. At the beginning, Kinect
acts as an Xbox accessory, enabling players to interact with the Xbox 360 through body
language or voice instead of the usage of an intermediary device, such as a controller.
Later on, due to its capability of providing accurate depth information with relatively
low cost, the usage of Kinect goes beyond gaming, and is extended to the computer
vision field. This device equipped with intelligent algorithms is contributing to various
applications, such as 3D-simultaneous localization and mapping (SLAM) [39, 54], peo-
ple tracking [69], object recognition [11] and human activity analysis [13, 57], etc. In this
section, we introduce Kinect from two perspectives: hardware configuration and software
tools.

2.1 Kinect hardware configuration

Generally, the basic version of Microsoft Kinect consists of a RGB camera, an infrared cam-
era, an IR projector, a multi-array microphone [49] and a motorized tilt. Figure 1 shows the
components of Kinect and two example images captured by RGB and depth sensors, respec-
tively. The distance between objects and the camera is ranging from 1.2 meters to 3.5 meters.
Here, RGB camera is able to provide the image with the resolution of 640 × 480 pixels at
30Hz. This RGB camera also has option to produce higher resolution images (1280×1024
pixels), running at 10 Hz . The angular field of view is 62 degrees horizontally and 48.6◦
vertically. Kinect’s 3D depth sensor (infrared camera and IR projector) can provide depth
images with the resolution of 640 × 480 pixels at 30 Hz. The angular field of this sensor is
slightly different with that of the RGB camera, which is 58.5 degrees horizontally and 46.6
degrees vertically. In the application such as NUI (Natural User Interface), the multi-array
microphone can be available for a live communication through acoustic source localization
of Xbox 360. This microphone array actually consists of four microphones, and the chan-
nels of which can process up to 16-bit audio signals at a sample rate of 16 kHz. Following
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Fig. 1 Illustration of the structure and internal components of the Kinect sensor. Two example images from
RGB and depth sensors are also displayed to show their differences

Microsoft, Asus launched Xtion Pro Live,2 which has more or less the same features with
Kinect. In July 2014, Microsoft released the second generation Kinect: Kinect for windows
v2.3 The difference between Kinect v1 and Kinect v2 can be seen in Table 1. It is worth not-
ing that this survey mainly considers the datasets generated by Kinect v1 sensor, but only
lists a few datasets created by using other range sensors, such as Xtion Pro Live and Kinect
v2 sensor. The reason is that the majority of RGB-D datasets being used are generated with
the aid of Kinect v1 sensor.

In general, the technology used for generating the depth map is based on analyzing the
speckle patterns of infrared laser light. The method is patented by PrimeSense [27]. For
more detailed introductions, we refer to [30].

2.2 Kinect software tools

When Kinect is initially released for Xbox360, Microsoft actually did not deliver any
SDKs. However, some other companies forecast an explosion in using Kinect and thus pro-
vide unofficial free libraries and SDKs. The representatives include CL NUI Platform,4

OpenKinect/Libfreenect,5 OpenNI6 and PCL.7 Although most of libraries provide basic
algorithmic comments, such as camera calibration, automatic body calibration, skeletal
tracking, facial tracking, 3-D scanning and so on, each library has its own characteristics.
For example, CL NUI Platform developed by NUI researchers can obtain the data from
RGB camera, depth sensor and accelerometer. Open Kinect focuses on providing free and
open source libraries, enabling researchers to use Kinect over Linux, Mac and Windows.
OpenNI is an industry-led open source library which can program RGB-D devices for NUI

2http://www.asus.com, Asus Corporation, Xtion Pro Live
3http://www.xbox.com/en-GB/xbox-one/accessories, Microsoft Corporation, Kinect v2 for Xbox 360.
4http://codelaboratories.com/kb/nui, CL NUI Platform [Online].
5https://github.com/OpenKinect/libfreenect/, OpenKinect [Online].
6http://www.openni.org/, OpenNI [Online].
7http://www.pointclouds.org/, PCL [Online].

http://www.asus.com
http://www.xbox.com/en-GB/xbox-one/accessories
http://codelaboratories.com/kb/nui
https://github.com/OpenKinect/libfreenect/
http://www.openni.org/
http://www.pointclouds.org/
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Table 1 Comparison between Kinect v1 and Kinect v2

Kinect for windows v1 Kinect for windows v2

Color
Resolution 640×480 1920×1080

fps 30fps 30fps

Depth
Resolution 640×480 512×424

fps 30fps 30fps

Sensor Structured light Time of flight

Range 1.2 ∼ 3.5m 0.5 ∼ 4.5m

Joint 20 joint / people 25 joint / people

Hand state Open / closed Open / closed / Lasso

Number of Apps Single Multiple

Body Tracking 2 people 6 people

Body Index 6 people 6 people

Angle of View
Horizontal 62 degree 70 degree

Vertical 48.6 degree 60 degree

Tilt Motor Yes No

Aspect Ratio 4:3 6:5

Supported OS Win 7, Win 8 Win 8

USB Standard 2.0 3.0

applications. It is not specifically built for Kinect, and it can support multiple PrimeSense
3D sensors. Normally, users need to install SensorKinect, NITE, and OpenNI to control
the Kinect sensor, where SensorKinect is the driver of Kinect and NITE is the middleware
provided by PrimeSense . The latest version of OpenNI is the version 2.2.0.33 until June
2015. The Point Cloud Library (PCL) is a standalone open source library which provides
SLAM-related tools such as surface reconstruction, sample consensus, feature extraction,
and visualization for RGB-D SLAM. It is licensed by Berkeley Software Distribution
(BSD). More details and publications about PCL can be found in [74].

The official version of Kinect for Windows SDK8 was released in July 2011, which pro-
vides a straightforward access to Kinect data: depth, color and disparity. The newest version
is the SDK 2.0. It can be applied for Windows 7, Windows 8, Windows 8.1 and Windows
Embedded 8 with C++, C# or VB.NET. The development environment uses Visual Studio
2010 or higher versions. Regarding the software tool, it mainly contains skeletal tracking,
higher depth fidelity, audio processing and so on.

The comparison of Kinect Windows SDK and unofficial SDK, e.g., OpenNI, can be
summarized below. The detailed same and difference between the Kinect Windows SDK
and unofficial SDK can be seen in Table 2.

Kinect Windows SDK:

1) It supports audio signal processing and allows to adjust the motor angle.
2) It provides a full-body tracker including head, feet, hands and clavicles. Meanwhile,

some details such as occluded joints are processed meticulously.

