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Abstract In recent years, digital endoscopy has established as key technology for medi-
cal screenings and minimally invasive surgery. Since then, various research communities
with manifold backgrounds have picked up on the idea of processing and automatically
analyzing the inherently available video signal that is produced by the endoscopic camera.
Proposed works mainly include image processing techniques, pattern recognition, machine
learning methods and Computer Vision algorithms. While most contributions deal with real-
time assistance at procedure time, the post-procedural processing of recorded videos is still
in its infancy. Many post-processing problems are based on typical Multimedia methods
like indexing, retrieval, summarization and video interaction, but have only been sparsely
addressed so far for this domain. The goals of this survey are (1) to introduce this research
field to a broader audience in the Multimedia community to stimulate further research, (2)
to describe domain-specific characteristics of endoscopic videos that need to be addressed
in a pre-processing step, and (3) to systematically bring together the very diverse research
results for the first time to provide a broader overview of related research that is currently
not perceived as belonging together.
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1 Introduction

In the last decades, medical endoscopy has emerged as key technology for minimally-invasive
examinations in numerous body regions and for minimally-invasive surgery in the abdomen,
joints and further body regions. The term “endoscopy” derives from Greek and refers to
methods to “look inside” the human body in a minimally invasive way. This is accomplished
by inserting a medical device called endoscope into the interior of a hollow organ or body
cavity. Depending on the respective body region the insertion is performed through a natural
body orifice (e.g., for examination of the esophagus or the bowel) or through a small incision
that serves as artificial entrance. For surgical procedures (e.g., removal of the gallbladder),
additional incisions are required to insert various surgical instruments. Compared to open
surgery this still causes much less trauma, which is one of the main advantages of minimally
invasive surgery (also known as buttonhole or keyhole surgery). Many medical procedures
were revolutionized by the introduction of endoscopy, some were even enabled by this tech-
nology in the first place. For a more detailed insight into the history of endoscopy, please
refer to [113] and [96].

Endoscopy is an umbrella term for a variety of very diverse medical methods. There
are many sub-types of endoscopy, which have very different characteristics. They can be
classified according to several criteria, e.g.,

– body region (e.g., abdomen, joints, gastrointestinal tract, lungs, chest, nose)
– medical speciality (e.g., general surgery, gastroenterology, orthopedic surgery)
– diagnostic vs. therapeutical focus
– flexible vs. rigid construction form

Unfortunately, the usage of the term “endoscopy” is neither consistent in common par-
lance nor in the literature. It is often used as synonym for gastro-intestinal endoscopy
(of the digestive system), which mainly includes colonoscopy and gastroscopy (examina-
tion of the colon and stomach, respectively). A further special type is Wireless Capsule
Endoscopy (WCE). The patient has to swallow a small capsule that includes a tiny cam-
era and transmits a large number of images to an external receiver while it travels through
the digestive tract for several hours. The images are then assessed by the physician after
the end of this process. WCE is especially important for examinations of the small intes-
tine because neither gastroscopy nor colonoscopy can access this part of the gastrointestinal
tract.

The major therapeutic sub-types are laparoscopy (procedures in the abdominal cav-
ity) and arthroscopy (orthopedic procedures on joints, mainly knee and shoulder). They
are often subsumed under the term “minimally invasive surgery”. Laparoscopic operations
span different medical specialities, particularly general surgery, pediatric surgery, gyne-
cology and urology. Examples for common laparoscopic operations are cholecystectomy
(removal of the gall bladder), nephrectomy (removal of the kidney), prostatectomy (removal
of the prostate gland) and the diagnosis and treatment of endometriosis. Further impor-
tant endoscopy types are thoracoscopy (thorax/chest), bronchoscopy (airways), cystoscopy
(bladder), hysteroscopy (uterus) and further special procedures in the field of ENT (ear,
nose, throat) and neurosurgery (brain).

In the course of an endoscopic procedure, a video signal is produced by the endoscopic
camera and visualized to the surgical team to guide their actions. This inherently available
video signal is predestinated for automatic content analysis in order to assist the physi-
cian. Hence, numerous research communities proposed methods to process and analyze it,
either in real-time or for post-procedural usage. In both cases, image processing techniques
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are often used to pre-process individual video frames, be it to improve the performance of
subsequent processing steps or to simply improve their visual quality. Pattern recognition
and machine learning methods are used to detect lesions, polyps, tumors etc. in order to
aid physicians in the diagnostic analysis. The robotics community applies Computer Vision
algorithms for 3D reconstruction of the inner anatomical structure in combination with
detection and tracking of operation instruments to enable robot-assisted surgery. In the con-
text of Augmented Reality, endoscopic images are registered to pre-operative CT or MRI
scans to provide guidance and additional context-specific information to the surgeon dur-
ing the operation. For readers who want to learn more about the workflow in this field, we
recommend the following tutorial papers [151, 152].

In recent years, we can observe a growing trend to record and store videos of endoscopic
procedures, mainly for medical documentation and research. This new paradigm of video
documentation has many advantages: it enables to revisit the procedure anytime, it facili-
tates detailed discussions with colleagues as well as explanations to patients, it allows for
better planning of follow-up operations, and it is a great source of information for research,
training, education and quality assurance. The benefits of video documentation have been
confirmed in numerous studies, e.g., [61, 100, 101, 137]. However, physicians can only
benefit from endoscopic videos if they are easily accessible. This is where research in the
Multimedia field comes in. Well researched methods like content-based video retrieval,
video segmentation, summarization, efficient storage and archiving concepts as well as effi-
cient video interaction and browsing interfaces can be used to organize an endoscopic video
archive and make it accessible for physicians. Because of their post-processing nature, these
techniques are not constrained by immediate OR requirements and therefore can be applied
in real-world scenarios much easier than real-time assistance features. Nevertheless, they
have to be adapted to the specific peculiarities of this very specific domain. Their practi-
cal relevance is steadily growing considering the fact that video documentation is on the
rise in recent years. Once comprehensive video documentation is established as best prac-
tice and maybe even becomes mandatory, they will be essential cornerstones in Endoscopic
Multimedia Information Systems.

As we can see, there are very diverse goals and perspectives on the domain of endoscopic
video processing. This survey is intended to provide a broad overview of related research in
this very heterogeneous and broad field that is currently not perceived as belonging together.
It also tries to point up common problems that might be easier to solve when consider-
ing findings of other fields. In an extensive literature research, more than 600 publications
were found. Based on titles and abstracts, we classified them into the following three main
categories which are described in the subsequent sections:

1. pre-processing methods
2. real-time support at procedure time
3. post-procedural applications

Figure 1 illustrates the resulting categorization of research topics in the field of endo-
scopic image/video processing and analysis, representing the structure of the following
sections as well. This classification should not be understood as the ultimate truth because
many of the presented techniques and concepts have significant overlappings and cannot
be distinctively delimited. For example, the traditionally post-procedural application of sur-
gical quality assessment is currently being ported to real-time systems and in this context
could as well be regarded as an application of Augmented Reality. Nevertheless, this cat-
egorization enables a structured and clear overview of the many topics that are covered in
this review.
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Fig. 1 Categorisation of publications in the field of endoscopic video analysis

2 Pre-processing methods

Endoscopic videos have various domain-specific characteristics that need to be addressed
when dealing with this special kind of video. This section describes the most distinctive
aspects and gives an overview of corresponding methods that are applied as a preparatory
step prior to other analysis techniques and/or enhance the image quality for the surgeon.

2.1 Image enhancement

A number of publications deal with the enhancement of frames from endoscopic videos in
order to improve the visual quality of the video. That means that the underlying data, i.e.,
the pixels of the individual frames are not only analyzed but also modified while other anal-
ysis approaches described in the upcoming sections only try to extract information without
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changing the content. In this context a number of well-established general purpose image
processing techniques can be applied, but this section will focus on techniques and research
findings that specifically address the domain of endoscopy. Another aspect that is partic-
ularly important in this context is real-time capability because the optimized result should
instantly be visible at the screen during a procedure. However, image enhancement and
pre-processing is not only interesting for real-time applications but can also be of great
importance as a preparation step for any kind of further automatic processing. Early work
in this area includes:

– Automatic adjustment of contrast with the help of clustering and histogram modifica-
tion [207].

– Removal of temporal noise, i.e., small flying particles or fast moving smoke only
appearing for a short moment at one position, by using a temporal median filter of color
values [251].

– Color normalization using an affine transformation in order to get rid of a reddish tinge
caused by blood during therapeutic interventions and to obtain a more natural color
[251].

– Correction of color misalignment: Most endoscopes do not use a color chipset cam-
era but a monochrome chipset that only captures luminance information. To get a color
video, red, green and blue color filters have to be applied sequentially. In case of rapid
movements - which occur frequently in endoscopic procedures - the color channels
become misaligned. This is not only annoying when watching the video but particularly
hindering further automatic analysis. Dahyot et al. [47] propose to use color chan-
nels equalization, camera motion estimation and motion compensation to correct the
misalignments.

2.1.1 Camera calibration and distortion correction

Typical endoscopes have a fish-eye lens to provide a wide-angle field of view. This char-
acteristic is useful because the endoscopist can see a larger area. However, the drawback
is a non-linear geometric distortion (barrel distortion). Objects located in the center of the
image appear larger and lines get bended as illustrated in Fig. 2a. This distortion has to be
corrected prior to advanced methods that rely on correct geometric information, e.g., 3D
reconstruction or image registration. The basic problem is to find the distortion center and
the parameters that describe the extent of the distortion, which is not constant but depends
on the respective endoscope. This process is also known as camera calibration and includes
the determination of intrinsic and extrinsic camera parameters. Vijayan et al. [247] proposed
to use a calibration image showing a rectangular grid of dots. This image is captured by the

(a) (b) (c)

Fig. 2 Illustration of image enhancement methods for endoscopy
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endoscope, resulting in a distorted version of the calibration image. Then the transforma-
tion parameters from this distorted image to the original calibration image are calculated
using polynomial mapping and least squares estimation. These parameters are used to build
a model that can then be used to correct the actual frames from the endoscopic video. This
approach was further improved in [277] and [77]. A further approach in [273] is not only
applicable to forward viewing endoscopes but also to oblique viewing endoscopes. Their
camera model is able to compensate the rotation but has a higher complexity and more
parameters. For calibration, they use a chess pattern image instead of a grid of dots. Further
publications using this calibration pattern are [11, 12, 223]. In [72], the authors investi-
gate if distortion correction also affects the accuracy of CAD (Computer Aided Diagnosis).
The surprising result was that for many feature extraction techniques the performance did
not improve but was even worse than without distortion correction. Only for shape-based
features that rely on geometrical properties a modest improvement was observed. Further
research results in this field can be found in [90, 123, 264].

