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Abstract Social media data are increasingly being used in disaster management for

information dissemination, establishment of situational awareness of the ‘‘big picture’’ of

the disaster impact and emerged incidences over time, and public peer-to-peer backchannel

communications. Before we can fully trust the situational awareness established from

social media data, we need to ask whether there are biases in data generation: Can we

simply associate more tweets with more severe disaster impacts and therefore higher needs

for relief and assistance in that area? If we rely on social media for real-time information

dissemination, who can we reach and who has been left out? Due to the uneven access to

social media and heterogeneous motivations in social media usage, situational awareness

based on social media data may not reveal the true picture. In this study, we examine the

spatial heterogeneity in the generation of tweets after a major disaster. We developed a

novel model to explain the number of tweets by mass, material, access, and motivation

(MMAM). Empirical analysis of tweets about Hurricane Sandy in New York City largely

confirmed the MMAM model. We also found that community socioeconomic factors are

more important than population size and damage levels in predicting disaster-related

tweets.
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1 Introduction

The past decade saw a surge in the use of social media, such as blogs, chat rooms, wikis,

Facebook, Twitter, Flickr, LinkedIn, YouTube Channels, and Yelp, for information sharing

among social groups. Social media data are increasingly being used in disaster manage-

ment for disseminating critical information to the public about the hazard event, relief, and

recovery, for establishing situational awareness of the ‘‘big picture’’ of the disaster impact

and emerging incidences overtime, and for grassroots-level, peer-to-peer backchannel

communications to gather, verify, and disseminate information (Sutton et al. 2008; Lindsay

2011; Houston et al. 2014).

While social media has gained popularity as a promising channel to expand the horizon

of disaster management, the social inequality in the usage of social media data should

make us cautious about the use of these tools for such purposes. Due to the ‘‘digital

divide,’’ referring to the gap between those who do and do not have access to information

and communication technologies (van Dijk 2006), certain groups (i.e., low income, low

education, and elderly) may lack the tools and skills to access social media and therefore

may be left out of information sharing through social media. The situational awareness

information extracted from social media data may be biased because certain areas may be

severely damaged by the disaster, and therefore, these areas may have extremely low

participation in social media usage. As a result, their needs can be significantly

underestimated.

In this study, we utilize a mass–material–access–motivation (MMAM) model to

understand the social and spatial inequities in the generation of tweets after a disaster. This

model goes beyond the ‘‘digital divide’’ to explain the spatial heterogeneity in the usage of

social media. Different from previous studies (i.e., Ames and Naaman 2007; Li et al. 2013)

that explain an individual’s participation in social media, this study uses community, an

aggregation of individuals in a certain geographic area, as the unit of analysis. Specifically,

we answer the following research questions: What factors affect the number of tweets

generated from a geographic area after a disaster? What socioeconomic factors explain the

spatial variation in the number of tweets posted after the disaster? We analyzed tweets

generated from census tracts in New York City after the 2012 Hurricane Sandy to

empirically test our model.

2 Use of social media in disaster management

Social media can be used for enhancing communications before, during, and after a dis-

aster (Houston et al. 2014). In recent years, social media has evolved from being a passive

outlet of information (i.e., disseminating static information on how to prepare for disasters)

to an emergency management tool that is capable of distributing real-time warning

information, receiving requests for assistance, and establishing situational awareness based

on user activities (Lindsay 2011). Social media can also be used for peer-to-peer

backchannel communications that increase the social capacity of information generation

and dissemination.
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2.1 Real-time dissemination of information

Traditionally, crisis and risk communications have heavily relied on mass media, such as

radio and television. In recent years, social media has emerged as another important source for

information dissemination. Compared with the one-way communication of the traditional

mass media, social media breaks down the traditional sender/receiver model. Users of social

media can both receive and post messages. Instead of waiting for professional news reporters

to arrive on-site to report the situation, individuals can gather first-hand information and

disseminate it through social media in real time. Messages can be quickly forwarded to many

people via social media channels through the users’ social networks. Studies show that during

the immediate aftermath of the 2010 Haiti earthquake, information about the quake was first

released through social media sources (Keim and Noji 2011). Local communities can also use

social media to enhance emergency responses. For instance, Texas A&M University

implemented a CodeMaroon system to communicate emergency information to its students,

faculty, and staff. Campus members can sign up for this service with their university ID and

password. Community members not affiliated with Texas A&M University can follow

‘‘TAMUCodeMaroon’’ on Twitter. The CodeMaroon system was used to disseminate

warning messages to thousands of people shortly after the onset of emergencies, such as a fire

at a chemical plant close to campus, an on-campus chemistry laboratory explosion, and bomb

threats (Villarreal and Sigman 2010; The Dallas Morning News 2013).

