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Abstract The flight control problem of a flexible air-
breathing hypersonic vehicle is presented in the pres-
ence of input constraint and aerodynamic uncertainty.
A control-oriented model, where aerodynamic uncer-
tainty and the strong couplings between the engine and
flight dynamics are included, is derived to reduce the
complexity of controller design. The flexible dynamics
are viewed as perturbations of the model. They are not
taken into consideration at the level of control design,
the influence of which is evaluated through simulation.
The control-oriented model is decomposed into veloc-
ity subsystem and altitude subsystem, which are con-
trolled separately. Then robust adaptive controller is
developed for the velocity subsystem, while the con-
troller which combines dynamic surface control and
radial basis function neural network is designed for
the altitude subsystem. The unknown nonlinear func-
tion is approximated by the radial basis function neural
network. Minimal-learning parameter technique is uti-
lized to estimate the maximum norm of ideal weight
vectors instead of their elements to reduce the compu-
tational burden. To handle input constraints, additional
systems are constructed to analyze their impact, and
the states of the additional systems are employed at the
level of control design and stability analysis. Besides,
“explosion of terms” problem in the traditional back-
stepping control is circumvented using a first-order fil-
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ter at each step. By means of Lyapunov stability theory,
it is proved theoretically that the designed control law
can assure that tracking error converges to an arbitrar-
ily small neighborhood around zero. Simulations are
performed to demonstrate the effectiveness of the pre-
sented control scheme in coping with input constraint
and aerodynamic uncertainty.

Keywords Flexible air-breathing hypersonic vehicle
(FAHV) · Dynamic surface control (DSC) · Radial
basis function neural network (RBFNN) · Input
constraint · Aerodynamic uncertainty

1 Introduction

Since air-breathing hypersonic vehicles (AHVs) are
most suitable for prompt global response and offer dis-
tinctive air superiority, they have received more and
more attention. With the development of hypersonic
vehicle technology, there are many challenges for per-
formance requirements of modern hypersonic vehicles.
Design of flight control system for AHVs is a chal-
lenging task because the dynamics of AHV are com-
plex and highly coupled [1–3]. Much research has been
conducted on it [4–11]. For AHV, the engine thrust
affects the pitching moment due to the underslung loca-
tion of scramjet engine. The slender geometry and rel-
ative light weight of the vehicle cause the vibration
modes to significantly affect the aerodynamic forces.
It induces that the vehicle must be viewed as a flex-
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ible structure. Moreover, flexible modes may cause
adverse aeroservoelastic effects which lead to poten-
tial structural damage and instabilities [12]. Flexible
effects make control problem more challenging since
the flexible modes are uncertain. It is worth noting that
the integration of the propulsion system with vehicle
and the interactions between the internal and external
flow fields make the characteristics of aerodynamics
difficult to be measured and estimated. The lack of a
broad flight dynamics database suggests that plant para-
meter variations and uncertainties are the main issues
to be addressed at the level of control design [13].
Therefore, the problem about the stability, robustness,
and control performance is still the focus of the flexi-
ble air-breathing hypersonic vehicle control system. At
present, the corresponding data are strictly kept secret
since hypersonic vehicle offers a promising technology
for cost-efficient access to space and exhibits tremen-
dous and important military merit for its quick response
to serious threats around the globe. There is not enough
experimental data on both the longitudinal and lateral
channels, so the control problem of FAHV focuses on
the longitudinal channel. It is important to note that
the longitudinal control is very complex. If the lon-
gitudinal and lateral channels are taken into account
simultaneously, the controller design will become more
complex [13]. It is necessary to make a trial between
the complexity of the model and the rationality of the
controller design under the current technology. More
complex model means more states variables, more out-
put variables and stronger nonlinearity, which induces
that it is more difficult to design a controller that pos-
sesses satisfactory performance. Thus, only the longi-
tudinal analytical model of FAHV proposed in [14]
has been applied in the controller design. The con-
trol system of FAHV is required to have robustness
to tackle uncertainty because of the changeable flight
conditions, uncertain aerodynamic characteristics, and
highly nonlinear nature dynamics. Aerodynamic uncer-
tainty makes the control system design more difficult.

The flight control system design of FAHV has
attracted increasing attention in recent years. Based on
modern control techniques, linear and nonlinear control
systems have been proposed. The reason why feedback
linearization technique could not be applied to design
the controller directly for FAHV was analyzed in [15].
Additionally, linear quadratic regulator (LQR) tech-
nique was combined with the approximate feedback
linearization technique to develop controller to make

velocity and altitude track their reference trajectories.
In that work, the flexible dynamics and certain dynamic
couplings were strategically ignored. A time-varying
notch filter algorithm was integrated into trajectory lin-
earization control to address the flight control system
design of a hypersonic scramjet vehicle model with
flexible modes in [16,17]. Adaptive notch filter and LQ
technique were synthesized to design controller in [18],
where an adaptive mode suppression scheme accu-
rately tracked and suppressed an unknown or changing
flexible mode online. Besides, a robust minimax LQR
control scheme was proposed for a control-oriented lin-
earized uncertainty model of a FAHV in [19]. A min-
imax linear quadratic Gaussian (LQG) control strat-
egy was proposed to solve the control design prob-
lem with uncertainties and unmeasured states [20].
However, simulation had been conducted without the
flexible dynamics, so the effects of the flexible states
cannot be evaluated. The Lyapunov-based robust con-
troller was developed in [21] for a linear-parameter-
varying model of FAHV including aerothermoelastic
effects and bounded disturbances. Adaptive fuzzy inte-
gral sliding mode control scheme was designed for the
tracking control problem of a FAHV in the presence
of disturbances and possible sensor/actuator failures
[22]. Recently, the control design problem of a FAHV
was investigated based on adaptive sliding mode con-
trol strategy in [23]. Through solving a system of lin-
ear algebraic equations, a control approach was pre-
sented for a FAHV in [24], in which the suppression
of flexible dynamics was achieved by the combination
of the control approach with H∞ control. For the flight
path angle and velocity tracking control problem of a
FAHV with unmodeled vibration modes, L1 adaptive
control was employed to achieve the stable tracking
performance in [25–27]. Adaptive dynamic inversion
was combined with nonlinear sequential loop-closure
approach to design controller after the system was
decomposed into subsystems in [28–30].

Although the research mentioned above achieves
good control performance, it is worth pointing out that
input constraint is not considered; it usually appears
in many practical systems because the amplitudes of
control inputs of almost all practical control systems
are limited. The closed-loop system performance may
be degraded severely or even lose stability if the input
constraint is ignored. For the hypersonic vehicle, the
flight control system is in open-loop state under the
occurrence of input saturation. If the output of actuator
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does not return to linear work space, the hypersonic
vehicle may lose stability, or even disintegrate. So it is
necessary to design the high reliability control system
with the consideration of input constraints. In much
research, input constraints were not directly taken into
account at the level of control design. Instead, they were
accounted for manually by tuning the gains to keep the
inputs in their valid operating ranges [3]. The pres-
ence of unavoidable constraints on the control inputs
renders the design of hypersonic vehicle control sys-
tems an even harder endeavor [31] except the afore-
mentioned difficulty and challenge. Only few studies
are concerned about control problem with control limits
owing to the complicated nonlinear dynamics of hyper-
sonic vehicle systems.

An adaptive control strategy was proposed in [32]
for reusable launch vehicles (RLVs) with actuator
displacement limits, actuator rate limits, linear input
dynamics, and time delay, in which input constraints
were implemented by pseudocontrol hedging. In [33],
for a linear roll/yaw dynamic of an F-16 aircraft,
input constraints were addressed by resorting to direct
modification of a reference model (µ-modification
approach). In [3,34], a flight control system design
problem of a FAHV with input constraint was pre-
sented through anti-windup control (AWC), but aero-
dynamic uncertainty was not considered. In [31], a con-
trol problem with a constraint on the fuel equivalence
ratio was addressed by a plug-in approach, where a
self-optimizing guidance scheme shaped the reference
to be tracked. It assured that the input constraints were
not violated to an adaptive guidance system. Model
predictive control has been used popularly because of
its inherent capability to implement input constraint
directly at the level of control design [35–37]. However,
it depends on the real-time receding horizon optimiza-
tion, and the main barrier of its application to hyper-
sonic vehicle is online optimization and the determina-
tion of time-domain step size [38]. Furthermore, some
other methods had been employed to design controller
of FAHV. H∞ approach was proposed for a linearized
model of FAHV with input constraints, in which the lin-
earized model with uncertain parameters was obtained
by the feedback linearization technique [39]. It should
be pointed out that high-order derivatives of outputs
need to be computed. Advanced flight control laws
concerned with actuator limitations were designed for
hypersonic vehicle using the differential geometry prin-
ciple and the total energy theory [40]. Three adaptive

fault control schemes were proposed for tracking con-
trol problem of an AHV with external disturbances,
actuator faults, and input saturation in [41]. For the
latter two control approaches, there was no need to
know the upper bound of the external disturbances and
the real minimum value of actuator efficiency factor in
advance.

As a powerful nonlinear technique, backstepping
control has also been used for control system design
with input constraints. In [42], an adaptive backstep-
ping approach was applied to flight control system
design of longitudinal aircraft dynamics that directly
accommodated magnitude, rate, and bandwidth lim-
its on aircraft states and actuators. However, exter-
nal disturbance was not considered. For F-16/MATV
(multi-axis thrust vectoring) aircraft control problem, a
constrained adaptive backstepping control scheme was
proposed where command filters implemented con-
straints on control surfaces and virtual control states
[43]. The constraints were handled by command filters.
The designed approach retained that the state and con-
trol constraints could be enforced while maintaining
Lyapunov stability. In [44], an adaptive backstepping
controller was proposed for RLV with input constraint
and external disturbance, in which the bound of external
disturbance and uncertainty was estimated and updated
by adaptive law. It is well known that “explosion of
terms” problem inherent in traditional backstepping
control constrains the application of backstepping to an
extent. Dynamic surface control (DSC) was presented
to overcome it, where the synthetic input at each step
of backstepping procedure was filtered by a first-order
filter. In [45], an adaptive dynamic surface controller
was proposed for a generic hypersonic flight vehicle
with consideration of actuator constraints including
accommodation on magnitude, rate, and bandwidth
constraints on actuator signals. To improve tracking
performance of the designed controller, a novel integral
term was introduced during DSC scheme design pro-
cedure to avoid a large initial control signal [46]. The
magnitude and rate constraints on the actuator com-
mands were taken into consideration to ensure feasi-
bility. Moreover, a robust adaptive dynamic surface
controller was investigated for a hypersonic vehicle
in the presence of parametric model uncertainty and
input saturation. A compensation design was employed
when the input saturations occurred [47]. Air speed
and flight path angle control problem of a generic
hypersonic flight vehicle was studied in [48], where
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magnitude, rate, and bandwidth constraints on actua-
tor were considered. In that research, an adaptive DSC
scheme based on radial basis function neural network
(RBFNN) was presented. Furthermore, nonlinear dis-
turbance observer and RBFNN were integrated into
sliding mode control to design controller for a near
space vehicle in [49]. Considering saturation charac-
teristic of rudders, RBFNN was constructed as a com-
pensator to avoid the saturation nonlinearity.