2.1.2 Specular reflection removal

Endoscopic images often contain specular light reflections, also called highlights, on the
wet tissue surface. They are caused by the inherent frontal illumination and are very distract-
ing for the observer. A study conducted in [252] shows that physicians prefer images where
they are corrected. Even worse, reflections severely impair analysis algorithms because they
introduce wrong pixel values and additional edges. This also impairs image feature extrac-
tion, which is an essential technique for reconstruction, tracking etc. Hence, a number of
approaches for correction have been proposed as a supporting component for other anal-
ysis methods, e.g., detection of non-informative frames [169], segmentation and detection
of surgical instruments [34, 201], tracking of natural landmarks for cardiac motion estima-
tion [70], reconstruction of 3D structures [226] or correction of color channel misalignment
[8].

Most approaches consist of two phases. First, the highlights are detected in each frame.
This is rather straightforward and in most cases uses basic histogram analysis, thresholding
and morphological operations. Pixels with an intensity above a threshold are regarded as
highlights. Some authors additionally propose to check for low saturation as a further strong
indication for specular highlights ([169, 274]). In this context, the usage of various color
spaces has been proposed, e.g., RGB [8], YUV [222], HSV [169], HSI [274], CIE-xyY
[143]. In a second phase, the pixels identified as reflections are “corrected”, i.e., modified
in a way that the resulting image looks as realistic as possible. An example of a corrected
image can be seen in Fig. 2b. An important aspect is that user should be informed about this
image enhancement, because one cannot rule out the possibility that wrong information is
introduced, e.g., a modified pit pattern on a polyp that can adversely affect the diagnosis.
For this second phase, the following two different approaches can be distinguished:

– Spatial interpolation: Only the current frame is considered and the pixels that corre-
spond to specular highlights are replaced by interpolated pixels from the surrounding.
This technique is also called inpainting and has its origins in image restoration (for
an overview of general inpainting techniques refer to [208]). For the interpolation,
different methods have been proposed, e.g., spectral deconvolution [222], anisotropic
confidence-based filling-in [70, 71] or a two-level inpainting where first the highlight
pixels are replaced with the centroid of their neighborhood and finally a gaussian blur
is applied to smooth the contour of the interpolated region [8].
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– Temporal interpolation: With inpainting techniques, an actually correct reconstruc-
tion is not possible because the real color information for highlight pixels cannot be
determined from the current frame. Hence, several approaches have been proposed that
consider the temporal context [226, 253], i.e., try to find the corresponding position
in preceding and subsequent frames and reuse the information from this position. This
approach has a higher complexity than inpainting but it can be used to reconstruct the
real information. However, this is not always possible, especially if there is too little or
very abrupt motion or if the lighting conditions change too much. Moreover, it is not
applicable to single frames or WCE (Wireless Capsule Endoscopy) frames.

2.1.3 Image rectification

In surgical practice, a commonly used type of endoscopes are oblique-viewing endoscopes
(e.g., 30°). The advantage of this design is the possibility to easily change the viewing
direction by rotating the endoscope around its axis. This enables a larger field of view. The
problem is that also the image rotates, resulting in a non-intuitive orientation of the body
anatomy. The surgeon has to unrotate the image in their mind in order to not lose their ori-
entation. The missing information about the image orientation is especially a problem in
Natural Orifice Translumenal Endoscopic Surgery (NOTES), where a flexible endoscope is
used (as opposed to rigid endoscopes like in laparoscopy). Some approaches have been pro-
posed that use modified equipment to tackle this problem, e.g., an inertial sensor mounted
on the endoscope tip [80], but hardware modifications always limit the practical applicabil-
ity. Koppel et al. [102] propose an early vision-based solution. They track 2D image features
to estimate the camera motion. Based on this estimation, the image is rectified, i.e., rotated
such that the natural “up” direction is restored. Moll et al. [149] improve this approach
by using the SURF descriptor (Speeded Up Robust Features), RANSAC (Random Sam-
ple Consensus) and a bag-of-visual-words approach based on Integrated Region Matching
(IRM). A different approach [60] exploits the fact that endoscopic images often feature a
“wedge mark”, a small spike outside the image circle that visually indicates the rotation. By
detecting the position of this mark, the rotation angle can easily be computed.

2.1.4 Super resolution and comb structure removal

In diagnostic endoscopic procedures like colonoscopy it is important to visualize very fine
details - e.g., patterns on the colonic mucosa surface - to make the right diagnosis. Super-
resolution [237] has been proposed as a means to increase the level of detail of HD videos
and enable a better diagnosis - both manual and automatic [75, 76]. The idea of super res-
olution is to combine the high frequency information of several successive low resolution
images to an image with higher resolution and more details. However, the authors come to
the conclusion that their approach neither has a significant impact on the visual quality nor
on the classification accuracy. Duda et al. propose to apply super-resolution [55] for WCE
images. Their approach is very fast because it simply computes a weighted average of the
upsampled and registered frames and is shown to perform better than bilinear interpolation.

Rupp et al. [200] use super-resolution for a different task, namely to improve the cali-
bration accuracy of flexible endoscopes (also called fiberscopes). This type of endoscope
uses a bundle of coated glass fibers for light transmission. This produces image artifacts
in the form of a comb-like pattern (see Fig. 2c). This comb structure hampers an exact
calibration, but also many other analysis tasks like feature detection. Several methods for
comb structure removal have been proposed, e.g., low pass filtering [50], adaptive reduction
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via spectral masks [266], or spatial barycentric or nearest neighbor interpolation between
pixels containing fiberscopic content [57]. These methods typically contain some kind of
low pass filtering, meaning that edges and contours are blurred. These lost high frequency
components can be restored by applying super-resolution algorithms.

2.2 Information filtering

Endoscopic videos typically contain a considerable amount of frames that do not carry any
relevant information and therefore are useless for content-based analysis. Hence, it is desir-
able to automatically detect such frames and sort them out, i.e., perform a temporal filtering.
This can be regarded as a different kind of pre-processing, with the difference that not the
pixels of individual frames are modified but the video as such is modified to the effect that
frames are removed. This idea is closely related to video summarization (see Section 4.2.4),
which can be seen as an intensification of frame filtering. In video summarization, the goal is
to select especially informative frames or sequences and reduce the video to an even higher
extent. Moreover, it is often the case that only parts of on image are non-informative, but
other regions are indeed relevant for the analysis. To concentrate analysis on such selected
regions, several image segmentation techniques have been proposed to perform a spatial
filtering.

2.2.1 Frame filtering

In the literature, different criteria can be found for a frame to be considered as informative
or non-informative. The most important criterion is blurriness. According to [9], about 25 %
of the frames of a typical colonoscopy video are blurry. Oh et al. [169] propose to use edge
detection and compute the ratio of isolated pixels to connected pixels in the edge image to
determine the blurriness. As this method depends very much on the selection of thresholds
and further parameters, they propose a second approach using discrete Fourier transforma-
tion (DFT). Seven texture features are extracted from the gray-level co-occurrence matrix
(GLCM) of the resulting frequency spectrum image and used for k-means clustering to dif-
ferentiate between blurry and clear images. A similar approach by [9] uses the 2D discrete
wavelet transform with a Haar wavelet Kernel to obtain a set of approximation and detail
coefficients. The L2 norm of the detail coefficients of the wavelet decomposition is used as
feature vector for a Bayesian classifier. This method is nearly 10-times faster than the DFT-
based method and also has a higher accuracy. Rangseekajee and Phongsuphap [189] and
Rungseekajee et al. [199] on the other side took up the edge-based approach for the domain
of thoracoscopy and added adaptive thresholding as pre-processing step to reduce the effect
of lighting conditions. Besides, they claim that the Sobel edge detector is more appropriate
for this task than the Canny edge detector because it detects less edges due to irrele-
vant details caused by noise. Another approach [10] uses inter-frame similarities and the
concept of manifold learning for dimensionality reduction to cluster indistinct frames.
Grega et al. [68] compared the different approaches for the domain of bronchoscopy and
reported results for F-measure, sensitivity, specificity and accuracy of at least 87 % or
higher. According to them, the best-scoring alternative is a transformation-based approach
using discrete cosine transformation (DCT).

Especially in the context of WCE (Wireless Capsule Endoscopy), the presence of intesti-
nal juices is another criterion for non-informative images. Such images are characterized by
bubbles that occlude the visualization field. Vilarino et al. [248] use Gabor filters to detect
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them. According to their studies, 23 % of all images can be discarded, meaning that the
visualization time for the manual diagnostic assessment as well as the processing time for
automatic diagnostic support can be considerably reduced. In [13], a similar approach is
proposed that uses a Gauss Laguerre transform (GLT)-based multiresolution texture feature
and introduces a second step that uses spatial segmentation of the bubble region to classify
ambiguous frames.

A further type of non-informative frames are out-of-patient frames, i.e., frames from
scenes that are recorded outside the patients body. They often occur at the beginning or end
of a procedure because it is not always possible to start and stop the recording exactly at the
right time. The need for manual recording triggering in general deters many endoscopists
from recording videos at all. To address this issue, [218] propose a system that automatically
detects when a colonoscopic examination begins and ends. Every time a new procedure is
detected, the system starts recording and writes a video file to the disk until the end of the
procedure is detected. The proposed approach uses simple color features that work well for
the domain of colonoscopy. In [217], the authors extend their approach by various temporal
features that take into account the amount of motion to avoid false positives.

2.2.2 Image segmentation

Instead of discarding complete frames, some authors try to identify non-informative regions
in endoscopic images. In further processing steps, only the informative regions have to be
considered, which speeds up processing and improves accuracy. Such a spatial filtering
can also be used as basis for temporal filtering by defining a threshold ratio between the
size of informative and non-informative regions. A typical irrelevant region is the border
area outside the characteristic circular content area of endoscopic images. It contains no
useful information but only noise that impairs analysis as well as compression. In [159],
an efficient domain-specific algorithm is proposed to detect the exact circle parameters.
Bernal et al. [20] propose a model of appearance of non-informative lumen regions
that can be discarded in a subsequent CAD (Computer Aided Diagnosis) component.
Prasath et al. [181] also use image segmentation to differentiate between lumen and mucosa,
but they use the result as a basis for 3D reconstruction. For WCE images, [135] apply
morphological operations, fuzzy k-means, sigmoid function, statistic features, Gabor Fil-
ters, Fisher test, neural network, and discriminators in the HSV color space to differentiate
between informative and non-informative regions. In the context of CAD, image segmen-
tation is also used as basis for shape-based features. Here, the goal is to determine the
boundaries of polyps, tumors and lesions [21, 83] or other anomalies like bleeding or
ulceration in WCE images [232].