8http://www.microsoft.com/en-us/kinectforwindows/, Microsoft Kinect SDK [Online].

http://www.microsoft.com/en-us/kinectforwindows/
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Table 2 Comparison between the Kinect Windows SDK and unofficial SDK

Kinect windows SDK Unofficial SDK

Supported OS

Windows 7×86/×64 Windows XP/Vista/7×86/×64

Windows 8, Windows 8.1 and Windows 8, Windows 8.1 and

Windows Embedded 8 Windows Embedded 8

LinuxUbuntu×86/×64

Mac OS

Android

Development C++, C# C, C++, C#, Java

language

Commercial use No Yes

Supports for audio Yes No

and motor/tilt

Supports multiple Yes No

sensors

Consumption of More Less

CPU power

Full body tracking

Includes head, hands, feet, clavicles No head, hands, feet, clavicles

Calculates positions for the joints, Calculates both positions and

but not rotations rotations for the joints

Only tracks the full body, Supports for hands only mode

no hands only mode

Supports for Unity3D No Yes

game engine

Supports for record/ No Yes

playback to disk

Supports to stream the No Yes

raw InfraRed video data

3) Multiple Kinect sensors can be supported.

OpenNI/NITE library:

1) Commercial use of OpenNI is allowed.
2) Frameworks for hand tracking and hand-gesture recognition are included in OpenNI.

Moreover, it automatically aligns the depth image and the color image.
3) It consumes less CPU power than that of Kinect Windows SDK.
4) It supports Windows, Linux and Mac OSX. In addition, streaming the raw Infrared

video data becomes possible.

In conclusion, the most attractive advantage of OpenNI is the feasibility for multiple
operational platforms. Besides it, using OpenNI is more convenient and can obtain better
results for the research of colored point clouds. However, in terms of collection quality of the
original image and the technology for pre-processing, Kinect for Windows SDK seems to
be more stable. Moreover, Kinect for Windows SDK is more advantageous when requiring
skeletal tracking and audio processing.
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3 RGB-D benchmark datasets

We will describe publicly available RGB-D datasets for different computer vision appli-
cations in this section. Since the Kinect sensor was just released a few years ago, most
RGB-D datasets are created in a time range from 2011 to 2014. To have a clear structure,
this paper divides the RGB-D datasets into 5 categories depending on the facilitated com-
puter vision applications. More specifically, the reviewed datasets fall into object detection
and tracking, human activity analysis, object and scene recognition, SLAM (Simultane-
ous Localization and Mapping) and hand gesture analysis. However, each dataset may not
be limited to one specific application only. For example, object RGB-D can be used in
detection as well. Figure 2 illustrates a tree-structured taxonomy that our review intends to
follow.

In the following sections each dataset is described in a systematic way, attending to a
collection of name, general information of dataset, example video images, context, ground
truth, applications, creation procedure, creation environment and the published papers that
used this dataset. In each category, the datasets will be presented in a chronological order.
If several datasets are created in the same year, the dataset with more references will be
introduced ahead of the others. General information of dataset includes the creator as well
as the creation time. The context contains the information about the scenes, the number of
objects and the number of RGB-D sensors. The ground truth reveals information concerning
what type of knowledge in each dataset is available, such as bounding boxes, 3D geometries,
camera trajectories, 6DOF poses and dense multi-class labels. Moreover, the complexity of
the background, change of illumination and occlusion conditions are also discussed. At last,
a list of publications using the dataset is also mentioned. In order to have a direct comparison
of all the datasets, the complete information is compiled in three tables. It is worth noting
that we describe the following representatives in more details. The characteristics of other
datasets which are not popular are only summarized in the comparison tables due to the
limited space. Moreover, the link cites of datasets, data size and citation are added into these
tables as well.

Fig. 2 Tree-structured taxonomy of RGB-D datasets reviewed in this paper
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3.1 RGB-D Datasets for object detection and tracking

Object detection and tracking is one of the fundamental research topics in computer vision.
It is an essential building-block of many intelligent systems. As we mentioned before, the
depth information of an object is immune to changes of the object appearance or/and envi-
ronmental illumination, and subtle movements of the background. With the availability of
the low-cost Kinect depth camera, researchers immediately noticed that the feature descrip-
tor based on depth information can help significantly detect and track the object in the real
world where all kinds of variations occur. Therefore, RGB-D based object detection and
tracking have attracted great attention in recent a few years. As a result, many datasets are
created for evaluating proposed algorithms.

3.1.1 RGB-D people dataset

RGB-D People dataset [59, 83] was founded in 2011 by social Robotics Lab (SRL) of Uni-
versity of Freiburg with the purpose of evaluating people detection and tracking algorithms
for robotics, interactive systems and intelligent vehicles. The data information is collected
in an indoor environment (lobby of a large University canteen) with unscripted behavior of
people during the lunch time. The video sequences are recorded through a setup of three
vertically combined Kinect sensors (the field of view is 130◦ × 50◦) at 30 Hz. The distance
between this capturing device and the ground is about 1.5m. This guarantees that the three
images can be acquired synchronously and simultaneously, and meanwhile, it is also able to
reduce the IR projector cross-talk among these sensors. Moreover, in order to avoid detector
bias, some background samples are recorded from another building within the University
campus.

RGB-D people dataset collects more than 3000 frames of multiple persons walking and
standing in the University hall from different views. To make the data more realistic, occlu-
sions among persons appear in most sequences. Regarding to the ground truth, all frames are
annotated manually to contain bounding box in the 2D depth image space and the visibility
status of subjects.

To facilitate the evaluation of human detection algorithms, in total 1088 frames including
1648 instances of people have been labeled. Three sampled color and depth images from
this dataset can be found in Fig. 3.