The motivation of this paper is to develop a nonlinear
robust adaptive dynamic surface controller for FAHV
based on RBFNN to achieve stable tracking of velocity
and altitude reference commands, in which both uncer-
tain aerodynamic parameters and input constraint are
accommodated. The contribution can be summarized
as follows. Firstly, a nonlinear control-oriented model
(COM) is firstly derived from a curved-fitted model.
It does not need to obtain a linearized model at a trim
condition or to compute the higher-order derivatives of
outputs. The flexible dynamics are regarded as the per-
turbations of COM and evaluated by simulation. The
strong couplings between the engine and flight dynam-
ics are kept in COM. The uncertainty of aerodynamic
parameters is considered. What is more, compared with
the existing results, most of which consider the inter-
connect gain between canard deflection and elevator
deflection certain (i.e., the canard would exactly can-
cel the lift due to the elevator deflection); in this paper,
the interconnect gain is regarded as an uncertain vari-
able from the engineering point. Based on the analy-
sis of the COM, it is reasonable to decompose it into
velocity subsystem and altitude subsystem. Secondly,
the subsystems are controlled separately by the avail-
able control inputs (fuel equivalence ratio and eleva-
tor deflection). The RBFNN is employed to approxi-
mate unknown nonlinear function. The RBFNN-based
robust adaptive controller is designed for the veloc-
ity subsystem. The altitude subsystem comprised the
dynamic equations of altitude, flight- path angle, angle
of attack, and pitch rate. The RBFNN-based robust
adaptive dynamic surface controller is designed after
it is transformed into pure-feedback formulation. Dur-
ing the controller design procedure, a minimal-learning
parameter (MLP) technique is used to estimate the max-
imum norm of the ideal weight vectors of RBFNN
rather than their elements. The computational burden is
largely reduced. Thirdly, by applying the first-order fil-
ters at the level of control design, “explosion of terms”
problem induced by the repeated derivative of virtual

control inputs is avoided. To tackle input constraints,
the respective additional systems are established to ana-
lyze their influence. States of the additional systems are
employed at the level of control design and stability
analysis. Fourthly, stability analysis of the rigid body
system is performed on the basis of Lyapunov theory,
and boundedness of the flexible states is demonstrated
through simulation. Moreover, compared simulations
are done to present effectiveness of the designed control
scheme in handling input constraints and aerodynamic
uncertainty.

The rest of the paper is organized as follows. In
Sect. 2, the vehicle model and the researched prob-
lem are formulated. In Sect. 3, a nonlinear controller
is developed for the COM with input constraint and
aerodynamic uncertainty based on RBFNN and robust
adaptive dynamic surface control. Then in Sect. 4, the
stability of rigid body system is analyzed based on Lya-
punov theory. Simulation results and analysis are pre-
sented in Sect. 5. The paper ends with conclusions in
Sect. 6.

2 Vehicle model

The model adopted in the paper is originated from
a first principles model developed in [1,14]. It is
constructed for longitudinal dynamics of a FAHV. A
sketch of the vehicle geometry showing the location of
control surfaces is given in Fig. 1, which is accord-
ing to [50]. The equations of motion derived using
Lagrange’s equations which include flexible effects
by modeling the vehicle as a single flexible structure
with mass-normalized mode shapes. In the equations
of motion, the scramjet engine model is taken from
[51]. Since aerodynamic forces and moments are cal-
culated using oblique shock and Prandtl–Meyer theory,
relation between control inputs and controlled outputs
does not admit a closed-form representation. A sim-
plified model has been derived for controller design
and stability analysis in [50]. This model, called as a
curve-fitted model (CFM), approximates behavior of
the first principles model by replacing the aerodynamic
and generalized forces and moments with curve-fitted
functions of rigid body states, control inputs, and flex-
ible modes. Though the resulting nonlinear model is
still quite complex, it offers the advantage of being
analytically tractable while retaining relevant dynami-
cal features of the first principles model.
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Fig. 1 Geometry of an
air-breathing hypersonic
vehicle

The longitudinal dynamic equations of a FAHV,
which describe five rigid body states velocity V , alti-
tude h, flight path angle (FPA) γ , angle of attack (AOA)
α, pitch rate Q, and six flexible states η1, η2, η3, η̇1, η̇2,

and η̇3 are given as

V̇ = (T cosα − D)/m − g sin γ, (1)

ḣ = V sin γ, (2)

γ̇ = (L + T sin α)/(mV )− g cos γ /V, (3)

α̇ = Q − γ̇ , (4)

Q̇ = Myy/ Iyy, (5)

η̈i = −2ξiωi η̇i − ω2
i η̇i + Ni , i = 1, 2, 3. (6)

In Eqs. (1)–(6), the thrust T , drag D, lift L , pitch-
ing moment Myy , and three generalized forces N1, N2,

and N3 are complex algebraic functions of both the
system states and inputs that must be simplified to
render the model analytically tractable. Flexible states
η1, η2, η3, η̇1, η̇2, and η̇3 are corresponding to the first
three vibrational modes. The damping ratio and natural
frequency of the mass-normalized generalized coordi-
nates of the flexible structure are denoted by ξi and
ωi , respectively. The flexible states η1, η2, and η3 are
related to the deflections of the fore-body turn angle
τ1 and aft-body vertex angle τ2, denoted by �τ1 and
�τ2, respectively. The vector η = [η1, η2, η3]T and
the matrix E j∈R1×3 depend on the fuel level. They
describe the relationship �τ j = E jη, j = 1, 2.
Approximations of the forces and moments are the
same as those provided in [50], which can be expressed
as

T ≈ q[φ CT,φ(α,�τ1,M∞)+ CT (α,�τ1,M∞, Ad)],
D ≈ q SCD(α, δe, δc,�τ1,�τ2),

L ≈ q SCL(α, δe, δc,�τ1,�τ2), (7)

Myy ≈ zT T + q ScCM (α, δe, δc,�τ1,�τ2),

Ni ≈ qCNi (α, δe, δc,�τ1,�τ2), i = 1, 2, 3.

Here, M∞ is free stream Mach number and q is
dynamic pressure. They are defined as q = 0.5ρ(h)V 2,
M∞ = V/M0.ρ(h) is the altitude-dependent air den-
sity, and M0 is the speed of sound at a given altitude and
temperature. The coefficients obtained from fitting the
curves are given below; here, the function arguments
are removed in brief:

CT,φ = Cα
T,φα+C

αM−2∞
T,φ αM−2∞ +Cα �τ1

T,φ α�τ1

+ C
M−2∞
T,φ M−2∞ +C

�τ 2
1

T,φ �τ
2
1 + C �τ1

T,φ �τ1+ C 0
T,φ,

CT = C Ad
T Ad +Cα

Tα+C
M−2∞
T M−2∞ + C �τ1

T �τ1+C 0
T ,

CD = C (α+�τ1)
2

D (α+�τ1)
2+C (α+�τ1)

D (α+�τ1)

+ C
δ2

e
D δ

2
e +Cδe

D δe

+ C
δ2

c
D δ

2
c +Cδc

D δc+ Cαδe
D αδe+Cαδc

D αδc

+ C�τ2
D �τ2+C0

D,

CL = Cα
Lα+Cδe

L δe+Cδc
L δc+ C�τ1

L �τ1

+ C�τ2
L �τ2+ C0

L ,

CM = Cα
Mα+Cδe

Mδe+Cδc
Mδc

+ C�τ1
M �τ1+C�τ2

M �τ2+C0
M ,

CNi = Cα
Ni
α+Cδe

Ni
δe+ Cδc

Ni
δc+C�τ1

Ni
�τ1

+ C�τ2
Ni
�τ2+C0

Ni
.

(8)

The flexible states η1, η2, η3, η̇1, η̇2, and η̇3 corre-
spond to the first three bending modes of the fuselage. It
is obvious from (7) to (8) that the interaction between
rigid body and flexible dynamics occurs through the
aerodynamic forces. The aerodynamic forces/moments
and the generalized elastic forces are influenced by
�τ1,�τ2 and the aerodynamic control surfaces δe, δc

as shown in coefficient formulation (8). Flexible modes
may cause adverse aeroservoelastic effect degrading
performance which induces potential structural dam-
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age and instabilities. What is more, the aerothermo-
dynamic effects of the hypersonic speed, and strong
interaction between the elastic airframe, the propulsion
system, and the structural dynamics make it challeng-
ing to explicit the characterization of flight dynamics
of FAHVs [52–54].

2.1 Control-oriented model

The CFM described in the above subsection is only
used for simulation. A simplified model, called control-
oriented model (COM), is derived for controller design
as discussed in [15,28,29]. The CFM is obtained by
neglecting the flexible dynamics for the measurements
of the flexible states are not assumed to be available for
feedback [30]. Regardless of the fact that the flexible
dynamics are not considered directly at the level of
control design, their effects are taken as perturbations
of the COM and evaluated in the simulation. The COM
is composed of five rigid body dynamic equations. The
COM retains all the dominant features of the CFM,
including flexible effects (�τ1 and �τ2) and coupled
propulsive and aerodynamic forces.