2.2 Establish situational awareness

Besides being a channel for pushing information to community members, emergency

responders and policy makers can pull social media data to monitor evolving situations.

Citizens in the disaster area are ‘‘sensors’’; they can provide real-time, geo-referenced

information to supplement crisis information generated by professional sources (De

Longueville et al. 2010a, b). For example, Schnebele and Cervone (2013) showed that

volunteered geographic information (VGI) from social media sources such as Flickr,

YouTube, and Wikipedia can be fused with images from remote sensing (i.e., Landsat TM)

and digital elevation model (DEM) to create flood hazard maps. Even a small amount of

VGI can dramatically improve the quality of hazard mapping.

Situational information generation can be active or passive, depending on whether users

are conscious of the uses of their social media information. Active information generation

refers to social media users actively reporting incidences or requesting help in the hope that

relief organizations can respond to urgent cases immediately. In the case of the Haiti

earthquake, community crisis maps were generated based on near real-time incident and

status reports from social media users. These crisis maps were then used by relief orga-

nizations to coordinate, plan, and execute responses (Gao et al. 2011).

Passive information generation refers to data mining of existing social media data to

establish situational awareness without the users actively seeking or requesting responses

from relief organizations. For instance, Vieweg et al. (2010) coded microblogged infor-

mation about the April 2009 Oklahoma Grassfires and 2009 Red River Floods from Twitter

into categorizes such as warnings, hazard extents, evacuations, volunteering, animal

management, and damage/injury reports. Using Hurricane Sandy as an example, Huang

and Xiao (2015) coded social media messages into different themes within different dis-

aster phases during a time-critical crisis, and a classifier based on logistic regression is

trained and used for automatically classifying the social media messages into various topic

categories during various disaster phases. Imran et al. (2013) utilized machine learning
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techniques to extract information from disaster-related messages posted on Twitter into

several categorizes including warnings, casualties and damage, donations, and information

sources. The coded information can be further analyzed over space and time to inform the

situational awareness of the incidences as they unfold. Moreover, Liu et al. (2008)

demonstrated that the activities of the disaster-specific Flickr groups could be analyzed to

document disaster impact, response, and recovery efforts over time. The Australian

Government developed an Automated Web Text Mining (ESA-AWTM) system that

analyzes Twitter messages to provide incidence identification, near real-time notification,

and monitoring (Cameron et al. 2012). Similarly, Kumar et al. (2011) designed an appli-

cation called ‘‘TweetTracker’’ to track, analyze, and monitor tweets for disaster relief. This

application can report separately geo-referenced and non-geo-referenced tweets, support

keyword search, and generate and display trends of keywords specified by the user.

Information extracted from social media data can help policy makers understand the big

picture of the emergency situation in near real time.

2.3 Backchannel communications

Social media can support informal public peer-to-peer backchannel communications that

travel parallel to official channels. Backchannel communications represent citizen power in

the acquisition and sharing of information in emergency situations when traditional media

outlets provide insufficient information about local conditions or lag behind in their

responses. It should be noted that Twitter itself as a communication platform is not a

‘‘backchannel’’; rather, it can support backchannel communications among users. An

example of backchannel communications was the use of social media in the 2007 Southern

California wildfires (Palen 2008; Sutton et al. 2008). The news coverage about the wildfires

was primarily focused on urban areas. As such, residents in rural areas were frustrated with

the lack of information in their localities. They turned to social media to obtain information

from each other (Sutton et al. 2008). Another example was the 2007 Virginia Tech campus

shooting. Right after the shooting, students checked the safety of their friends via text

messages and instant messages. They also relied on Facebook activities to detect whether

their friends were safe. A list of victims was compiled by the public even before the

university officially released the names (Palen 2008). Public peer-to-peer backchannel

communications supported by social media serve as important information outlets in situ-

ations where there is an ‘‘information dearth’’ after disasters. It enables citizens to generate

and share otherwise unavailable information.

