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Abstract Geoelectric precursors are considered to be predictors of earthquakes, but this

issue is still under debate. The objective of this research is to statistically test the rela-

tionship between the geoelectric system and earthquakes. We observed that anomalies of

skewness and kurtosis of geoelectric fields may precede large earthquakes. Next, we

developed an alarm model of time of increased probability to quantitatively determine their

relationship. Performing binary classification and C1–F1 analysis on both statistical

anomalies and earthquake occurrences, the alarm model implies that the statistical cor-

relation between the geoelectric system and earthquakes exists with high confidence. We

explained the results by critical transition, which refers to the state of a system becoming

slower as it recovers from small perturbations when the system approaches critical points.

Hence, generic symptoms, such as autocorrelation, variance, skewness, and kurtosis, can

vary appreciably. Early warning signals for critical transitions of the geoelectric system

might correspond to impending large earthquakes, in agreement with independent sug-

gestions by other authors that appeared very recently. Consequently, we suggest that the

critical transition will take place in the crustal system. Furthermore, we establish a standard

procedure to examine the relationship between potential precursor indexes and

earthquakes.
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1 Introduction

This work investigates whether anomalies of skewness and kurtosis of geoelectric fields

might precede large earthquakes and hence represent an earthquake prediction method.

Although the theory of earthquake prediction has not been determined exactly, predicting

earthquakes is an emergent task on which a vast volume of literature focuses. From

compression experiments of rocks, it is known that electromagnetic radiation (EMR)

accompanied by crack growth is a common physical phenomenon (Carpinteri et al. 2010;

Fukui et al. 2005; Hadjicontis and Mavromatou 1994; Lacidogna et al. 2011; Mavromatou

et al. 2004; Shinbrot et al. 2012; Triantis et al. 2008; Tsutsumi et al. 2003; Frid et al.

2000). Mavromatou et al. (2004) observed that variations in electromagnetic field intensity

are coincident with the time derivative of stress, and their amplitudes are almost in peak-to-

peak correspondence. This correspondence implies that geoelectric fields represent stress

variations. Because geoelectric fields are easier to measure than stress, one could install a

large set of geoelectric stations to study the relationship between the geoelectric system

and earthquakes. Fukui et al. (2005) found, in compression tests, that both rock charac-

teristics and test conditions affected the behavior of EMR generation in rocks under

loading. These tests imply that geoelectromagnetic (GEM) signals before earthquakes

would vary owing to different geologies. Furthermore, Carpinteri et al. (2010) found that

EMR corresponding to each stress drop was detected until peak loads were reached. This

evidence enables use of acoustic and electromagnetic emissions as collapse precursors.

Although characterizing the connection with GEM changes before, during, and after

earthquakes is an open and contested issue in scientific literature, those experimental

results support the idea that GEM changes should be related to earthquakes.

In field observations, GEM changes/anomalies have been observed prior to major

earthquakes (Astuti et al. 2013; Eftaxias et al. 2003; Huang and Liu 2006; Orihara et al.

2012; Telesca et al. 2004, 2009; Uyeda et al. 2002; Varotsos et al.

1986, 1993, 2002, 2011a, b, c, 2013; Varotsos and Alexopoulos 1984a, b; Varotsos and

Lazaridou 1991; Zhao and Qian 1994). In the study of Uyeda et al. (2002), the spectral

intensity and the third principal component of geomagnetic fields culminated immediately

before nearby earthquakes with ML C 6 in the Izu Peninsula. Varotsos et al. (2002) found

that the seismic electric signals (SESs) preceding the 13 May 1995 Kozani–Grevena

earthquake exhibited scaling laws. The scaling laws imply that long-range correlations

exist in the crustal system. Their laboratory measurements reinforce the suggestion that

emission of SES activity could be discussed in the frame of the theory of dynamic phase

transitions. Eftaxias et al. (2003) observed that electromagnetic anomalies can cover a

wide range of frequencies, and the power spectral densities of those SESs show that the

power densities in low-frequency bands increase before major earthquakes and that power-

law exponents increase from 1 to 2. Their results imply an underlying critical transition in

the underground and suggest an underlying structural instability that belongs to the final

stage of the earthquake preparation process.

Nevertheless, most previous works only presented cases of observed earthquakes with

precursors (true positives), but not false-positive or false-negative cases. Therefore,we do not

know whether the defined precursory indexes are correlated with earthquakes or the pre-

diction method has good performance. As sufficient data on both geoelectrics and earth-

quakes are available for Taiwan, one might solve the uncertainty regarding whether an index

is precursory for earthquakes. A geoelectric monitoring system (GEMS) was installed on

Taiwan Island from the beginning of 2012. The chief aim of the GEMS network is to
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understand the possibility of the production of enormous electric dipoles and potential

changes near seismogenic zones. On the other hand, there are approximately 20 earthquakes

per year with ML C 5 in Taiwan. Hence, we can collect sufficient datasets to analyze the

relationship between the geoelectric system and earthquakes. The purpose of this study is to

statistically test the relationship between the geoelectric system and earthquakes based on

data from the dense geoelectric stations and abundant earthquakes in Taiwan. Referring to

Huang’s thoughts (2011), we attempted to build an alarmmodel considering a physics-based

approach. In this paper, we have referred to the concept of time of increased probability (TIP)

from Keilis-Borok and Kossobokov (1990), applied the TIP concept on the GEMS datasets,

and then developed a GEMSTIP algorithm which can determine the relevant precursor

indexes and estimate the alarm model performance. Based on the analysis of the GEMSTIP

algorithm on the geoelectric fields and the earthquake catalog, we suggest that there are

statistical correlations between the geoelectric system and earthquakes.

