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Abstract In order to reveal the dynamics of brain net-
work, we proposed a new research method based on
the Hindmarsh–Rose model. In the method, a neural
network model was developed by constructing a func-
tional brain network topology based on functionalmag-
netic resonance imaging resting-state data and using
Hindmarsh–Rose neurons as nodes in place of the
brain regions belonging to the functional brain net-
work. The dynamics of the functional brain network
were investigated using the dynamics model. The sim-
ulation results showed that the dynamic behaviors of
the brain regions in the functional brain network could
be divided into three types: stable, chaotic, and period-
ical bursts. A state space was introduced to analyze the
dynamic behavior of the brain regions in the network.
We find that increasing excitation and mutual connec-
tion strength among brain regions enhanced network
communication capabilities in the state space. Both the
periodic and stable modes exhibited stronger commu-
nication capabilities than the chaotic mode. Despite
individual differences in the dynamics of brain regions
among subjects, brain regions in the periodic mode
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were highly consistent and corresponded to key regions
of the default mode network in the resting state.
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1 Introduction

Understandinghumanbrain dynamics is of great signif-
icance for developing artificial intelligence [1–5] and
treating neurological diseases such as Alzheimer’s dis-
ease (AD) and schizophrenia [6]. Current research on
brain dynamics is mainly conducted at the micro- and
macro-levels. Micro-level investigations are focused
on exploring the dynamic characteristics of individual
neurons or neural circuits at the cellular and molec-
ular levels, whereas electroencephalography (EEG),
functional magnetic resonance imaging (fMRI), and
other live-imaging technologies are used to reveal the
relationship between neuronal populations and their
advanced activities with related brain functions [7].

Since neurons are the most basic unit of neural sys-
tems, their spontaneous activity and interaction with
other neurons are the basis of brain information trans-
mission and information processing. In view of the
importance of neuron dynamics, many single-neuron
models were proposed in the twentieth century. In
1952, Hodgkin and Huxley proposed the Hodgkin–
Huxley model (H–H model) based on experimental
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data from the squid giant axon [8], which provides
a mechanistic description for the generation of mem-
brane action potentials when ions enter and exit neu-
ronal cells. However, the H–Hmodel is relatively com-
plex and has a high computational cost. Thus, it is
not suitable for large-scale calculations. FitzHugh and
Nagumo simplified the H–H model and proposed a
phenomenological FHNmodel [9,10]. Another similar
model is the Rössler oscillator [11,12]. The above two
models can be described using relatively simple equa-
tions for generating spikes and have low computational
cost; however, they cannot imitate all behaviors of bio-
logical neurons. Hindmarsh and Rose proposed the
Hindmarsh–Rose (HR) neuron model based on the dis-
charge data of snail nerve cells [13]. The HRmodel is a
universal model that can capture the essential dynam-
ics observed in single neurons, groups of neurons, and
brain areas [7]. The HR model not only generates peri-
odic and chaotic spikes as singletons, but also bursts
of spikes in periodic and chaotic ways. Some neurons
produce different dynamic behaviors in external vari-
ables, such as electromagnetic field and temperature.
Based on these phenomena, a thermosensitive neuron
model is proposed. Recently, Xu et al. investigated the
dynamic behavior of a thermosensitive neuron driven
by temperature and photocurrent [14,15]. Compared
with other neuron models, the HR model shows more
abundant dynamic phenomena, and can imitate several
behaviors of the thalamic nerve and reproduce some
behaviors of the neuron population [7]. In addition, it
saves computational time.

Owing to the limitations of current technology, it
is difficult to determine the interaction between neu-
rons in the brain with direct experimental measure-
ments, but one can simulate the interaction between
neurons by establishing a neural network coupled with
neuron models. There are many dynamic studies on
neural networks based on single-neuron models, such
as synchronous behavior among neurons in networks
[16]. Hizanidis et al. found chimeric states in cou-
pled HR neurons [17]. These dynamic behaviors have
been observed in the brain activity of aquatic mam-
mals and birds [18]. Malik et al. studied the synchro-
nization among coupled HR neurons and successfully
encoded and decoded neural signals using an HR neu-
ral network [19]. These dynamics studies based on sim-
ple structure networks with the HR model confirmed
certain dynamic characteristics of neuron populations.
Unfortunately, information on functional connectivity

of real brain regions is lacking in these studies. Thus,
the dynamic state of brain regions cannot correspond
to real brain functional activities.