3.1.2 TUM texture-less 3D objects dataset

TUM Texture-Less 3D Objects dataset [36] was constructed by Technical University of
Munich in 2012. It can be widely used for object segmentation, automatic modeling and

Fig. 3 Three sampled color (left) and depth (right) images from RGB-D People Dataset [59]
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Fig. 4 Examples from Object Segmentation dataset.9 From left to right in order, (a) Boxes, (b) Stacked
boxes, (c) Occluded objects, (d) Cylindric objects, (e) Mixed objects, (f) Complex scene

3D object tracking. This dataset consists of 18,000 images describing 15 different texture-
less 3D objects (ape, bench vise, can, bowl, cat, cup, duck, glue, hole puncher, driller, iron,
phone, lamp, egg box and cam) accompanied with their ground truth poses. In the collec-
tion process, each object with its markers that can provide the corresponding ground truth
poses was stuck to a planar board for model and image acquisition. Afterwards, through
a simple voxel based approach, every object was reconstructed based on several images
and the corresponding poses. At last, close and far range 2D and 3D clutters were added
into the scene. Each sequence comprises more than 1,100 real images from different views
(0◦ ∼ 360◦ around the object, 0◦ ∼ 90◦ tilt rotation, 65cm ∼ 115cm scaling and ±45◦ in-
plane rotation). With respect to the ground truth, 6DOF pose was labeled for each object in
each image. More details about this dataset can be found in [36, 37].

3.1.3 Object segmentation dataset (OSD)

Vision for robotics group in Vienna University of Technology created Object Segmentation
dataset in 2012 for the evaluation of segmenting unknown objects from generic scenes [72].
This dataset is composed of 111 RGB-D images representing stacked and occluded objects
on a table in six categories (boxes, stacked boxes, occluded objects, cylindric objects, mixed
objects and complex scene 11). The labels of segmented objects for all RGB-D images are
provided as the ground truth. Examples from this dataset are shown in Fig. 4.

3.1.4 Object disappearance for object discovery datasets

Department of Computer Science in Duke University created Object Disappearance for
Object Discovery datasets [60] in 2012 for evaluating object detection, object recognition,

9http://www.acin.tuwien.ac.at/?id=289.

http://www.acin.tuwien.ac.at/?id=289
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Fig. 5 Sampled images from the small dataset [60]. From left to right are: (a) image from the objects
vanishing, (b) image when the objects appear and (c) image with the segmentations, respectively

localization and mapping algorithms. In this dataset, there are three sub datasets with grad-
ually increased size and complexity. All images are recorded through a single Kinect sensor
which is mounted on the top of a Willow Garage PR2 (robot). The RGB and depth images
in these datasets are with the resolution of 1280 × 960 and the resolution of 640 × 480,
respectively. As the main objective is to facilitate the object detection, the image capturing
rate is rather low, which is only 5 Hz. In order to minimize the range errors, Kinect is placed
at a distance of 2 meters to the object. For the sake of clarity, we call these three datasets as
small dataset, medium dataset and large dataset, respectively. Example images can be found
in Figs. 5, 6 and 7.

Let’s now elaborate each sub dataset. The small dataset consists of totally 350 images, in
which 101 images are captured from a static scene without any objects, 135 images describe
the same scene but with two objects, and 114 images which remove these two objects which
is equivalent to 110 images before the objects appear. There are two unique objects, and 270
segmented objects found by hand.

In the medium dataset, there are totally 484 frames. The step-by-step video capturing
procedure can be explained as follows. The robot firstly observes a table with objects, i.e.,
a dozen of eggs and a toy. It then looks away while the objects are removed. After a short
while, it observes the table again. Lately, the robot travels approximately 18 meters and
repeats this procedure with a counter. To make the dataset more challenging, the light-
ing during the recording keeps changing. The hand-segmentation results in 394 segmented
objects from a total of four unique objects.

The large dataset contains the whole cover of several rooms of a 40m × 40m office
environment, resulting in totally 397 frames. In the first process, the robot shoots some

Fig. 6 Sample images from the medium dataset [60]. From first to end: (a) image with objects, (b) image
without objects, (c) image of the counter with objects and (d) image of the counter without objects
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Fig. 7 Sample images from the large dataset [60]. From left to right there are four different places involved
in the video sequence recording. The objects in the environment are unique

objects (i.e., toy and different shapes of boxes) in each room. In the second process, the
robot observes the rooms after all the objects have been removed. There are seven unique
objects, and 419 segmented objects found by hand.

3.1.5 Princeton tracking benchmark dataset

Princeton Tracking Benchmark (PTB) [81] was created in 2013 with 100 videos , cover-
ing many realistic cases, such as deformable objects, moving camera, different occlusion
conditions and a variety of clutter backgrounds. The object types in PTB are rich and var-
ied in the sense that it includes both deformable objects and relatively rigid objects that
only have rotating and translating motions. The deformable objects are mainly animals
(including rabbits, dogs and turtles) and humans, while the rigid objects contain human
heads, balls, cars and toys. The movements of animals are made up of out-of-plane rota-
tions and deformations. The scene types consist of a few different kinds of background,
e.g., a living room that has a changeless and stationary background and a restaurant that
has complex backgrounds with many people walking around. Several occluding cases are
also involved in the videos. In the paper [81], authors provide the statistics of move-
ment, object category and scene type about PTB dataset, which can be summarized in
Table 3.

The ground truth generation of this dataset is purely based on manual annotations. That
is, they draw a bounding-box around an object on each frame. To obtain a high consistency,
all frames are manually annotated by the same person. The drawing rule is applied such
that the target is covered by an initialized minimum bounding box on the first frame. The
bounding-box will be adjusted while the target is moving or its shape is changing over
time. Concerning the occlusion cases, they have several rules. For instance, if the target
is occluded, the bounding box will only cover the visible part of the target. Otherwise, no
bounding box will be provided in case the target is completely occluded. Figure 8 shows
some example frames obtained from PTB dataset.

In view of detailed descriptions for the above five datasets, we come to the conclusion
that RGB-D People dataset is more challenging than the others. The difficulty of this dataset
is that the majority of people are dressed similarly and the brightness suddenly changes
among frames. Due to its realistic, most related papers prefer to test their algorithms on this
dataset. The recent tracking evaluation on this dataset shows that the best algorithm achieves
78 % MOTA (avg. number of times of a correct tracking output with respect to the ground
truth), 16.8 % false negative (FN), 4.5 % false positives (FP) and 32 mismatches (ID) [59].
Besides it, some algorithm-comparison reports based on other datasets, e.g., TUM Texture-
less, Object Segmentation, Object Discovery and PTB, can be found in [7, 61, 73] and [29],
respectively.
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Fig. 8 Samples from the Princeton Tracking Benchmark dataset include deformable objects, various
occlusion conditions, moving camera, and different scenes [81]

3.2 Human activity analysis

Apart from offering a low-cost camera sensor that outputs both RGB and depth information,
another contribution of Kinect is a fast human-skeletal tracking algorithm. This tracking
algorithm is able to provide the exact location of each joint of a human body over time,
which makes the interpretation of complex human activities easier. Therefore, a lot of works
are devoting to deducing human activities from depth images or the combination of depth
and RGB images. Not surprisingly, many RGB-D datasets that can be used to verify human
activity analysis algorithms arose in recent a couple of years.