3 Reliability of social media information

Although social media has great potential for improving risk communication and infor-

mation dissemination for disaster management, several concerns over the reliability of the

quality of information derived from social media sources exist (Goodchild and Glennon

2010; Goodchild and Li 2012). The first is the accuracy of information. Although infor-

mation from social media is generally accurate, there have been incidences of inaccurate or

outdated information disseminated by social media. For example, it was reported that

during the 2011 Tohoku earthquake and tsunami, the spread of tweets for assistance

continued even after the victims had been rescued (Lindsay 2011). Using geo-tags of

tweets to identify the locations of incidences can be problematic because the reporter may

be reporting something he saw earlier at a different location (Gao et al. 2011).
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Second is the malicious use of social media. Social media can be misused for pranks or

terrorist attacks (Lindsay 2011). Falsified calls for help can be entered on social media sites

from places without real emergencies. Nefarious groups can create an initial attack and then

use social media to issue calls for assistance to draw first responders to the area and harm them

in a secondary attack. Therefore, when first responders and officials respond to emergencies,

they should be aware of the potential for the malicious use of social media (Lindsay 2011).

Because tweets and messages are uncensored, rumors and falsified information can propagate

through social media. Efforts have been made to separate truths from rumors on social media.

Based on an analysis of how information spread through the Twitter network, Mendoza et al.

(2010) found that rumors tended to be questioned much more than truths.

The third concern is bias in data generation. Before we can fully trust the situational

awareness established from social media data, we need to ask whether there are biases in

data generation. As discussed in the previous section, technology allows us to extract

information from social media data to generate near real-time crisis maps. But can we

simply associate more tweets with more severe disaster impacts and therefore higher needs

for relief and assistance in that area? If we rely on social media for real-time information

dissemination, who can we reach and who has been left out? Due to the uneven access to

social media and heterogeneous motivations in social media usage, situational awareness

based on social media data may not reveal the true picture.

Studies show that participation in social media was uneven across social groups, over

space and time. Austin et al. (2012) used the social-mediated crisis communication

(SMCC) model to explain how information is distributed through social media directly and

indirectly. They found that besides convenience and personal involvement, third-party

influence, such as personal recommendations, promotes social media usage. Li et al.

(2013)’s work disclosed the spatial and temporal heterogeneity in social media use. They

found two peaks in tweets among Los Angeles users, one around 1:00 to 2:00 pm and the

other around 8:00 to 9:00 pm, while Flickr users are more active during the weekends.

They also explored the relationships between locations of social media data and socioe-

conomic characteristics of local people. They found that well-educated people in the

occupations of management, business, science, and arts are more likely to be involved in

the generation of geo-referenced tweets and photographs (Li et al. 2013). It should be noted

that many of the existing studies (i.e., Dutta-Bergman 2004, 2006; Austin et al. 2012)

focused on explaining individual’s participation in social media. Scant research has studied

participation in social media at the community level or in aggregated geographic areas.

Because spatial situational awareness relies on data aggregated at certain geographic

scales, it is important to understand the generation of data at aggregate spatial levels.

In this paper, we do not address the accuracy of information and malicious use of social

media data. Instead, we fill the void by examining the mechanism of data generation across

aggregated spatial units in natural hazard situations, which directly affects the accuracy of

situational awareness established based on social media data for effective disaster

management.

4 Conceptual framework

We explain the generation of social media data from certain geographic areas by the mass–

material–access–motivation (MMAM) model. First, the generation of social media data is

associated with the mass, or population size, in an area. Other things being equal, the larger
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the population, the larger the number of messages that could be generated in the social

media because more people can potentially make posts from that geographic location.

The availability of material for reporting (i.e., flood inundation, damaged buildings,

broken trees, and search and rescue actions) also affects the number of social media

messages. We expect the number of disaster-related messages to have a quadratic rela-

tionship with the level of damage. In areas with zero or little damage, fewer messages will

be generated because of the low exposure to disaster impact, and therefore, less material

exists to share on social media. As the level of damage increases, the number of messages

generated increases because there are more visual cues about damage and more discussions

of disaster impact. The number of messages will reach a peak point in areas with medium

levels of damage. After that, the number of messages drops as the damage increases

because people may not have access to the area or may be evacuated from the severely

damaged areas for longer durations.