In the case of surgical procedures, the most frequently addressed target of image seg-
mentation are surgical instruments. They can be tracked in order to understand the surgical
workflow or assess the skills of the surgeon. For more details on instrument detection and
tracking please refer to Section 3.2.6. Few approaches have been proposed for segmenta-
tion of anatomical structures. Chhatkuli et al. [38] show how segmentation of the uterus
in gynecological laparoscopy using color and texture features improves the performance of
Shape-from-Shading 3D reconstruction and feature matching. Bilodeau et al. [24] combine
graph-based segmentation and multistage region merging to determine the boundary of the
operated disc cavity in thoracic discectomy, which is a useful depth cue for 3D reconstruc-
tion and very important in this surgery type to correctly estimate the distance to the spinal
cord.
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3 Real-time support at procedure time

The use case of endoscopic video analysis that has been studied most extensively in the
literature is to directly support the physician during the procedure in various ways. The
application scenarios can be categorized into (1) Diagnostic Decision Support and (2) Com-
puter Integrated Surgery, which includes Augmented Reality as well as Robot-Assisted
Surgery.

3.1 Diagnostic decision support

In case of diagnostic procedures like colonoscopies or gastroscopies, the main goal is to
assist physicians in their diagnosis by deciding whether the anatomy is normal or abnormal.
This is done by detecting and classifying suspicious patterns in images that correspond to
abnormalities like polyps, lesions, inflammations and tumors. Figure 3 illustrates examples
for normal (first row) and abnormal (second row) images. Such decision support systems
are often called CAD (Computer Aided Diagnosis) systems and are already used to some
extent in clinical practice. In general, CAD systems strive to be real-time capable to pro-
vide immediate feedback during the examination, e.g., [261]. If the physician misses a
suspicious structure, the system can highlight the corresponding region to indicate that it
should be investigated in detail and maybe a biopsy should be taken. If CAD is applied
as post-processing, a reaction of the physician is not possible anymore. However, some
state-of-the-art approaches are still too computationally expensive and can currently only
be applied offline after the examination. In the special case of WCE, the diagnostic support
does not have to be real-time, because the physician anyway looks at the images after the
actual procedure is finished and all images have been acquired. For WCE, aside from the
detection of structures like polyps or tumors, the detection of images showing bleedings is
of particular interest [66, 119].

CAD systems typically use pattern recognition and machine learning algorithms to iden-
tify abnormal structures. After various pre-processing steps, visual features are extracted
and fed into a classifier, which then delivers the diagnosis in form of a classification result.
The classifier has to be trained in advance with a possibly great number of labeled exam-
ples. The most frequently used classifiers are Support Vector Machines (SVM) and Neural

Fig. 3 Typical normal (first row) and abnormal (second row) images [238]
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Networks. Often, dimensionality reduction techniques like Principal Component Analysis
(PCA) are used, e.g., in [238]. Numerous alternatives for the selection of features and classi-
fiers have been proposed. Some approaches exploit the characteristic shape of polyps, e.g.,
[21]. Considering the shape also enables unsupervised methods, which require no training,
e.g., the extraction of geometric information from segmented images [83] or simple count-
ing of regions of a segmented image [49]. Many approaches use texture features, e.g., based
on wavelets or local binary patterns (LBP), e.g., [6, 86, 118, 257]. In many cases, color infor-
mation adds a lot of additional information, so color-texture combinations are also common
[93]. Also simple color and position approaches have been shown to perform reasonable
despite their low complexity compared to more sophisticated approaches [4].

Most publications concentrate on one specific feature, but there are also attempts to use
a mix of features. As example, Zheng et al. propose a Bayesian fusion algorithm [279] to
combine various feature extraction methods, which provide different cues for abnormality.
A very recent contribution by Riegler et al. [193] proposes to employ Multimedia methods
for disease detection and shows promising preliminary results. A detailed survey of gastro-
intestinal CAD-systems can be found in [122].

3.2 Computer integrated surgery

In the case of surgical endoscopy, we can differentiate between “passive” support in the
form of Augmented Reality and “active” support in the form of robotic assistance.

In the former case, supplemental information from other image modalities (MRT, CT,
PET etc.) is displayed to improve navigation, enhance the viewing conditions or provide
context-aware assistance. In the latter case, surgical robots are used to improve surgical
precision for complex and delicate tasks. While early systems acted as direct extender of the
surgeons movements, recent research activity strives for more and more actions carried out
by the robot autonomously. Both cases pose a number of typical Computer Vision problems
(object detection and tracking, reconstruction, registration etc. in order to “understand” the
surgical scene), hence video analysis is an essential component.

All these ideas and techniques can be subsumed under the concept of Computer Inte-
grated Surgery (CIS), or sometimes also referred to as surgical CAD (due to the popularity
of the term CAD) [235]. The underlying idea is to integrate all phases of treatment with
the support of computer systems, and in particular medical imaging. This includes intra-
operative endoscopic imaging as well as pre-operative diagnostic imaging modalities like
CT (X-ray Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron
Emission Tomography) or sonography (“ultrasound”). These modalities are used for diag-
nosis and planning of the actual procedure and often are essential for the precise navigation
to the surgical site [14]. This is especially the case for surgeries that require a very high
accuracy due to the risk of damaging healthy tissue (e.g., endonasal skull base surgery
[145]). Navigation support is also important for diagnostic procedures like bronchoscopy
(examination of the lung airways) where the flexible endoscope has to traverse a com-
plex tree structure with many branches to find the biopsy site that has been identified
prior to the examination [48, 79]. These pre-operative images or volumetric models are
aligned with general information about human anatomy (anatomy atlases) in order to cre-
ate a patient-specific model that enables a comprehensive and detailed procedure planning.
This pre-operative model is then registered to the intra-operative video images in real-
time to guide the surgeon by overlaying additional information, performing certain tasks
autonomously or increasing surgical safety by imposing constraints on surgical actions that
could harm the patient. For such an assistance, the system has to monitor the progress of
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the procedure and in case of complications automatically adapts/updates the surgical plan
[234].

3.2.1 Augmented reality

An essential concept for CIS is Augmented Reality (AR) - a technique to augment the
perception of the real world with additional virtual components that are generated by the
computer and have to be aligned to the real-world environment in real-time. In the case of
endoscopic surgery, the “virtual” components are usually obtained from the pre-operativ
patient model and surgical plan. They can be visualized in several ways, e.g., on the ordi-
nary monitor, through a head mounted display (HMD), which can either be an optical or a
video see-through HMD, or as projection directly on the patient body [209]. Without AR,
the surgeon has to mentally merge this isolated information with the live endoscopic view,
which causes additional mental load. By augmenting the endoscopic video images with this
kind of information, target structures can be highlighted for easier localization and hidden
anatomical structures (e.g., vessels or tumors below the organ surface) can be visualized
as overlay in order to improve safety and avoid surgical errors and complications. The key
challenge for AR is to align the endoscopic video with the pre-operative data, i.e., to fuse
them to a common coordinate system - a technique called image registration. The problem is
massively exacerbated by the fact that the soft tissue is not rigid but shifting and deforming.
Hence, another research challenge is to track the tissue deformation to derive deformation
models in order to update the registration. In addition to Computer Vision algorithms (e.g.,
calibration, registration, 3D reconstruction), AR systems often rely on external optical track-
ing systems, which are used to determine the position and motion of the endoscope or an
instrument [23, 29]. This implies that instruments have to be modified by attaching mark-
ers, which are tracked by an array of infrared cameras rigidly mounted on the ceiling of the
operating room. The drawback of such methods is the limited applicability in a practical
scenario due to the necessary hardware modification. An example for the application of AR
is depicted in Fig. 4.

Surgical navigation AR is especially helpful in the field of surgical oncology [167], i.e.,
the surgical management of cancer. The exact position and size of the tumor is often not
directly visible in the endoscopic images, hence an accurate visualization helps to choose an
optimal dissection plane that minimizes damage of healthy tissue. Such systems are often
called “Surgical Navigation Systems” because they support the navigation to the surgical
site. They have been proposed for various procedures, e.g., prostatectomy (removal of the
prostate gland) [82, 210]. Mirota et al. [146] provides a comprehensive overview of vision-
based navigation in image-guided interventions for various procedure types.

Fig. 4 MRI image showing a uterus with two myomas, the corresponding pre-operative model and the
visualization of the overlay on the endoscopic image [45] © 2014 IEEE
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Viewport enhancement A further possible application of AR is to improve the view-
ing conditions of the surgeon. This can be done by expanding the restricted viewport and
visualizing the surrounding area using image stitching methods [19, 153, 241], potentially
even in 3D [265]. Similar techniques have also been investigated for the purpose of video
summarization, e.g., to obtain a condensed representation of an examination for a medical
record (see Section 4.2.4). Other approaches even provide an alternative point of view with
improved visualization. In [23], a “Virtual Mirror” is proposed that enables the surgeon to
inspect the virtual components (e.g., a volumetric model of the liver from a pre-operative
CT scan) from different perspectives in order to understand complex structures (e.g., blood
vessel trees) and improve depth perception as well as navigational tasks. Fuchs et al. [59]
propose a prototypical system that restores the physicians’ natural viewpoint and visualizes
it via a See-Through HMD. The underlying idea is to free the surgeon from the inherent
technical limitations of the imaging system and enable a more “direct” view on the patient,
similar to that in traditional open surgery. The surgeon can change the viewing perspective
by moving his head instead of moving the laparoscope.

3.2.2 Context awareness

Several medical studies prove the clinical applicability of Augmented Reality in various
endoscopic operation types, e.g., nephrectomy [236], prostatectomy [246], laparoscopic
gastrointestinal procedures [229] or splenectomy [88]. However - despite all the poten-
tial benefits - too much additional information may distract surgeons from the actual task
[51]. The goal should be to automatically select the appropriate assistance for the current
state of the procedure in a context-aware manner, providing hints or situation-specific addi-
tional information. Such assistance can also go beyond visualizations of the pre-operative
model, e.g., it can support decision making by finding situations similar to the current
one and showing how other surgeons handled a similar exceptional situation [95]. Another
use case is to simulate the effect of a surgical step without actually executing it [115].
Speidel et al. [214] and [228] propose an AR system for warning in case of risk situations.
The system alerts the surgeon if an instruments comes too close to a risk structure (ductus
cysticus or arteria cystica in the case of cholecystectomy).