3.2.1 Biwi kinect head pose dataset

Biwi Kinect Head Pose dataset [25] was generated by computer vision laboratory of ETH
Zurich in 2013 for estimating the location and orientation of a person’s head from the depth
data. This dataset is recorded when some people are facing to a Kinect (about one meter
away) and turning their heads around randomly. The turning angle covers a range of ±75

Fig. 9 From left to right: RGB images, depth images and depth images with annotations from Biwi Kinect
Head Pose Dataset [25]
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Fig. 10 Corresponding sample RGB images (top) and depth images (bottom) from UR Fall Detection
dataset10

degrees for yaw, ±60 degrees for pitch and ±50 degrees for roll. Biwi Kinect Head Pose
dataset consists of over 15K images from 24 sequences (6 women, 14 men and 4 of them are
with glasses). It provides pairs of depth image and RGB image (640×480 pixels at 30Hz) as
well as the annotated ground truth (see Fig. 9). The annotation is done by using the software
“face shift” in the form of the 3D location of the head (3D coordinates of the nose tip) and
the head rotation angles (represented as Euler angles). It can be seen from the sample images
(Fig. 9) that a red cylinder going through the nose indicates the nose’s position and the
head’s turning direction. Some algorithms tested on this dataset can be found in [4, 56, 71].

3.2.2 UR fall detection dataset

University of Rzeszow created UR Fall Detection dataset in 2014 [51], which devotes to
detecting and recognizing human falls . In this dataset, the video sequences are recorded by
two Kinect cameras. One is mounted at the height of approximate 2.5m such that it is able
to cover the whole room (5.5m2). The other one is supposed to be parallel to the fall with a
distance about 1m from the ground.

In this dataset, there are totally 60 sequences that record 66 falls when conducting com-
mon daily activities, such as walking, taking or putting an object from floor, bending right
or left to lift an object, sitting, tying laces, crouching down and lying. Meanwhile, corre-
sponding accelerometer data are also collected using an elastic belt attached to the volunteer.
Figure 10 shows some images sampled from this dataset.

3.2.3 MSRDailyActivity3D dataset

MSRDailyActivity3D dataset [97] was created by Microsoft Research in 2012 for evaluat-
ing the action recognition approaches. This dataset is designed to discover human’s daily
activities in the living room, which contains 16 daily activities (drink, eat, read book, call
cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper,
play game, lay down on sofa, walk, play guitar, stand up and sit down). There are 10 sub-
jects performing each activity twice with the postures of standing and sitting respectively.
In general, this dataset is fairly challenging, because the 3D joint positions extracted by
the skeleton tracker become unambiguous when the performer is close to the sofa, which
is a common situation in a living room. Meanwhile, most of the activities contain the
humans-object interactions. Examples of RGB images, raw depth images in this dataset are
illustrated in Fig. 11.

10http://fenix.univ.rzeszow.pl/mkepski/ds/uf.html.

http://fenix.univ.rzeszow.pl/mkepski/ds/uf.html
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Fig. 11 Selected RGB (top) and raw depth images (bottom) from MSRDailyActivity3D dataset

Biwi Kinect Head Pose dataset was created in 2013 but it already has nearly 100 citations.
The best result found in the literature shows that the detected yaw error, pitch error and roll
error are 3.5◦±5.8◦, 3.8◦±6.5◦ [25] and 4.7◦±4.6◦ [20] respectively. Seen from the result,
it is clear that more research efforts are needed in order to achieve a better result. UR Fall
Detection dataset is a relatively new RGB-D dataset so that we only find a few algorithms
tested on this dataset. According to [51], the best baseline results are achieved by Threshold
UFT method [8], which are 95.00 % accuracy, 90.91 % precision, 100 % sensitivity and
90.00 % specificity. MSRDailyActivity3D dataset is a very challenging dataset, and it has
the largest number of citations which is over 300 to the date. The best result of the action
recognition accuracy achieved on this dataset can only reach 85.75 % [98].

3.3 Object and scene recognition

Object recognition aims to answer the question whether the image contains the pre-defined
object, given an input image. Scene recognition is a sort of extension of object recogni-
tion, densely labeling everything in a scene. Usually, an object recognition algorithm relies
on the feature descriptor, which is able to distinguish the different objects, and mean-
while, tolerate various distortions of the object due to the environmental variations, such as
change of illumination, different levels of occlusions, and reflections, etc. Usually, the con-
ventional RGB-based feature descriptors are sufficiently descriptive, but they may suffer
from the distortions of an object. RGB information, by nature, is less capable of handling
those environmental variations. Fortunately, the combination of RGB and depth informa-
tion may potentially enhance the robustness of the feature descriptor. Consequently, many
object/scene descriptors assembling RGB and depth information are proposed in recent a
few years. In accordance with the research growth, several datasets are generated for the
public usage.

3.3.1 RGB-D object dataset

University of Washington and Intel Labs Settle released this large-scale RGB-D object
dataset on June 20, 2011 [52]. It contains 300 common household objects (i.e., apple,
banana, keyboard, potato, mushroom, bowl, coffee mug) which are classified into 51
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Fig. 12 Sample objects from the RGB-D object dataset (left), examples of RGB image and depth image of
an object (right top) and RGB-D scene images (right bot) [52]

categories. Each object in this dataset was recorded from multiple view angles with reso-
lution of 640 × 480 at 30 Hz, thus resulting in 153 video sequences (3 video sequences
for each object) and nearly 250,000 RGB-D images. Figure 12 illustrates some selected
objects from this dataset as well as the examples of RGB-D images. Through WordNet
hyponym/hypernym relations, the objects are arranged in a hierarchical structure, which
helps many possible algorithms. Ground truth pose information and per-frame bounding
boxes about all these 300 objects are offered in the dataset. On April 5, 2014, the RGB-D
scenes dataset was upgraded to v.2, adding 14 new scenes with the tabletop and furniture
objects. This new dataset further boosts the research on applications such as category
recognition, instance recognition, 3D scene labeling and object pose estimation [9, 10, 53].

