
https://doi.org/10.1007/s11075-021-01114-9

ORIGINAL PAPER

Automatic approximation using asymptotically
optimal adaptive interpolation

Leszek Plaskota1 ·Paweł Samoraj1

Received: 11 January 2021 / Accepted: 4 April 2021 /
© The Author(s) 2021

Abstract
We present an asymptotic analysis of adaptive methods for Lp approximation of
functions f ∈ Cr([a, b]), where 1 ≤ p ≤ +∞. The methods rely on piecewise
polynomial interpolation of degree r − 1 with adaptive strategy of selecting m subin-
tervals. The optimal speed of convergence is in this case of order m−r and it is
already achieved by the uniform (nonadaptive) subdivision of the initial interval;
however, the asymptotic constant crucially depends on the chosen strategy. We derive
asymptotically best adaptive strategies and show their applicability to automatic
Lp approximation with a given accuracy ε.

Keywords Numerical (automatic) approximation · Adaptive algorithms ·
Asymptotic constants

Mathematics Subject Classification (2010) 65D05 · 41A10

1 Introduction

Numerical algorithms for solving continuous problems generally fall into two cat-
egories: nonadaptive algorithms and adaptive algorithms. By “adaptive” we here
mean that in its successive steps the algorithm uses information about the problem
instance (usually a real valued function) obtained from the previous steps. Adaptive
algorithms often overcome nonadaptive ones in that they enjoy an essentially bet-
ter convergence rate. Examples include bisection or Newton’s method for solving

� Leszek Plaskota
leszekp@mimuw.edu.pl

Paweł Samoraj
samoraj.pawel@gmail.com

1 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. S. Banacha 2,
02-097 Warsaw, Poland

Published online: 16 May 2021

Numerical Algorithms (2022) 89:277–302

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01114-9&domain=pdf
http://orcid.org/0000-0001-8704-0790
mailto: leszekp@mimuw.edu.pl
mailto: samoraj.pawel@gmail.com

nonlinear equations. A good deal of numerical literature is devoted to automatic inte-
gration using adaptive quadratures (see, e.g., [1, 6]), one of the first and probably best
known being the adaptive Simpson quadrature [5]. The question when and how much
adaption helps is one of the main issues in information-based complexity [7, 12].

For the problems of function approximation or integration, adaptive algorithms
are especially efficient when the underlying function is piecewise smooth only, since
then adaption can be successfully used to localize the unknown singular points [9–
11]. On the other hand, if the function is smooth in the whole domain, then adaptive
algorithms can improve the error only by a constant compared to nonadaptive algo-
rithms. The exact asymptotic constants for quadratures of degree of exactness r − 1
and for functions f ∈ Cr([a, b]) with f (r) > 0 were obtained in [8] for r = 4
and in [2, 3] for arbitrary r . Procedures corresponding to the optimal strategies for
automatic integration were also proposed.

While adaptive numerical algorithms for the problem of function approximation
of smooth functions are sometimes constructed (see, e.g., [4, Sect. 6.14]), a similar
quantitative analysis of such algorithms seem not to exist. The purpose of the current
paper is to fill this gap. We consider approximation of functions f ∈ Cr([a, b])
and algorithms that rely on piecewise polynomial interpolation of degree r − 1 with
adaptive strategies of selecting m subintervals. The error is measured in the integral
norm ‖ ·‖Lp with 1 ≤ p ≤ +∞. It is well known that the optimal convergence rate is
in this case of order m−r and it is already achieved by the uniform, i.e., nonadaptive,
partition of the initial interval. (Actually, the rate m−r cannot be beaten even in the
much larger class of algorithms that use m function evaluations, which follows in
particular from [13]).