The basis for such context-aware assistance is the semantic understanding of the current
situation. The field of Surgical Process Modeling (SPM) is concerned with the definition of
appropriate workflow models [110, 166]. The main challange is to formalize the existing
expert knowledge, be it formal knowledge from textbooks or experience-based knowledge
that also considers variations and deviations from theory. First, typical surgical situations or
tasks have to be defined. Some approaches focus on fine-granular gestures like for exam-
ple “insert a needle”, “grab a needle”, “position a needle” [18], or more generic actions like
tool-tissue interaction in general [255]. The detection of such “low-level” tasks can also be
used as basis for the assessment of surgical skills (see Section 4.1.1). On a higher abstraction
level, a procedure is subdivided into pre-defined operation phases that describe the typical
sequence of a surgery. Existing approaches focus on well standardized procedures, in most
cases cholecystectomy (removal of the gallbladder) [25, 95, 99, 109, 174], which can be
broken down to distinct phases very well. Surgical workflow understanding is also of par-
ticular interest for post-procedural applications, especially for temporal video segmentation
and summarization (see Section 4.2.3).

A very discriminative feature to distinguish between phases is the presence of operation
instruments, which can be detected by video analysis (see Section 3.2.6 for more infor-
mation). However, metadata obtained from video analysis is only one of many possible
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inputs for surgical situation understanding systems proposed in the literature. Often, various
additional sensor data are used, e.g., weight of the irrigation and suction bags, the intra-
abdominal CO2 pressure and the inclination of the surgical table [221] or a coagulation
audio signal [262]. The focus in this research area is not on how to obtain the required infor-
mation from the video, but how to map the available signals (e.g., binary information about
instrument presence) to the corresponding surgical phase. Therefore, instrument detection
is often achieved by hardware modifications like RFID tags or color markers or even by
manual annotations from an observer [166].

Several authors propose to use statistical methods and machine learning to recognize
the current situation. The most popular method are Hidden Markov Models (HMM) [25,
111, 174, 196]. An HMM is a directed graph that defines possible states and transition
probabilities and is built from training data. Another frequently used method is Dynamic
Time Warping (DTW) [58], which can also be used without explicit pre-defined models
by temporally aligning surgeries of the same type [3]. Besides HMM and DTW also alter-
native methods like Random Forests have been proposed [221]. A fundamentally different
approach is to use formal knowledge representation methods like ontologies that use rules
and logical reasoning to derive the current state. For example, Katic et al. use Description
Logic in the OWL-standard (Web Ontology Language) [94, 95, 214].

3.2.3 Robot-assisted surgery

The majority of publications dealing with endoscopic video analysis have their roots in the
robotics community and aim at integrating robotic components into the surgical workflow.
Medical robots are not intended to replace human surgeons, but to extend their capabilities
and improve efficiency and effectiveness by overcoming certain limitations of traditional
laparoscopic surgery. They considerably enhance the dexterity, precision and repeatability
by using mechanical wrists that are controlled by a microprocessor. Motion can by stabilized
by filtering hand tremor and scaled for micro-scale tasks which are not possible manually
[115]. Robotic surgery systems are practically used for several years, especially for very
precarious procedures like prostatectomy [250]. However, current systems like the daVinci
system [74] are pure “surgeon extenders”, i.e., the surgeon directly controls the slave robot
via a master console. In this telemanipulation scenario, the robot has no autonomy and
only “enhances” the surgeons movements, e.g., by hand tremor filtering and motion scaling.
An overview of popular surgical robot systems can be found in [230] and [250]. State-of-
the art research tries to extend the robots autonomy, which requires numerous image/video
analysis and Computer Vision techniques. Robotic systems inherently provide additional
data that can be used to facilitate video analysis, e.g., kinematic motion data, information
about instrument usage and stereoscopic images that allow for an easier 3D reconstruction
of the scene.

An important application with mediocre degree of autonomy is the automation of endo-
scope holding [36, 254, 256, 278]. This task is usually carried out by an assistant, but
during lengthy procedures, humans suffer from fatigue, hand tremor etc., therefore automa-
tion of this task is very appreciated by surgeons. The endoscope should always point at the
current area of interest, which is typically characterized by the presence of the instrument
tips. Hence, instrument positions have to be detected and the robot arm has to be moved
such that the endoscope is adequately positioned without colliding with tissue, and the right
zoom level is chosen [211]. Another application are automatic safety checks, e.g., in the
form of active constraints respectively virtual fixtures. A virtual fixture [140, 177] is a con-
straint that reduces the precision requirements. It can be used to define forbidden regions
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or a safety margin around critical anatomical structures, which must not be damaged, in
order to prevent erroneous moves, or to simplify the execution of a task by “guiding” the
instrument motion along a safe corridor [30]. The long-term vision is to enable commonly
occurring tasks like suturing to be executed autonomously by high-level command of the
surgeon (e.g., by pointing at the target position with a laser pointer) [105, 175, 220]. The
main challenge is to safely move the instrument to the desired 3D position without harm-
ing the patient, a process referred to as visual servoing. Such an assistance requires a very
detailed understanding of the surgical scene, including a precise 3D model of the anatomy,
registered to the pre-operational model and also considering tissue deformations, as well as
the exact location of relevant anatomical objects and instruments. Also surgical task models
as discussed above are of great importance for this scenario. A survey of recent advances
in the field of autonomous and semi-autonomous actions carried out by robotic systems is
given in [156].

3.2.4 3D reconstruction

The reconstruction of the local geometry of the surgical site is an essential requirement for
Robot-Assisted Surgery. It produces a three-dimensional model of the anatomy in which
the instruments are positioned. Also for many Augmented Reality applications a 3D model
is required for registration with volumetric pre-operative models (e.g., from CT scans).
For diagnostic procedures, the analysis of the 3D shape of suspicious objects can be more
expressive than the 2D shape. The fundamental challenge of 3D reconstruction is to map
the available 2D image coordinates to 3D world coordinates.

In the context of Robot-Assisted Surgery, usually stereoscopic endoscopes are used
to improve the depth perception of the surgeon. The stereo images also facilitate
correspondence-based 3D reconstruction [22, 194, 225]. The challenge is to identify match-
ing image primitives (e.g., feature points) between the left and right image, which can then
be used to calculate the depth information by triangulation. However, this task is still far
from being trivial because of various aggravating factors like homogenous surfaces with few
distinct visual features, occlusions, specular reflections, image perturbations (smoke, blood
etc.) and tissue deformations. In traditional laparoscopy, which is not supported by a robot,
the used endoscopes are usually monoscopic. In this case, Structure-From-Motion (SfM)
methods can be applied [44, 81, 138]. For SfM, the different views are obtained when the
camera is moved to a different position. Camera motion estimation is required to estimate
the displacement of the camera position, which is necessary for the triangulation, while in
the stereoscopic case, the displacement is inherently known. A related method that is often
used in the robotics domain is SLAM (Simultaneous Localization And Mapping), which
iteratively constructs a map of the unknown environment and at the same time keeps track
of the camera location. Traditional SLAM assumes a rigid environment, which does not
hold for the endoscopic case. Therefore, attempts have been made to extend SLAM with
respect to tissue deformations [67, 154, 242]. A further common problem for both SfM and
SLAM is the often scarce camera motion. An alternative approach that deals with single
images and therefore does not depend on the problem of finding correspondences is Shape-
from-Shading (SfS), where the depth information is derived from the shading of the surface
of anatomic objects. However, again some basic assumptions of generic SfS do not hold for
endoscopic images, hence adaptations are necessary to obtain acceptable results [43, 171,
269]. The generalization of SfS to multiple light sources is referred to as photometric stereo
and has also been proposed for 3D reconstruction of endoscopic videos [42, 178]. This tech-
niques requires hardware modifications to obtain different illumination conditions. Other
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active methods requiring hardware modifications that have been proposed are Structured
Light [1] and Time-of-Flight [179]. The former projects a known light pattern on the sur-
face and reconstructs depth information from the deformation of the pattern. The latter uses
non-visible near-infrared light and measures the time until it is reflected back.

All these approaches have their drawbacks, hence several attempts have been made
to improve the performance by fusing multiple depth cues, e.g., stereoscopic video and
SfS [127, 249], SfM and SfS [139, 239], or by incorporating patient specific shape pri-
ors extracted from pre-operative images [7]. However, 3D reconstruction still remains a
very challenging task in the endoscopic domain. Several recent surveys about this topic are
available [63, 69, 136, 176].

3.2.5 Image registration and tissue deformation tracking

The process of bringing two images of the same scene together to one common coordinate
system is referred to as image registration. This includes the computation of a transforma-
tion model that describes how one image has to be modified to obtain the second image.
This is a typical optimization problem that can be solved with optimization algorithms like
Gauss-Newton etc. The classical application of medical image registration is to align images
from different modalities, e.g., pre-operative 3D CT images and intra-operative 2D X-ray
projection images [141]. We can distinguish between different types of registration, depend-
ing on the dimensionality of the underlying images (2D slice, 3D volumetric, video), as
reviewed in [121].

For Augmented Reality scenarios where the endoscopic video stream is used as intra-
operative modality, various use cases have been addressed in the literature, e.g., registering
3D CT models of the lungs with bronchoscopic videos [79, 131]. Similar examples rely-
ing on registration are sinus surgery (nose) [31] or skull base surgery [147]. In terms of
laparoscopic surgery, interesting contributions are 3D-to-3D registration of the liver during
laparoscopic surgery [227] and coating of the pre-operative 3D model with texture infor-
mation from the live view [258]. An important prerequisite for registration is an accurate
camera calibration (see Section 2.1.1) to obtain correct geometric correspondences.