To help researchers use this dataset, RGB-D object dataset provides code snippets and
software for RGB-D kernel descriptors, reading point clouds (MATLAB) and spinning
images (MATLAB) on their website. The performance comparison of different methods
tested on this dataset is also reported on the web.

3.3.2 NYU Depth V1 and V2

Vision Learning Graphics (VLG) lab in New York University created the NYU Depth V1
for indoor-scene object segmentation in 2011. Compared to most works in which the scenes
are in a very limited domain [55], this dataset is collected from much wider domains (the
background is changing from one to another), facilitating multiple applications. It records
video sequences of a great diversity of indoor scenes [79], including a subset of densely
labeled video data, raw RGB images, depth images and accelerometer information. On the
website, users can find a toolbox for processing data, and suggested training/test splits.
Examples of RGB images, raw depth images and labeled images in the dataset are illustrated
in Fig. 13. Besides the raw depth images, this dataset also provides some pre-processed
images on which the black areas with missed depth values have been filled (see Fig. 14 for
an example). The sampling rate of the Kinect camera is varying from 20 frames per second
to 30 frames per second. As a result, there are 108,617 RGB-D images captured from 64
different indoor scenes, such as bedroom, bathroom and kitchen. Every 2 to 3 seconds,
frames extracted from the obtained video are processed with dense multi-class labeling.
This special subset contains 2347 unique labeled frames.

NYU Dataset V2 [65] is an extension of NYU Dataset V1 and was founded in 2012. This
new dataset includes approximately 408,000 RGB images and 1449 aligned RGB-D images
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Fig. 13 Selected examples of RGB images, raw depth images and class labeled images in NYU dataset11

with detailed annotations from 464 indoor scenes across 26 scene classes. Obviously, the
scale of this dataset is even larger and it is more diversified than NYU dataset V1. The
RGB-D images are collected from numerous buildings in three US cities. Meanwhile, this
dataset includes 894 different classes about 35,064 objects. Particularly, to identify multiple
instances of an object class in one scene, each instance in this scene is given a unique label.
The representative research work using these two datasets as the benchmark for indoor
segmentation and classification can be found in [77, 94, 95].

3.3.3 B3DO: berkeley 3-D object dataset

B3DO (Berkeley 3-D object dataset) was publicized in 2011 by University of California-
Berkeley to accelerate progress in the field of evaluating approaches of indoor scene object
recognition and localization [41]. The organization for this dataset is different in the sense
that the data collection effort is continuously crowdsourced by many members in the
research community and AMT (AmazonMechanical Turk), instead of collecting all the data
by one single host. By doing so, the dataset will have a variety of appearances over scenes
and objects.

The first version of this dataset annotates 849 images from 75 scenes of more than 50
classes (i.e., table, cup, keyboard, trash can, plate, towel), which have been processed for
alignment and inpainting in both real office and domestic environments. Compared to other
Kinect object datasets, the images of B3DO are taken in “the wild” [35, 91] places by
an automatic turntable setting. During the capturing, camera viewpoint and the lighting
condition are changed. The ground truth is represented by the bounding box labeling at a
class level on both RGB images and depth images.

11http://cs.nyu.edu/∼silberman/datasets/nyu depth v1.html.

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v1.html
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Fig. 14 Output of the RGB camera (left), pre-processed depth image (mid) and class labeled image (right)
from NYU Depth V1 and V2 dataset12

3.3.4 RGB-D person re-identification dataset

RGB-D Person Re-identification dataset [5] was jointly created in 2012 by Italian Insti-
tute of Technology, University of Verona and University of Burgundy, aiming to promote
the research of the RGB-D person re-identification. This dataset dedicates to simulating the
difficult situations, e.g., changing the participant’s clothing during the observation. Com-
pared to the existed datasets for appearance-based person re-identification, this dataset has
a wider range of applications and consists of four different parts of data. The challenging
level goes up gradually from the first part to the fourth part. The first part (“collabora-
tive”) of data has been gained through recording 79 people with four kinds of conditions:
walking slowly, a frontal view, with stretched arms and without occlusions. All of these are
shot while passersby are more than two meters away from the Kinect sensor. The second
and third groups (“walking 1” and “walking 2”) are made when the same 79 people are
walking into the lab with different poses. The last part (“backwards”) actually records the
departure view of the people. For increasing the challenge, all the sequences in this dataset
are recorded during multiple days, which means that the clothing and accessories on the
passersby may be varying.

Furthermore, four synchronized labeling information are annotated for each person: the
foreground masks, the skeletons, 3Dmeshes and an estimate of the floor. Additionally, using
the method “Greedy Projection”, a mesh can be generated from the person’s point cloud in
this dataset. Figure 15 describes the computed meshes from the four kinds of groups. One
published work based on this dataset is [76].

3.3.5 Eurecom kinect face dataset (Kinect FaceDB)

Kinect FaceDB [64] is a collection of different facial expressions in varying lighting con-
ditions and occlusion levels based on a Kinect sensor, which was jointly developed by
University of North Carolina and the department of Multimedia Communications in EURE-
COM in 2014. This dataset provides different forms of data including 936 processed and
well-aligned 2D RGB images, 2.5D depth images, shots of 3D point cloud face data and 104
RGB-D video sequences. During the data collection procedure, totally 52 people (38 males
and 14 females) are invited in the project. Aiming to gain multiple facial variations, these
participants are selected from different age groups (27 to 40) with different nationalities and
six kinds of ethnicity (21 Caucasian, 11 Middle East, 10 East Asian, 4 Indian, 3 African-
American and 3 Hispanic). The data is obtained from two sessions with a time interval

12http://cs.nyu.edu/∼silberman/datasets/nyu depth v1.html.

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v1.html
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Fig. 15 Illustration of the different groups about the recorded data from RGB-D Person Re-identification
dataset13

about half a month. Each person is asked to perform 9 kinds of different facial expressions
in various lighting and occlusion situations. The facial expressions contain neutral, smiling,
open mouth, left profile, right profile, occluding eyes, occluding mouth, occluded by paper
and strong illumination. All the image are acquired at a distance about 1m away from the
sensor in the lab at EURECOM Institute. All the participants follow the protocol that turns
hand around slowly: the horizontal direction 0◦ → +90◦ → −90◦ → 0◦ and the vertical
direction 0◦ → +45◦ → −45◦ → 0◦.