2 Data

In this work, the datasets consisted of (1) geoelectric fields from the GEMS and (2) the

earthquake catalog from the Central Weather Bureau (CWB) of Taiwan.

2.1 Geoelectric fields

At the beginning of 2012, 20 stations were deployed one after another to monitor geo-

electric fields continuously in the Taiwan region; the geoelectric network is named GEMS.

The GEMS stations were extensively and uniformly installed on Taiwan Island (Fig. 1).

Fig. 1 Spatial distribution of geoelectric stations and major earthquakes in Taiwan. Red squares are
geoelectric stations, magenta stars are earthquakes with ML C 6, and open pink stars are earthquakes with
ML [ [5, 6). The earthquake catalog is from 2012/1/1 to 2014/12/31
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The spacing between neighboring stations is approximately 50 km. Geoelectric fields

registered by GEMS are equivalent to self-potentials, which are naturally occurring electric

potential differences in the Earth. Self-potentials are passively measured at the ground

surface or in boreholes by means of a nonpolarizable electrode relative to a fixed reference

one. There are two long dipoles connected with telephone cables to transport electric

signals at each GEMS station. The two horizontally deployed dipoles stretch for approx-

imately 1–4 km and share a reference electrode. Because of site limitations, the azimuths

of the two dipoles might be tilted by approximately 10–40� from exact north and exact

east, respectively. We thus preprocessed the tilted geoelectric fields to north–south (NS)

and east–west (EW) components. The GEMS database is available and can be requested

from Prof. Chien-Chih Chen (chencc@earth.ncu.edu.tw) in the Department of Earth Sci-

ence of National Central University, Taiwan. In this work, we used the data of geoelectric

fields from the starting time of each GEMS station until 2014/12/31; the geoelectric fields

had sampling frequency of 1 Hz and units of mV/km.

2.2 Earthquake catalog

An earthquake catalog for the Taiwan region is routinely released and maintained by the

CWB of Taiwan (http://www.cwb.gov.tw/V7e/earthquake/). The system of the CWB

seismic network has been upgraded since 2010: the seismic signals are now digitized at 24

instead of 12 bits, and the number of stations has increased, with more than 100 now

widely installed in the Taiwan region. The types of seismic instruments include short-

period seismographs, accelerometers, and broadband instruments. The source parameters

of an earthquake can, therefore, be estimated more accurately. Details of the seismic

network in Taiwan are presented in the papers by Chang et al. (2012) and Hsiao et al.

(2011). In this study, we used the earthquakes with ML C 5 that occurred from 2012/01/01

to 2014/12/31 in the area of 119.5–122.5E, 21.5–25.5N of Taiwan. Figure 1 illustrates the

spatial distribution of epicenters of the selected earthquakes. We found that the large

earthquakes mainly occurred in eastern Taiwan, while only two occurred near the coast of

western Taiwan (near DAHU and KAOH, respectively). In total, 55 large earthquakes were

chosen. The number of earthquakes with ML 2 ½5; 6Þ was 50, and the number of those with

ML C 6 was 5.

3 Methods

In this work, we used the following concepts and analysis methods: calculations of

skewness and kurtosis, a definition of anomaly, the time of increased probability (TIP),

coarse-graining of earthquake occurrences, binary classification, C1–F1 analysis, and a

significance test.

3.1 Calculations of skewness and kurtosis

Based on the concept of early warning signals for critical transitions (Scheffer et al. 2009),

we understood that statistical indexes, such as autocorrelation, variance, skewness, and

kurtosis, would change anomalously preceding catastrophic events. These indexes might

identify periods of critical transitions. Here, we chose skewness and kurtosis to test the

relationship between the geoelectric system and earthquakes.
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In statistics, skewness (sk) is the standardized third moment around the mean of a

distribution, defined as follows:

sk ¼ Eðx� lÞ3

r3
; ð1Þ

where x represents the observed data points, l is the mean of x, r is the standard deviation

of x, and the operator E(�) represents the expected value. Skewness is a measure of the

asymmetry of the data around the mean. The skewness of a normal distribution (or any

perfectly symmetric distribution) is 0. If the skewness is negative, the data are spread out

more to the left of the mean than to the right. If the skewness is positive, the data are more

to the right. Kurtosis (ku) is the standardized fourth moment around the mean of a dis-

tribution, defined as follows:

ku ¼ Eðx� lÞ4

r4
; ð2Þ

where the meanings of the symbols are the same as for Eq. (1). Kurtosis is a measure of

how sharp and narrow a distribution is. The kurtosis of a normal distribution is 3.