It is noted that in the COM a canard is used to
cancel lift–elevator coupling. Canard deflection δc is
a function of the elevator deflection δe so that δc =
kecδe, where kec = −Cδe

L /Cδc
L , is an interconnect gain

[15,28]. From the lift coefficient in (8), it is obvious that
if kec is precisely specified, the canard would exactly
cancel the lift due to the elevator deflection. However,
in practice, it is difficult to achieve an ideal interconnect
gain. It is impossible to obtain the exact cancellation
of the lift–elevator coupling. Hence, it is reasonable to
assume that kec = kec0 +�kec is uncertain. The prod-
uct of its uncertain part�kec and elevator deflection δe,
i.e., �kecδe, is an uncertain term with a bound on its
magnitude and satisfies an integral quadratic constraint
condition [19,55].

Based on what is mentioned above, the expression
for CL is written as

CL = Cα
Lα + C0

L + Cδc
L �kecδe + C�τ1

L �τ1

+ C�τ2
L �τ2. (9)

Similarly, the drag coefficient CD is also affected
by this coupling owing to the presence of an elevator,
canard, and AOA cross- coupling terms in the corre-
sponding expression. These coupling terms are mod-
eled as an uncertainty �Cd with a bound on its mag-

nitude and it satisfies an integral quadratic constraint
condition [19]. The expression CD is given as

CD = C (α+�τ1)
2

D α2 + C (α+�τ1)
D α

+ C0
D + C (α+�τ1)

2

D (2α�τ1 +�τ 2
1 )

+ C (α+�τ1)
D �τ1 + C�τ2

D �τ2 +�Cd , (10)

with �Cd = [Cδ2
e

D + (kec0 + �kec)
2C

δ2
c

D ]δ2
e + [Cδe

D +
Cδc

D (kec0 +�kec)]δe +[Cαδe
D +Cαδc

D (kec0 +�kec)]αδe.
By the same token, the expressions of CM and CNi

are given as

CM = Cα
Mα + (Cδe

M + Cδc
M kec0 + Cδc

M�kec)δe

+ C0
M + C�τ1

M �τ1 + C�τ2
M �τ2, (11)

CNi = Cα
Ni
α + (Cδe

Ni
+ Cδc

Ni
kec0 + Cδc

Ni
�kec)δe

+ C0
Ni

+ C�τ1
Ni
�τ1 + C�τ2

Ni
�τ2. (12)

In this study, the mass of the vehicle m, which varies
due to fuel consumption on a slower time scale with
respect to the references to be tracked, will be consid-
ered constant during each tracking maneuver as all the
other model parameters [29]. But the following uncer-
tain aerodynamic parameters are considered, kec0, Cα

L ,

C0
L , C�τ1

L , C�τ2
L , C (α+�τ1)

2

D , C (α+�τ1)
D , C�τ2

D , C0
D , C

δ2
e

D ,

C
δ2

c
D , Cδe

D , Cδc
D , Cαδe

D , Cαδc
D , Cα

M , Cδe
M , Cδc

M , C0
M , C�τ1

M ,

C�τ2
M , Cα

T,φ , C
αM−2∞
T,φ , Cα �τ1

T,φ , C
M−2∞
T,φ , C

�τ 2
1

T,φ , C �τ1
T,φ , C0

T,φ ,

C Ad
T , Cα

T , C
M−2∞
T , C�τ1

T , C0
T , Cα

Ni
, Cδe

Ni
, Cδc

Ni
, C�τ1

Ni
, C�τ2

Ni
,

C0
Ni

. The uncertainty of aerodynamic parameter Cα
L is

denoted as�Cα
L . Based on it, we can obtain the expres-

sions about the uncertainty of aerodynamic parameters
as follows

�CL = �Cα
Lα +�C0

L +�C�τ1
L �τ1

+�C�τ2
L �τ2 + Cδc

L �kecδe, (13)

�CD = �C (α+�τ1)
2

D (α+�τ1)
2+�C (α+�τ1)

D (α+�τ1)

+�C�τ2
D �τ2 +�C0

D +�Cd , (14)

where

�Cd = [�C
δ2

e
D + (kec0 +�kec)

2�C
δ2

c
D ]δ2

e

+ [�Cδe
D +�Cδc

D (kec0 +�kec)]δe

+ [�Cαδe
D +�Cαδc

D (kec0 +�kec)]αδe,

�CM = �Cα
Mα + [�Cδe

M +�Cδc
M (kec0 +�kec)]δe

+�C�τ1
M �τ1 +�C�τ2

M �τ2 +�C0
M ,
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�CT,φ = �Cα
T,φα +�C

αM−2∞
T,φ αM−2∞ +�C

M−2∞
T,φ M−2∞

+�C 0
T,φ +�Cα �τ1

T,φ α�τ1 +�C
�τ 2

1
T,φ �τ 2

1

+�C �τ1
T,φ �τ1,

�CT = �C Ad
T Ad +�Cα

Tα +�C
M−2∞
T M−2∞

+�C �τ1
T �τ1 +�C 0

T ,

CNi = �Cα
Ni
α+(�Cδe

Ni
v +�Cδc

Ni
kec0+�Cδc

Ni
�kec)δe

+�C0
Ni

+�C�τ1
Ni
�τ1+�C�τ2

Ni
�τ2, i =1, 2, 3.

�L ≈ q S�CL , �D ≈ q S�CD,�Myy ≈ zT�T

+ q Sc�CM ,�T

= q(φ �CT,φ +�CT ),�Ni ≈ q�CNi .

(15)

It is worthy to point out that in the vehicle model (1)–
(5) and aerodynamic formulation (7), thrust T affects
velocity V and fuel equivalence ratio φ, so the velocity
is mainly affected by φ. Moreover, elevator deflection
δe has a dominant contribution to the altitude h change.
Therefore, it is reasonable to implement a separate con-
trol design. So the equations of motion of the COM are
reasonably decomposed into velocity subsystem and
altitude subsystem.

Considering the aerodynamic uncertainty, the
dynamic of velocity (1) can be expressed as the fol-
lowing form

V̇ = fV + gVφ, (16)

where

fV = fV 0 +� fV , gV = q CT,φ,1 cosα/m,CT,φ,1

= Cα
T,φα + C

αM−2∞
T,φ αM−2∞ + C

M−2∞
T,φ M−2∞ + C 0

T,φ,

fV 0 = qCT,1 cosα/m − gsinγ

− q S(C (α+�τ1)
2

D α2 + C (α+�τ1)
D α + C0

D)/m,

� fV =
[
�T + qφ(Cα �τ1

T,φ α�τ1 + C
�τ 2

1
T,φ �τ

2
1

+ C �τ1
T,φ �τ1)+ qC �τ1

T �τ1

]
cosα/m

−
[

D − q S(C (α+�τ1)
2

D α2 + Cα+�τ1
D α

+ C0
D)+�D

]
/m,

CT,1 = C Ad
T Ad + Cα

Tα + C
M−2∞
T M−2∞ + C 0

T .

Similarly, the dynamics of FPA, AOA, and pitch rate
are rewritten as the following form:

γ̇ = fγ (γ, α)+ gγ (α)α, (17)

α̇ = fα(γ, α, Q)+ gαQ, (18)

Q̇ = fQ(γ, α, Q)+ gQδe, (19)

where

fγ (γ, α) = fγ 0(γ, α)+� fγ (γ, α),

fγ 0(γ, α) = qφ sin α
[
(C

M−2∞
T,φ M−2∞ + C 0

T,φ)
] /

(mV )− g cos γ / (mV )

+ q sin α
[
(C Ad

T Ad + Cα
Tα + C 0

T

+C
M−2∞
T M−2∞ )+ q SC0

L

] /
(mV ),

� fγ (γ, α) =
[
�T + qφ

(
C α�τ1

T,φ α�τ1 + C
�τ 2

1
T,φ �τ

2
1

+C �τ1
T,φ �τ1

)
+ qC �τ1

T �τ1

]

× sin α
/
(mV )+�L/ (mV )

+ q S
(

C�τ1
L �τ1 + C�τ2

L �τ2

)/
(mV ),

gγ (α) = q S Cα
L

/
(mV )

+ qφ sin α(Cα
T,φ + C

αM−2∞
T,φ M−2∞ )/

(mV )+ q sin αCα
T / (mV ),

fα(γ, α, Q) = fα0(γ, α, Q)

+ � fα(γ, α, Q)− gα(α)α,

fα0(γ, α, Q) = − fγ 0(γ, α),� fα(γ, α, Q)

= −� fγ (γ, α), gα = 1, T1

= q(φCT,φ,1 + CT,1),

fQ(γ, α, Q) = fQ0(γ, α, Q)

+� fQ(γ, α, Q), fQ0(γ, α, Q)

=
[
zT T1 + q Sc(Cα

Mα + C0
M )

] /
Iyy,

� fQ(γ, α, Q) =
[
zT�T + q Sc

(
�CM + C�τ1

M �τ1

+C�τ2
M �τ2

)] /
Iyy,

gQ(γ, α, Q) = q Sc(Cδe
M + Cδc

M kec0)
/

Iyy .

(20)

In Eqs. (16)–(19), functions fV , fγ , fα, fQ, gV , gγ ,
and gQ are unknown. The respective control inputs for
velocity and altitude subsystems are designed in Sect. 3.

Remark 1 In [15,28,29], the COM is derived based on
the assumption that the canard deflection δc is a func-
tion of the elevator deflection δe so that δc = kecδe,
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Table 1 Admissible ranges
of states, inputs, dynamic
pressure, and Mach number
[24,30,50]

State Min.value Max.value State Min.value Max.value

h(ft) 70,000 1,35,000 φ 0.1 1.5

V (ft/s) 7,500 11,000 δc(rad) −0.4712 0.4712

γ (rad) −0.0524 0.0524 δe(rad) −0.3491 0.3491

α(rad) −0.0873 0.1746 q(psf) 200 2,200

Q(rad/s) −0.1746 0.1746 Ma 7 12

where kec = −Cδe
L /Cδc

L . Herein we consider kec uncer-
tainty. It is more reasonable from the practical view-
point.