Aside from variables related to the possibility of generating tweets, we also expect

socioeconomic factors to affect the number of disaster-related tweets, which reflect the

‘‘digital divide’’ hypothesis. Social groups differ in their access to technologies. In this

work, we hypothesize that people with lower incomes who are less educated, minorities,

and women are less likely to have access to technologies, such as smart phones; therefore,

they are less likely to share and receive information via social media. College education is

an important factor to affect Twitter usage. Studies found those with some college or above

education represent the majority on Twitter (Bennett 2011; Skelton 2012). Younger people

are more likely to embrace new technology and, therefore, are more likely to tweet more. It

should be noted that these hypotheses are based on the experiences of the developed

countries. The ‘‘digital divide’’ caused by differences in socioeconomic status may be

lessened in the case of the developing countries where mobile phones are often shared

among family members and friends (Kalba 2008).

The last factor we will look at is motivation. Unlike in prior studies (i.e., Li et al. 2013),

we hypothesized a nonlinear correlation between the number of tweets and measurements

of wealth, such as income and housing value, because the motivation of social media use

may differ across income levels. We expected the amount of tweets to increase as income

and housing values increase because higher incomes can increase access to communication

technologies. However, after a certain tipping point, the correlation between tweets and

income/housing values becomes negative. Specifically, the wealthier the neighborhood, the

fewer the number of tweets that will be posted because the elite class may have less

motivation to post on public forums and platforms about natural disaster events. They may

have privacy concerns and/or different focus on important matters in life.

5 Research methodology

5.1 Event of study

The event of study is Hurricane Sandy, the second-costliest cyclone to hit the USA since 1900

(Blake et al. 2013). Sandy made landfall near Brigantine, New Jersey, on October 29, 2012,

causing tremendous damage to the northeastern states. The total loss associated with Sandy was

estimated around $50 billion, and the death toll in the USA was 72 (Blake et al. 2013).

New York City was hit extremely hard by Hurricane Sandy. Immediately after the

storm, New York City experienced a widespread blackout that affected approximately
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2 million people. In the hardest hit areas, power was not restored until several months after

the storm (Gibbs and Holloway 2013). New York City’s subway system suffered its worst

flooding in a century. Airports, tunnels, and other transportation facilities also experienced

extensive damage. It took more than 2 weeks to return many of these damaged facilities to

normal operations (Henry et al. 2013). The storm also forced thousands of people out of

their homes. Sandy caused damage to about 620 homes and interrupted essential lifeline

services to approximately 8500 more homes, creating a high demand for temporary

housing and shelter services. According to New York City officials, about 6800 evacuees

were housed in 73 shelters as a result of the storm. Many others stayed with friends and

family (Gibbs and Holloway 2013).

In addition to relying on traditional media, the New York City government also dis-

seminated critical information about the storm through social media channels such as

Twitter and YouTube channels. New York City government sent out more than 2000

messages via Twitter and gained more than 175,000 social media followers during the

storm (Gibbs and Holloway 2013).

5.2 Data

Table 1 listed all variables used in this analysis and the data sources. The dependent

variable of this analysis is the number of tweets (TweetNum). These data came from

Twitter, a popular microblogging service. We retrieved messages posted on Twitter during

October 10 and November 27, 2012, from Gnip,1 by sending a geographic query with the

boundary of the selected study area in New York. A total of 1,763,141 tweets were

collected. In addition to the message text content, each tweet includes metadata, such as the

timestamp of posting, geo-tag (location), and author profile information, which includes

author location, profile description, number of tweets, and number of followers and friends.

We first selected tweets related to Hurricane Sandy. We started by detecting a set of

hashtags related to Hurricane Sandy from the collected data. The following hashtags were

identified as the top ones related to Hurricane Sandy:

beprep, blackoutnyc, breakingstorm, franken-storm, frankenstorm, frankenstorm-

supplies, hurricane, hurricaneny, hurricanenyc, hurricaneprep, hurricanepreparation,

hurricanerelief, hurricanes, hurricanesandy, hurricanesandyaftermath, hurricane-

sandyproblems, hurricanesandysuppprt, newyorkhurricane, newyorksandy, njpower,

nychurricane, nycsandy, nycsandyneeds, nycstorm, nyhurricane, nysandy, nystorm,

sandy, sandyaftermath, sandyaid, sandycommute, sandyhelp, sandyhuracan, san-

dyinny, sandyisknockingatmydoor, sandylove, sandyny, sandynyc, sandyprep,

sandypreparation, sandyproblems, sandyrecovery, sandyregistry, sandyrelief,

sandyshurricane, sandysucks, sandyvolunteer, storm, stormprep, storms, superstorm,

superstorms

We then used those hashtags to filter out messages not relevant to the disaster. If a tweet

text did not contain any predefined hashtag keyword in the hashtags or message text

content, it was not included in the following analysis.