During the recording process, the Kinect sensor is fixed on top of a laptop. For the pur-
pose of providing a simple background, a white board is placed on the opposite side of the
Kinect sensor at the distance of 1.25m. Furthermore, this dataset is manually annotated, pro-
viding 6 facial anchor points: left eye center, right eye center, left mouth corner, right mouth
corner, nose-tip and the chin. Meanwhile, information about gender, birth, glasses-wearing
and shooting time are also associated. Sample images highlighting the facial variations of
this dataset are shown in Fig. 16.

3.3.6 Big BIRD (Berkeley instance recognition dataset)

Big BIRD dataset was designed in 2014 by Department of Electrical Engineering and Com-
puter Science of University of California Berkeley, aiming to accelerate the developments
in graphics, computer vision and robotic perception, particularly 3D mesh reconstruction
and object recognition areas. It was first quoted in [80]. Compared to the previous 3D vision
datasets, it tries to overcome the shortcomings, such as few objects, low-quality objects,
low-resolution RGB data. Moreover, it also provides calibration and the pose information,
enabling better alignments of multi-view objects and scenes.

Big BIRD dataset consists of 125 objects (keep growing), in which 600 12 megapixel
images and 600 RGB-D point clouds spinning all views are provided for each object.
Meanwhile, accurate calibration parameters and pose information are also available for
each image. In the data collection system, the object is placed in the center of a con-
trollable turntable based platform on which multiple Kinects and high-resolution DSLR
cameras from 5 polar angles and 120 azimuthal angles are mounted. The collection proce-
dure for one object takes roughly 5 mins. In this procedure, four adjustable lights are put in

13http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html.

http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html
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Fig. 16 Sampled RGB (top row) and depth images (bottom row) from Kinect FaceDB [64]. Left to right:
neutral face with normal illumination, smiling, mouth open, strong illumination, occlusion by sunglasses,
occlusion by hand, occlusion by paper, turn face right and turn face left

different places, illuminating the recording environment. Furthermore, in order to acquire
calibrated data, one chessboard is placed on the turntable, while the system ensures that at
least one camera can shoot the whole vision. The data collection equipment as well as the
environment are shown in Fig. 17. More details about Big BIRD can be found in [80].

3.3.7 High resolution range based face dataset (HRRFaceD)

The image processing group in Polytechnic University of Madrid created high resolution
range based face dataset (HRRFaceD) [62] in 2014, intending to evaluate the recognition
of different faces from a wide range of poses. This dataset was recorded by the second
generation of Microsoft Kinect sensor. It consists of 22 sequences from 18 different subjects
(15 males, 3 females and 4 people from them are with glasses) with various poses (frontal,
lateral, etc.). During the collection procedure, each person is sitting about 50 cm away
from Kinect, while the head is at the same height as the sensor. In order to obtain more
information from the nose, eyes, mouth and ears, all persons continuously turn their heads.
Depth images (512×424 pixels) are saved with 16 bits format. One recent published paper
about HRRFaceD can be found in [62]. Sample images from this dataset are shown in
Fig. 18.

Among these object and scene recognition datasets mentioned above, RGB-D Object
dataset and NYU Depth V1 and V2 have the largest number of references (> 100). The
challenge of RGB-D Object dataset is that it contains both textured objects and texture-less
objects. Meanwhile, the lighting conditions have large variations over the data frames. The
category recognition accuracy (%) can reach 90.3 (RGB), 85.9 (Depth) and 92.3 (RGB-D) in [43].

Fig. 17 The left is the data-collection system of Big BIRD dataset. The chessboard aside the object is used
for merging clouds when turntable rotates. The right is the side view of this system [80]
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Fig. 18 Sample images from HRRFaceD [62]. There are three images in a row displaying a person with
different poses. Top row: a man without glasses. Middle row: a man with glasses. Bottom row: a woman
without glasses

The instance recognition accuracy (%) can reach 92.43 (RGB), 55.69 (Depth) and 93.23
(RGB-D) in [42]. In general, NYU Depth V1 and V2 dataset is very difficult for scene clas-
sification since it contains various objects in one category. Therefore, the scene recognition
rates are relatively low, which are 75.9±2.9 (RGB), 65.8±2.7 (Depth) and 76.2±3.2 (RGB-
D) reported in [42]. The latest algorithm performance comparisons based on B3DO, Person
Re-identification, Kinect FaceDB, Big BIRD and HRRFaceD can be found in [32, 40, 64,
66] and [62] respectively.

3.4 Simultaneous localization and mapping (SLAM)

The emergence of new RGB-D camera, like Kinect, boosts the research for SLAM due to its
capability of providing depth information directly. Over the last a few years, many excellent
works have been published. In order to test and compare those algorithms, several datasets
and benchmarks have been created.

3.4.1 TUM benchmark dataset

TUM Benchmark dataset [85] was founded by University of Technology Munich in July
2011. The intention is to build a novel benchmark for evaluating visual odometry and visual
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SLAM (Simultaneous Localization and Mapping) systems. It is noted that this is the first
RGB-D dataset for visual SLAM benchmarking. It provides RGB and depth images (640×
480 at 30Hz) along with the time-synchronized ground truth trajectory of camera poses
generated by a motion-capture system. TUM Benchmark dataset consists of 39 sequences
which are captured in two different indoor environments: an office scene (6 × 6m2) and an
industrial hall (10 × 12m2). Meanwhile, the IMU accelerometer data is provided from the
Kinect.

This dataset is recorded by moving the handhold Kinect sensor with unconstrained 6-
DOF motions along different trajectories in the environments. It contains totally 50 GB
Kinect data and 9 sequences. For having more variations in the dataset, the angular veloc-
ities (fast/slow), conditions of the environment (one desk, several desks and whole room)
and illumination conditions (weak and strong) keep changing during the recording process.
Example frames from this dataset are depicted in Fig. 19. The latest version of this dataset
is extended to include dynamic sequences, longer trajectories and sequences captured by a
mounted Kinect on a wheeled robot. The sequences are labeled with 6-DOF ground truth
from a motion capture system having 10 cameras. Six research publications about evaluat-
ing ego-motion estimation and SLAM over TUM Benchmark dataset are [21, 38, 45, 84,
86, 87].