On the other hand, with the development of nonin-
vasive imaging technologies, such as EEG, fMRI, and
positron emission tomography (PET), functional con-
nections between brain regions can be obtained, and
a functional brain network can be developed. A small-
world characteristic in functional brain networks, or the
existence of a high degree of clustering and a short path
between all elements, has been noted [20]. Therefore,
the human brain can effectively organize and trans-
mit internal and external information between multiple
brain regions to achieve collaboration between differ-
ent brain regions. Neurological diseases, such as AD
and schizophrenia, are related to changes in functional
connections between brain regions. Several research
groups have reported that the functional brain networks
of patients with AD show a loss of small-world proper-
ties with a significantly lower degree of clustering [21].
Noninvasivemeasurements revealed that the functional
brain networks of patients with schizophrenia exhibit
a decreased connectivity both at rest and at work com-
pared with those of healthy controls; that is, the dis-
ruption of small-world characteristics in the functional
brain networks of such patients [22,23]. Therefore, the
topology of connections between brain regions is very
important for proper brain function.

Building a neural network with a brain network con-
nection structure and neuron dynamics has become a
popular method for studying brain dynamics. Santos et
al. built the brain structure network of a cat with HR
neurons as nodes and obtained chimera-like states in a
dynamic networkmodel [24].Kang et al. used diffusion
spectrum imaging (DSI) data to construct a network
model with a human brain connection structure based
on the FHN model and analyzed synchronization and
chimera states [25]. Pariz et al. [26] explored informa-
tion transmission in a network. Ziaeemehr et al. stud-
ied the impact of delays on the collective dynamics of
brain networkswith amodular structure [27]. However,
above dynamic behavior of the structural network does
not correspond to actual brain function. The human
brain selectively stimulates certain regions according
to different tasks, whereas there may be no structural
connection between these brain regions, an effect that
can be measured by fMRI. The low-frequency oscil-
lations of resting fMRI signals are related to spon-
taneous neuronal activity and have clear physiologi-
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cal and pathological significance [28]. Functional con-
nectivity reflects the correlation between brain regions
when fMRI signals are measured. Some brain regions
that are not directly connected in a structure may be
correlated with each other in function [29]. The func-
tional brain network is flexible and changes under dif-
ferent conditions. However, structural networks cannot
reflect this information. Functional networks can more
directly reflect the interactions between brain regions
under different conditions. Therefore, It is a better way
to introduce functional brain network structures in the
study of brain dynamics.

To explore the dynamic behavior of brain regions in
the human brain, we established a brain neurodynamic
model with an HR model and a functional brain net-
work constructed using fMRI data in the resting state.
The human brain exhibits chaotic dynamics and rapid
switching between chaotic and periodic states during
advanced neural activities. Therefore, neurons in the
brain may also have rich dynamic characteristics. In
view of the advantages of HR neurons in describing the
rich dynamic behaviors of neural systems and their rel-
atively concise mathematical expressions, in this study,
we aimed to construct a neural network using HR neu-
ron as a node in place of a brain region. By studying
the dynamics of brain regions, the dynamic behavior of
the whole functional brain network in the resting state
was revealed. To analyze the characteristics of differ-
ent dynamicmodes of brain regions, a two-dimensional
state space composed of the burst time width and the
number of spikes in the burst was introduced [30].

The remainder of this paper is organized as fol-
lows. The method of constructing functional brain net-
works in the resting state is introduced in Sect. 2. The
characteristics of HR neurons and the dynamic model
of functional brain networks are described in Sect. 3.
Section 4 investigates the dynamic characteristics of
functional brain networks. The similarities and differ-
ences between the different subjects were compared.
Section 5 discusses our results using the default mode
network (DMN). The conclusions are presented in the
last section.

2 Topological structure of a functional brain
network in the resting state

The functional brain network in this study was con-
structed based on fMRI resting-state data. As a com-

monly used nondestructive method in neuroscience,
fMRI detects neuronal activity by recording blood oxy-
genation level-dependent signals, caused by changes in
oxygenated and deoxygenated proteins in the blood.
In this study, whole-brain fMRI data from 15 sub-
jects were collected in the resting state. Subjects were
instructed to keep their eyes closed, relax their minds,
and remain as still as possible during data acquisition.
We used anatomical automatic labeling as proposed by
the Montreal Neurological Institute (MNI) to divide
the brain into 90 regions, as shown in Table 1. After
performing noise removal and position correction on
the fMRI data, we calculated the Pearson correlation
according to Eq. (1), where X i and X j are fMRI sig-
nals of the i-th and j-th brain regions, respectively. T
represents the lengths of Xi and X j and is equal to 180
here. X i and X j are the average values of X i and X j,
respectively. The Pearson correlation is the most pop-
ular method for calculating the correlation coefficients
of brain regions. Figure 1 shows the correlation matrix
(90 × 90) among the brain regions of subject No. 9.
Ordinate and abscissa correspond to a serial number
of brain regions, and the correlation coefficients are
shown by color bars.