2.2 Control objective

There are four inputs in (1)–(5) and they are the diffuser
area ratio Ad (in this research, the diffuser area ratio Ad

is fitted as Ad = 1), canard deflection δc, fuel equiva-
lence ratio φ, and elevator deflection δe. The output to
be controlled is selected as y = [V, h]T . The control
objective is to design the control inputs fuel equivalence
ratio φ and elevator deflection δe for the COM such that
the altitude and velocity follow their respective refer-
ence commands even in the presence of uncertain aero-
dynamic parameters and input constraints. Here, we
only consider the cruise phase and leave out the ascent
phase and the reentry phase. According to references
[24,30,50], during the cruise phase, states, inputs, and
reference trajectories are assumed to be within admis-
sible ranges as given in Table 1.

In practice, due to physical limitations, the outputs
of the actuator are constrained. One common exam-
ple of such constraints is actuator saturation, which
imposes a limitation on the magnitude of achievable
control input [56,57]. Input constraints studied herein
include the constraints on fuel equivalence ratio and
elevator deflection. The constraint on fuel equivalence
ratio is imposed by the very nature of the propulsion
system, which is required to maintain the conditions
that sustain scramjet operation [31]. If the constraint is
exceeded, the thermal choking will occur, which is crit-
ical because it could lead to engine unstart that could
jeopardize the mission, the vehicle, and its contents
[58]. The constraint on elevator deflection is mainly
imposed by the limits on the control surface displace-
ment. The above input constraints can be expressed as

φ =
⎧⎨
⎩
φmax, φc ≥ φmax

φc, φmin < φc < φmax

φmin, φc ≤ φmin

, (21)

δe =
⎧⎨
⎩
δemax, δec ≥ δemax

δec, δemin < δec < δemax

δemin, δec ≤ δemin

, (22)

where φc and δec are the desired control inputs to be
designed in the subsequent section. φmin and φmax are
the minimum value and maximum value of the fuel
equivalence ratio, respectively. δemin and δemax are the
minimum value and maximum value of the elevator
deflection, respectively.

The velocity is controlled by fuel equivalence ratio
which is designed by combining RBFNN and robust
adaptive control method. The altitude is controlled by
elevator deflection through the stable tracking of FPA
reference command. The elevator deflection is devel-
oped by combining RBFNN and robust adaptive DSC.
The FPA reference command γd is derived from alti-
tude reference command hd which is generated by the
filtered step signals. FPA is controlled through AOA
(which is regarded as a virtual control input and denoted
as αd). AOA is controlled through pitch rate (which is
regarded as a virtual control input and denoted as Qd).
Pitch rate is controlled by the elevator deflection δe.
The design procedure is discussed in the succeeding
section.

3 Controller design

As shown in the preceding section, every subsystem
is controlled separately by the available input. It is
obvious that the equations (17)–(19) possess pure-
feedback formulation which makes the backstepping
technique applicable. Backstepping control is proposed
by Kokotovic [59,60]. It is a systematic and method-
ical approach. The principle idea is that the complex
system is firstly decomposed into the lower dimen-
sion subsystems, and then the Lyapunov functions and
the intermediate virtual control inputs are recursively
designed for every subsystem. Recursive design proce-
dure proceeds iteratively until the actual control input
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is obtained. It is noted that the backstepping approach
suffers from the “explosion of terms” problem induced
by the repeated analytic derivative of the virtual con-
trol input. This problem grows drastically as the sys-
tem order increases. To eliminate it, DSC approach is
presented for nonlinear strict or pure-feedback system
[61–64]. The synthetic input at each step of backstep-
ping procedure is filtered by a first-order filter. Here,
robust adaptive DSC and RBFNN are integrated to
design control inputs for the velocity and altitude sub-
systems. In order to deal with input constraints, addi-
tional systems are developed to analyze the effect of
input constraints. The states of them are utilized at the
level of control design and stability analysis. Moreover,
unknown functions are approximated by RBFNNs. It
should be pointed out that all rigid body states are
assumed to be measured.

3.1 Radial basis function neural network (RBFNN)

Universal function approximation approaches such as
neural networks (NNs), fuzzy logic systems (FLS),
polynomials, and splines have been widely employed
in control design of nonlinear systems owing to their
approximation capabilities under certain conditions.
There are many kinds of NN such as RBFNN and
wavelet neural network (WNN). In the paper, RBFNN
is introduced to cope with unknown functions for its
inherent properties in approximating any smooth non-
linear functions within arbitrary accuracy. The RBFNN
is briefly introduced in this subsection and the detail is
referred from [65–67].

The RBFNN takes the formwT ξ(x), wherew ∈ RN

is the weight vector (N is the NN node number) and
ξ(x) : Rn → RN is a vector function of input
x, ξ(x) = [ρ1(x), · · · ρN (x)]T , with ρi (x) called a
basis function and is chosen as the commonly used
Gaussian function, which has the form

ρi (x) = 1√
2πσ

exp

(
−‖x − ζi‖2

2σ 2

)
, i = 1, . . .N.

(23)

Here, ζi ∈ R p is the center of the ith basis function and
σ is a positive real number representing the width of
basis functions.

Given a continuous real-valued function F(·) :
Rn → R on a compact set �x ⊂ Rn , and any δm > 0,
there exists an ideal weight vector w∗ ∈ RN such that

RBFNN w∗T ξ(x) can approximate the given function
F(·) with error δ∗, and the approximate formulation is

F(x) = w∗T ξ(x)+ δ∗, (24)

here |δ∗| ≤ δm and δ∗ is the network reconstruction
error. The formulation is

δ∗ = F(x)− w∗T ξ(x), (25)

the ideal weight vector w∗ is an artificial quantity
required only for analytic purpose. It is defined as the
value of w that minimizes |δ∗|, i.e.,

w∗ = arg min
w∈Rn

{
sup
ξ∈�ξ

∣∣∣F(x)− wT ξ(x)
∣∣∣
}
, (26)

it is clear that w∗ is usually unknown and needs to be
estimated.

3.2 Controller design for velocity subsystem

In this subsection, the control input is designed for
the velocity subsystem where input constraint (21) and
aerodynamic uncertainty are taken into consideration.

The dynamic equation (16) can be expressed as

V̇ = FV (V )+ φ, (27)

where FV (V ) = fV +gVφ−φ is an unknown function.
We only need one RBFNN to estimate the unknown
function. If the controller is designed based on (16), two
RBFNNs are needed to estimate unknown functions fV

and gV .
The velocity tracking error is defined as zV = V −

Vd , where Vd is the velocity reference command. The
velocity tracking error dynamic is

żV = FV (V )+ φ − V̇d . (28)

Note that FV (V ) is an unknown function. Based on
RBFNN(24), the approximate formulation of FV (V ) is

FV (V ) = w∗T
V ξV (V )+ δ∗V ,

∣∣δ∗V ∣∣ ≤ δm . (29)

Sincew∗
V needs to be estimated online, the represen-

tation ŵ∗
V denotes the estimation which is updated by

adaptive law. For the simplicity of writing, the function
arguments are removed in brief.

In order to systematically account for the constraints
during the controller design procedure of FAHV, we
will henceforth benefit from the method presented in
[68]. Inspired by the work in that literature, an addi-
tional system is constructed to analyze the impact of
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the input constraint (21), and the state of which is used
for controller design. The additional system has the
following formulation

σ̇φ =

⎧⎪⎨
⎪⎩

−kσφσφ − (|zV�φ|
+ 0.5�φ2)/σφ −�φ, |σφ | ≥ ψφ

0 |σφ | < ψφ

, (30)

where σφ is the state of the additional system. ψφ is a
small positive design parameter and should be chosen
as an appropriate value according to the requirement
of the tracking performance.�φ = φ − φc is the error
between the actual control inputφ provided by the actu-
ator and the desired control input φc designed by the
following control law.

Remark 2 From the backgrounds of FAHV, fuel equiv-
alence ratio must be positive, thus its constraint is asym-
metric, i.e., φmax �= −φmin. However, the constraint of
elevator deflection can be asymmetric or symmetric.
The method adopted here can tackle asymmetric and
symmetric input constraints simultaneously. Moreover,
from the stability analysis, we can obtain that the con-
trol inputs φ and δe produced by the designed control
inputs φc and δec can ensure the stability of the closed-
loop system.

The desired control input of the velocity subsystem
is designed as

φc = −kV (zV − σφ)+ V̇d − zVμφ(zV )

ξ2
φ + z2

V

− ŵ∗T
V ξV ,

(31)

with

μφ(zV ) = 0.5k2
V z2

V , ξ̇φ

=
{

−kξφ ξφ − μφ(zV )ξφ

ξ2
φ+z2

V
, |zV | ≥ ψV

0, |zV | < ψV

. (32)

Here,ψV > 0 and it should also be chosen as an appro-
priate value according to the requirement of the track-
ing performance. ŵ∗ is the estimation value ofw∗. The
adaptive law for ŵ∗ is as follows

˙̂w∗
V = �V (ξV zV − bV ŵ

∗
V ), (33)

where kV , bV > 0, and �V is a positive definite diag-
onal matrix.

Taking the velocity tracking error and estimation
error of ŵ∗ into consideration, the Lyapunov function
is constructed as

YV = 1

2
z2

V + 1

2
w̃∗T

V �−1
V w̃∗

V + 1

2
ξ2
φ + 1

2
σ 2
φ , (34)

where w̃∗
V = ŵ∗

V − w∗
V is the estimation error of w∗

V .
Using the derivative of YV with respect to time,

ẎV = zV żV + w̃∗
V�

−1
V

˙̂w∗
V + ξφξ̇φ + σφσ̇φ . Based on

(30)–(33), we have

ẎV = −kV z2
V − kσφσ

2
φ − kξφ ξ

2
φ + kV σφzV + zV�φ

− |zV�φ| − 1

2
�φ2 − σφ�φ

− z2
Vμφ(zV )

ξ2
φ + z2

V

− μφ(zV )ξ
2
φ

ξ2
φ + z2

V

− zV ŵ
∗T
V ξV

+ zVw
∗T
V ξV +zV δ

∗
V +zV w̃

∗T
V ξV −bV w̃

∗T
V ŵ∗

V ,

(35)

since

− z2
Vμφ(zV )

ξ2
φ + z2

V

= −μφ(zV )

+μφ(zV )ξ
2
φ

ξ2
φ + z2

V

, zV�φ − |zV�φ| ≤ 0,

μφ(zV ) = 1

2
k2

V z2
V , kV σφzV − σφ�φ

≤ 1

2
k2

V z2
V + σ 2

φ + 1

2
�φ2,

− zV ŵ
∗T
V ξV + zVw

∗T
V ξV + zV δ

∗
V

+ zV w̃
∗T
V ξV − bV w̃

∗T
V ŵ∗

V

= zV δ
∗
V − bV w̃

∗T
V ŵ∗

V

≤ z2
V + δm

4
− bV

2

∥∥w̃∗
V

∥∥2 + bV

2

∥∥w∗
V

∥∥2
,

equality (35) becomes

ẎV ≤ −(kV − 1)z2
V − (kσφ − 1)σ 2

φ − kξφ ξ
2
φ

−bV

2

∥∥w̃∗
V

∥∥2 + δm

4
+ bV

2

∥∥w∗
V

∥∥2
, (36)

where kV , kσφ > 1 are the parameters to be designed.