Lastly, we selected all Hurricane Sandy-related tweets with available geo-tag infor-

mation (a total of 35,751 tweets). We then overlaid them with census tract to extract the

number of tweets by census tract. This allowed us to test the relationships between the

number of tweets and socioeconomic characteristics of the census tract.

1 http://gnip.com/

Nat Hazards (2015) 79:1663–1679 1669

123

http://gnip.com/


The independent variables are all from the 2012 American Community Survey (ACS),

5-year estimates, reported by the US Census Bureau, with the only exception of the

variable on the extent of disaster damage. The socioeconomic variables used in this

analysis include population size, percent white population, median age, male-to-female sex

ratio, percent of population 25 and over with at least college education, median household

income, and median housing value, all measured at the census tract level. To reduce the

decimal points in the estimated coefficients, we adjusted the levels of a few numerical

variables. Population was measured in thousands, median household income was measured

in thousands of dollars, and median housing value was measured in $100,000.

The raw data for calculating the extent of disaster damage by census tract came from the

Hurricane Sandy storm surge data reported by the FEMA Modeling Task Force (MOTF).

The FEMA MOTF data were generated from a combination of multi-hazard loss modeling

and ‘‘ground-truth’’ from the US Geological Survey surge sensor data, field observations,

and aerial photograph imagery assessments (FEMA 2014). As shown in Fig. 1, the storm

surge toppled neighborhoods in the lower south side and waterfront areas of Brooklyn and

Queens. It also inundated a ring of low-lying waterfront areas in Manhattan. We overlaid

the boundary of the Hurricane Sandy storm surge with census tracts to calculate the

percentage of land area in each census tract toppled by the Sandy storm surge.

Table 1 Variables and data source

Variable name Description Data source

Dependent variable

TweetNum Number of tweets Twitter, downloaded from Gnip

Independent variables

Mass

Population Population in 1000 2012 American Community Survey,
5-year estimate, US Census Bureau

Material

%InundatedArea Percent of land area inundated by
surge

FEMA MOFT

Access

%White Percent white population 2012 American Community Survey,
5-year estimate, US Census Bureau

MedianAge Median age 2012 American Community Survey,
5-year estimate, US Census Bureau

SexRatio Male-to-female ratio 2012 American Community Survey,
5-year estimate, US Census Bureau

%CLGEdu Percent of population 25 and over
with at least college education

2012 American Community Survey,
5-year estimate, US Census Bureau

Access and motivation

MedianHHInc Median household income in $1000 2012 American Community Survey,
5-year estimate, US Census Bureau

MedianHousingValue Median housing value in $100,000 2012 American Community Survey,
5-year estimate, US Census Bureau
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Fig. 1 Hurricane Sandy storm surge in New York city. Data source: FEMA (2014)

Nat Hazards (2015) 79:1663–1679 1671

123



5.3 Regression analysis

To examine the explanatory powers of variables related to the possibility to generate tweets

and those related to the digital divide and motivation, we compared four sets of models:

Model 1 TweetNum = a ? b1Population ? e,

Model 2 TweetNum = a ? b1Population ? b2 %InundatedArea

? b3 %InundatedArea2 ? e,

Model 3 TweetNum ¼ aþ b1%Whiteþ b2MediumAgeþ b3SexRatio

þb4%CLGEduþ b5MedianHHIncþ b6MedianHHInc2 þ b7MedianHousing

Valueþ b8MedianHousingValue2 þ e, and

Model 4 TweetNum ¼ aþ b1Populationþ b2%Whiteþ b3MediumAge

þb4SexRatioþ b5%CLGEduþ b6MedianHHIncþ b7MedianHHInc2

þb8MedianHou sin gValueþ b9MedianHou sin gValue2

þb10%InundatedAreaþ b11 %InundatedArea2 þ e

Models 1 and 2 include variables related to the possibility to generate tweets. Model 1 is

the base model that explains the number of tweets by population size. Model 2 added two

damage variables to Model 1, namely the percent of land area inundated by the Hurricane