Distributions that are more outlier-prone than the normal distribution have kurtosis values

greater than 3 (leptokurtic); distributions that are less outlier-prone have kurtosis values

less than 3 (platykurtic).

In this work, we calculated these two indexes for the time series of geoelectric fields

every day, and we obtained the daily variations of skewness and kurtosis. In reality, the

ideal, normal distribution may seldom appear. As a result, one needs to apply thresholds to

identify practical distributions.

3.2 Definition of anomaly

An anomaly is a deviation from the normal type, rule, arrangement, or form. Operationally,

we assumed a lower and an upper threshold (Lthr and Uthr) to distinguish anomaly from

normal. These were defined as follows:

IQR ¼ Q3 � Q1; ð3Þ

Lthr ¼ Median� 3IQR; ð4Þ

Uthr ¼ Medianþ 3IQR: ð5Þ

The variables Q1, Q3, and IQR denote the first quartile, third quartile, and interquartile

range, respectively. We generally determined values between Lthr and Uthr to be normal,

and values outside of this range to be anomalous. We thereby estimated the thresholds for

the skewness and kurtosis series for each station.

3.3 Alarm model: time of increased probability of GEMS

The term ‘‘time of increased probability’’ (TIP) comes from the works of Keilis-Borok and

Kossobokov (1990). They defined TIP by means of premonitory intermediate-term seismic

activation in the lower-magnitude range, and they explored the possibility of the occur-

rence of a strong earthquake. They showed that seismic activation is the relevant prepa-

ration process for an impending catastrophic earthquake by means of TIP analysis.
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In this work, according to the anomalies of skewness and kurtosis of geoelectric fields,

we developed our TIP model, GEMSTIP, with parameters Rad (km), Dep (km), N, t1

(days), t2 (days), and t3 (days). Earthquakes were selected based on the parameters Rad

and Dep; For example, Rad = 55 and Dep = 30 at PULI means that earthquakes within a

radius of 55 km from the center of PULI and above depth of 30 km were selected. The

parameter N is the threshold number for the anomalous indexes, determining that a day is

labeled as anomalous if the anomaly index number (AIN) C N. The maximum AIN is 4

because there are two statistical indexes per component and two components per station.

The parameters t1, t2, and t3 are time windows with units of days. The definition of TIP is

as follows: First, a day is defined as anomalous if AIN C N. Then, if the number of

anomalous days within the window t2 is greater than t1 days, the future window t3 is

defined as time of increased probability (TIP index). TIP indexes are 0–1 binary series, in

which 0 means no TIP and 1 means TIP.

In this work, Rad [ [1, 30:5:55, 60:10:100, 999] (km), Dep [ [1, 30:30:300, 999] (km),

N [ [1, 2, 3, 4], t1 2 1 : 1 : 2=3ð Þ � t2½ � daysð Þ, t2 [ [1, 5:5:30, 40:10:90] (days), and

t3 [ [1, 5:5:30, 40:10:90] (days), where the data format is [start:increment:end]. Therefore,

the total number of GEMSTIP models used was 2,717,520.

3.4 Coarse-graining of earthquake occurrences

Coarse-graining is similar to adjusting the objective working distance in the observation of

cells with a microscope. If the working distance is too close or too far, one cannot discern

the structures of cells well, and one can observe the structures clearly only with the

appropriate working distance. The theory of granularity is used in many fields, including

physics, molecular dynamics, computing, etc. In seismology, the concept of coarse-

graining has also been applied to investigate fault dynamics (Abe and Suzuki 2009; Klein

et al. 1997; Tiampo et al. 2002).

In this study, it is inequitable that the time resolution of an earthquake is one time point

whereas the resolution of the predictive time of a GEMSTIP model is t3 (days). Therefore,

we developed a coarse-grained method to expand earthquake occurrence times. In the

coarse-graining procedure, earthquake occurrence times (EQ indexes) are extended plus

and minus t3/2 days (CGEQ indexes); hence, the CGEQ indexes are determined by the

parameters Rad, Dep, and t3. EQ and CGEQ indexes are 0–1 binary series, in which 0

means no EQ and 1 means EQ. On the other hand, the multifractal stress activation model

(Ouillon et al. 2009; Ouillon and Sornette 2005; Sornette and Ouillon 2005; Tsai et al.

2012) predicts that an earthquake will probably occur in a time window if the crustal state

(stress) reaches a threshold. The time window is related to the nucleation of an event whose

dynamical occurrence is unknown, so it may vary from event to event due to disorder and

differences in initial conditions; therefore, we treated it using an unknown, finite-size

window (personal communication with Ouillon 2016). Hence, coarse-graining the earth-

quake occurrence time and predicting earthquake-prone periods using the GEMSTIP

algorithm is a plausible approach.

3.5 Binary classification and C1–F1 analysis

Binary classification is heavily used in many areas, especially medicine and machine

learning. This classification method forms a 2-by-2 contingency table, including the

number of true positives (TP), false positives (FP), false negatives (FN), and true negatives

(TN), which can determine whether the classifying model behaves well. In summary, the
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greater the proportions of TN and TP, the better the performance of the classifying model.