3.4.2 ICL-NUIM dataset

ICL-NUIM dataset [34] is a benchmark for experimenting the algorithms devoted to RGB-
D visual odometry, 3D reconstruction and SLAM. It is founded in 2014 by the researchers
from Imperial College London and National University of Ireland Maynooth. Unlike the
previous presented datasets that only focus on pure two-view disparity estimation or trajec-
tory estimation (i.e., Sintel, KITTI, TUM RGB-D), ICL-NUIM dataset combines realistic
RGB and depth information together with a full 3D geometry scene and the trajectory
ground truth. The camera view field is 90 degrees and the image resolution is with 640×480
pixels. This dataset collects image data from two different environments: the living room
and the office room. The four RGB-D videos from the office room environment contain
trajectory data but do not have any explicit 3D models. Therefore, it can only be used
for benchmarking camera trajectory estimation. However, the four synthetic RGB-D video
sequences from the living room scene have camera pose information associated with a
3D polygonal model (ground truth). Thus, they can be used to benchmark both camera

Fig. 19 Sample images from TUM Benchmark dataset [21]
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Fig. 20 Sample images of the office room scene taken at different camera poses from ICL-NUIM dataset
[34]

trajectory estimation and 3D reconstruction. In order to mimic the real-world environment,
artifacts such as specular reflections, light scattering, sunlight, color bleeding and shadows
are added into the images. More details about ICL-NUIM dataset can be found in [34]. Sam-
ple images of the living room and the office room scene taken at different camera poses can
be found in Figs. 20 and 21.

If we compare TUM Benchmark dataset with ICL-NUIM dataset, it becomes clear that
the former is more popular, because it has much more citations. It may be partially due to
the fact that the former one is earlier than the later one. Apart from it, this dataset is more
challenging and realistic since it covers large areas of office space and the camera motions
are not restricted. The related performance comparisons between TUM Benchmark dataset
and ICL-NUIM dataset are shown in [22] and [75].

3.5 Hand gesture analysis

In recent years, the research of hand gesture analysis from RGB-D sensors develops quickly,
because it can facilitate a wide range of applications in human computer interaction, human
robot interaction and pattern analysis. Compared to human activity analysis, hand gesture
analysis does not need to deal with the dynamics from other body parts but only focuses on
the hand region. On the one hand, the focus on the hand region only helps to increase the

Fig. 21 Sample images of the living room scene taken at different camera poses from ICL-NUIM dataset
[34]
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analysis accuracy. On the other hand, it also alleviates the complexity of the system, thus
enabling real-time applications. Basically, a hand gesture analysis system involves three
components: hand detection and tracking, hand pose estimation and gesture classification.
In the past years, the research is restrained due to the fact that it is so hard to solve the
problems, like occlusions, different illumination conditions and skin color. However, the
research in this filed is triggered again after the invention of RGB-D sensor, because this
new image representation is resistant to the variations mentioned above. In just a few years,
we have found several RGB-D gesture dataset available.

3.5.1 Microsoft research Cambridge-12 kinect gesture dataset

Microsoft Research Cambridge created MSRC-12 Gesture dataset [26] in 2012, which
includes relevant gestures and their corresponding semantic labels for evaluating gesture
recognition and detection systems. This dataset consists of 594 sequences of human skele-
tal body part gestures, which are totally 719,359 frames with a duration over 6 hours and 40
min at a sample rate of 30Hz. During the collection procedure, there are 30 participants (18
males an 12 females) performing two kinds of gestures. One is called as iconic gestures, e.g.,
crouching or hiding (500 instances), putting on night vision goggles (508 instances), shoot-
ing a pistol (511 instances), throwing an object (515 instances), changing weapons (498
instances) and kicking (502 instances). The other one is referred to metaphoric gestures such
as starting system/music/raising volume (508 instances), navigating to next menu/moving
arm right (522 instances), winding up the music (649 instances), taking a bow to end music
session (507 instances), protesting the music (508 instances) and moving up the tempo of the
song/beat both arms (516 instances). All the sequences are recorded in front of a white and
simple background so that all body movements are within the frame. Each video sequence is
labeled with gesture performance and motion tracking of human body joints. An application
oriented case study about this dataset can be found in [23].

3.5.2 Sheffield kinect gesture dataset (SKIG)

SKIG is a hand gesture dataset which was supported by the University of Sheffield since
2013. It is first introduced in [57] and applied to learn discriminative representations. This
dataset includes totally 2016 hand-gesture video sequences from six people, 1080 RGB
sequences and 1080 depth sequences, respectively. In this dataset, there are 10 categories
of gestures: triangle (anti-clockwise), circle (clockwise), right and left, up and down, wave,
hand signal “Z”, comehere, cross, pat and turn around. All these sequences are extracted
through a Kinect sensor and the other two synchronized cameras. In order to increase the
variety of recorded sequences, subjects are asked to perform three kinds of hand postures:
fist, flat and index. Furthermore, three different backgrounds (i.e., wooden board, paper
with text and white plain paper) and two illumination conditions (light and dark) are used in
SKIG. Therefore, there are 360 different gesture sequences accompanied by hand movement
annotation for each subject. Figure 22 shows some frames in this dataset.

3.5.3 50 salads dataset

School of Computing in University of Dundee created 50 Salads dataset [88] that involves
manipulative objects in 2013. The intention of this well-designed dataset is to stimulate
the research on wide range of recognition gesture problems including the applications of
automated supervision, sensor fusion, and user-adaptation. This dataset records 25 people,
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Fig. 22 Sample frames from Sheffield Kinect gesture dataset and the descriptions of 10 different categories
[57]

each cooking 2 mixed salads. The RGB-D sequence length is over 4 hours and with the res-
olution of 640×480 pixels. Additionally, 3-axis accelerometer data are attached to cooking
utensils (mixing spoon, knife, small spoon, glass, peeler, pepper dispenser and oil bottle)
simultaneously.

The collection process of this dataset can be described as follows. The Kinect sensor is
mounted on the wall in order to cover the whole view of the cooking place. 27 persons from
different age groups and different cooking levels were making a mixed salad twice, thus
resulting in totally 54 sequences. These activities for preparing the mixed salad were anno-
tated continuously, which include adding oil (55 instances), adding vinegar (54 instances),
adding salt (53 instances), adding pepper (55 instances), mix dressing (61 instances), peel
cucumber (53 instances), cutting cucumber (59 instances), cutting cheese (55 instances),
cutting lettuce (61 instances), cutting tomato (63 instances), putting cucumber into bowl (59
instances), putting cheese into bowl (53 instances), putting lettuce into bowl (61 instances),
putting tomato into bowl (62 instances), mixing ingredients (64 instances), serving salad
onto plate (53 instances) and adding dressing (44 instances). Meanwhile, each activity is
split into pre-phase, core-phase and post-phase which were annotated respectively. As a
result, there are 518,411 video frames and 966 activity instances that are annotated in 50
Salads dataset. Figure 23 shows example snapshots from this dataset. It is worth noting
that task orderings given to the participants are randomly sampled from a statistical recipe
model. Some published papers using this dataset can be found in [89, 102].