We first prove that for any function in the class a theoretically best adaptive strat-
egy of interval subdivision relies on keeping the Lp errors equal in all subintervals.
Then, the global Lp error of approximation asymptotically, as m → +∞, equals

αr,p

r! ‖f (r)‖L1/(r+1/p)(a,b)m
−r ,

while for the uniform partition it equals

αr,p

r! (b − a)r‖f (r)‖Lp(a,b)m
−r ,

where αr,p is given by (4) (see Propositions 1 and 2). The gain from using adaption
can be significant. For instance, consider the L∞ approximation of f (x) = 1/(x +
10−d) in the interval [0, 1]. If d = 2, then the adaptive algorithm overcomes the
nonadaptive one roughly by the factor of 106, and for d = 8 this factor becomes 1029

(see Table 2).
Then, we show how the optimal strategy can be realized in practice. That is, for

a given function f ∈ C([a, b]) we construct a relatively simple procedure that uses
a priority queue and produces an almost optimal mth partition with the help of pro-
portionally to m evaluations of f . Different versions of the procedure and the error
analysis are presented depending on additional properties of f (see Theorems 1–4).

Next, we deal with automatic approximation. We consider a local subdivision
strategy that is a departure point for obtaining a recursive procedure using the

278 Numerical Algorithms (2022) 89:277–302

(almost) optimal strategy. For any ε > 0 and f ∈ Cr([a, b]), the proposed pro-
cedures return an approximation with the Lp error at most ε, asymptotically as
ε → 0+.

Finally, we notice that our results imply the previously known and mentioned
earlier in this introduction results for the numerical integration.

The content of the paper is as follows. In Section 2 we formally define our
problem and show some preliminary estimates. A theoretically optimal partition is
constructed in Section 3, while Section 4 is devoted to its practical realization. The
recursive procedures for automatic approximation are constructed in Section 5. In
Section 6 we comment on relations to the numerical integration. Theoretical findings
are complemented by some numerical examples.

2 Preliminaries

For an integer r ≥ 1 and −∞ < a < b < +∞, we denote by Cr([a, b]) the space
of functions

f : [a, b] → R

that are r-times continuously differentiable in [a, b]. We assume that such functions
are approximated using piecewise interpolation of degree r − 1 with possibly non-
uniform partition of the interval [a, b] into subintervals. Specifically, we first fix
points

0 ≤ t1 < t2 < · · · < tr ≤ 1. (1)

For a given f ∈ Cr([a, b]), the interval [a, b] is subdivided into m subintervals that
are determined by a choice of points

a = x0 < x1 < · · · < xm = b. (2)

In each subinterval [xj−1, xj], the function is approximated by its Lagrange polyno-
mial of degree r − 1 interpolating f at

xj,i = xj−1 + hj ti , 1 ≤ i ≤ r,

where hj = xj − xj−1. We denote such an approximation by Lm,rf .
The error of approximation is measured in the Lp norm, i.e.,

‖f −Lm,rf ‖Lp(a,b) =
{ (∫ b

a
|f (x) − Lm,rf (x)|p dx

)1/p

, 1 ≤ p < +∞,

ess supa≤x≤b |f (x) − Lm,rf (x)|, p = +∞.
(3)

We are interested in partitions (2) such that the errors for the corresponding approxi-
mations Lm,rf are asymptotically (as m → +∞) as small as possible. Note that the
problem can be formally treated as a special way of approximating the embedding

Cr([a, b]) ↪→ Lp(a, b).

Remark 1 Obviously, the uniform approximation Cr([a, b]) ↪→ C([a, b]) is also of
interest. We do not analyze it separately, since it is equivalent to L∞ approximation
provided t1 = 0, tr = 1, and r ≥ 2. Indeed, then for any partition, the approximation
Lm,rf is continuous in [a, b] and ‖f − Lm,rf ‖C([a,b]) = ‖f − Lm,rf ‖L∞(a,b).

279Numerical Algorithms (2022) 89:277–302

In the rest of the paper, we assume without loss of generality that f is not a poly-
nomial of degree smaller than r, since otherwise we clearly have Lm,rf = f . Then,
in particular, the derivative f (r) is a nontrivial function.