Remark 3 The constraint of fuel equivalence ratio in
control law (31) is shown through the role of the term
kV σφ based on the input constraint block (21) as fol-
lows.

If
∣∣σφ∣∣ ≥ ψφ > 0, there is input saturation: (a) If

φc ≥ φmax, the term kV σφ keeps changing to decrease
the designed input φc until φc = φmax. (b) Ifφc ≤ φmin,
the term kV σφ keeps changing to increase the designed
input φc until φc = φmin. Thus, φ = φmax or φ = φmin.

If
∣∣σφ∣∣ < ψφ, σ̇φ = 0, there is no input saturation,

�φ = 0. The term kV σφ makes the designed input
satisfy φmin ≤ φc ≤ φmax. Hence, φ = φc.
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3.3 Controller design for altitude subsystem

The altitude subsystem comprised dynamic equations
of altitude, FPA, AOA, and pitch rate. Given an altitude
reference command hd , the tracking error is defined as
zh = h − hd . Since the paper only considers the cruise
phase, without loss of generality, the FPA is generally
small. Using the approximation sin γ ≈ γ which is
valid for the small value of FPA as shown in Table 1,
the altitude tracking error dynamic is żh ≈ V γ − ḣd

[4,28–30]. The altitude is controlled via the tracking of
FPA reference command γd which is derived as follows

γd = [−kh(h − hd)+ ḣd ]/V, (37)

where kh > 0 is the parameter to be designed.
From aerospace engineering backgrounds of hyper-

sonic vehicle, there is a time scale separation between
altitude and FPA. Altitude dynamic can be regarded
as the “slow” time scale dynamic, while FPA dynamic
can be considered as the “fast” time scale dynamic.
The transient dynamics of the fast-state FPA occur so
quickly that they have negligible effect on the slow
states. The “fast” time scale controller attempts to
maintain the FPA close to its reference command γd

actual value in the “slow” time scale dynamic. That is
to say, in the altitude dynamic ḣ ≈ V γ , the relation
γd = γ holds after a very short time, so the dynamic of
altitude tracking error satisfies żh = V γd − ḣd . Sub-
stituting (37) into it yields [6,28]

żh = −khzh . (38)

Thus, if the flight path angle is controlled to follow the
reference command γd , the altitude can achieve stable
tracking of its reference command. In what follows,
we focus on designing the controller to achieve stable
tracking of FPA reference command.

In Eqs. (17)–(19), fγ (γ, α), gγ (γ, α), fα(γ, α, Q),
fQ(γ, α, Q), and gQ(γ, α, Q) are unknown. Five
RBFNNs are needed to approximate them. Motivated
by the research in [62], we can rewrite the Eqs. (17)–
(19) as the following formulation

γ̇ = Fγ (γ, α)+ α, (39)

α̇ = Fα(γ, α, Q)+ Q, (40)

Q̇ = FQ(γ, α, Q)+ δe, (41)

where the unknown functions Fγ (γ, α) = fγ (γ, α)+
gγ (α)α − α, Fα(γ, α, Q) = −Fγ (γ, α) + α, and
FQ(γ, α, Q) = fQ(γ, α, Q)+ G Qδe − δe are approx-
imated by three RBFNNs.

Using RBFNN (24) to carry out the approximation,
the above unknown functions can be expressed as

Fγ (γ, α) = w∗T
γ ξγ (x)+ δ∗γ ,

∣∣∣δ∗γ
∣∣∣ ≤ δm, (42)

Fα(γ, α, Q) = w∗T
α ξα(x)+ δ∗α,

∣∣δ∗α∣∣ ≤ δm, (43)

FQ(γ, α, Q) = w∗T
Q ξQ(x)+ δ∗Q,

∣∣δ∗Q∣∣ ≤ δm, (44)

the ideal weight vectors w∗
γ , w

∗
α , and w∗

Q are unknown
and need to be estimated. Furthermore, adaptive laws
are designed to update their estimations. In order to
reduce the computational burden, the MLP technique
proposed in [69,70] is employed to estimate the maxi-
mum norm of the ideal weight vectorsw∗

γ , w
∗
α , andw∗

Q
rather than their elements, so only one parameter needs
to be updated online. This parameter is defined as

ϕ = max
{∥∥w∗

l

∥∥2
, l = γ, α, Q

}
. (45)

Here, ϕ needs to be estimated because w∗
l is unknown.

The estimation is denoted as ϕ̂ with ϕ̂(t) ≥ 0.

Remark 4 In the paper, only one parameter ϕ needs
to be estimated online by the MLP technique during
RBFNN-based controller design procedure of altitude
subsystem. However, a lot of parameters need to be esti-
mated in the NN-approximation-based control scheme
for AHV, such as [45–48], which requires large com-
putational burden.

In what follows, the controller is designed for
(39)–(41) via synthesizing RBFNN and DSC tech-
nique. Similar to the backstepping control approach,
the design consists of three steps. In the first two steps,
the virtual control inputs (here, states AOA and pitch
rate are regarded as virtual control inputs) are devel-
oped. The actual control input is presented in the last
step. The altitude is controlled through the tracking of
FPA reference command γd given in (37). Thus, the
controller design begins from Eq. (39).

Step 1 We define the first error surface (FPA tracking
error) as Sγ = γ −γd , the time derivative along (39) is

Ṡγ = Fγ (γ, α)+ α − γ̇d . (46)

The virtual control input is designed as

αd = −
(

kγ + 1

2a2
γ

+ a2
γ

2

)
Sγ − a2

γ

2
Sγ ϕ̂ξ

T
γ ξγ +γ̇d ,

(47)

where kγ , aγ > 0 are the parameters to be designed.
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With the tracking error and RBFNN estimation error,
the Lyapunov function is constructed as

Yγ = 1

2
S2
γ + 1

2λ
ϕ̃2, (48)

where ϕ̃ = ϕ̂ − ϕ and λ is a positive parameter to be
designed.

Based on (39), the time derivative of Yγ is

Ẏγ = Sγ Fγ (γ, α)+ Sγ (α − αd)

+ Sγ αd − Sγ γ̇d + 1

λ
ϕ̃ ˙̂ϕ, (49)

using (42) and Young’s inequality, the first term on the
right-hand side satisfies

Sγ Fγ (γ, α) = Sγ (w
∗T
γ ξγ (x)+ δ∗γ )

≤ a2
γ S2

γ

2
w∗T
γ w∗

γ ξ
T
γ ξγ + 1

2a2
γ

+ a2
γ S2

γ

2

+ δ2
m

2a2
γ

≤ a2
γ S2

γ

2
ϕξ T
γ ξγ + 1

2a2
γ

+ a2
γ S2

γ

2
+ δ2

m

2a2
γ

,

(50)

submitting (47) and (50) into (49) yields

Ẏγ ≤ Sγ (α − αd)+ Sγ αd − Sγ γ̇d + a2
γ S2

γ

2
ϕξ T
γ ξγ

+ 1

2a2
γ

+ a2
γ S2

γ

2
+ δ2

m

2a2
γ

+ 1/λϕ̃ ˙̂ϕ

≤ Sγ (α − αd)− kγ S2
γ − S2

γ

2a2
γ

+1

λ
ϕ̃

(
˙̂ϕ − λa2

γ S2
γ

2
ξ T
γ ξγ

)
+ 1

2a2
γ

+ δ2
m

2a2
γ

. (51)

A new variable αd is obtained by letting αd pass
through the following first-order filter

ταα̇d + αd = αd , αd(0) = αd(0), (52)

where τα > 0 is the time constant.
The filter estimation error is defined as

χα = αd − αd . (53)

Step 2 We define the second error surface as

Sα = α − αd , (54)

from (53) and (54), (51) becomes

Ẏγ ≤ Sγ χα + Sγ Sα − kγ S2
γ

− S2
γ

2a2
γ

+ 1

λ
ϕ̃

(
˙̂ϕ − λa2

γ S2
γ

2
ξ T
γ ξγ

)

+ 1

2a2
γ

+ δ2
m

2a2
γ

, (55)

it should be pointed out that the coupling term Sγ Sα
will be cancelled in the subsequent step.

The time derivative of (54) along with (40) is

Ṡα = Fα(γ, α, Q)+ Q − α̇d . (56)

The virtual control input is developed as

Qd = −
(

kα + 1

2a2
α

+ a2
α

2

)
Sα

−a2
α

2
Sαϕ̂ξ

T
α ξα + α̇d − Sγ , (57)

where kα and aα are positive parameters to be designed,
and the last term on the right-hand side is used to cancel
the residual coupling term Sγ Sα in(55).