A topic closely related to image registration is object tracking, i.e., following the motion
of a region of interest over time, either in the two- or three-dimensional space. It can be
seen as an intra-modality (as opposed to inter-modality) registration, i.e., successive frames
of a video are registered. In case of camera motion between frames, the transformation can
be described by translation, rotation and scaling. Estimating the camera motion is an impor-
tant technique for 3D reconstruction (especially SfM and SLAM) and generating panoramic
images. However, in the endoscopic video domain, the transformation is usually much
more complex. The main reason is the fact that the soft tissue is not rigid but is deform-
ing non-linearly, requiring adaptations of many established methods which assume a rigid
environment (e.g., SLAM). Tissue deformation occurs for three main reasons, (1) organ
shift due to insufflation (mainly relevant for inter-modality registration), (2) periodic motion
caused by respiratory and cardiac cycles as well as muscular contraction and (3) tool-tissue
interaction. Tracking the tissue deformation is a challenging research topic that has strongly
gained attention in the last years. It is particularly important for updating the reconstructed
3D model that has to be registered with the static pre-operative model for Augmented Real-
ity applications and Robot-Assisted Surgery, but also to track anatomical modifications for
surgical workflow understanding. Periodic motion can be well described by a model, e.g.,
Fourier series [192]. Estimating the periodic motion of the heart is of particular interest for
robot-assisted motion compensation and virtual stabilization [202].
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Both registration and tissue tracking share the basic problem of finding a set of cor-
respondences between two images in order to compute the transformation model. This is
usually based on some kind of “landmarks” that can be identified in both images. In a match-
ing step, an algorithm decides which landmarks represent the same position. Landmarks
can either be artificial, e.g., represented by color markers attached to the tracking target like
in [202], or natural. For tissue tracking, artificial markers (also called fiducials or fiducial
markers) can hardly be used, therefore tracking algorithms have to rely on natural land-
marks, i.e., salient image features that can clearly be distinguished from their surrounding
and are unique, e.g., vessel junctions and surface textures. One possibility is to work in the
image space and use region-based representations of regions of interest in the form of pixel
patches. However, these representations are often not suffiently expressive and not very
robust against illumination changes, specular highlights and occlusions. Hence, feature-
based representations have established as preferred method. They allow to detect natural
landmarks and extract specific information that is represented by a feature descriptor. The
most common descriptors are SIFT (Scale Invariant Feature Transform) [130] and SURF
(Speeded-Up Robust Features) [15]. They are popular because of their beneficial charac-
teristics like scale and rotation invariance and robustness against illumination changes and
noise. Further feature descriptors that have been used for tissue tracking are MSER (Max-
imally Stable Extremal Regions) [142, 224], STAR, which is a modified version of the
Center Surrounded Extremas for Real-time Feature Detection (CenSuRE) [2], and BRIEF
(Binary Robust Independent Elementary Features) [32, 275]. Mountney et al. [150] provide
a comprehensive evaluation and comparison of numerous feature descriptors and present a
framework for descriptor selection and fusion. Figure 5 illustrates correspondences between
several pairs of images.

The matching strategy typically used by feature-based approaches is “tracking-by-
detection”, as opposed to recursive tracking methods, e.g., Lucas Kanade, which is based on
the optical flow. The latter search locally for a best match for image patches, while the for-
mer extract features for each frame and then compare them to find the best matches. While
recursive methods work well on small deformations, they have problems with illumination
changes and reflections and suffer from error propagation. In contrast, tracking-by-detection
in combination with feature-based region representation is fairly robust against large defor-
mations and occlusions due to the abstracted feature space. A comparative evaluation of
state-of-the-art feature-matching algorithms for endoscopic images has been carried out in
[186].

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Fig. 5 Illustration of finding corresponding natural landmarks between pairs of images with (a) significant
rotation, (b) scale change, (c) image blur (d) tissue deformation, combined with illumination changes [64]
© 2009 IEEE
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However, although promising advances have been made recently [155, 187, 188, 205,
231, 268], deforming tissue tracking is a very hard research challenge that still requires a lot
of further work. Endoscopic videos feature many domain-induced problems like scarcity of
distinctive landmarks because of homogenous surfaces and indistinctive texture that makes
it hard to find good points to track. Moreover, occlusions, specular reflections, cauterization
smoke, blood and fluids lead to tracking points being lost. Hence, one of the main problems
is a robust long-term tracking. Last but not least, the real-time requirement poses a demand-
ing challenge. A survey about three-dimensional tissue deformation recovery and tracking
is available in [152].

3.2.6 Instrument detection and tracking

Besides anatomical objects, surgical instruments are the most important objects of interest
in the surgical site. Therefore, a key requirement for scene understanding, Robotic-Assisted
Surgery and many other use cases is to detect their presence and track their position as well
as their motion trajectories. The precision requirements differ with the application scenario.
For surgical phase recognition, it is often sufficient to know which instruments are present
at all. In this case, it is already sufficient to equip the instruments with a cheap RFID tag to
detect the insertion and withdrawal [103]. In terms of visual analysis, a classification of the
full frame can be carried out to detect the presence of instruments [183]. The next level is to
determine the position of the instrument in the two-dimensional image, or more specifically
the position of the instrument tip, which is the main differentiation characteristic between
different types of instruments [213]. Also for instrument tracking, the position of the tip is
usually considered as reference point.

Many approaches proposed in the literature use modified equipment for localizing instru-
ments. The most common modification are color markers on the shaft that can easily be
detected and segmented [240, 263]. To distinguish between multiple instruments, different
colors can be used [26]. Nageotte et al. [165] use a pattern of 12 black spots on a white sur-
face. This modification also enables pose estimation to some extent. Krupa et al. [105] use
a laser pointing device on the tip of the endoscope to derive the relative orientation of the
instrument with respect to the organ. This approach even works if the instrument is outside
the current field of view. Besides the fact that these methods have a limited applicability
to arbitrary videos from an archive, another disadvantage of such modifications is that the
biocompatibility and sterilizability has to be ensured, as they have direct contact to human
tissue. Also internal kinematic data from a robot can be used to estimate the position of
instruments, but is generally not accurate enough, especially when force is applied to a sur-
face [30]. However, kinematics can be useful as supplementary source of information to get
a coarse estimation that is refined by visual analysis [219].

Also purely vision-based approaches without any hardware modification have been pro-
posed. Doignon et al. [53] perform a color segmentation mainly using the saturation attribute
to differentiate the achromatic instrument from the background. Voros et al. [256] define a
cylindrical shape model and use geometric information to detect the edges of the tool shaft
and the symmetry axis. A similar approach using the Hough transform to detect the straight
lines of the instrument shaft is presented in [41]. These approaches face a number of chal-
lenges like homogenous color distribution, indistinct edges, occlusions, blurriness, specular
reflections and artifacts like smoke, blood or liquids. Moreover, methods have to deal with
multiple instruments, as surgical procedures rarely rely on one single instrument.

The final stage of instrument identification and one of the current research challenges
is to determine the exact position of the tip in the three-dimensional space and track its
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motion trajectories [5, 33]. In this context, also the estimation of the instrument pose is of
particular importance [54]. This knowledge is necessary for use cases like visual servoing,
context-aware alerting and skills assessment. Given geometric constraints can be exploited
to facilitate tracking, particularly the motion constraint, which is imposed by the station-
ary incision point. Knowledge about this point restricts the search area for region seeds
for color-based segmentation [52] and enables modeling of possible instrument motion
[267]. Recently, a number of advanced and very sophisticated approaches for 3D instru-
ment tracking and pose estimation have been proposed, e.g., training of appearance models
of individual parts of an instrument (shaft, wrist and finger) using color and texture fea-
tures [180], learning of fine-scaled natural features in the form of particular 3D landmarks
on instrument tips using Randomized Trees [191], learning the shape of instruments using
HOG descriptors and Latent SVM to probabilistically track them [107], and approaches
to determine semantic attributes like “open/closed, stained with blood or not, state of
cauterizing tools” etc. [108].

4 Post-procedural applications

In recent years, it became more and more common to capture videos of endoscopic pro-
cedures. We experience a trend towards a comprehensive documentation where entire
procedures are recorded, stored and archived for documentation, retrospective analysis,
quality assurance, education, training and other purposes. The question arises how to handle
this huge corpus of data? The emerging huge video archives pose a challenge to manage-
ment and retrieval systems. The Multimedia community has proposed several methods to
enable summarization, retrieval and management of such data, but this research topic is
clearly understudied as compared to the real-time assistance scenario. This section gives an
overview of these methods, which can be regarded as kind of post-processing. They do not
have the requirement to work in real-time because they operate on captured video data and
can be executed offline. Nevertheless, performance is important in order to keep up with the
constantly growing data volume.

4.1 Quality assessment

An important application for post-procedural usage of endoscopic videos that has been
studied intensively is quality assessment of individual surgeon skills and of entire proce-
dures. Quality control of endoscopic procedures is a very important, but also very difficult
issue. In current practice, an experienced surgeon has to review videos of surgeries to sub-
jectively assess the skills of the surgeon and the quality of the procedure. This is a very
time-consuming and cumbersome task that cannot be carried out extensively due to the
high effort. Hence, it is desirable to provide automatic methods for an objective qual-
ity assessment that can be applied to each and every procedure and has the potential to
strongly improve surgical quality by pointing out weak points and suggesting potentials for
improvement. Recent works even assess quality in real-time during the procedure to provide
immediate feedback to the physician and thus improve their performance [216].

4.1.1 Surgical skills assessment

Several attempts have been made to assess the psychomotor skills of surgeons by ana-
lyzing how they perform individual surgical tasks like cutting, grasping, clipping, drilling
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or suturing. This requires a decomposition of a procedure into individual atomic surgical
gestures (often called surgemes), which can also be seen as a kind of temporal seg-
mentation. Similar to surgical workflow understanding (Section 3.2.2), Hidden Markov
Models (HMM) are typically used to model and detect the different tasks. A reference
model is trained by an expert and serves as basis for the skills assessment. The main
parameter for the assessment is the motion trajectory of instruments. Various metrics like
path length, motion smoothness, average acceleration etc. have been proposed as quality
indicators.

Most classic approaches use non-standard equipment to obtain this motion data in a
straightforward manner, e.g., inherently available kinematic data from a simulator or sur-
gical robot [124], trajectory data from an external optical tracker [116] and/or haptic data
from an additional three-axis force/torque sensor [197]. However, such a simple but expen-
sive data acquisition is not suitable for a comprehensive quality assessment on a daily basis,
but rather interesting for special applications like training, simulation and Robot-Assisted
Surgery.

The more practical alternative for an extensive evaluation of surgeon skills is to extract
the motion data directly from the video data with content-based analysis methods [173].
The advantage of this approach is that it can be applied to any video without any hardware
modification. Furthermore, videos can provide contextual information with regard to the
anatomical structures and instruments involved that can act as additional hints. To obtain
the required motion data, instruments have to be detected and tracked (see Section 3.2.6),
preferably in the three-dimensional space. Some contributions concerning this matter have
recently been published, e.g., [89, 172, 276].