Sandy surge and its square term. Model 3 includes only the set of socioeconomic variables

as independent variables. We can compare Model 3 with Models 1 and 2 to derive the

relative explanatory power of socioeconomic variables versus the population and damage

variables in explaining the variations in the number of tweets generated from the census

tract. Model 4 is the full model of the analysis. It includes all the independent variables

used in the previous models.

Because the landmark sites in New York City attract many visitors year round, at these

locations, many tweets were not generated by the residents, but the visitor population.

Therefore, we excluded census tracts primarily composed of landmarks (i.e., the Central

Park, LaGuardia Airport, and John Kennedy Int’l Airport) and parks and other vegetation

land use areas from the regression analysis. As a limitation of this study, the non-landmark

census tracks may still have tweets generated by the visitor or floating population, i.e.,

someone tweeted about hurricane Sandy from his workplace. We cannot fully match tweets

with users’ residential locations and demographics. If we assume error associated with

such geographic mismatch is randomly distributed across all non-landmark census tracks,

results from regression analysis should still be valid.

Because the dependent variable of this analysis—the number of tweets—is count data

that are discrete in nature, ordinary least square (OLS) regression is not the best estimation

method (Greene 2003). Instead, Poisson’s regression has been widely used to fit such data

(Greene 2003). Therefore, we fit the models by Poisson’s regression.

6 Results

6.1 Descriptive analysis

The number of tweets by census tract is shown in Fig. 2. A visual scan of Fig. 2 shows that

many landmark sites (i.e., airports, major parks, and green spaces) had a high number of

tweets. Table 2 shows the comparison of landmark and non-landmark census tracts in

number of tweets and registered residents. The average number of tweets of all census

1672 Nat Hazards (2015) 79:1663–1679

123



tracts was 19.2 or 5.1 tweets per 1000 people. In contrast, the John F. Kennedy Int’l

Airport, LaGuardia Airport, and Prospect Park had no registered residents; however, they

had over 100 tweets. Central Park had a registered population of only two, but it had 380

tweets, a density of 190,000 tweets per 1000 people. The Greenwood Cemetery and

Flushing Meadows Corona Park also had a low population, but many tweets. Their

respective tweet densities were 1391 and 771 tweets per 1000 people. The other smaller

parks and green spaces on average had 162.9 tweets per 1000 people, which was more than

30 times higher than the non-landmark census tracts (Table 2). Tweets were generated by a

large floating and visitor population to these landmark sites.

Table 3 presents descriptive statistics of all variables used in the regression analysis. As

discussed earlier, census tracts containing landmark sites were excluded from the analysis.

Therefore, Table 3 only reports the descriptive statistics of non-landmark census tracts

used in the regression models. On average, about 19 Hurricane Sandy-related tweets were

posted from each census tract between October 10 and November 27, 2012. There was

wide variation in the number of tweets by census tract. Some census tracts had zero tweets,

and some had 382 tweets. The census tracts also varied considerably in population size.

The average population of a census tract was 3900, with the lowest being 500 and highest

being 26,910. On average, the storm surge from Hurricane Sandy toppled 5 % of the land

area of census tracts. The spatial distribution of damage was uneven. Some census tracts in

the low-lying areas were completely inundated, and those on higher ground suffered no

damage at all.

New York City neighborhoods are well known for their great diversity in socioeco-

nomic conditions. The racial composition of census tracts ranged from having all

minorities to all whites. The census tracts around the Central Park in Manhattan, on the

west end of the Rockaways, around the downtown Brooklyn areas, and in pockets of

Queens had a majority white population. Many other census tracts in Brooklyn and Queens

had a white population of less than ten percent. The median household income in the

census tract was also on a wide swing, ranging from $22,560 to $318,650. Median housing

values in the poorest neighborhoods was below $10,000 and in the richest was well above

$1 million.2 On average, the median age of census tract was 36 years old, and the male-to-

female sex ratio was 0.93. Some census tracts were very young (with more than half of the

population\15 years old), and some were fairly old (with more than half of the population

older than 60). Some had almost three times more men than women, while others had four

times more women than men. On average, 32.5 % of population aged 25 and older had at

least college degree. Some census tracts had no residents with a college degree or above,

and some had all residents with a college degree or above. The mosaic of census tracts

provided an ideal case to study how socioeconomic conditions affect public participation in

social media.