Rij =
∑T

t=1

(
X i(t) − Xi

) (
X j(t) − X j

)

√∑T
t=1 (X i(t) − X i)2

√∑T
t=1 (X j(t) − X j )2

.

(1)

When determining whether two brain regions are
connected according to correlation strength, a thresh-
old of the Pearson correlation should be introduced to
eliminate the interference of experimental noise while
at the same time maintaining a proper connection den-
sity between the brain regions of functional brain net-
works. The threshold value is usually based on the cri-
terion that the connection density of functional brain
networks is approximately 20%, and there is no iso-
lated brain region in the network. By analyzing the
connection matrices from the fMRI data of 15 sub-
jects, we chose the threshold of the correlation coeffi-
cient to be 0.36. If the absolute value of the correlation
coefficient between any two brain regions is greater
than 0.36, a connection between the two brain regions
exists, and the connection coefficient is 1. Otherwise,
there is no connection between these two brain regions
and the connection coefficient is 0. The Pearson corre-
lation matrix was then changed to a connection matrix
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Table 1 Regions of interest included in the AAL-atlas (45 in each cerebral hemisphere, 90 in total, odd/even numerical order for
left/right hemisphere)

Number Region Abbreviation Number Region Abbreviation

1,2 Amygdala AMYG 47,48 Middle occipital gyrus MOG

3,4 Angular gyrus ANG 49,50 Superior occipital gyrus SOG

5,6 Calcarine cortex CAL 51,52 Olfactory OLF

7,8 Caudate CAU 53,54 Pallidum PAL

9,10 Anterior cingulate gyrus ACG 55,56 Paracentral lobule PCL

11,12 Median cingulate gyrus DCG 57,58 Parahippocampal cortex PHC

13,14 Posterior cingulate cortex PCC 59,60 Inferior parietal lobule IPL

15,16 Cuneus CUN 61,62 Superior parietal gyrus SPG

17,18 Inferior frontal gyrus (opercular) IFGoperc 63,64 Postcentral gyrus PoCG

19,20 Orbitofrontal cortex (inferior) ORBinf 65,66 Precentral gyrus PreCG

21,22 Inferior frontal gyrus (triangular) IFGtriang 67,68 Precuneus PCUN

23,24 Superior frontal cortex (medial orbital) ORBsupmed 69,70 Putamen PUT

25,26 Middle frontal gyrus MFG 71,72 Rectus gyrus REC

27,28 Orbitofrontal cortex (middle) ORBmid 73,74 Rolandic operculum ROL

29,30 Superior frontal gyrus (dorsal) SFGdor 75,76 Supplementary motor area SMA

31,32 Superior frontal gyrus (medial) SFGmed 77,78 Supramarginal gyrus SMG

33,34 Orbitofrontal cortex (superior) ORBsup 79,80 Inferior temporal gyrus ITG

35,36 Fusiform gyrus FFG 81,82 Middle temporal gyrus MTG

37,38 Heschl gyrus HES 83,84 Temporal pole (middle) TPOmid

39,40 Hippocampus HIP 85,86 Temporal pole (superior) TPOsup

41,42 Insula INS 87,88 Superior temporal gyrus STG

43,44 Lingual gyrus LING 89,90 Thalamus THA

45,46 Inferior occipital gyrus IOG

Fig. 1 Correlation coefficients of brain regions. Colors indicate
the correlation strength between two brain regions

according to Eq. (2)

Cij =
{
0 if

∣
∣Rij

∣
∣ < 0.36

1 if
∣
∣Rij

∣
∣ ≥ 0.36

, (2)

where Cij is the connection coefficient between the i-
th brain region and the j-th brain region, and Rij is the
correlation coefficient between the i-th brain region and
the j-th brain region.