In medicine, for example, a diagnostic or medical test can reveal the incidence of cancer

with a positive test or the incidence of no cancer with a negative test. The resulting portions

can elucidate whether the testing method is reliable to inform patients about their health

condition.

To quantify the performance of a GEMSTIP model, we introduce two indexes that can

estimate the proportions of TN and TP in the four classes. The two indexes are C1 and F1,

defined as follows:

C1 ¼ 2TN

2TNþ FPþ FN
; ð6Þ

F1 ¼ 2TP

2TPþ FPþ FN
: ð7Þ

The values of both C1 and F1 range from 0 to 1. We also define (C1, F1) = (0, 1) when

TP = 1, FP = 0, FN = 0, and TN = 0, and we define (C1, F1) = (1, 0) when TP = 0,

FP = 0, FN = 0, and TN = 1. This assignment can avoid the occurrence of not-a-number.

The value C1 = 0 means that no true negatives exist, whereas C1 = 1 means all true

negatives. The value F1 has similar descriptions.

Based on C1 and F1, one can determine the ability to identify TN and TP in the four

classes. A good performance model must have large values of both C1 and F1. Hence, we

define the model performance R as follows:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C12 þ F12
p

: ð8Þ

If C1 = 1 and F1 = 1, then R ¼ Rperf ¼
p
2; the value Rperf means that the predictive

model has perfect performance and the observed and predicted datasets match each other

perfectly. The value R can be considered as the matching coefficient. A higher R value

suggests that there is a potential model connecting the geoelectric system and earthquakes.

In this work, after obtaining the CGEQ and TIP indexes, we compared the two 0–1

binary series and formed a 2-by-2 contingency table. TP means successful forecast

(TIP = yes, CGEQ = yes), FP means false alarm (TIP = yes, CGEQ = no), FN means

missing alarm (TIP = no, CGEQ = yes), and TN means successful forecast of nonoc-

currence (TIP = no, CGEQ = no). We then conducted C1–F1 analysis on the TP, FP, FN,

and TN of the GEMSTIP models with different parameters [Rad, Dep, N, t1, t2, t3]. In

practice, the best GEMSTIP model was defined as the one having maximal performance

R in the models without end parameters. We avoided models with end parameters, called

end models, which cannot converge to the upper or lower boundary of any input parameter.

Moreover, we neglected models without CGEQ indexes or TIP indexes, meaning there is

no earthquake or no anomaly to constrain the GEMSTIP model. This maximal R is called

Rbest, and the parameters of the best GEMSTIP model are [Radbest, Depbest, Nbest, t1best,

t2best, t3best].

3.6 Significance test

After obtaining the parameters [Radbest, Depbest, Nbest, t1best, t2best, t3best] for all stations,

we tested the significance of this best parameter set. First, we computed the interevent

times of anomalous indexes of skewness and kurtosis per component. The interevent time

is the time elapsed between two successive anomalous indexes. Second, we randomly
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shuffled the interevent times, accumulated them into the original time coordinate, and

generated surrogate series of skewness and kurtosis per component. Finally, we optimized

the GEMSTIP model using the surrogate datasets and the earthquake catalog. These sur-

rogate datasets are theoretically independent of the earthquake occurrence times. We

repeated this optimization 200 times, obtaining 200 parameter sets for the best GEMSTIP

model from the surrogate datasets for each station.

We then developed a diagnosis to test whether an N-dimensional point (X) is included in

the N-dimensional dataset of M points (Yi). The null hypothesis H
0 is that X is included in

Yi. We then calculated the following Euclidean distance Di between X and Yi and D0
ij

among Yi, respectively:

Di ¼ X � Yik k for i ¼ 1; . . .;M; ð9Þ

D0
ij ¼ Yi � Yj

�

�

�

� for i; j ¼ 1; . . .;M and i 6¼ j: ð10Þ

We transformed the original H0 to become that Di and D0
ij are from the same continuous

distribution. We used a Kolmogorov–Smirnov (KS) test on Di and D0
ij, which examines

whether two distributions are from the same population (Massey 1951; Miller 1956).

KSj ¼ KS test Di;D
0
ij; a

� �

: ð11Þ

The value a is the significance level; here, a = 0.05. The result KSj is 1 if the test

rejects the null hypothesis at 5 % significance level, and 0 otherwise. Finally, we define the

index H as follows:

H ¼

P

M

j¼1

KSj

M
[ 0:95: ð12Þ

If the ratio of the number of rejections to the total number is greater than 0.95, then

H = 1 and we reject that X is included in Yi; otherwise it is 0. In this paper, X is the best

parameters of the real case for each station, Yi is those of the random cases of each station,

the dimension is 6 [(Radbest, Depbest, Nbest, t1best, t2best, t3best)], and M is 200.