4.1.2 Assessment of screening quality

The skills assessment methods discussed above are rather applied for surgeries and focus
mainly on the instrument handling. In diagnostic procedures, usually no instruments are
used, therefore other quality criteria have to be defined. Hwang et al. [84, 168] define objec-
tive metrics that characterize the quality of a colonoscopy screening, e.g., the duration of
the withdrawal phase (based on temporal video segmentation), the ratio of non-informative
frames, the number of camera motion changes and the ratio of frames showing close inspec-
tions of the colon wall to frames showing a global lumen view. This framework is extended
in several further publications. In [126], a “quadrant coverage histogram” is introduced that
determines to what extent all sides of the mucosa have been inspected. A similar approach
is proposed in [91] for the domain of cystoscopy. Here the idea is to determine to what
extent the inner surface of the bladder has been inspected and if parts have been missed. A
further quality criterion for colonoscopies is the presence of stool that occludes the mucosa
and thus may lead to missed polyps. Color features are used to measure the ratio of “stool
images” and consequently the quality of the preceding bowel cleansing [85, 164]. On the
other side, the presence of frames showing the appendiceal orifice indicates a high quality
examination, because it means that the examination has been performed thoroughly [259].
Also the occurrence of retroflexion, which is a special endoscope maneuver to discover
polyps that are hidden behind deep folds in the peri-anal mucosa, is a quality indicator and
can be detected with a method proposed in [260]. In [168], therapeutic actions are detected
and also considered for quality assessment metrics. The assessment of intervention qual-
ity is mainly applied post-operatively on recorded videos, but also first attempts have been
made to include these techniques in the clinical workflow and directly notify the physician
about quality deficiencies [163, 170].
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4.2 Management and retrieval

The goal of video management and retrieval systems is to enable users to efficiently find
exactly the information they are looking for, either within one specific video or within
an archive. They have to provide means to articulate some kind of query describing the
information need, or special interaction mechanisms for efficient content browsing and
exploration. Especially the latter aspect has rarely been addressed for this specific domain
yet and therefore provides a large potential for future work.

4.2.1 Compression and storage

If an endoscopic video management system is to be deployed in a realistic scenario, domain-
specific concepts for compression, storage organization and dissemination of videos are
required. As for compression of endoscopic videos, literature research only showed very
few contributions. For the field of bronchoscopic examinations, we found a statement that
“it is possible to use lossy compressed images and video sequences for diagnostic purposes”
[56, 185]. In terms of storage organization, [27] propose a system with a distributed archi-
tecture that uses a NoSQL database to provide access to videos within a hospital and across
different health care institutions [28]. They also present a device for video acquisition and
an annotation system that enables content querying [112]. Münzer et al. [160] show that
the circular content area of endoscopic videos can be exploited to considerably improve
encoding efficiency and the discarding of irrelevant segments (blurry, out-of-patient or dark
and noisy) can save up to 20 % of the storage space [161]. In [162], a subjective quality
assessment study is conducted that shows that it is not necessary to archive videos in the
original HD resolution, but lower quality representations still provide sufficient semantic
quality. This study also contains the first set of encoding recommendations for the domain
of endoscopy. A follow-up study in [148] evaluates the effective savings in storage space
by using domain-specific video compression on an authentic real-world data set. It comes
to the conclusion that by using these encoding presets together with circle detection, rele-
vance segmentation and a long-term archiving strategy, the overall storage capacity can be
reduced by more than 90 % in the long term without losing relevant information.

4.2.2 Retrieval

One possibility to retrieve specific information in endoscopic videos is to annotate them
manually. Lux et al. present a mobile tool for efficient manual annotation of surgery videos
[73, 133]. It provides intuitive direct interaction mechanisms on a tablet device that make
the annotation task less tedious. For colonoscopy videos, an annotation tool called Arthemis
[125] has been proposed that supports the Minimal Standard Terminology (MST) of the
European Gastrointestinal Society for Endoscopy (ESGE), which is a standardized termi-
nology for diagnostic findings in GI endoscopy. However, manual annotation and tagging
cannot be carried out for each and every video of a video archive due to time restrictions.
It is rather interesting to use manual annotation to obtain expert knowledge from a lim-
ited number of representative examples and extract this knowledge for automatic retrieval
techniques like content-based image retrieval (CBIR).

The typical use case of CBIR is to find images that are visually similar to a query
image. Up to now, research in image retrieval in the medical domain rather focuses on other
image modalities (CT, MRI etc.) [106, 157], but some publications also deal with endo-
scopic images. An early approach [272] uses simple color histograms in HSV color space
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to determine the similarity between colonoscopy images. A more recent approach [270]
for gastroscopic images uses image segmentation in the CIE L*a*b* color space to extract
a “color change feature” and dominant color information and compares images using the
Kullback-Leibler distance. Tai et al. [233] also incorporate texture information by using
a color-texture correlogram and the Generalized Tersky Index as similarity measure. Fur-
thermore, they employ an interactive relevance feedback to refine the search result. Xia
et al. [271] propose to use multi-feature fusion to combine color, texture and shape infor-
mation. A very recent and more sophisticated approach [39] that obtains very promising
results uses Multiscale Geometric Analysis (MGA) of Nonsubsampled Contourlet Trans-
form (NSCT) and the statistical framework based on Generalized Gaussian Density (GGD)
model and Kullback-Leibler Distance (KLD). Another task relying on similarity search is
to link a single still image captured by the surgeon during the procedure to the according
video segment in an archive [195]. The latest approach for this task uses Feature Signatures
and the Signature Matching Distance and achieves reasonable results [16]. For laparoscopic
surgery videos, a technique has been proposed to find scenes showing a specific instrument
that is depicted in the query image [37]. In terms of video retrieval, [245] use the HOG (His-
togram of Oriented Gradients) descriptor and a Fisher kernel based similarity to find similar
video sequences in other videos based on a a video snippet query. This technique can on
the one hand be used to compare similar situations, but on the other hand also to automati-
cally assign a semantic tag annotation based on the existing annotation of similar sequences
in an existing (annotated) video archive. The same authors also propose a method for
surgery type classification that automatically differentiates between 8 types of laparoscopic
surgery [244]. The method uses RGB and HSV color histograms, SIFT (Scale Invariant Fea-
ture Transform) and HOG features together with an SVM classifier and obtains promising
results.

4.2.3 Temporal segmentation

While CBIR seems to work quite well for diagnostic endoscopy, it is not well studied for
surgical endoscopy types like laparoscopy. In this case, the “query by example” paradigm
is not very expedient. It is based on the naive assumption that visual similarity correlates
with semantic similarity. However, this assumption does not necessarily hold because the
semantics of a laparoscopic image or video sequence depend on a very complex context
that cannot be thoroughly represented with simple low-level features like color, texture
and shape. This discrepancy between low-level representation and high-level semantics is
referred to as semantic gap. The key to close this gap is to additionally take into account
the dynamic aspects of videos that images do not have. One of the key techniques for gen-
eral video retrieval is temporal segmentation, i.e., the subdivision of a video into shots and
semantic scenes. This abstraction can help a lot to better understand a video and, e.g., find
the position of a certain surgical step. Unfortunately, established generic techniques cannot
be applied because they typically assume that a video is composed of shots. Endoscopic
videos usually have exactly one shot and hence only one scene according to commonly
accepted definitions. Therefore, conventional shot detection cannot be used. This means that
a new definition of shots and scenes is necessary for endoscopic videos. Some authors tried
to introduce a new domain-specific notion of shots. Primus et al. [182] define “shot-like”
segments based on significant motion changes. Their idea is to differentiate between typical
motion types, namely no motion, camera motion and instrument motion. This approach pro-
duces a very fine-grained segmentation that can be used as basis for a more coarse-grained
semantic segmentation. Cao et al. [34] define operation shots in colonoscopy videos. They
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are detected by the presence of instruments, which are only used in special situations in this
diagnostic endoscopy type.

A more promising approach for endoscopic video segmentation is to define a model of
the progress of the procedure and associate video segments with the individual phases of
this model. This idea is closely related to surgical workflow understanding as discussed
above (see Section 3.2.2). However, here the purpose is not to provide context-aware assis-
tance, but to structure a video file to facilitate efficient review of procedures and retrieval
of specific scenes. The fact that complete information about the whole procedure is avail-
able at processing time makes this task easier as compared to the intra-operative real-time
scenario. For diagnostic procedures like colonoscopy, where the endoscope has to follow a
predetermined path through several anatomic regions, it is straightforward to consider these
regions as phases. Cao et al. [35] observed that transitions from one section of the colon
to the next feature a certain pattern of sharp and blurry frames. This is because the physi-
cian has to steer the endoscope around anatomic “corners”. This pattern can be exploited to
segment a video into semantic phases. Similarly, WCE videos can also be segmented into
subvideos showing specific topographic areas like esophagus, stomach, small intestine and
large intestine [46, 114, 134, 206].

In the case of laparoscopy, the presence of certain instruments can be used to distinguish
between surgical phases [184]. This approach works very well for standardized procedures
like Cholecystectomy. For more individualized procedures, additional cues need to be incor-
porated. Some alternative approaches, which are not based on surgical process modeling,
have been proposed in the literature, e.g., probabilistic tissue tracking to generate motion
patterns that are used to identify surgical episodes [65], smoke detection as indication of
electrocautery based on ad hoc kinematic features from optical flow analysis of a grid of
particles [129] and an unsupervised approach that extracts and analyzes multiple time-series
data sets based on instrument occurrence and motion [97]. Another interesting contribution
[98] does not incorporate temporal information, but classifies individual frames according to
their surgical phase. The used features are automatically generated by genetic programming
in order to overcome the challenge of choosing the right features a priori. The drawback of
this approach is the long processing time for feature evolution.

4.2.4 Summarization

Endoscopic videos often have a duration of several hours, but surgeons usually do not have
the time to review the whole footage. Therefore, summarization of endoscopic videos is a
crucial feature of a video management system. Dynamic summaries can be used to reduce
the duration by determining the most relevant parts of the video. Static summaries are
useful to visualize the essence of an endoscopic procedure at a glance and can easily be
archived in the patient’s medical record or even be passed down to the patient. Many gen-
eral approaches for summarization of videos have been proposed in the literature, but only
a few that consider the specific domain characteristics of endoscopic videos.

Lux et al. [132] present a static summarization algorithm for the domain of arthroscopy
(an endoscopy type that is hardly ever addressed in the literature). It generates a single result
image composed of a predefined number of most representative frames. The representativ-
ity is determined based on k-medoid clustering of color and texture features. In this context,
such frames are often referred to as keyframes. Another method for keyframe extrac-
tion in endoscopic videos, which can also be used as basis for temporal segmentation, is
presented in [204]. It uses the ORB (Oriented FAST and Rotated BRIEF) keypoint descrip-
tor [198] and an adaptive threshold to detect significant differences between two frames.
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Lokoč et al. [128] present an interactive tool for dynamic browsing of such keyframes. The
keyframes are clustered and presented in a hierarchical manner to get a quick overview of a
procedure. A similar interactive presentation of keyframes from hysteroscopy videos in the
form of a video segment tree is proposed in [203] and further refined in [62], together with
a summarization technique that estimates the clinical relevance of segments based on the
attention attracted during video acquisition. These interactive techniques build the bridge
between video summarization and temporal segmentation. However, video summaries do
not have to be static, but can also consist of a shortened version of the original video, as
proposed for the domain of bronchoscopy in [117]. This is achieved by discarding a large
number of completely non-informative frames and keeping frames that are representative
or clinically especially relevant (e.g., showing the branching of airways or pathological
lesions).