Among above three RGB-D datasets, the most popular dataset is MSRC-12 Gesture
dataset which has nearly 100 citations. Since the RGB-D videos from MSRC-12 Gesture
dataset not only contain the gesture information but also the whole person information, it is
still a challenging dataset for classification problem. The state-of-the-art classification rate
about this dataset is from [100] (72.43 %). Therefore, more research efforts are needed in
order to achieve a better result on this dataset. Compared to MSRC-12 Gesture dataset, the
challenge of SKIG and 50 Salads dataset is simpler. Because the RGB-D sensors only shoot
the gestures of the participants, these two datasets only include the information of gestures.
The latest classification performance of SKIG is 95.00 % [19]. The state-of-the-art result of
50 Salads dataset is mean precision (0.62±0.05) and mean recall (0.64±0.04) [88].

3.6 Discussions

In this section, the comparison of RGB-D datasets is conducted from several aspects. For
easy access, all the datasets are ordered alphabetically in three tables (from 4 to 6). If the
dataset name starts with a digital number, it is ranked numerically following all the datasets
which starts with English letters. For more comprehensive comparisons, besides these 20
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Fig. 23 Example snapshots from 50 Salads dataset14, from top left to bottom right is the chronological order
from the video. The curves under the images are the accelerometer data at 50 Hz of devices attached to the
knife, the mixing spoon, the small spoon, the peeler, the glass, the oil bottle, and the pepper dispenser

mentioned datasets above, another 26 extra RGB-D datasets for different applications are
also added into the tables: Birmingham University Objects, Category Modeling RGB-D
[104], Cornell Activity [47, 92], Cornell RGB-D [48], DGait [12], Daily Activities with
occlusions [1], Heidelberg University Scenes [63], Microsoft 7-scenes [78], MobileRGBD
[96], MPII Multi-Kinect [93], MSR Action3D Dataset [97], MSR 3D Online Action [103],
MSRGesture3D [50], DAFT [31], Paper Kinect [70], RGBD-HuDaAct [68], Stanford Scene
Object [44], Stanford 3D Scene [105], Sun3D [101], SUN RGB-D [82], TST Fall Detection
[28], UTD-MHAD [14], Vienna University Technology Object [2], Willow Garage [99],
Workout SU-10 exercise [67] and 3D-Mask [24]. In addition, we name those datasets with-
out original names by means of creation place or applications. For example, we name the
dataset in [63] as Heidelberg University Scenes.

Let us now explain these tables. The first and second columns in the tables are always
the serial number and the name of the dataset. Table 4 shows some features including the
authors of the datasets, the year of the creation, the published papers describing the dataset,
the related devices, data size and number of references related to datasets. The author (the
third column) and the year (the forth column) are collected directly in the datasets or are
found in the oldest publication related to the dataset. The cited references in the fifth column
contain the publications which elaborate the corresponding dataset. Data size (the seventh
column) refers to the size of all information, such as the RGB and depth information, cam-
era trajectory, ground truth and accelerometer data. For a scientific evaluation about these
datasets, the comparison of number of citation is added into Table 4. A part of these statisti-
cal numbers are derived from the number of papers which use related dataset as benchmark.
The rest is from the papers which do not directly use these datasets but mention these
datasets in their published papers. It is noted that the numbers are roughly estimated. It can

14http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/.

http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/
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be easily seen from the table that the datasets with longer history [48, 52, 85] always have
more related references than those of new datasets [44, 104]. Particularly, Cornell Activity,
MSR Action3D Dataset, MSRDailyActivity3D, MSRGesture3D, Object RGB-D, People,
RGBD-HuDaAct, TUM and NYU Depth V1 and V2 all have more than 100 citations.
However, it does not necessarily mean that the old datasets are better than the new ones.

Table 5 presents the following information: the intended applications of the datasets,
label information, data modalities and the number of the activities or objects or scenes along
with the datasets. The intended applications (the third column) of the datasets are divided
into five categories. However, each dataset may not be limited to one specific application
only. For example, object RGB-D can be used in detection as well. The label information
(the forth column) is valuable because it aids in the process of annotation. The data modal-
ities (the fifth column) include color, depth, skeleton and accelerometer, which are helpful
for researchers to quickly identify the datasets especially when they work on multi-modal
fusion [15, 16, 58]. Accelerometer data is able to indicate the potential impact of the object
and starts an analysis of depth information, at the same time, it simplifies complexity of the
motion feature and increases its reliability. The number of the activities or objects or scenes
is connected closely with the intended application. For example, if the application is SLAM,
we focus on the number of the scenes in the dataset.

Table 6 concludes the information, such as whether the sensor moves during the collec-
tion process, whether it enables multi-sensor or not, whether it is download restricted, and
the web link of the dataset. Camera movement is another important information when the
algorithm selects the datasets for its evaluation. The rule in this survey is as follows: if the
camera is still all the time in the collection procedure, it is marked “No”, otherwise “Yes”.
The fifth column is related to the license agreement requirement. Most of the datasets can
be downloaded directly from the web. However, downloading data from some datasets may
need to fill in a request form. Moreover, few datasets are not public. The link to each dataset
is also provided which can better help the researchers in related research areas. It needs to
pay attention that some datasets are updating while some dataset webs may change.

4 Conclusion

There is a great number of RGB-D datasets created for evaluating various computer vision
algorithms since the low-cost sensor such as Microsoft Kinect has been launched. The grow-
ing number of datasets actually increases the difficulty in selecting appropriate dataset. This
survey tries to cover the lack of a complete description of the most popular RGB-D test
sets. In this paper, we have presented 46 existing RGB-D datasets, where 20 more important
datasets are elaborated but the other less popular ones are briefly introduced. Each dataset
above falls into one of five categories defined in this survey. The characteristics, as well
as the ground truth format of each dataset, are concluded in the tables. The comparison of
different datasets belonging to the same category is also provided, indicating the popularity
and also the difficult level of the dataset. The ultimate goal is to guide researchers in the
election of suitable datasets for benchmarking their algorithms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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