Taking the error surface into account, the following
Lyapunov function is constructed

Yα = 1

2
S2
α. (58)

The time derivative of Yα yields

Ẏα = SαFα(γ, α, Q)+ Sα(Q − Qd)

+ SαQd − Sαα̇d . (59)

Based on (43) and Young inequality, the first term
on the right-hand side satisfies

SαFα(γ, α, Q) ≤ a2
αS2
α

2
w∗T
α w∗

αξ
T
α ξα + 1

2a2
α

+ a2
αS2
α

2

+ δ2
m

2a2
α

≤ a2
αS2
α

2
ϕξ T
α ξα + 1

2a2
α

+ a2
αS2
α

2
+ δ2

m

2a2
α

,

(60)

where aα is a positive parameter to be designed.
Submitting (57) and (60) into (59) yields

Ẏα ≤ Sα(Q − Qd)+ SαQd − Sαα̇d

+a2
αS2
α

2
ϕξ T
α ξα + 1

2a2
α

+ a2
αS2
α

2
+ δ2

m

2a2
α

≤ Sα(Q − Qd)− kαS2
α − 1

2a2
α

S2
α

−a2
αS2
α

2
ϕ̃ξ T
α ξα − SαSγ + 1

2a2
α

+ δ2
m

2a2
α

. (61)

A new variable Qd is obtained by letting Qd pass
through the following first-order filter

τQ Q̇d + Qd = Qd , Qd(0) = Qd(0), (62)

where τQ > 0 is a time constant.
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The filter estimation error is defined as

χQ = Qd − Qd . (63)

Step 3 We define the third error surface as

SQ = Q − Qd , (64)

from (63) and (64), (61) becomes

Ẏα ≤ Sα(χQ + SQ)− kαS2
α − 1

2a2
α

S2
α

−a2
αS2
α

2
ϕ̃ξ T
α ξα − SαSγ + 1

2a2
α

+ δ2
m

2a2
α

. (65)

The time derivative of (64) along with (41) is

ṠQ = FQ(γ, α, Q)+ δe − Q̇d . (66)

Considering the constraint on elevator deflection
(22), an additional system is constructed to analyze the
effect of constraint [68]

σ̇δe =

⎧⎪⎨
⎪⎩

−kσδe σδe − (|SQ�δe|
+ 0.5�δ2

e )/σδe −�δe,
∣∣σδe

∣∣ ≥ ψδe

0,
∣∣σδe

∣∣ < ψδe

, (67)

where σδe is the state of the additional system. ψδe is a
small positive design parameter and should be chosen
as an appropriate value according to the requirement
of the tracking performance. �δe = δe − δec is the
error between the actual control input δe provided by
the actuator and the desired control input δec designed
by the control law.

The desired control input elevator deflection is
designed as

δec = −
(

1

2a2
Q

+ a2
Q

2

)
SQ − kQ(SQ − σδe )

+Q̇d − SQμδe (SQ)

ξ2
δe

+ S2
Q

− a2
Q

2
SQ ϕ̂ξ

T
QξQ − Sα,

(68)

with

μδe (SQ) = 1

2
k2

Q S2
Q, ξ̇δe

=
⎧⎨
⎩

−kξδe ξδe − μδe (SQ)ξδe
ξ2
φ+S2

Q
,

∣∣SQ
∣∣ ≥ ψQ

0,
∣∣SQ

∣∣ < ψQ

,

(69)

where ψφ is a small positive design parameter and
should be chosen as an appropriate value according to
the requirement of the tracking performance. In addi-
tion, ϕ̂ is the estimation of ϕ.

The adaptive law for ϕ̂ is given below

˙̂ϕ =
∑

l=γ,α,Q

λa2
l S2

l ξ
T
l ξl

2
− ϑλϕ̂, ϕ̂(0) ≥ 0, (70)

where kQ, kξδe , ϑ > 0 are parameters to be designed.

Remark 5 The constraint of fuel equivalence ratio in
control law (68) is shown through the role of the term
kQσδe based on the input constraint block (22).

If
∣∣σδe

∣∣ ≥ ψδe > 0, there is input saturation: (a)
Ifδec ≥ δemax, the term kQσδe keeps changing to make
the designed input δec decrease until δec = δemax. (b)
If δec ≤ δemin, the term kQσδe keeps changing to let
the designed input δec increase until δec = δemin. Thus,
δe = δemin or δe = δemax.

If
∣∣σδe

∣∣ < ψδe , σ̇δe = 0, there is no input saturation,
�δe = 0. The term kQσδe makes the designed input δec

satisfy δemin ≤ δec ≤ δemax, so δe = δec.
Considering the surface error and additional system,

the Lyapunov function is constructed as

YQ = 1

2
S2

Q + 1

2
ξ2
δe

+ 1

2
σ 2
δc
, (71)

the time derivative yields

ẎQ = SQ(FQ(γ, α, Q)+ δec +�δe − Q̇d)

+ ξδe ξ̇δe + σδe σ̇δe , (72)

using (44) and Young’s inequality, we have

SQ FQ(γ, α, Q) ≤ a2
Q S2

Q

2
w∗T

Q w∗
Qξ

T
QξQ

+ 1

2a2
Q

+ a2
Q S2

Q

2
+ δ2

m

2a2
Q

≤ a2
Q S2

Q

2
ϕξ T

QξQ + 1

2a2
Q

+ a2
Q S2

Q

2
+ δ2

m

2a2
Q

, (73)

where aQ is a positive parameter to be designed.
Submitting (68) and (73) into (72) yields

ẎQ ≤ SQδec + SQ�δe − SQ Q̇d

+a2
Q S2

Q

2
ϕξ T

QξQ

+ 1

2a2
Q

+ a2
Q S2

Q

2
+ δ2

m

2a2
Q

+ ξδe ξ̇δe + σδe σ̇δe

≤ −kQ S2
Q − 1

2a2
Q

S2
Q − a2

Q S2
Q

2
ϕ̃ξ T

QξQ
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−SαSQ + 1

2a2
Q

+ δ2
m

2a2
Q

− S2
Qμδe (SQ)

ξ2
δe

+ S2
Q

+kQσδe SQ +SQ�δe+ξδe ξ̇δe +σδe σ̇δe

︸ ︷︷ ︸
:=A

,

(74)

from (67) and (69), the term A on the right-hand side
of (74) satisfies

A = − S2
Qμδe (SQ)

ξ2
δe

+ S2
Q

+ kQσδe SQ + SQ�δe

− kσδe σ
2
δe

− kξδe ξ
2
δe

−μδe (SQ)ξ
2
δe

ξ2
δe

+ S2
Q

− (
∣∣SQ�δe

∣∣ + 0.5�δ2
e )

− σδe�δe, (75)

since − S2
Qμδe (SQ)

ξ2
δe

+S2
Q

= −μδe (SQ) + μδe (SQ)ξ
2
δe

ξ2
δe

+S2
Q
,

μδe (SQ) = 0.5k2
Q S2

Q, SQ�δe − ∣∣SQ�δe
∣∣ ≤ 0, and

kQσδe SQ − σδe�δe ≤ 0.5k2
Q S2

Q + σ 2
δe

+ 0.5�δ2
e , (75)

satisfies

A ≤ −(kσδe − 1)σ 2
δe

− kξδe ξ
2
δe
, (76)

submitting (76) into (74), the following inequality
holds

ẎQ ≤ −kQ S2
Q − 1

2a2
Q

S2
Q − (kσδe − 1)σ 2

δe

− kξδe ξ
2
δe

− a2
Q S2

Q

2
ϕ̃ξ T

QξQ

− SαSQ + 1

2a2
Q

+ δ2
m

2a2
Q

. (77)

Remark 6 This paper contains the following different
aspects compared to the existing results [6,45,46,48]
which investigate the controller design of AHV based
on DSC.

(a) The robustness of the designed scheme in [46] is
evaluated through different fuel levels. However,
the robustness of the scheme developed herein is
shown through aerodynamic uncertainty.

(b) Compared to the research in [6,45,48], we trans-
form the altitude subsystem into the formulation
(39)–(41) which does not need to estimate their
input coefficient functions using RBFNNs. More-
over, MLP technique is used to estimate the maxi-
mum norm of the ideal weight vectors of RBFNN

instead of their elements. Through combining DSC
and MLP techniques, the control strategy proposed
in this paper can simultaneously solve problems of
explosion of learning parameters and “explosion
of terms” which leads to a much simpler controller
with less computational load.

4 Stability analysis

In this section, the stability analysis for the rigid body
system is given on the basis of the former section. We
can obtain that the respective tracking errors of velocity
and altitude converge to the arbitrarily small neighbor-
hood around zero by appropriately choosing the design
parameters. In addition, stability of flexible states will
be evaluated through simulation in Sect. 5.

From (52)–(53) and (62)–(63), we have

α̇d = −χα
τα
, Q̇d = −χQ

τQ
, (78)

then the filter estimation error dynamics are

χ̇α = −χα
τα

− α̇d , χ̇Q = −χQ

τQ
− Q̇d . (79)

From (47) and (57), the following can be obtained

α̇d = −
(

kγ + 1

2a2
γ

+ a2
γ

2

)
Ṡγ

−a2
γ

2

(
Ṡγ ϕ̂ξ

T
γ ξγ + Sγ ˙̂ϕξ T

γ ξγ

)

−a2
γ

2
Sγ ϕ̂

(
∂(ξ T

γ ξγ )

∂γ
γ̇ + ∂(ξ T

γ ξγ )

∂α
α̇

)
+ γ̈d .

(80)

Q̇d = −
(

kα + 1

2a2
α

+ a2
α

2

)
Ṡα

−a2
α

2

(
Ṡαϕ̂ξ

T
α ξα + Sα ˙̂ϕξ T

α ξα

)

−a2
α

2
Sαϕ̂

(
∂ξ̇ T
α ξα

∂γ
γ̇ + ∂ξ̇ T

α ξα

∂α
α̇

)
+ α̈d − Ṡα.

(81)

The Lyapuonov function is chosen as

Y = YV + Yh + Yγ + Yα + YQ + 1

2
χ2
α + 1

2
χ2

Q .

(82)

Here Yh = 1
2 z2

h .
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Using the derivative of (82) with respect to time,

Ẏ = ẎV + Ẏh + Ẏγ + Ẏα + ẎQ + χαχ̇α + χQ χ̇Q .