We now provide preliminary formulas for the approximation error that will be
used later. Let

Pr(t) = (t − t1)(t − t2) · · · (t − tr),

where tis are given by (1). Let

αr,p = ‖Pr‖Lp(0,1) =
{ (∫ 1

0 |Pr(t)|p dt
)1/p

, 1 ≤ p < +∞,

max0≤t≤1 |Pr(t)|, p = +∞.
(4)

Then, the local errors, by which we mean the errors in the successive subintervals
[xj−1, xj], can be written as follows. For 1 ≤ p < +∞,

‖f − Lm,rf ‖Lp(xj−1,xj)

=
(∫ xj

xj−1

|f (x) − Lm,rf (x)|pdx

)1/p

=
(∫ xj

xj−1

∣∣(x − xj,1) · · · (x − xj,r)f [xj,1, . . . , xj,r , x]∣∣p dx

)1/p

= h
r+1/p
j

(∫ 1

0
|(t − t1) · · · (t − tr)|pdx

)1/p ∣∣f [xj,1, . . . , xj,r , ξj]
∣∣

= αr,p

r! h
r+1/p
j

∣∣∣f (r)(ηj)

∣∣∣ , where ξj , ηj ∈ [xj−1, xj],

and

‖f − Lm,rf ‖L∞(xj−1,xj) = max
xj−1≤x≤xj

|f (x) − Lm,rf (x)|
= max

xj−1≤x≤xj

∣∣(x − xj,1) · · · (x − xj,r)f [xj,1, . . . , xj,r , x]∣∣
= αr,∞

r! hr
j

∣∣∣f (r)(ηj)

∣∣∣ , where ηj ∈ [xj−1, xj].

Hence,

‖f − Lm,rf ‖Lp(a,b) = αr,p

r!

⎛
⎝ m∑

j=1

h
rp+1
j

∣∣∣f (r)(ηj)

∣∣∣p
⎞
⎠

1/p

, 1≤p<+∞, (5)

‖f − Lm,rf ‖L∞(a,b) = αr,∞
r! max

1≤j≤m
hr

j

∣∣∣f (r)(ηj)

∣∣∣ . (6)

In the sequel, ηj always denotes a point in the j th subinterval for which

‖f − Lm,rf ‖Lp(xj−1,xj) = αr,p

r! h
r+1/p
j

∣∣∣f (r)(ηj)

∣∣∣ .

280 Numerical Algorithms (2022) 89:277–302

For convenience, we also use the following asymptotic notation. For two nonnegative
functions a and b of the variable m we write

a(m) � b(m) iff lim sup
m→∞

a(m)

b(m)
≤ 1, a(m) ≈ b(m) iff lim

m→∞
a(m)

b(m)
= 1.

Obviously, a(m) ≈ b(m) iff a(m) � b(m) and b(m) � a(m).
Consider first the uniform partition of the interval [a, b], in which case

xj = a + j
b − a

m
, 0 ≤ j ≤ m. (7)

Proposition 1 For the uniform partition (7) we have

‖f − Lm,rf ‖Lp(a,b) ≈ αr,p

r! (b − a)r
∥∥∥f (r)

∥∥∥
Lp(a,b)

m−r ,

for all 1 ≤ p ≤ +∞.

Proof Indeed, by (5) we have

‖f − Lm,rf ‖Lp(a,b) = αr,p

r!
(

b − a

m

)r
⎛
⎝ m∑

j=1

(
b − a

m

) ∣∣∣f (r)(ηj)

∣∣∣p
⎞
⎠

1/p

≈ αr,p

r! (b − a)r
∥∥∥f (r)

∥∥∥
Lp(a,b)

m−r ,

and by (6) we have

‖f − Lm,rf ‖L∞(a,b) = αr,∞
r! max

1≤j≤m
hr

j

∣∣∣f (r)(ηj)

∣∣∣
≈ αr,∞

r! (b − a)r
∥∥∥f (r)

∥∥∥
L∞(a,b)

m−r .

3 Optimal partition

We now show that an asymptotically optimal partition makes all local errors equal.
That is, it asymptotically enjoys the smallest error as m → +∞, for all functions
f ∈ Cr([a, b]). Specifically, for a given m, let

a = x∗
0 < x∗

1 < · · · < x∗
m = b (8)

be such that all the quantities

‖f − L∗
m,rf ‖Lp(x∗

j−1,x
∗
j) = αr,p

r! h
r+1/p
j

∣∣∣f (r)(ηj)

∣∣∣ , 1 ≤ j ≤ m,

where L∗
m,rf denotes the approximation corresponding to (8), are equal. Observe

that such a partition exists since the local errors continuously depend on the points xi .