4 Results

Two devastating earthquakes with ML[ 6 occurred near PULI, on 2013/03/27 and

2013/06/02. Figure 2a shows the 1-Hz geoelectric fields of PULI’s NS and EW compo-

nents from 2013/1/1 to 2013/3/31. We observe that the data are spread more to the lower

part in the NS component and more to the upper part in the EW component before the

2013/03/27 earthquake. Further analyzing the geoelectric fields at PULI, there are

bFig. 2 a NS and EW geoelectric fields at PULI with 1-Hz sampling rate from 2013/1/1 to 2013/3/31. Red
crosses are daily means, and red lines show one standard deviation. PULI’s statistical indexes of (b) NS
component and (c) EW component from 2012/3/1 (starting time of PULI) to 2014/12/31. In (b) and (c), the
first row is the mean, the second is the standard deviation, the third is the skewness, and the final is the
kurtosis. Vertical lines denote larger earthquakes within a radius of 55 km around PULI. Magenta verticals
are earthquakes with ML C 6, and green verticals are those with ML [ [5, 6)
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anomalous statistics of the geoelectric fields before major earthquakes. Figure 2b and c

show the daily variations of the mean, standard deviation, skewness, and kurtosis of

PULI’s NS and EW components, respectively (hereinafter denoted ENS_PULI and

EEW_PULI); For example, the daily mean of ENS_PULI ranges roughly from -70 to

120 mV/km and exhibits a bowl shape from 2012/11/08 to 2013/10/01 when the two

earthquakes occurred. This pattern is strikingly reminiscent of the so-called gradual

variation of the electric field of the Earth identified in Greece (see also p. 8 of the book The

Physics of Seismic Electric Signals by Varotsos 2005; Varotsos and Alexopoulos 1984b).

The background of the daily standard deviation is below approximately 10 mV/km, and

only few outliers appear before the two earthquakes. However, meanwhile, the values of

skewness deviate away from the normal range approximately between -2 and 2. Con-

ventionally, a distribution is thought of as symmetric when its skewness is in this range.

Additionally, the kurtosis values are beyond the threshold of approximately 50. In sum-

mary, the distributions become narrower and sharper than normal and show longer tails to

the right or left before large earthquakes. Besides, there are time lags between earthquake

occurrences and the clusters of anomalous skewness and anomalous kurtosis; For example,

the time lag between the peak of the cluster of negative skewness (2013/03/15) and the

{2013/03/27, 121.05E, 23.90N, ML6.24} earthquake was 12 days, whereas that between

the peak of the cluster of positive skewness (2013/05/16) and the {2013/06/02, 120.97E,

23.86N, ML6.48} earthquake was 17 days. Similar observations also appear in EEW_PULI.

These time lags are comparable to those observed between SESs and earthquakes in

Greece (Varotsos et al. 1993, 2009) and Japan (Varotsos et al. 2013). If we select more

earthquakes with ML C 5 and within a radius of 55 km around PULI, there are two more

earthquakes, i.e., {2012/12/31, 120.91E, 23.47N, ML5.28} and {2013/10/31, 121.35E,

23.57N, ML6.42}, with preceding abnormal clusters of skewness and kurtosis.

These coincidences between larger earthquakes and anomalies of skewness and kurtosis

of PULI’s geoelectric fields prompted this study to analyze, comprehensively and sys-

tematically, the correlation between major earthquake occurrences and the skewness and

kurtosis of geoelectric fields for all stations. Figures S1, S2, S3, and S4 show the skewness

of both the NS and EW components and the kurtosis of both the NS and EW components,

respectively, for all stations. In short, ENS_SKEW_PULI represents the skewness series of

geoelectric fields of PULI’s NS component, and EEW_KURT_PULI represents the kurtosis

series of geoelectric fields of PULI’s EW component, and so forth. First, we observed the

skewness of the geoelectric fields in the NS components for all stations (Fig. S2). In

ENS_SKEW_KUOL, the anomalies from 2012/02/06 to 2012/08/20 might correspond to

the {2012/08/31, 120.88E, 24.72N, ML5.04} earthquake. Additionally, in ENS_

SKEW_DABA, the anomalies from 2013/02/25 to 2013/05/17 correspond to the {2013/06/

02, 120.97E, 23.86N, ML6.48} earthquake. However, in ENS_SKEW_SIHU, the anomalies

from 2014/04/02 to 2014/09/04 do not correspond to earthquakes with ML C 5. Also, in

ENS_SKEW_WANL, the anomalies from 2013/04/03 to 2013/09/17 do not correspond to

earthquakes with ML C 5. For most other periods, there are no anomalies and no events.

Similar observations appear in Figs. S3, S4, and S5. Major questions can be raised after

visual observation of these figures. First, sometimes there are many anomalies before

earthquakes, but sometimes there are few. One may ask: How many anomalies are needed

to identify impending earthquakes? And secondly: What percentage of anomalies have no

corresponding earthquakes? And what percentage of earthquakes have no corresponding

anomalies? These questions seem to be solved by binary classification between earthquake

occurrences and the anomalies of skewness and kurtosis of the geoelectric fields.
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We established a GEMSTIP model with parameters [Rad, Dep, N, t1, t2, t3] to compare

statistical anomalies with earthquake occurrences. Figure 3 shows the daily series of

PULI’s anomalous index numbers, TIP and CGEQ indexes, and its contingency table for

the specific model with [Rad, Dep, N, t1, t2, t3] = [55, 30, 2, 5, 15, 30]. The earthquakes

were selected using the condition Rad = 55 (km) and Dep = 30 (km) around PULI. There

is more than one statistical index at PULI showing anomalies prior to major earthquakes in

the upper panel of Fig. 3. The duration of anomalous index numbers is several days before

those earthquakes, which elucidates that those anomalies would not come from temporal

cultural noises before large earthquakes. Based on the GEMSTIP model, we obtained the