Many WCE-specific techniques can also be considered as kind of summarization [40,
87, 243]. The task is to reduce a very large collection of images (with some temporal rela-
tionship, but less than in a typical video because the frame rate is much lower) to the ones
that are diagnostically relevant. This could as well be seen as a pre-processing or filtering
step. The WCE scenario differs from the usual post-procedural review scenario because it
is not an additional optional task where the physician can watch the video material again,
but it is the mandatory core step of the screening. Thus, the optimization of time efficiency
is especially important here. A recent survey of various image analysis techniques for WCE
can be found in [92].

Also panoramic images of the surgical site can be seen as a special kind of summary that
gives a visual overview, especially of examinations. Techniques for panorama generation
are sometimes also calling mosaicing or stitching algorithms. If a panorama is generated
during a procedure, the term dynamic view expansion is often used (see Section 3.2.1).
The basic idea is to combine different frames of the video, which were recorded from a
different perspective, to one image that extends the restricted field of view. Image stitching
is closely related to image registration (see Section 3.2.5). The underlying challenge is to
find corresponding points and compute the transformation between the two frames, in order
to convert them to a common coordinate system. Finally, the registered images have to be
blended together to create the panorama.

Several authors addressed panoramas in the context of cystoscopy, i.e., the examination
of the interior of the bladder [78, 144, 212]. The bladder can be modeled as a sphere, so
geometric constraints can be imposed. Behrens et al. [17] present a method using graphs
to identify missed regions during a cystoscopy, which would lead to gaps in a panoramic
image, in order to assess the completeness of the examination. Spyrou et al. [215] propose a
stitching technique for WCE frames. In the context of fetoscopy (examination of the interior
of the uterus during pregnancy), [190] propose a method to create a panorama of the placenta
to support intrauterine fetal surgery. Liao et al. [120] extend this idea by a method to map
the panorama to a three-dimensional ultrasound image. A review about recent advances in
the field of endoscopic image mosaicing and panorama generation can be found in [19].

5 Conclusion

The main goal of this extensive literature review was to give a broad overview of research
that deals with the processing and analysis of endoscopic videos. A further goal is to draw
attention to this research field in the Multimedia community. We hope to stimulate further
research, especially in terms of post-processing, which is probably the most relevant topic
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with regard to common Multimedia methods and offers a broad range of open research
questions. Moreover, we give insights into domain-specific characteristics of the endoscopy
domain and how to deal with them in a pre-processing phase (e.g., lense distortion, specular
reflections, circular content area, etc.).

In the literature research, numerous contributions were found and classified into three
categories: (1) pre-processing methods, (2) real-time support at procedure time and (3) post-
procedural applications. However, many methods and approaches have been found to be
relevant for multiple use-cases, e.g., instrument detection and tracking methods developed
for robotic assistance that can also be helpful for post-procedural video indexing. Currently,
the respective research communities are often not aware that complementary contributions
exist in seemingly unrelated research fields.

The domain-specific peculiarities of the endoscopic video domain require specific pre-
processing methods like distortion correction or specular reflection detection. Moreover,
pre-processing is often used to enhance the image quality or filter relevant content, both
temporally and spatially. These enhancements are both important to improve the viewing
conditions for physicians and as pre-processing step for advanced analysis methods. In this
context, it is also important to distinguish between different types of endoscopy, mainly
between diagnostic (examinations) and therapeutic (surgeries) types, but also between the
subtypes that often have very heterogeneous domain characteristics. Most approaches focus
on one specific endoscopy type and cannot be transferred to other types without significant
modifications, i.e., they are strongly domain-specific.

Furthermore, we have to distinguish between methods that are applied during the proce-
dure and methods that operate on recorded videos. The former have the requirement to work
in real-time and can only use the information up to the current moment, i.e., they cannot
“read into the future”. The latter have this possibility because the entire video is available
at analysis time. In terms of diagnostic endoscopy types, the focus is on pattern recogni-
tion for Diagnostic Decision Support, mainly in the form of polyp/lesion/tumor detection
in colonoscopic screenings. In the special domain of WCE (Wireless Capsule Endoscopy),
numerous approaches have been proposed to differentiate between diagnostically relevant
and irrelevant content in order to increase time efficiency without impairing the diagnostic
accuracy.

The largest part of all found publications originates in the robotics community and has
the goal to enable real-time assistance during surgeries by (1) Augmented Reality and (2)
(semi-)autonomous actions carried out by surgical robots. These visionary goals require a
number of classical Computer Vision techniques like 3D-reconstruction, object detection
and tracking, registration etc. Existing methods fail in most cases because of the special
characteristics of endoscopic images and aggravating factors like the restricted and distorted
viewport, scarce camera motion, specular reflections, occlusions, image quality perturba-
tions, textureless surfaces, tissue deformation etc., and therefore have to be adapted. Many
of these techniques could also be useful for post-procedural analysis of videos for more
efficient management, retrieval and interactive retrospective review.

The post-procedural use case turned out to be extremely understudied in comparison
to the real-time scenario. However, it involves a number of very interesting and chal-
lenging research questions, including indexing, retrieval, segmentation, summarization and
interaction.

One of the reasons might be that recording of endoscopic procedures is just becom-
ing a general practice and is not yet commonly widespread. This can also be explained
by the lack of efficient compression and archiving concepts for comprehensive recording.
As a consequence, the acquisition of appropriate data sets is the first challenge for new
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researchers in this field. Data availability in general is a critical issue since sensitive medical
data is involved and hospital policies regarding video recording and transfer are often very
strict. Only very few public data set are available and usually target a very specific applica-
tion (like tumor recognition). In order to draw expressive comparisons between alternative
approaches it is very important for the future to create and publish more and bigger public
data sets. The extent of a data set is especially important for machine learning methods that
require large amounts of training samples. The shortage of a sufficiently large and repre-
sentative training corpus often hampers the usage of popular techniques like deep learning
with Convolutional Neural Networks (CNN) [104].

An additional challenge is to find medical experts who are willing to take the time to
cooperate and share their medical expertise, which is an absolutely essential ingredient to
successful research in this extremely specific domain. As an example, ground truth labels
need to be annotated to training examples. This task cannot be carried out by medical lay-
men. Moreover, at a first glance, it seems that the demand by physicians is limited because
they might see post-procedural usage of endoscopic videos as additional workload, although
in fact it has a huge potential for quality improvement. Nevertheless, it is a tough job to
familiarize physicians with the benefits of post-procedural usage of videos and the need for
research in this area. A survey conducted in [158] showed that physicians often do not have
a clear notion of potential benefits until they actually see it in action. After watching a pro-
totype demonstration of a content-based endoscopic video management system, they stated
a significantly higher interest in such a system than before.

However, it should not be expected that all problems in the post-operative handling of
endoscopic videos can be solved by automatic analysis. An extremely important aspect is
to combine these methods with easily understandable visualization concepts and intuitive
interaction mechanisms for efficient content browsing and exploration. Especially the latter
aspect has rarely been addressed in the literature yet and therefore provides a huge potential
for future work.

In the foreseeable future, we assume that video documentation of endoscopic procedures
will become required by law. This will lead to huge archives of visually very similar video
content and techniques for video storage, retrieval and interaction will become essential.
When it comes to that point, research should already have appropriate solutions for these
problems.
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for augmented reality surgical applications. Biomedical Simulation:191–196

34. Cao Y, Liu D, Tavanapong W, Wong J, Oh J, de Groen P (2007) Computer-Aided Detection of Diag-
nostic and Therapeutic Operations in Colonoscopy Videos. IEEE Trans Biomed Eng 54(7):1268–
1279

35. Cao Y, Tavanapong W, Li D, Oh J, Groen PCD, Wong J (2004) A Visual Model Approach for Parsing
Colonoscopy Videos. In: Image and Video Retrieval, no. 3115 in LNCS, pp 160–169. Springer

36. Casals A, Amat J, Laporte E (1996) Automatic guidance of an assistant robot in laparoscopic surgery.
In: IEEE International Conference on Robotics and Automation, pp 895–900

37. Chattopadhyay T, Chaki A, Bhowmick B, Pal A (2008) An application for retrieval of frames from a
laparoscopic surgical video based on image of query instrument. In: TENCON 2008-2008 IEEE Region
10 Conference, pp 1–5

38. Chhatkuli A, Bartoli A, Malti A, Collins T (2014) Live image parsing in uterine laparoscopy. In: IEEE
International Symposium on Biomedical Imaging (ISBI)

39. Chowdhury M, Kundu MK (2015) Endoscopic Image Retrieval System Using Multi-scale Image Fea-
tures. In: Proceedings of the 2Nd International Conference on Perception and Machine Intelligence,
PerMIn ’15. ACM, New York, NY, USA, pp 64-70

40. Chu X, Poh C, Li L, Chan K, Yan S, Shen W, Htwe T, Liu J, Lim J, Ong E, Ho K (2010) Epitomized
Summarization of Wireless Capsule Endoscopic Videos for Efficient Visualization. In: MICCAI 2010,
no. 6362 in LNCS, pp 522–529. Springer

41. Climent J, Hexsel RA (2012) Particle filtering in the Hough space for instrument tracking. Comput Biol
Med 42(5):614–623

42. Collins T, Bartoli A (2012) 3d reconstruction in laparoscopy with close-range photometric stereo. In:
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012. Springer, pp 634–642

43. Collins T, Bartoli A (2012) Towards Live Monocular 3d Laparoscopy Using Shading and Specularity
Information. In: Inf. Proc. in Computer-Assisted Interventions, no. 7330 in LNCS, pp 11–21. Springer

44. Collins T, Compte B, Bartoli A (2011) Deformable shape-from-motion in laparoscopy using a rigid
sliding window. In: Medical Image Understanding and Analysis Conference

45. Collins T, Pizarro D, Bartoli A, Canis M, Bourdel N (2014) Computer-Assisted Laparoscopic myomec-
tomy by augmenting the uterus with pre-operative MRI data. In: 2014 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pp 243–248

46. Cunha J, Coimbra M, Campos P, Soares J (2008) Automated Topographic Segmentation and Transit
Time Estimation in Endoscopic Capsule Exams. IEEE Trans. Med. Imaging 27(1):19–27

47. Dahyot R, Vilariño F, Lacey G. (2008) Improving the Quality of Color Colonoscopy Videos. EURASIP
Journal on Image and Video Processing 2008:1–7