In the sequel, ‖g‖Lq(a,b) =
(∫ b

a
|g(x)|q dx

)1/q

for all 0 < q ≤ +∞. This is

obviously not a norm in case 0 < q < 1, since then the triangle inequality is not
satisfied. We also adopt the notation that 1/p = 0 for p = +∞.

281Numerical Algorithms (2022) 89:277–302

Proposition 2 The equal-local error partitions (8) and the corresponding approxi-
mations L∗

m,r are asymptotically optimal. That is, for the approximations Lm,r using
other partitions we have

‖f − L∗
m,rf ‖Lp(a,b) � ‖f − Lm,rf ‖Lp(a,b).

Furthermore,

‖f − L∗
m,rf ‖Lp(a,b) ≈ αr,p

r!
∥∥∥f (r)

∥∥∥
L1/(r+1/p)(a,b)

m−r .

Proof We first show the error formula for L∗
m,r . Let A = h

r+1/p
j

∣∣f (r)(ηj)
∣∣. Then,

for finite p, we have

mA1/(r+1/p) =
m∑

j=1

hj

∣∣∣f (r)(ηj)

∣∣∣1/(r+1/p) ≈
∫ b

a

∣∣∣f (r)(x)

∣∣∣1/(r+1/p)

dx,

where we used the fact that if f (r)(ηj) = 0, then f (r) nullifies on the whole interval
[xj−1, xj]. This implies

‖f − L∗
m,rf ‖Lp(a,b) = αr,p

r! (mAp)1/p = αr,p

r!
(
mA1/(r+1/p)

)r+1/p

m−r

≈ αr,p

r! ‖f (r)‖L1/(r+1/p)(a,b) m−r .

For infinite p we have in turn

‖f−L∗
m,rf ‖L∞(a,b) = αr,∞

r! A = αr,∞
r!

(
mA1/r

)r

m−r ≈ αr,∞
r! ‖f (r)‖L1/r (a,b) m−r ,

as claimed.
Now, we show that for any Lm,rf such that ‖f −Lm,rf ‖Lp(a,b) � Cm−r we have

C ≥ αr,p

r!
∥∥f (r)

∥∥
L1/(r+1/p)(a,b)

. For that end, we fix � ≥ 1 and define ui = a + iH

where H = (b − a)/�, and

Ci = min
x∈[ui−1,ui]

∣∣∣f (r)(x)

∣∣∣ , 1 ≤ i ≤ �.

Suppose that Lm,rf use partitions a = x0 < · · · < xm = b. We can assume without
loss of generality that for m ≥ � we have {ui}�i=0 ⊂ {xj }mj=0. Indeed, since we keep
� fixed, we can always add the points ui to a given partition without asymptotically
increasing the error, as m → +∞. Let li be such that xli = ui, and mi = li − li−1,

1 ≤ i ≤ �.
Consider first finite p. We have

‖f −Lm,rf ‖Lp(ui−1,ui)≥
αr,p

r! Ci

⎛
⎝ li∑

j=li−1+1

h
rp+1
j

⎞
⎠

1/p

≥ αr,p

r! Ci

(
mi

(
H

mi

)rp+1
)1/p

= αr,p

r! Ci Hr+1/pm−r
i ,

282 Numerical Algorithms (2022) 89:277–302

as the sum above is minimized for hj = H/mj for all li−1 + 1 ≤ j ≤ lj . Hence,

‖f − Lm,rf ‖Lp(a,b) ≥ αr,p

r! Hr+1/p

(
�∑

i=1

(
Ci

mr
i

)p
)1/p

.

The minimization of the last sum with respect to
∑�

i=1 mi = m gives the optimal

m∗
i = C

1/(r+1/p)
i∑�

j=1 C
1/(r+1/p)
j

m,

for which (
�∑

i=1

(
Ci

(m∗
i)

r

)p
)1/p

=
(

�∑
i=1

C
1/(r+1/p)
i

)r+1/p

m−r .