(83)

From (36), (38), (55), (65), (70), and (77), it yields the
following inequality

Ẏ ≤ −(kV − 1)z2
V − (kσφ − 1)σ 2

φ − kξφ ξ
2
φ

−bV

2

∥∥w̃∗
V

∥∥2 − khz2
h − kγ S2

γ − 1

2a2
γ

S2
γ

− kαS2
α − 1

2a2
α

S2
α − kQ S2

Q

− 1

2a2
Q

S2
Q − (kσδe − 1)σ 2

δe
− kξδe ξ

2
δe

+ Sγ χα + SαχQ − ϑϕ̃ϕ̂ + χαχ̇α

+χQ χ̇Q + 1

2a2
γ

+ δ2
m

2a2
γ

+ 1

2a2
α

+ δ2
m

2a2
α

+ 1

2a2
Q

+ δ2
m

2a2
Q

+ δm

4
+ bV

2

∥∥w∗
V

∥∥2
, (84)

according to [62,63], (80) and (81) satisfy
∣∣α̇d

∣∣ ≤ cα

and
∣∣∣Q̇d

∣∣∣ ≤ cQ , respectively. Thus, based on (79), the

following inequality holds

χαχ̇α + χQ χ̇Q ≤ −χ
2
α

τα
− χ2

Q

τQ
+ a2

α

2
χ2
αcα

+ 1

2a2
α

+ a2
Q

2
χ2

QcQ + 1

2a2
Q

. (85)

Moreover,

ϕ̃ϕ̂ ≥ ϕ̃2

2
− φ2

2
, Sγ χα + SαχQ

≤ 1

2a2
γ

S2
γ + a2

γ χ
2
α

2
+ 1

2a2
α

S2
α + a2

αχ
2
Q

2
, (86)

submitting (85) and (86) into (84) yields

Ẏ ≤ −(kV − 1)z2
V − khz2

h − kγ S2
γ − kαS2

α

−
(

kQ + 1

2a2
Q

)
S2

Q − (kσφ − 1)σ 2
φ

− kξφ ξ
2
φ − (kσδe − 1)σ 2

δe

− kξδe ξ
2
δe

−
(

1

τα
− a2

γ

2
− a2

α

2
cα

)
χ2
α

−
(

1

τQ
− a2

α

2
− a2

Q

2
cQ

)
χ2

Q − bV

2

∥∥w̃∗
V

∥∥2

− 1

λ
λϑϕ̃2 + 1

2a2
γ

+ 1

a2
α

+ 1

a2
Q

+ δ2
m

2a2
γ

+ δ2
m

2a2
α

+ δ2
m

2a2
Q

+ δm

4
+ bV

2

∥∥w∗
V

∥∥2 + ϑϕ2

2

≤ −2εY + C, (87)

where

kV > 1, kσφ > 1, kσδe > 1, 0 < τα

<
2

a2
γ + a2

αcα
, 0 < τQ <

2

a2
α + a2

QcQ
,

ε=min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kV − 1, kh, kγ , kα, kQ + 1
2a2

Q
,

kσφ − 1, kξφ , kσδe − 1, kξδe ,
1
τα

− a2
γ

2 − a2
α

2 cα,
1
τQ

− a2
α

2 − a2
Q
2 cQ,

bV

2λmax(�
−1
V )
, λϑ2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

C = 1

2a2
γ

+ 1

a2
α

+ 1

a2
Q

+ δ2
m

2a2
γ

+ δ2
m

2a2
α

+ δ2
m

2a2
Q

+ δm

4

+bV

2

∥∥w∗
V

∥∥2 + ϑϕ2

2
. (88)

From (87), when Y = ς, Ẏ ≤ −2ες + C , if ε > C
2ς ,

then Ẏ ≤ 0 on Y = ς , so Y ≤ ς is an invariant set, i.e.,
if Y (0) ≤ ς , then Y (t) ≤ ς for all t ≥ 0. Therefore,
the inequality (87) holds for all Y (t) ≤ ς and t ≥ 0.

Standard arguments can now be applied to solve the
differential inequality (87) as follows

0 ≤ Y (t) ≤ C

2ε
+ (Y (0)− C

2ε
) exp(−2εt),∀t ≥ 0,

(89)

it is obvious that Y (t) is bounded by C
2ε , i.e., for

t ≥ 0, 0 ≤ Y (t) ≤ C
2ε . It can be concluded that

zV , zh, Sγ , Sα, SQ, σφ, ξφ, σδe , ξδe , χα, χQ, w̃
∗
V , and

ϕ̃ are semi-globally uniformly ultimate boundedness.
In what follows, it can be shown that the respective

velocity and altitude tracking errors can converge to
arbitrarily small neighborhoods around zero by suitably
choosing the controller parameters.

From inequality (89), the velocity and altitude track-
ing errors yield

|zV | ≤
√

C

ε
+

(
2Y (0)− C

ε

)
exp(−2εt),

|zh | ≤
√

C

ε
+

(
2Y (0)− C

ε

)
exp(−2εt), ∀t ≥ 0,

(90)
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thus

lim
t→∞ |zV | ≤ √

C/ε , lim
t→∞ |zh | ≤ √

C/ε, (91)

then the convergence domains of zV and zh can be
expressed as the following compact sets

RV =
{

zV

∣∣∣|zV | ≤ √
C/ε

}
,

Rh =
{

zh

∣∣∣|zh | ≤ √
C/ε

}
.

(92)

From (92), the altitude and altitude tracking errors
can converge to arbitrarily small neighborhoods around
zero by increasing ε sufficiently large, which can be
achieved by properly choosing the design parameters
in (88), i.e., aγ , aα, aQ, bV , and ϑ are fixed such
that C in (88) is independent of ε. Then, we can
choose kV , kh, kγ , kα, kQ, λ, kσφ , kξφ , kσδe , and kξδe
large enough and τα, cα, τQ, cQ , and λmax(�

−1
V ) small

enough to obtain large ε. In this way, the value of
C/ε can be arbitrarily small. Therefore, it can be con-
cluded that by appropriately choosing the parameters,
the velocity and altitude tracking errors can converge
to arbitrarily small neighborhoods around zero.

Remark 7 In the above sections, the controller design
and stability analysis are based on the consideration
of input constraint. If it is not taken into account, the
control inputs are designed as

φc = −kV zV + V̇d − zVμφ(zV )

ξ2
φ + z2

V

− ŵ∗T
V ξV , (93)

δec = −
(

1

2a2
Q

+ a2
Q

2

)
SQ − kQ SQ + Q̇d

− SQμδe (SQ)

ξ2
δe

+ S2
Q

− a2
Q

2
SQ ϕ̂ξ

T
QξQ − Sα. (94)

In the following section, we will compare the sim-
ulation results of different scenarios where input con-
straints are considered and not considered.

Table 2 Initial flight condition of the FAHV

State Value State Value

h(ft) 85000 η̇2 0

V (ft/s) 7846 η̇3 0

γ (rad) 0 η1 0.56196

α(rad) 0.0175 η2 −0.057072

Q(rad/s) 0 η3 −0.029406

η̇1 0

Table 3 Control input constraints

Control input Lower bound Upper bound

φ 0.1 1.2

δe(rad) −0.2618 0.2618

5 Simulations

In this section, the performance of the developed con-
trol strategy applied to the CFM model (1)–(6) is veri-
fied by means of simulations. The vehicle model para-
meters are referred from [50]. The fuel level is assumed
at 50 %. The initial flight condition of the vehicle is
given in Table 2. The limits are deliberately tightened
to explore the capability of the designed controller in
adhering to the limits. The constraints used are shown
in Table 3. Reference commands are smoothened via a
second-order transfer function with a natural frequency
ω f = 0.03rad/s and a damping ratio ξ f = 0.95.
The parameters adopted for control inputs, adaptive
laws, and additional systems are given in Table 4. The
following four scenario simulations are performed to
test the performance of the designed controller in han-
dling input constraints and aerodynamic uncertainty.
To demonstrate the robustness of the proposed control
scheme, two types of aerodynamic uncertainty are con-
sidered. CaseI: 30 % uncertainty of the aerodynamic
parameters is taken into account. CaseII: 20 % uncer-
taintyof the aerodynamic parameters is considered.

Table 4 Parameters of the
controller

Parameter Value Parameter Value Parameter Value Parameter Value

kV 20 bV 0.01 kQ 12 aγ , aα, aQ 1

kσφ 1.2 kh 2 ψV , ψQ , ψφ, ψδe 0.0001 λ 20

kξφ 0.0001 kγ 5 kξδe 2 kσδe 2

�V 10 kα 4 τα, τQ 0.05 ϑ 0.0002
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Fig. 2 Time responses of velocity, altitude, velocity tracking error, and altitude tracking error in Scenario 1. a Velocity V , b altitude
h, c velocity tracking error zV , d altitude tracking error zh

Scenario 1 Input constraints and aerodynamic uncer-
tainty are considered at the level of control design. In
this scenario, it is a climbing maneuver with longitudi-
nal acceleration, in which the altitude and velocity ref-
erence commands are chosen independently. The alti-
tude reference command hd is generated to make the
vehicle climb from 85,000 to 98,500 ft, and the veloc-
ity reference command Vd is generated to make the
vehicle accelerate from 7846 to 10,600 ft/s. The time
responses of applying control inputs (31) and (68) to
the CFM (1)–(6) to track the altitude and velocity ref-
erence commands are shown in Figs. 2, 3, and 4. From
the simulation result, we can obtain that the designed
controller can achieve a good tracking performance.

It is apparent from Fig. 2 that altitude and veloc-
ity stably follow their respective reference commands.
The velocity accelerates to 10,600 ft/s and the altitude
climbs to 98,500 ft in about 200 s. In case I, the maxi-
mum absolute values of the velocity and altitude track-
ing errors are less than 11 ft/s and 1.5 ft, respectively.
In case II, the maximum absolute values of the veloc-
ity altitude tracking errors are less than 2.5 ft/s and
1.5 ft, respectively. As can be observed from Fig. 3, the
altitude tracks the reference command via the stable
tracking of FPA reference command. The maximum
absolute values of FPA tracking errors are less than

0.0004 rad in both two uncertain cases. The maximum
absolute values of velocity, altitude, and FPA tracking
errors are much smaller than the magnitude of their ref-
erence commands. The control inputs that realize the
stable tracking of the reference commands are demon-
strated in Fig. 4. The saturation occurs in the fuel equiv-
alence ratio, while elevator deflection remains within
constraint in both the uncertain cases. During the sat-
uration phase, the tracking performance degrades as
given in Fig. 2. As shown in Fig. 4, the term kV σφ
makes the fuel equivalence ratio return to the linear
work space after about 53 and 63 s in case I and case
II, respectively. The designed controller recovers its
tracking performance after it comes out of saturation
phase as can be seen from Fig. 2. Moreover, as shown
in Fig. 4, three flexible states converge to their stable
values despite excitations.