Functional brain networks in the resting state can be
obtained on the basis of the connection matrix C . The
i-th brain region is connected to the j-th brain region
if Cij is 1. Otherwise, the two brain regions are not
connected. The topological structure of the functional
brain network for subject No. 9 is shown in Fig. 2.

A dynamic model of functional brain networks
should be developed to investigate the dynamics of
functional brain networks. Considering the chaotic
dynamics of the nervous system and the advantages
of the HR neuron, we introduced the HR model into
the functional brain network and proposed a method to
establish a corresponding dynamic model of brain net-
works, in which an HR neuron replaced a brain region
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Fig. 2 Network topology of subject No. 9 (lateral and axial
views). The functional brain network connection structure dia-
gram after threshold processing. Nodes represent corresponding
brain regions and are connected by a straight line if there is a
connection between the two brains. The figure is plotted with
BrainNet Viewer [31]

to construct the dynamic model of a functional brain
network.

3 Functional brain network model based on HR
neural network

3.1 HR neuron model

For the HR model, the dynamics of a neuron are deter-
mined using Eq. (3)

ẋ = y − ax3 + bx2 − z + Ibias
ẏ = c − dx2 − y
ż = r [s(x − xr) − z]

, (3)

where x represents the neuron membrane potential, y
describes the fast current, z is the slow current, Ibias is
the bias current that maintains the spontaneous activi-
ties of the neuron, and a, b, c, d, r , s, and xr are param-
eters. The dynamics of an HR neuron are affected by
parameter settings.

We take these parameters as a = 1.0, b = 3.0,
c = 1.0, d = 5.0, s = 4.0, r = 0.006, xr = −1.56.
The initial values of x , y, and z are randomly gen-
erated between 0 and 1. Figure 3 shows three typical
dynamic states of anHRneuronwith Ibias set to 1.2, 1.6,
and 2.9. The periodic single-pulse discharge in Fig. 3a
corresponds to an Ibias of 1.2. Figure 3b shows stable
bursts with the same spikes when Ibias is 1.6. As Ibias
increases, chaotic bursts with different spikes appear,
and the state of the HR neuronwith Ibias of 2.9 is shown

(a)

(b)

(c)

Fig. 3 Neuronmembrane potential x . a Ibias = 1.2, single-spike
continuous periodic discharge. b Ibias = 1.6, stable bursts with
the same spikes. c Ibias = 2.9, chaotic bursts with different spikes
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in Fig. 3c. It can be observed from Fig. 3 that different
Ibias values can change the dynamic characteristics of
HRneurons andmakeHRneurons exhibit rich dynamic
characteristics.

3.2 Functional brain network dynamics model

The topological structure of a functional brain net-
work only exhibits a connection between brain regions
and does not include information about the interaction
strength between brain regions. The synapse weight
should be determined as a neural network in response
to a functional brain network. Since the correlation
coefficient from fMRI data reflects the strength of
cooperation between any possible brain region pair, a
strong correlation implies close information transmis-
sion on activities in related brain regions. Therefore,
the synapse weights of the neural network, represent-
ing the strength of information transmission between
two neurons, can be defined by the Pearson correlation
coefficients among brain regions. In this way, an HR
neural networkwith 90 nodes is constructed to simulate
the dynamics of functional brain networks, as described
by Eq. (4) [17]

ẋi = yi − ax3i + bx2i − zi + Ibias + σ
90

∑90
j=1 Wi j x j

ẏi = c − dx2i − yi + σ
90

∑90
j=1 Wi j y j

żi = r [s(xi − xr) − zi]

,

(4)

where Wi j is the synapse weight of the network and
Wi j = Ci j Ri j . Unlike a single neuron, xi represents
the spontaneous signal of the i-th brain region related
to the self-interaction between brain regions. Owing
to the magnitude difference between the correlation
coefficients and the synapse weights, a gain factor σ

is introduced in Eq. (4).

4 Dynamic characteristics of functional brain
networks

4.1 Dynamic characteristics of an individual
functional brain network

First, we investigated the dynamics of an individual
functional brain network. Subject No. 9 was selected
randomly as an example of the analysis. The parameters
in the network described by Eq. (4) were the same as

those of the HRmodel in 3.1. That is, a = 1.0, b = 3.0,
c = 1.0, d = 5.0, s = 4.0, r = 0.006, xr = −1.56,
while both the gain factor σ and Ibias were taken to be
1.2. The fourth-order Runge–Kutta method was used
to solve the differential equations. The step length was
taken as 0.05, and the simulation range lasted from 0 to
50000. The initial values of x , y, and z were randomly
set between 0 and 1.