TIP index (blue line) and EQ index (red star) shown in the lower panel of Fig. 3. We then

coarse-grained the time of the EQ index to obtain the CGEQ index (green line). Applying

binary classification on the TIP and CGEQ indexes of this model resulted in a 2-by-2

contingency table with TP = 100, FP = 225, FN = 55, and TN = 640 (inset of lower

panel). Coarse-graining of earthquake occurrences is more discernible in the binary clas-

sification, as shown in Fig. 4a. If earthquake occurrence is not coarse-grained, the F1

values of all models will be suppressed in the lower F1-axis. If coarse-graining is applied,

the F1 values are extended in all F1-axes, revealing the detailed structure in the C1–F1

scatter plot.

We analyzed 2,717,520 GEMSTIP models for each station, and estimated their per-

formance. Each model generates the TIP and CGEQ indexes and corresponds to one (C1,

F1) pair in the C1–F1 scatter plot (Fig. 4b). The ideal GEMSTIP model has the pair (C1,

F1) = (1, 1) with matching coefficient Rperf = H2, and we draw the reference line

(R ¼ 1;Rperf � 0:7) for comparison. Note that we ignored models with end parameters

(shown as grey dots), for which the performance might not converge. We then found the

Fig. 3 Schematic diagram of a GEMSTIP model. The upper panel shows the time series of anomaly index
number (AIN) at PULI, denoted by black circles. Vertical lines are earthquakes withML C 5, selected using
the parameters Rad = 55 km and Dep = 30 km at PULI. Magenta verticals are earthquakes with ML C 6,
and green verticals are those withML [ [5, 6). The maximum AIN each day is 4. The lower panel shows the
time series of the TIP and CGEQ indexes from the GEMSTIP model [55, 30, 2, 5, 15, 30]. The definition of
TIP is as follows: if there are t1 with AIN C N within a window of t2, then the future t3 is an earthquake-
prone period. A contingency table based on the model is constructed in the inset of the lower panel
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best GEMSTIP model among the non-end models. At PULI, the best GEMSTIP model

(marked by a red star) has (C1, F1) = (0.95, 0.80) because it has a maximal R

(Rbest ¼ 1:24;Rperf � 0:88). The C1–F1 scatter plots for all stations are shown in Fig. S5.

There are 16 stations with matching coefficient R[ 1 in the non-end models, excluding

DAHU, HERM, SIHU, and FENG. This result suggests that the anomalies of skewness and

kurtosis of geoelectric fields catch large earthquakes well, and the geoelectric system

would respond to earthquake preparation.

Table 1 inventories the parameters [Radbest, Depbest, Nbest, t1best, t2best, t3best] for each

station, also including the performance C1, F1, and R, as well as the portion of models with

R[ 1. Using these best parameters, we generated a GEMSTIP matching diagram for

bFig. 4 a C1–F1 scatter plot at PULI for coarse-graining case (blue dots) and non-coarse-graining case (red
crosses). b C1–F1 scatter plot at PULI. Blue dots are results of TIP models without end parameters, while
grey dots indicate end models. The red star is the best result of the TIP models. Generally, the greater the
distance from the origin, the better the performance of the TIP model. The green line is for reference,
indicating R ¼ 1;Rperf � 0:7