Hence,

‖f − Lm,rf ‖Lp(a,b) ≥ αr,p

r! Hr+1/p

(
�∑

i=1

C
1/(r+1/p)
i

)r+1/p

m−r

= αr,p

r!

(
�∑

i=1

HC
1/(r+1/p)
i

)r+1/p

m−r .

The last sum in the parentheses is a Riemann sum for the integral∫ b

a
|f (r) (x)|1/(r+1/p)dx. Hence, taking � sufficiently large and m ≥ �, we can make

mr‖f − Ls,mf ‖Lp(a,b) arbitrarily close to αr,p

r!
∥∥f (r)

∥∥
L1/(r+1/p)(a,b)

.
For infinite p, we similarly have

‖f − Lm,rf ‖L∞(a,b) ≥ αr,∞
r! max

1≤i≤�

(
Ci max

li−1+1≤j≤li
hr

j

)
≥ αr,p

r! Hr max
1≤i≤�

Cim
−r
i .

The right-hand side is minimized by

m∗
i = C

1/r
i∑�

j=1 C
1/r
j

m,

for which max1≤i≤� Ci(m
∗
i)

−r =
(∑�

i=1 C
1/r
i

)r

m−r . Hence,

‖f − Lm,rf ‖L∞(a,b) ≥ αr,∞
r!

(
�∑

i=1

HC
1/r
i

)r

m−r .

The proof completes the observation that the last sum in the parentheses is a Riemann

sum for the integral
∫ b

a

∣∣f (r)(x)
∣∣1/r

dx.

Remark 2 The error of approximation depends on the points tis via αr,p. Recall that
for p ∈ {1, 2, +∞} this factor is minimized by the points t∗i s being zeros of appro-
priate orthogonal polynomials, adjusted to the interval [0, 1]. For p = 1 these are

283Numerical Algorithms (2022) 89:277–302

Chebyshev polynomials of the second kind, for p = 2 these are Legendre polynomi-
als, and for p = +∞ these are Chebyshev polynomials of the first kind. Consider,
for example, r = 4. Then, the optimal points are as follows. For p = 1,

t∗1 = 1

2

(
1 + cos

(
4π

5

))
, t∗2 = 1

2

(
1 + cos

(
3π

5

))
,

t∗3 = 1

2

(
1 + cos

(
2π

5

))
, t∗4 = 1

2

(
1 + cos

(π

5

))
.

For p = 2,

t∗1 = 1

2

⎛
⎝1 −

√
15 + 2

√
30

35

⎞
⎠ , t∗2 = 1

2

⎛
⎝1 −

√
15 − 2

√
30

35

⎞
⎠ ,

t∗3 = 1

2

⎛
⎝1 +

√
15 − 2

√
30

35

⎞
⎠ , t∗4 = 1

2

⎛
⎝1 +

√
15 + 2

√
30

35

⎞
⎠ .

For p = +∞,

t∗1 = 1

2

(
1 + cos

(
7π

8

))
, t∗2 = 1

2

(
1 + cos

(
5π

8

))
,

t∗3 = 1

2

(
1 + cos

(
3π

8

))
, t∗4 = 1

2

(
1 + cos

(π

8

))
.

Table 1 shows the corresponding values of αr,p for the optimal points t∗i and, for
comparison, for the equispaced points ti = (i − 1)/(r − 1), 1 ≤ i ≤ r .

Remark 3 We have shown that the optimal partition is asymptotically better than the
uniform partition by the factor of

Rr,p(f) =
(b − a)r

∥∥f (r)
∥∥

Lp(a,b)∥∥f (r)
∥∥

L1/(r+1/p)(a,b)

.

We obviously have that

1 ≤ Rr,p(f) < +∞,

where the equality holds for f being a polynomial of degree r, and the more f (r)

varies the bigger Rr,p(f). An example is provided in Table 2.