An HR neuron with an Ibias of 1.2 shows the peri-
odic single-pulse discharge in Fig. 3a, but all regions
in the functional brain network with the same param-
eters are converted into bursts of spikes, as shown in
Fig. 4. The parameters of the nodes are the same, but
there are differences in the bursts of nodes owing to
the functional brain network connection structure, as
shown in Fig. 4a–f. It can be observed that the burst
frequency is not the same for different brain regions.
The spike number in one burst is obviously variable
for some brain regions shown in Fig. 4a–f, whereas
the spike number in one burst appears stable for other
brain regions shown in Fig. 4b–d. This reveals that the
dynamic behaviors of the different nodes are different.

To distinguish the dynamic properties of different
brain regions, we counted the number of spikes in
their bursts. As shown in Fig. 5, we identified three
burst types. In Fig. 5a, the spike numbers of bursts
remain constant, as in the right angular gyrus (ANG,
R). In Fig. 5b, the spike numbers of bursts appear non-
periodic, as in the left inferior frontal gyrus (triangu-
lar) (IFGtriang, L). Figure 5c illustrates quasi-periodic
spike numbers, as in the left cuneus (CUN, L). Next, we
used a spatial transformation to analyze the burst peri-
odicity. The spike number of the n-th burst of one brain
region is Mn , and the total number of bursts in the time
range of [0, 50000] is N. The spatial transformation is
defined as:

F[k] =
∣
∣
∣
∣
∣

N−1∑

n=0

Mne
−i2πkn/N

∣
∣
∣
∣
∣
/N . (5)

The spatial transformations of the three types of
bursts are shown inFig. 6. It canbeobserved that F[k] is
zero in Fig. 6a, corresponding to the constant burst type
in Fig. 5a, whereas F[k] in Fig. 6c exhibits a peak with
a maximum of approximately 0.4, reflecting the quasi-
periodic burst type in Fig. 5c, and F[k] is randomly
distributed in Fig. 6b, indicating the non-periodic type
in Fig. 5b. The three types of F[k] distributions corre-
spond to the three bursting modes of brain regions that
are stable, chaotic, or periodic.
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Fig. 4 Time evolution of x
for different brain regions in
the functional brain network
of subject No. 9. a Right
amygdala (AMYG, R). b
Left angular gyrus (ANG,
L). c Right orbitofrontal
cortex (inferior) (ORBinf,
R). d Right posterior
cingulate cortex (PCC, R). e
Right cuneus (CUN, R). f
Right precentral gyrus
(PreCG, R)

(a) (b)

(c) (d)

(e) (f)
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(a)

(b)

(c)

Fig. 5 Spike numbers in bursts. aRight angular gyrus (ANG,R),
stable value. b Left inferior frontal gyrus (triangular) (IFGtriang,
L), non-periodic evolution. cLeft cuneus (CUN,L), periodic evo-
lution. All nodes have the same parameters described in Sect. 4.1

(a)

(b)

(c)

Fig. 6 Distribution of number evolution after spatial transfor-
mation. a Right angular gyrus (ANG, R), stable value. b Left
Inferior frontal gyrus (triangular) (IFGtriang, L), non-periodic
evolution. c Left cuneus (CUN, L), periodic evolution
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Fig. 7 Burstingmodes of brain regions in the subjectNo. 9 (axial
views). Red indicates periodic bursting, blue indicates chaotic
bursting, and green indicates stable bursting. The figure is plotted
with BrainNet Viewer [31]

The bursting modes of the brain regions were sus-
ceptible to the initial values. To eliminate the depen-
dence of the initial values, 200 repeated simulations
were performed with different initial values. There-
fore, the statistical stability of the output states of the
network was ensured. We classified the bursting mode
types of the brain regions according to a standard. If
the probability of the periodic bursting mode or sta-
ble bursting mode appearing in a brain region was
more than 50%, then the bursting mode of the brain
region was considered to be periodic or stable, respec-
tively. Otherwise, it was considered a chaotic burst-
ing mode. The bursting modes of all brain regions in
subject No. 9 are shown in Fig. 7. We found that the
dynamic states of the left and right hemispheres of the
subject were asymmetric, consistent with the known
asymmetric function of the left and right brain hemi-
spheres.