48. Deguchi D, Mori K, Feuerstein M, Kitasaka T, Maurer Jr. CR, Suenaga Y, Takabatake H, Mori
M, Natori H (2009) Selective image similarity measure for bronchoscope tracking based on image
registration. Med Image Anal 13(4):621–633

49. Dhandra BV, Hegadi R, Hangarge M, Malemath VS (2006) Analysis of abnorMality in endoscopic
images using combined hsi color space and watershed segmentation. In: 18th International Conference
on Pattern Recognition, 2006, vol 4, ICPR 2006. pp 695–698

50. Dickens M, Bornhop DJ, Mitra S (1998) Removal of optical fiber interference in color micro-
endoscopic images. In: 11th IEEE Symposium on Computer-Based Medical Systems, pp 246–251

51. Dixon B, Daly M, Chan H, Vescan A, Witterick I, Irish J (2013) Surgeons blinded by enhanced
navigation: the effect of augmented reality on attention. Surg Endosc 27(2):454–461

52. Doignon C, Nageotte F, de Mathelin M (2006) The role of insertion points in the detection and
positioning of instruments in laparoscopy for robotic tasks. MICCAI:527–534



Multimed Tools Appl (2018) 77:1323–1362 1351

53. Doignon C, Nageotte F, de Mathelin M (2007) Segmentation and Guidance of Multiple Rigid Objects
for Intra-operative Endoscopic Vision. In: Proceedings of the 2005/2006 International Conference
on Dynamical Vision, WDV’05/WDV’06/ICCV’05/ECCV’06, pp 314–327. Springer-Verlag, Berlin,
Heidelberg

54. Doignon C, Nageotte F, Maurin B, Krupa A (2008) Pose Estimation and Feature Tracking for Robot
Assisted Surgery with Medical Imaging. In: Unifying Perspectives in Computational and Robot Vision,
no. 8 in Lecture Notes in Electrical Engineering, pp 79–101. Springer, USA

55. Duda K, Zielinski T, Duplaga M (2008) Computationally simple Super-Resolution algorithm for video
from endoscopic capsule. In: Int’l Conf. on Signals and Electronic Systems, 2008. ICSES ’08, pp 197–
200

56. Duplaga M, Leszczuk M, Papir Z, Przelaskowski A (2008) Evaluation of Quality Retaining Diag-
nostic Credibility for Surgery Video Recordings. In: Visual Information Systems. Web-Based Visual
Information Search and Management, no. 5188 in LNCS, pp 227–230. Springer

57. Elter M, Rupp S, Winter C (2006) Physically Motivated Reconstruction of Fiberscopic Images. In: 18th
International Conference on Pattern Recognition, 2006. ICPR 2006, vol 3, pp 599–602

58. Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classification of surgical processes using
dynamic time warping. J Biomed Inform 45(2):255–264

59. Fuchs H, Livingston MA, Raskar R, State A, Crawford JR, Rademacher P, Drake SH, Meyer AA
(1998) Augmented reality visualization for laparoscopic surgery. In: Proceedings of the 1st Int’l Conf.
on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 934–943

60. Fukuda N, Chen YW, Nakamoto M, Okada T, Sato Y (2010) A scope cylinder rotation tracking method
for oblique-viewing endoscopes without attached sensing device. In: 2010 2nd International Conference
on Software Engineering and Data Mining (SEDM), pp 684 –687

61. Gambadauro P, Magos A (2012) Surgical Videos for Accident Analysis, Performance Improvement,
and Complication Prevention: Time for a Surgical Black Box? Surg Innov 19(1):76–80

62. Gavião W, Scharcanski J, Frahm JM, Pollefeys M (2012) Hysteroscopy video summarization and
browsing by estimating the physician’s attention on video segments. Med Image Anal 16(1):160–176

63. Geng J, Xie J (2014) Review of 3-D Endoscopic Surface Imaging Techniques. IEEE Sensors J
14(4):945–960

64. Giannarou S, Visentini-Scarzanella M, Yang GZ (2009) Affine-invariant anisotropic detector for
soft tissue tracking in minimally invasive surgery. In: From Nano to Macro, 2009. ISBI’09. IEEE
International Symposium on Biomedical Imaging, pp 1059–1062

65. Giannarou S, Yang GZ (2010) Content-Based Surgical Workflow Representation Using Probabilistic
Motion Modeling. In: Med. Imaging and Aug. Reality, no. 6326 in LNCS, pp 314–323. Springer

66. Giritharan B, Yuan X, Liu J, Buckles B, Oh J, Tang S (2008) Bleeding detection from capsule
endoscopy videos. In: 30th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, 2008. EMBS 2008, pp 4780–4783

67. Grasa O, Civera J, Montiel JMM (2011) EKF monocular SLAM with relocalization for laparoscopic
sequences. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp 4816–
4821

68. Grega M, Leszczuk M, Duplaga M, Fraczek R (2010) Algorithms for Automatic Recognition of Non-
informative Frames in Video Recordings of Bronchoscopic Procedures. In: Information Technologies
in Biomedicine, Advances in Intelligent and Soft Computing, vol 69. Springer, pp 535–545

69. Groch A, Seitel A, Hempel S, Speidel S, Engelbrecht R, Penne J, Höller K, Röhl S, Yung K, Bodenstedt
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148. Münzer B, Schoeffmann K, Böszörmenyi L (2016) Domain-Specific Video Compression for Long-
Term Archiving of Endoscopic Surgery Videos. In: 2016 IEEE 29th International Symposium on
Computer-Based Medical Systems (CBMS), pp 312–317. doi:10.1109/CBMS.2016.28.00000

149. Moll M, Koninckx T, Van Gool LJ, Koninckx PR (2009) Unrotating images in laparoscopy with
an application for 30° laparoscopes. In: 4th European conference of the international federation for
medical and biological engineering. Springer, pp 966–969

150. Mountney P, Lo B, Thiemjarus S, Stoyanov D, Yang GZ (2007) A probabilistic framework for tracking
deformable soft tissue in minimally invasive surgery. MICCAI 2007:34–41

151. Mountney P, Stoyanov D, Yang GZ Recovering Tissue Deformation and Laparoscope Motion for
minimally invasive Surgery. Tutorial paper. http://www.mountney.org.uk/publications/SPM%202010.
pdf

152. Mountney P, Stoyanov D, Yang GZ (2010) Three-Dimensional Tissue Deformation Recovery and
Tracking. IEEE Signal Process Mag 27(4):14–24

153. Mountney P, Yang GZ (2009) Dynamic view expansion for minimally invasive surgery using simul-
taneous localization and mapping. In: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBC 2009, pp 1184–1187

154. Mountney P, Yang GZ (2010) Motion compensated SLAM for image guided surgery. Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2010:496–504

155. Mountney P, Yang GZ (2012) Context specific descriptors for tracking deforming tissue. Med Image
Anal 16(3):550–561

156. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and
semi-autonomous robotic surgical systems: a review of the literature. Int J Med Rob Comput Assisted
Surg 7(4):375–392

157. Müller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval
systems in medical applications - clinical benefits and future directions. Int J Med Inform 73(1):1–23

158. Münzer B (2011) Requirements and Prototypes for a Content-Based Endoscopic Video Management
System. Master’s Thesis. Alpen-Adria Universität Klagenfurt, Klagenfurt
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173. Oropesa I, Sánchez-González P, Lamata P, Chmarra MK, Pagador JB, Sánchez-Margallo JA, Sánchez-
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(2009) Augmented Reality: A New Tool To Improve Surgical Accuracy during Laparoscopic Partial
Nephrectomy? Preliminary In Vitro and In Vivo Results. Eur Urol 56(2):332–338

237. Tian J, Ma KK (2011) A survey on super-resolution imaging. SIViP 5(3):329–342
238. Tjoa MP, Krishnan SM et al (2003) Feature extraction for the analysis of colon status from the

endoscopic images. BioMedical Engineering OnLine 2(9):1–17
239. Tokgozoglu H, Meisner E, Kazhdan M, Hager G (2012) Color-based hybrid reconstruction for

endoscopy. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp 8–15

240. Tonet O, Thoranaghatte RU, Megali G, Dario P (2007) Tracking endoscopic instruments with-
out a localizer: a shape-analysis-based approach. Computer Aided Surgery: Official Journal of the
International Society for Computer Aided Surgery 12(1):35–42

241. Totz J, Fujii K, Mountney P, Yang GZ (2012) Enhanced visualisation for minimally invasive surgery.
Int J Comput Assist Radiol Surg 7(3):423–432

242. Totz J, Mountney P, Stoyanov D, Yang GZ (2011) Dense Surface Reconstruction for Enhanced Navi-
gation in MIS. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, no.
6891 in LNCS, pp 89–96. Springer

243. Tsevas S, Iakovidis DK, Maroulis D, Pavlakis E (2008) Automatic frame reduction of Wireless Capsule
Endoscopy video. In: 8th IEEE International Conference on BioInformatics and BioEngineering, 2008.
BIBE 2008, pp 1–6

244. Twinanda AP, Marescaux J, de Mathelin M, Padoy N (2015) Classification approach for automatic
laparoscopic video database organization. Int J Comput Assist Radiol Surg:1–12

245. Twinanda AP, de Mathelin M, Padoy N (2014) Fisher Kernel Based Task Boundary Retrieval in Laparo-
scopic Database with Single Video Query. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2014, no. 8675 in LNCS, pp 409–416. Springer

246. Ukimura O, Gill IS (2008) Imaging-assisted endoscopic surgery: Cleveland Clinic experience. Journal
of Endourology / Endourological Society 22(4):803–810

247. Vijayan Asari K, Kumar S, Radhakrishnan D (1999) A new approach for nonlinear distortion correc-
tion in endoscopic images based on least squares estimation. IEEE Trans Med Imaging 18(4):345–
354

248. Vilarino F, Spyridonos P, Pujol O, Vitria J, Radeva P, de Iorio F (2006) Automatic Detection of
Intestinal Juices in Wireless Capsule Video Endoscopy. In: 18th International Conference on Pattern
Recognition, 2006. ICPR 2006, vol 4, pp 719–722

249. Visentini-Scarzanella M, Mylonas GP, Stoyanov D, Yang GZ (2009) i-brush: A gaze-contingent virtual
paintbrush for dense 3d reconstruction in robotic assisted surgery. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2009, pp 353–360. Springer

250. Vitiello V, Lee SL, Cundy T, Yang GZ (2013) Emerging Robotic Platforms for Minimally Invasive
Surgery. IEEE Rev Biomed Eng 6:111–126
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