Table 1 The values of α4,p for
the optimal and equispaced
choices of the tis

p = 1 p = 2 p = ∞

Optimal 1
256 � 0.0039 1

210 � 0.0048 1
128 � 0.0078

Equispaced 4
7290 � 0.0067 1

9
√

210
� 0.0077 1

81 � 0.0123

284 Numerical Algorithms (2022) 89:277–302

Table 2 The values of R4,p(f)

for f (x) = 1/(x + 10−d),

0 ≤ x ≤ 1
d = 2 d = 4 d = 6 d = 8

p = 1 1.19e+04 3.77e+10 4.97e+17 1.18e+25

p = 2 1.03e+05 1.26e+12 5.05e+19 3.16e+27

p = ∞ 1.78e+06 5.95e+13 4.44e+21 4.07e+29

Now we want to see how much we potentially lose by not using the optimal par-
tition. For the error to go to zero as m → +∞ we have to assume that the partitions
satisfy

lim
m→∞ max

{
hj : 1 ≤ j ≤ m, f (r)(ηj)
= 0

}
= 0.

Let Aj = h
r+1/p
j

∣∣f (r)(ηj)
∣∣ and A = (A1, . . . , Am). Denoting ‖A‖∞ =

max1≤j≤m |Aj | and ‖A‖q =
(∑m

j=1 |Aj |q
)1/q

for 0 < q < +∞, we have that

‖A‖ 1
r+1/p

≈
(∫ b

a

∣∣∣f (r)(x)

∣∣∣1/(r+1/p)

dx

)r+1/p

as m → +∞. The error satisfies

‖f − Lm,rf ‖Lp(a,b) = αr,p

r! ‖A‖p ≈ Km ‖f − L∗
m,rf ‖Lp(a,b), (9)

where

Km = ‖A‖p mr

‖A‖ 1
r+1/p

.

Obviously, Km ≥ 1 and for the optimal partition is Km = 1.
Let us check how big Km can be assuming that for all m sufficiently large we have

max
1≤i,j≤m

Ai/Aj ≤ 	, (10)

where 	 > 1 and 0/0 = 1. Since Km is a homogeneous function of A, we can
assume without loss of generality that 1 ≤ Ai ≤ 	 for all is. It is clear that then the
maximum is attained at A = (, . . . , 	, 1, . . . , 1), where 	 is repeated k times, for
some k. If p = +∞, then the maximum is for k = 1 and

max
A

Km = 	mr(
	1/r + (m − 1)

)r ≈ 	.

Let 1 ≤ p < +∞. Then, setting q = 1/(r + 1/p) we have

Km = (k(p − 1) + m)1/p

(k (q − 1) + m)1/q
mr .

We treat Km as a function of k ∈ [0, m] and find its maximum. The maximum is for

k∗ =
(

q

	q − 1
− p

	p − 1

)(
m

p − q

)
;

285Numerical Algorithms (2022) 89:277–302

therefore

max
A

Km ≤ (1 − q/p)1/q

(p/q − 1)1/p

(p − 1)1/q

(q − 1)1/p
(p − 	q)1/p−1/q

= (pr)r

(1 + pr)r+1/p

(p − 1)r+1/p

(1/(r+1/p) − 1)1/p

(
	p − 	1/(r+1/p)

)−r

< 	.

Remark 4 Especially important will be the case where

	 = 2r+1/p.

Then, Km in (9) is bounded from above by κr,∞ = 2r for p = +∞, and

κr,p =
(

1 + 1

21+pr − 2

)r (
21+pr − 1

)1/p (pr)r

(1 + pr)r+1/p
for 1 ≤ p < +∞.

(11)
The values of κr,p for p = 1, 2, ∞ and 1 ≤ r ≤ 6 are in Table 3

4 An algorithm for (almost) optimal partitions

In this section, we show how asymptotically (almost) optimal partitions can be prac-
tically realized for a given m and f ∈ Cr([a, b]). We allow algorithms that can
evaluate f at any x ∈ [a, b].

Let us fix another point t0 ∈ [0, 1] that is different from ti in (1) for 1 ≤ i ≤ r .
For an interval I = [c, d] ⊂ [a, b] of length h = d − c, define the functional
LI : Cr([a, b]) → R,

LI (f) = f (u0) −
r∑

i=1

wif (ui), where wi =
r∏

i
=k=1

t0 − tk

ti − tk

and ui = c + hti, 0 ≤ i ≤ r .