4.2 Homogeneity of functional brain networks for 15
subjects

We investigated the dynamics of the brain regions of
the functional brain networks in 15 subjects using the
same method and found that the dynamic character-
istics of brain regions were basically consistent with
those of subject No. 9. In other words, there are three
types of burstingmodes in the functional brain network,
as shown in Fig. 6.

4.2.1 Communication capabilities of bursting modes

The dynamic modes of brain regions vary under dif-
ferent circumstances. For a neural system proceeding
from a resting state to a working mode, its dynamics
will go from chaotic to cyclical [32]. Therefore, the
dynamics of brain regions play a very important role
in the transmission and processing of information. To
determinewhich of the three burstingmodes represents
the active mode of brain regions in the resting state, it
is necessary to analyze and compare the communica-
tion capabilities of the three bursting modes. External
regular signals were added to the nodes of networks
to explore the communication capabilities of different
modes, as Pariz et al. did [33]. A sinusoidal signal was
added to all nodes of the network, as described in Eq.
(6)

ẋi = yi − ax3i + bx2i − zi + Ibias + Iext
+ σ

90

∑90
j=1 Wi j x j

ẏi = c − dx2i − yi + σ
90

∑90
j=1 Wi j y j

żi = r [s(xi − xr ) − zi ]
Iext = 40 × 1.2 × sin(2π t/cycle)

, (6)

where Iext is the external stimulus signal. All param-
eters used in the equation are the same as those in
Sect. 4.1. To eliminate the interference caused by dif-
ferent initial conditions, we set the initial values of xi ,
yi , and zi to 0. Figure 8a shows the spontaneous out-
puts of a brain region without external input, whereas
Fig. 8b shows the outputs of the brain region with the
sinusoidal signal added. Next, we performed a Fourier
transform on the outputs of the brain regions with and
without the sinusoidal signal added. Figure 8c and d
shows the cycle spectrum of brain regions with and
without an external stimulus signal. The response inten-
sity of the sinusoidal signal in the cycle spectrum was
used to characterize the communication capability of
the brain. Figure 9 shows the average response strength
of the three modes in the functional networks of the
15 subjects with different cycles. In most cases, the
response intensities of both the stable and periodic
modes were almost the same and stronger than those
of the chaotic modes. In addition, we noticed that the
non-periodic modes of many brain regions were trans-
formed into periodic modes when the sinusoidal stim-
ulus was added, which means that the periodic mode is
an active state.

Although the above method can intuitively provide
the communication capabilities of different bursting
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Fig. 8 a and b show the
outputs of the right angular
gyrus (ANG, R) of subject
No. 9 before and after the
sinusoidal signal is added.
With the addition of
sinusoidal signals, the
dynamics of the brain
region were more abundant.
c Cycle spectrum without
sinusoidal stimulation. d
Spectrum distribution with
added sinusoidal
stimulation. We performed a
Fourier transform on the
brain region outputs in time
t of the Hindmarsh–Rose
(HR) model. Because the
unit of t has not been set in
the HR model, the
intensities of the Fourier
transform of brain region
outputs are expressed in
cycles. The frequency is
proportional to the inverse
of the cycle

(a) (b)

(c) (d)

Fig. 9 The average response intensity of three modes of 15
subjects. Stable mode and periodic mode have similar response
intensity in different cycles. The response strength of the chaotic
mode is the weakest

modes, there is still a shortcoming. We used func-
tional brain networks of the resting state as the con-
nection structures of the networks used. This means
that the subjects did not perform any specific tasks

when the functional correlation information was mea-
sured. Regular external stimuli should not be added to
resting brain networks. Otherwise, they will go against
the initial conditions of the experiment. To avoid this,
we introduced a state space to analyze and compare
the communication capabilities of the three bursting
modes.