Table 1 Parameters and null hypothesis test of the best GEMSTIP model

Sta Rad Dep N t1 t2 t3 C1 F1 R P (R[ 1) H

SHRL 55 90 3 13 80 80 0.93 0.55 1.08 0.0813 0

KUOL 40 30 1 23 70 50 0.99 0.98 1.39 0.6571 0

TOCH 30 90 2 9 60 20 0.95 0.54 1.09 0.0377 0

HUAL 70 30 3 5 80 10 0.97 0.29 1.01 0.0028 0

ENAN 70 90 1 3 80 80 0.63 0.89 1.09 0.0323 0

DAHU 100 60 3 7 25 5 0.96 0.20 0.98 0.0000 1

LISH 50 30 3 5 70 80 0.84 0.72 1.11 0.2501 0

SHCH 50 30 3 3 30 10 0.95 0.37 1.02 0.0020 0

HERM 80 30 3 3 70 5 0.90 0.05 0.90 0.0000 0

PULI 30 30 3 9 80 80 0.95 0.80 1.24 3.8663 1

FENL 30 60 3 3 20 5 0.98 0.26 1.01 0.0020 0

SIHU 80 30 3 7 10 20 0.88 0.02 0.88 0.0000 1

DABA 55 30 3 13 30 40 0.99 0.97 1.39 2.6467 1

YULI 30 30 2 7 10 15 0.97 0.44 1.07 0.1403 1

CHCH 90 30 1 9 15 50 0.96 0.63 1.15 0.0214 0

LIOQ 100 30 2 11 60 10 0.94 0.44 1.04 0.0102 0

RUEY 90 60 1 11 80 80 0.70 0.84 1.09 0.1512 0

KAOH 90 30 1 17 60 60 0.99 0.96 1.38 1.8863 1

WANL 80 30 3 5 50 30 0.95 0.50 1.07 0.0226 1

FENG 90 30 1 3 5 5 0.92 0.07 0.92 0.0000 1

The 1st column (Sta) is the station code, the 2nd (Rad) is the detection radius of the station, the 3rd (Dep) is
the detection depth of the station, the 4th (N) is the threshold of anomalous index numbers, the 5th (t1) is the
anomalous time, the 6th (t2) is the calculation period, the 7th (t3) is one TIP length, the 8th (C1) is the
probability of TN, the 9th (F1) is the probability of TP, the 10th (R) is the performance of the model, the
11th (P) is the ratio of models with R[ 1 and without end parameters to all models, and the 12th (H) is the
null hypothesis testing; The result H = 1 means rejection of the null hypothesis at 5 % significance level,
with H = 0 otherwise
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catching large earthquakes in the training period (Fig. 5). We observed that the {2013/03/

27, 121.05E, 23.90N, ML6.24} earthquake could be detected by PULI and DABA, the

{2013/06/02, 120.97E, 23.86N, ML6.48} earthquake by PULI, and the {2013/10/31,

121.35E, 23.57N, ML6.42} earthquake by LIOQ and RUEY. We found that 35 earthquakes

withML [ [5, 6) (of 50 in this study) were related to anomalies of skewness and kurtosis of

the geoelectric fields. Note that there are many oversea earthquakes, which might be

beyond the detection sensitivity of the GEMS stations. Finally, we conducted null

hypothesis testing to show that the real parameters for all stations were not selected by

random cases. Figures S6–S25 show comparisons of the performance and parameters

between the real and random cases for all stations. We found that the pair (C1, F1) of the

real case for each station was more or less enclosed by those of the random cases. This

result means that the GEMSTIP model is not biased, and can fit not only the real data but

also the noisy data. For the sake of visualization of comparisons of the model parameters,

we plotted 3D scatter plots of the triple (Rad, Dep, tmCG) and the triple (N 9 t1, t2, t3).

Note that the parameter tmCG is the coarse-graining time; in this paper, tmCG = t3. The

CGEQ indexes are calculated on the parameters (Rad, Dep, tmCG), while the TIP indexes

are based on the parameters (N, t1, t2, t3). We then quantitatively determined whether the

parameters of the real case for each station were different from those of the random cases.

We compile the null hypothesis testing H for each station in the 12th column of Table 1.

We found that the real parameters for DAHU, PULI, SIHU, DABA, YULI, KAOH,

WANL, and FENG were distinguished from the random cases. This test suggests that the

clustered skewness and kurtosis anomalies in some regions are relevant to earthquakes with

high confidence.

Fig. 5 GEMSTIP matching diagram. Blue horizontal lines are TIPs. Red open stars are earthquakes with
ML [ [5, 6), and solid red stars are earthquakes with ML C 6. Green horizontals are the time expansions of
earthquake occurrence plus and minus t3/2. Gray lines are auxiliary; their front ends show the starting times
of the stations
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5 Discussion

Because the statistical indexes of the geoelectric fields varied immensely, the geoelectric

system is considered to be nonlinear and nonstationary. This may be explained by the fact

that numerous physical processes transform the lithosphere into a large nonlinear system

that is unstable and chaotic (Keilis-Borok 1990). Various phenomena are thus observed

and measured in the geoelectric system. The geoelectric system reveals the scaling rela-

tionship during the earthquake preparation process (Varotsos et al. 2002; Eftaxias et al.

2003). Secondly, in this work, anomalies of statistical indexes of the geoelectric fields

appear before large earthquakes with ML C 5. Thirdly, we observed time lags between the

climaxes of the clustered anomalies and the earthquake occurrences.

We considered that critical transitions would explain these phenomena of the geo-

electric system and earthquakes. Firstly, the studies of Varotsos et al. (2002) and Eftaxias

et al. (2003) support the criticality in earthquake ruptures of Sornette and Sornette (1990).

They suggested that rupture is a critical point in earthquakes, and proposed a critical theory

between the geoelectric system and earthquakes in terms of piezoelectricity. Secondly,

rethinking the result that statistical anomalies of geoelectric fields precede earthquakes, we

considered that the mechanism of critical transition of Scheffer et al. (2009) may explain

those anomalies of skewness and kurtosis well. They proposed early warning signals for

critical transitions, and explained why generic symptoms may occur as the system

approaches its critical point before catastrophic events. In the theory of critical transition,

the state of a system in a double-well potential is permanently subjected to natural per-

turbations. If one well becomes flatter, the perturbed state in that well will return to its

equilibrium gradually and slowly. Meanwhile, the state would shift from one well to the

other due to perturbations with higher probability. Measuring the approach to a critical

tipping point could be achieved by straightforwardly measuring the recovery rates (re-

silience) of the state back to its initial equilibrium following perturbations. Note that the

state of a system is always driven by perturbations. However, the recovery rates are

estimated in theoretical models rather than in reality. Alternatively, there are many types of

precursory indicators in complex dynamical systems before critical transitions, including

autocorrelation, variance, skewness, kurtosis, etc. (Scheffer et al. 2009). These indexes can

be measured in practice. The nonlinear geoelectric system might exhibit the varied

dynamics of the double-well potential through different distributions of geoelectric fields;

in this study, we indeed observed anomalous skewness and kurtosis before earthquakes.