Based on the simulation results of Scenario 1, the
following conclusions can be obtained. (a) Under the
same controller parameters and simulation condition,
different types of aerodynamic uncertainty have obvi-
ously different effects on the tracking performance of
velocity. The maximum absolute value of the velocity
tracking error increases as the uncertainty increases.
While in the two uncertain cases, the tracking per-
formance of altitude has no obvious change. (b) The
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Fig. 3 Time responses of FPA, FPA tracking error, AOA, and pitch rate in Scenario 1. a FPA γ , b FPA tracking error Sγ , c AOA α, d
pitch rate Q

Fig. 4 Time responses of control inputs: fuel equivalence ratio, elevator deflection, and flexible states in Scenario 1. a Fuel equivalence
ratio φ, b elevator deflection δe, c flexible state η1, d flexible state s η2, η3

time of saturation phase increases as the uncertainty
increases.

To show the efficiency of the proposed control
method in tackling input constraints, the controller
without considering input constraint is also employed
in the simulation studies for the purpose of comparison.

Scenario 2 In this scenario, input constraint is not
taken into consideration at the level of control design
but manually included at the level of simulation.

The above-mentioned two cases of uncertainty are
considered. Reference commands are chosen the same
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Fig. 5 Time responses of velocity, altitude, velocity tracking error, and altitude tracking error in Scenario 2. a Velocity V , b altitude
h, c velocity tracking error zV , d altitude tracking error zh

Fig. 6 Time responses of FPA, FPA tracking error, AOA, and pitch rate in Scenario 2. a FPA γ , b FPA tracking error Sγ , c AOA α, d
pitch rate Q

as that of Scenario 1. The controller is designed as that
given in Remark 7. The time responses of applying
control inputs (93) and (94) to the CFM (1)–(6) are
presented in Figs. 5, 6, and 7. It is clear that the system
becomes unstable as the control inputs hit their satu-

ration in both the uncertain cases. Moreover, it can be
observed that the speed of the control inputs which vio-
late their limits increases as the uncertainty increases.

In Scenario 1 and 2, an aggressive maneuver is con-
sidered. Dynamic pressure is changing. In order to
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Fig. 7 Time responses of control inputs: fuel equivalence ratio, elevator deflection, and flexible states in Scenario 2. a Fuel equivalence
ratio φ, b elevator deflection δe, c flexible state η1, d flexible states η2, η3

Fig. 8 Time responses of velocity, altitude, velocity tracking error, and altitude tracking error in Scenario 3. a Velocity V , b altitude
h, c velocity tracking error zV , d altitude tracking error zh

better present the effectiveness and feasibility of the
designed control strategy, we carry the scenarios that
dynamic pressure is constant.

Scenario 3 In this scenario, input constraints and aero-
dynamic uncertainty are considered simultaneously.

Two uncertain cases (cases I and II) are also taken
into account. However, the flight mission is different
from Scenario 1. It is a climbing maneuver at con-
stant dynamic pressure. The altitude reference com-
mand hd is generated to make the vehicle climb from
85,000 to 98,500 ft, whereas the velocity reference
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Fig. 9 Time responses of FPA, FPA tracking error, AOA, and pitch rate in Scenario 3. a FPA γ , b FPA tracking error Sγ , c AOA α, d
pitch rate Q

command Vd is computed according to the relation
Vd = (2qexp((hd − h0)/hs)/ρ0)

(0.5) to maintain the
constant dynamic pressure at 2075.44 psf during the
entire maneuver. The time responses of Scenario 3 are
shown in Figs. 8, 9, and 10.

From the simulation results, it can be observed that
the designed control strategy achieves the good track-
ing performance. As shown in Fig. 8, altitude and veloc-
ity stably follow their reference commands, respec-
tively. The vehicle climbs 13,500 ft in about 295 s,
while the velocity accelerates about 2,916 ft/s. The
tracking errors of velocity and altitude all converge
to the small neighborhoods around zero. The altitude
converges to its reference command through the sta-
ble tracking of FPA reference command. The maxi-
mum absolute values of the velocity, altitude, and FPA
tracking errors are also much smaller than those of ref-
erence commands. It is obvious from Fig. 10 that the
input saturation only occurs in fuel equivalence ratio.
Moreover, the flexible states converge to stable values
despite excitations.

Correspondingly, for comparison, simulation of the
following scenario is carried out.

Scenario 4 In this scenario, we do the simulation that
applies the RBFNN-based robust adaptive DSC con-

troller (93) and (94) to the CFM (1)–(6). The input
constraints are included manually at the level of simu-
lation instead of at the level of control design.

In this scenario, aerodynamic uncertainty is taken
into account. The time responses are depicted in
Figs. 11, 12, and 13 which exhibit the similar control
performance shown in Scenario 2. It is clear that the
system becomes unstable as the inputs hit their limits.

We can obtain the following conclusions based on
the above simulation results of four scenarios. On the
basis of the simulation results of Scenario 2 and 4, all
the variables under the designed controller tend to be
unstable, which implies that input constraint should
be considered during the controller design procedure
instead of manually implementing at the level of sim-
ulation. It is concluded from the simulation results of
Scenario 1 and 3 that the designed control strategy can
handle input constraint effectively. The input satura-
tion only occurs in the fuel equivalence ratio. Eleva-
tor deflection always keeps in their limits. Though the
maximum absolute values of altitude, velocity, and FPA
tracking errors occur during the saturation phase of the
fuel equivalence ratio, they are much smaller than those
of reference commands.

Although the vehicle climbs 13,500 ft in both two
scenarios, we can obtain that the velocity acceler-
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Fig. 10 Time responses of control inputs: fuel equivalence ratio, elevator deflection, and flexible states in Scenario 3. a Fuel equivalence
ratio φ, b elevator deflection δe, c flexible state η1, d flexible states η2, η3

Fig. 11 Time responses of velocity, altitude, velocity tracking error, and altitude tracking error in Scenario 4. a Velocity V , b altitude
h, c velocity tracking error zV , d altitude tracking error zh

ates to 10 762 ft/s in Scenario 3 from the relation
Vd = (2qexp((hd − h0)/hs)/ρ0)

(0.5). It is more than
that of Scenario 1, where the velocity accelerates to
10,600 ft/s. From the simulation results of Scenario 1
and 3, we can conclude the following three aspects:

(a) For the two uncertain cases, the maximum absolute
values of the velocity tracking error in Scenario 1
are all less than those of Scenario 3. However, the
maximum absolute value of the altitude tracking
error in Scenario 1 is nearly the same as that of
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Fig. 12 Time responses of FPA, FPA tracking error, AOA, and pitch rate in Scenario 4. a FPA γ , b FPA tracking error Sγ , c AOA α,
d pitch rate Q

Fig. 13 Time responses of control inputs: fuel equivalence ratio, elevator deflection, and flexible states in Scenario 4. a Fuel equivalence
ratio φ, b elevator deflection δe, c flexible state η1, d flexible states η2, η3

Scenario 3. The time of saturation phases in Sce-
nario 1 is shorter than that of Scenario 3.

(b) In both two scenarios, the maximum absolute value
of the velocity tracking error and the time of satu-
ration phase increases as the uncertainty increases.

Remark 8 In Sect. 4, the value
√

C/ε in (92) is only
a theoretical bound and cannot be computed in prac-
tical applications because of some unknown parame-
ters such as δm, w

∗
V , and ϑ . Since some inequalities

are employed in the stability analysis, this bound may
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be conservative. However, from the simulation results
in the subsequent section, the bounds of altitude and
velocity tracking errors are very small. Besides, from
the above stability analysis, if the gains are chosen
appropriately, it is possible to make C/ε as small as
desired and thus achieving regulation to a small neigh-
borhood around zero. The bound C/ε can be reduced
by increasing the gains kV , kh , kγ , kα , kQ , λ, kσφ , kξφ ,
kσδe , and kξδe or decreasing gains τα , cα , τQ , cQ , and

λmax(�
−1
V ). However, from a practical review, it should

be pointed out that increasing the gains can decrease
the bound of tracking error, but it would result in a vari-
ation of a high-gain control scheme. It not only makes
transient performance deteriorate, but also excites any
unmodeled dynamics of the system. So, the designer
should suitably choose the gains to make sure that
the steady-state tracking error can satisfy the practical
requirement, while keeping gains as small as possible
to obtain the ideal transient performance.

The simulation results of the above four scenarios
indicate that it is necessary to consider input constraint
during the controller design procedure. Under the
designed robust adaptive DSC control scheme, though
there are input constraint and aerodynamic uncertainty,
the desired tracking performance can be ensured and
satisfactory system responses can be achieved. We can
conclude that the proposed controller could simultane-
ously deal with uncertainty and input constraints (21)–
(22) effectively.

6 Conclusions

A robust adaptive dynamic surface controller based
on RBFNN is developed for a nonlinear longitudinal
model of FAHV, where input constraints and aerody-
namic uncertainty are taken into consideration. At first,
COM is derived from CFM and its equations of motion
are decomposed into velocity subsystem and altitude
subsystem to reduce the controller design complexity.
The flexible dynamics are taken as the perturbations of
the COM, and their effects are evaluated through sim-
ulation. Then the RBFNN-based robust adaptive con-
trol scheme is designed for the velocity subsystem; the
RBFNN-based robust adaptive DSC control scheme is
developed for the altitude subsystem. At the level of
control design, MLP technique is employed to esti-
mate the maximum norm of the ideal weight vectors

of RBFNN rather than their elements. It leads to the
large reduction of the computational burden. The prob-
lem posed by input constraints is overcome by addi-
tional systems. Their states are utilized for the con-
troller design and stability analysis. By suitably choos-
ing controller parameters, the designed control strategy
assures that the velocity and altitude tracking errors
can be very small even in the presence of aerodynamic
uncertainty and input constraint. The compared simu-
lations illustrate that the designed controller achieves
robust and stable tracking properties. In the paper, we
assume that all rigid body states of FAHV are mea-
sured, but it may be hard to measure some states such
as AOA and FPA. Our further work will focus on the
flight control problem of FAHV with input constraints
and part states unmeasured.
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