4.2.2 State space

The two-dimensional state space is formed by the aver-
age time width of bursts and the average spike number
of bursts. It can be used to describe the communica-
tion behavior between neuron populations [30]. We
first explored the feasibility of analyzing the dynam-
ics of functional brain networks using the state-space
method. In our model, increasing bias current Ibias and
gain coefficientsσ correspond to increasing excitability
and connection strength, respectively.We simulated the
dynamic behaviors of the functional brain networks of
15 subjects under different bias currents Ibias and differ-
ent gain coefficients σ . The remaining parameters were
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the same as those described in Sect. 4.1. Considering
that the final state of the networks is susceptible to the
initial values, repeating simulations were performed to
ensure statistical stability for the network output states.
The state distributions of all brain regions for 15 sub-
jects at different Ibias values in the state space are shown
in Fig. 10a. A resting brain network is thought to be in
the critical state of multiple modes to quickly respond
to external stimulations [34,35]. Therefore, the fitting
curves of the distributions can be used as the separa-
trixes of the state space. Figure 10b shows the fitting
curves at different Ibias values. The space is divided
into two areas based on fitting curves, such as threshold
curve.When the state of a brain region is above the sep-
aratrix in the state space, the output of the brain region
can be effectively responded and transmitted among
brain regions. Otherwise, it cannot be delivered effec-
tively.We define the area above the separatrix as a com-
municable area and that below as a non-communicable
area. Therefore, the size of the communicable area rep-
resents the strength of the communication capabilities.
The position of the separatrix is related to the dynam-
ics of the neural network and its connection struc-
ture. Enhancing excitability and synaptic weights can
improve the communication capability [30]. As shown
in Fig. 10b, as the Ibias increases, the fitting lines grad-
ually move down and right, indicating that the infor-
mation transmission capabilities of networks become
stronger. The state distribution of the brain regions in
the state space under different gain coefficients σ is
shown in Fig. 10c. As the gain coefficient σ increases,
the spontaneous signals of the brain regions are more
widely distributed in the state space, showing stronger
communication capabilities. The results are identical
to the theory proposed by Hahn et al. [30], indicating
that the state-space method is feasible in our model.

We then used the state-space method to identify
the communication capabilities of different bursting
modes. The state distributions of the different burst-
ing modes in the state space are shown in Fig. 11a–c.
The dynamic parameters in the networks of the 15 sub-
jects were the same as those in Sect. 4.1. Observing
the state distributions of different dynamic modes in
the state space, one can find a stepwise state distribu-
tion of the stable mode, whereas the distributions of
the other modes are relatively random. We speculate
that brain regions in stable modes transmit signals only
in critical states, but not in active states. The fitting
curves of the different bursting modes are plotted in

(a)

(b)

(c)

Fig. 10 The spontaneous signal distributions of brain regions for
15 subjects in the state space under different parameters. In order
to obtain sufficient data, each parameter is repeated four times.
a σ = 1.2, different Ibias. b σ = 1.2, fitting curves of different
Ibias in state space. c Ibias = 1.2, different gain coefficients σ
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Fig. 11 The spontaneous
signal distributions of brain
regions with different
modes in the state space. a
Stable mode. b Chaotic
mode. c Periodic mode. d
Fitting curves of the three
dynamic modes in the state
space. Data are obtained
from functional brain
networks of 15 subjects by
repeating 200 times

(a) (b)

(c) (d)

Fig. 11d. The red curve representing the periodic mode
is locatedon the right side of the blue curve representing
the chaotic mode, meaning that the periodic mode has
a larger communicable area in the state space than that
of the chaotic mode. When a brain region periodically
oscillates, resonance can provide a newcommunication
mode between brain regions so that a weaker signal can
also be successfully transmitted [30,36]. In summary,
we consider that the brain regions with a periodic mode
are active. The results of the communication capabil-
ities of different bursting modes using the state-space
method are identical to those of the response to external
regular signals.

4.2.3 Bursting mode distribution in the brain

Weperformed a statistical analysis of the burstingmode
distribution in the brains of 15 subjects. The results
are shown in Fig. 12. We found some differences in
bursting mode distributions in the brain regions of the
15 subjects. To reveal similarities among all subjects,
we counted the frequency of all bursting modes in all
brain regions in all subjects. The results are shown in

Fig. 13. There are 12 brain regions, namely the left and
right posterior cingulate cortex (PCC, L & R), right
superior frontal cortex (medial orbital) (ORBsupmed,
R), left parahippocampal cortex (PHC, L), left inferior
parietal lobule (IPL, L), right inferior temporal gyrus
(ITG, R), left middle temporal gyrus (MTG, L), left
cuneus (CUN , L), left inferior frontal gyrus (opercular)
(IFGoperc, L), right inferior frontal gyrus (triangular)
(IFGtriang, R), left paracentral lobule (PCL, L), and
left inferior occipital gyrus (IOG, L), with a common
active status; that is, those brain regions in at least 7 of
the 15 subjects that exhibit periodic bursting modes.