Early warning signals for critical transitions have also been independently identified by

using natural time analysis (Sarlis et al. 2013; Varotsos et al. 2008, 2011b). Alternative

measures to distinguish precursory geoelectric field anomalies from nonprecursory ones

have been proposed on the basis of natural time analysis (Varotsos et al. 2003a, b). In

reality, there are many natural systems that may exhibit critical phenomena, such as

medicine, global finance, ecosystems, the Earth system, etc.; see, e.g., Natural Time

Analysis: The New View of Time (Varotsos et al. 2011a). Note that, prior to critical

transitions, skewness may increase or decrease based on whether the transition is towards

an alternative state that is larger or smaller than the present state (Dakos et al. 2012). The

skewness and kurtosis of geoelectric fields might constitute the signature of an underlying

precursory critical mechanism, and the geoelectric fields can thus be used to monitor the

crustal system. In alignment with the aims of the present contribution, the results in this

paper support the theory of critical transition to explain the connection between the geo-

electric system and earthquakes. This theory is consistent with a model (Sarlis et al. 2010;
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Varotsos et al. 1993, 2009; for a brief description of this model see also Varotsos 2007)

proposed to explain the generation of precursory transient changes of the geoelectric field

observed in Greece, termed SESs, which suggests that SESs are emitted when the gradually

increasing stress in the focal area reaches a critical value. Thirdly, the time lags between

the anomalous skewness and kurtosis clusters and large earthquakes imply that the

catastrophic event does not need to occur suddenly during the critical transition; that is,

large earthquakes occur after the critical transitions of the crustal system. The time lag

suggests that a large earthquake might be a first-order phase transition process. A first-

order phase transition allows latent heat to exist; that is, the crustal system after the critical

transition will accumulate more energy to release a large earthquake.

Additionally, the best detection range (Radbest, Depbest) varied for each station. This

variation implies that local geology affects the seismoelectric behavior, in agreement with

the experiments of Fukui et al. (2005). The mean of Radbest and Depbest for all stations was

65.5 and 43.5 km, respectively. These detection ranges might correspond to earthquakes

with ML C 5. Besides, the predictive period t3 could be considered as the earthquake

preparation period. Lin (2012) found possible slow slips from approximately 6 days before

the 1999 Mw7.6 Chi–Chi earthquake. In this work, the value of t3best ranged from 5 to

80 days, depending on the site. On average, the parameter t3best was 36.75 days. This

comparison suggests that anomalies in the crust can be detected electromagnetically earlier

than mechanically. Moreover, the null hypothesis testing H for all stations did not reject

H0. This result indicates that the nucleation dynamics is spatially disordered during the

earthquake preparation process, hence the anomalies for some sites were related to major

earthquakes with high confidence. The fact that most stations had a best model with

Rbest[ 1 might indicate a relationship between the geoelectric system and earthquakes.

The good match between the TIP and CGEQ indexes implies that the geoelectric system is

affected during the earthquake preparation process. We infer that the earthquake prepa-

ration process affects the parameters of the lithospheric system, and changes of this system

influence the geoelectric field in advance. Precursors of earthquakes exist not only in a

seismological sense (seismic quiescence and activation) but also in an electromagnetic

sense, as also suggested by Varotsos et al. (2011b). Because the dynamics of systems have

generic properties and one may ignore the differences of each system (Scheffer et al.

2009), we considered the geoelectric system instead of the crustal stress system. We cannot

directly and definitely know the relationship between the geoelectric system and earth-

quakes, but we first applied mathematics and statistics to determine their relationship, then

the mathematical and statistical indexes aided us in constructing a seismoelectric physical

model.

6 Conclusions

Anomalies of skewness and kurtosis in geoelectric fields may imply that the system in a

seismogenic zone is approaching criticality. It is plausible that the evolution of the Earth’s

crust towards a critical state takes place in not only a seismological but also electro-

magnetic sense before an earthquake. This is in fundamental agreement with independent

findings (Sarlis et al. 2008; Varotsos et al. 2008, 2011b) showing that an approach to

criticality can be identified by natural time analysis of small earthquakes that occur after

SES initiation and before the mainshock. Most importantly, the methodology presented

herein provides a standard procedure for examining the relationship between anomalies of
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geoelectric fields and earthquakes. This procedure might be extended to other geophysical

data in the future to define whether precursory indexes are related to earthquakes. Those

precursory indexes, once determined to be effective, could help to develop physical models

and understand the earthquake preparation process. Well-accepted theories explaining such

anomalous phenomena are still lacking in literature. However, the results in this paper

support the theory of critical transition to explain the connection between the geoelectric

system and earthquakes, in agreement with independent suggestions by other authors that

appeared very recently (Varotsos et al. 2013, 2014). Hence, the critical transition helps us

to understand theories of seismoelectromagnetism in the crustal system.
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