6.2 Regression models

Results from Poisson’s regression models are reported in Table 4. Population was the only

independent variable in Model 1. Population size is positively and significantly correlated

with the number of Hurricane Sandy-related tweets. For every 1000 people increase, the

estimated number of tweets increases by a factor of 1.15 (or e0.143). The scale of the

2 The ACS dataset marked median housing values lower than $10,000 as ‘‘\$10,000’’ and higher than 1
billion as ‘‘[$1 million.’’ Because no exact value was reported, we used $10,000 or $1 million as the median
housing value for those census tracts.
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coefficient on the population variable barely changes after damage variables are added to

the regression (see Model 2 for details). Moreover, both %InundatedArea and its quadratic

form are statistically significant at the 0.01 level, indicating the extent of storm surge

Fig. 2 Number of tweets by Census Tract. Note: 1 John F. Kennedy Int’l Airport, 2 LaGuardia Airport, 3
Central Park, 4 Prospect Park, 5 Brooklyn Marine Park, 6 Flushing Meadows Corona Park, and 7
Greenwood Cemetery
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inundation being a significant factor to explain the number of tweets. The negative coef-

ficient on the quadratic form of %InundatedArea implies a reversed U-shaped relationship

between the level of damage and the number of tweets. Before the inundation area reaches

34.6 % of the total land area in the census tract, as the damage-level increases, more tweets

are produced. After the damage exceeds 34.6 % of the land area, as the damage-level

increases, fewer tweets are produced. These results confirm our hypotheses about popu-

lation and damage levels being factors that influence the ability to generate tweets. The

pseudo-R2 for Models 1 and 2 are 0.086 and 0.114, respectively.

Model 3 explains the variation in number of Hurricane Sandy-related tweets only with

socioeconomic variables. All the variables are significant at the 0.05 level except for

%White, indicating that minority status does not significantly correlate with social media

usage. Our model largely supports the digital divide hypothesis that the census tracts with

higher percentages of young, male, and educated populations are more likely to have more

tweets. Specifically, a 1-year increase in median age decreases the number of tweets by a

factor of 0.973 (or e-0.028). An increase of one in the male-to-female sex ratio is correlated

with an increase in tweets by a factor of 1.738 (or e0.553). A one percentage point increase

in people 25 years and older with at least college education is associated with an increase

Table 2 Number of Tweets: landmark locations versus non-landmark locations

Number
of tweets

Population
count

Number of
tweets/(1000 pop)

All census tracts (average) 19.2 3784.1 5.1

Airports

LaGuardia Airport 127.0 0.0 –

John F. Kennedy Int’l Airport 260.0 0.0 –

Major parks and green spaces

Central Park 380.0 2.0 190,000.0

Prospect Park 105.0 0.0 –

Brooklyn Marine Park 54.0 0.0 –

Flushing Meadows Corona Park 81.0 105.0 771.4

Greenwood Cemetery 32.0 23.0 1391.3

Other green spaces (average) 7.4 45.2 162.9

Non-landmark census tracts (average) 18.9 3901.3 4.8

Table 3 Descriptive statistics of variables

Variable name Obs. Mean Std. dev. Min Max

TweetNum 1701 18.85 35.80 0.00 382.00

Population (1000) 1701 3.90 2.12 0.50 26.91

%InundatedArea 1701 5.35 17.73 0.00 100.00

%White 1701 45.73 30.12 0.00 100.00

MedianAge 1701 35.97 6.19 12.80 61.70

SexRatio 1701 0.93 0.17 0.43 2.78

%CLGEdu 1701 32.53 20.95 0.00 100.00

MedianHHInc ($1000) 1701 61.40 36.87 22.56 318.65

MedianHousingValue ($100,000) 1701 5.53 2.00 0.10 10.00
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in estimated tweets by a factor of 1.027 (or e0.027). For instance, compared with a com-

munity with 35 % of its residents aged 25 years and older with college and above edu-

cation, those with 55 % of residents achieving such educational attainment will generate

1.704 (or 1.02720) times more tweets, holding all other variables constant.