5 Discussion

To date, many studies have focused on functional brain
networks in the resting state. In 1997, Shulman et
al. first discovered that the activity of certain specific
cerebral cortices decreased when subjects performed
tasks [37]. Subsequently, Raichle et al. used PET to
show that these brain regions with reduced activity dur-
ing task performance show stronger excitability than
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Fig. 12 Dynamic mode of all brain regions in 15 subjects

Fig. 13 Number of subjects with the same mode in 90 brain regions. The abscissa indicates the brain region, and the ordinate the
number of subjects of the mode

other regions, indicating an organizational activity in
the brain resting state [38], rather than at complete
rest. The network of brain regions participating in this
self-organizing activity is called the default mode net-
work (DMN). Since then,many studies related toDMN
have been reported. These studies were carried out
in different ways, such as task-driven, disease state–
DMN relationships, functional connectivity processes,
self-referential processing and mind-wandering, neu-
rophysiology, and cell biology [39]. The default brain
network in the resting state is mainly composed of
the ventral medial prefrontal cortex (VMPC), dorsal
medial prefrontal cortex (DMPC), PCC, andhippocam-
pal formation (HF, including the entorhinal cortex and
surrounding cortex, e.g., PHC, IPL, lateral temporal
cortex (LTC), and other core brain regions) [40].

The PCC and the medial precuneus are prominent
areas of the DMN and were the first to come to atten-
tion [39]. In our study, the PCC (L & R) were acti-
vated (periodic mode) in the functional brain networks
of most subjects, consistent with previous studies on
the DMN. The HF and PHC form a subsystem of the
default brain network, which is closely connected to
the PCC [40]. Our results showed that the PHC (L) of
eight subjects was in the periodic mode.

The VMPC is a key area of the default brain net-
work. It receives and transmits external information to

the hypothalamus, amygdala, and other structures via
the orbital frontal cortex [39]. The default brain net-
work with VMPC as a core node participates in social
behavior and emotional control, which are the main
causes of individual personality. In our study, ORB-
supmed (R), a brain region with a relatively high con-
sistency of periodic mode in all subjects, was located
exactly in the VMPC, which is the key node of infor-
mation transmission.

TheDMPC is another key area of theDMN,which is
related to self-referential judgments [39].WhenDMPC
activity increases, VMPC activity decreases, which
is consistent with the need to reduce the impact of
emotions during tasks. Interestingly, in our results,
IFGoperc (L) and IFGtriang (R), two highly consistent
periodic-patterned brain regions, were located near the
DMPC.

Among the remaining active brain regions, the CUN
(L) is located near the precuneus, whereas the PCL (L)
is located at the junction of the frontal lobe and the
parietal lobes, near the DMN components. In addition,
the LTC is an integral part of the DMN. Hagmann et al.
found a structural core within the posterior medial and
parietal cerebral cortex through DSI [41]. The struc-
tural core contains brain regions that form the posterior
components of the human DMN . Buckner et al. found
that the low metabolic pattern of patients with AD was
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located in the posterior DMN components, including
theLTCand IPL [42].Among theperiodic brain regions
with high consistency in our results, the ITG (R) and
MTG (L) belong to the LTC. In addition, the IPL (L)
in most functional brain networks constructed in this
study also showed an active state.

In summary, among the 12 active brain regions
obtained from the dynamic simulation of the resting
brain, all but the IOG (L) were DMN components or
near brain regions related to theDMN.These results are
consistent with real brain activity in the resting state.

6 Conclusion

Here, we propose a method based on functional brain
networks and an HR neural network model to explore
brain dynamics. In this method, a functional brain net-
work was constructed according to resting-state fMRI
data. An HR neuron was used as a node in place of a
brain region in a functional brain network, and Pear-
son correlations as the synapse weight. A dynamic
model of the functional brain network was estab-
lished. The dynamics of the functional brain network
were investigated using the dynamic model. Simula-
tion results revealed that the activity of brain regions
released spike bursts, which could be classified into
three modes: periodic, chaotic, or stable. A state-space
method was employed to analyze the dynamic charac-
teristics of brain regions. We found that the periodic
bursting mode had stronger communication capabili-
ties than the chaotic bursting mode and verified that
the dynamic activities of the left and right hemispheres
were asymmetric. We analyzed the bursting modes of
brain regions of all subjects and found 12 brain regions
in periodic bursting modes with high consistency in all
subjects.Most of these brain regions fell into or near the
active area of the DMN. Our results prove that the pro-
posedmethod is suitable for investigating the dynamics
of functional brain networks.
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