The model confirms a statistically significant nonlinear relationship between tweets and

wealth (measured by income and median housing value), which reflects both the digital

divide and the motivation hypotheses. The negative coefficients on MedianHHInc2 and

MedianHousingValue2 indicate reversed U-shaped relationships between tweet generation

and the wealth variables. Starting from a relatively low community wealth level, increasing

in income and housing value increases the number of tweets generated from the com-

munity; after reaching a maximum point, the number of tweets goes down as community

wealth continues to go up. More specifically, before the median household income reaches

$178,170 (which is about three times the average median household income in all census

tracks in New York City), increases in income are positively related to increases in tweets,

which reflect the digital divide hypothesis. This relationship turns negative after the

median household income reaches $178,170, whereas the number of tweets decreases as

the household income increases. The turning point for median housing values is $570,280,

which is slightly higher than the average median housing value in all census tracts in New

York City. For census tracts with less than $570,280 in median housing values, increases in

median housing values increase the number of tweets; after that, the number of tweets

decreases as the housing value increases, which reflects a lack of motivation in social

media participation among the wealthier class during natural disasters. The pseudo-R2 for

Model 3 is 0.5006, much higher than those of Models 1 and 2.

Model 4 is the full regression model with all relevant independent variables included.

The coefficients on all independent variables are very similar in levels compared with those

in Models 1–3. The reversed U-shaped correlations between the number of Sandy-related

tweets and damage levels, median household income, and median housing values still

exist. The turning points of change from positive to negative associations are 40.34 % of

land area in the census tracts inundated by storm surge, $180,599 in median household

income, and $667,726 in median housing value. The coefficient on population decreases

slightly, from 0.139 in Model 2 to 0.096 in Model 4, while the coefficient on sex ratio

increases from 0.553 in Model 3 to 0.819 in Model 4. For a 1000 increase in population

and one point increase in the male-to-female sex ratio, the number of tweets increases by a

factor of 1.101 (or e0.096) and 2.268 (or e0.819), respectively. The pseudo-R2 for Model 4 is

0.533, the highest among all models.

7 Discussion and conclusions

In this study, we examined the spatial heterogeneity in the generation of tweets in natural

disaster situations. We proposed the MMAM model to explain the number of tweets by

mass, material, access, and motivation. Empirical analysis of tweets about Hurricane

Sandy in New York City largely confirmed the MMAM model.

As expected, we found the number of tweets is significantly correlated with population

size. As the rule of thumb, the larger the residential population, the more tweets there are.

It should be noted that landmark sites, such as airports, major public parks, and green

spaces, can have no or low numbers of residents, but many tweets. These landmark

locations have a large floating and visitor population who had free time to tweet.
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We also found that damage and tweets exhibit a reversed U-shaped relationship. The

highest number of tweets is found in census tracts with 34.6–40.3 % of land areas inun-

dated by the storm surge. As the damage increases from zero to about 34.6–40.3 %, the

number of Hurricane Sandy-related tweets increases, probably because more information

and damaged material, such as fallen trees and traffic signs or long gas waiting lines, are

available for the tweets as damage increases. After that, more severe damage is associated

with fewer tweets, probably because of population displacement caused by the severe

damage.

Our findings also confirm the difference in access or the digital divide hypothesis. The

census tracts with higher percentages of young, male, and educated people are found to be

more likely to have more tweets. We also found reversed U-shaped relationships between

the number of tweets and the average income/median housing value. With increases in

wealth, participation in social media initially increases, probably due to the increased

access to computers and mobile devices. After reaching a turning point, the participation in

social media decreases with wealth, probably because of a lack of motivation among the

wealthy class.

It should be noted that compared with the damage and population variables, the

socioeconomic variables have higher explanatory power in explaining the variations in the

tweet generation. To use social media for real-time information dissemination and/or

backchannel communications in emergency situations, we need to consider the abilities to

share information among different social groups. Also, the situational awareness extracted

from social media data may be potentially biased due to the unbalanced participation

among social groups. Future research should compare the situational awareness informa-

tion extracted from social media with information collected by ground truthing, such as

field observation and surveys, for validation.
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