Remark 5 Observe that for each interval I the functional LI is uniquely (up to a
multiplicative factor) defined by the conditions that it linearly combines the values
of f at ui for 0 ≤ i ≤ r, and its kernel consists of all polynomials of degree at most
r − 1. In our definition, LI (f) is just the error of interpolating f in I at u0, but
equally well it could be the divided difference f [u0, u1, . . . , ur]. For we have

LI (f) = hrγrf [u0, u1, . . . , ur], where γr = Pr(t0) = (t0 − t1) · · · (t0 − tr).
(12)

Table 3 The values of κr,p for
various p and r r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

p = 1 1.1250 1.4115 1.9458 2.8954 4.5712 7.5444

p = 2 1.1881 1.7016 2.7467 4.7411 8.4910 15.540

p = ∞ 2 4 8 16 32 64

286 Numerical Algorithms (2022) 89:277–302

The algorithm that we present and analyze in this section uses a priority queue S

whose elements are subintervals. For each I ∈ S of length h its priority is given by

pf (I) = h1/p|LI (f)|.
In the following pseudocode, insert(S, I) and I := extract max(S) denote actions
corresponding to inserting an interval to S, and extracting from S an interval with
highest priority.

After execution, the elements of S form a partition into m subintervals. Since a
priority queue can be implemented using a heap, an mth partition can be obtained at
cost proportional to m log m.

Denote by L∗∗
m,rf the approximation corresponding to the mth partition obtained

by our algorithm. Recall that αr,p and κr,p are respectively given by (4) and (11).

Theorem 1 If the function f ∈ Cr([a, b]) is such that its derivative f (r) does not
nullify in [a, b], then

‖f − L∗∗
m,rf ‖Lp(a,b) � κr,p

αr,p

r! ‖f (r)‖L1/(r+1/p)(a,b) m−r .

Proof In vew of the definition of κr,p in (11) of Remark 4, it suffices to show that
the value of 	 in (10) can be chosen arbitrarily close to 2r+1/p, provided m is large
enough.

Suppose that f (r) > 0 (the case f (r) < 0 is symmetric and there is no need to
consider it separately). Then, there are 0 < d ≤ D < +∞ depending on f such that

d ≤ f (r) ≤ D.

For an interval I of length h, its priority can be written as

pf (I) = |γr |
r! hr+1/pf (r)(ξ), ξ ∈ I,

where γ is defined in (12). This means that

d
|γr |
r! hr+1/p ≤ pf (I) ≤ D

|γr |
r! hr+1/p;

i.e., the priority is always positive, and it decreases to zero when an interval is succes-
sively subdivided. This leads to an important observation that the maximum length

287Numerical Algorithms (2022) 89:277–302

of a subinterval in an mth partition goes to zero as m → +∞. Furthermore, if the
interval I is further subdivided into I1 and I2, then for s = 1, 2 we have

pf (I)

pf (Is)
= 2r+1/p f (r)(ξ)

f (r)(ξs)
.

Since ∣∣∣∣∣f
(r)(η)

f (r)(ξ)
− 1

∣∣∣∣∣ =
∣∣f (r)(η) − f (r)(ξ)

∣∣
f (r)(ξ)

≤ ω(h)

d
, (13)

where ω is the modulus of continuity of the function f (r),

pf (I)

pf (Is)
≤ 2r+1/p

(
1 + ω(h)

d

)
.

This in turn means that for any δ > 0 there is mδ such that for all m > mδ the ratio
of the highest to lowest priorities in the mth partition is

max
1≤i≤m

pf ([xi−1, xi])
pf ([xj−1, xj]) ≤ 2r+1/p

(
1 + ω(δ)

d

)
. (14)

(Indeed, mδ is such that the lengths of all subintervals in the corresponding partition
are at most δ, and such that after dividing the subinterval with the highest priority,
one of its successors has the lowest priority).

Consider now the partition for a particular m ≥ mδ . Since the local error in an
interval I can be written as

‖f − L∗∗
m,rf ‖Lp(I) = αr,p

r! hr+1/pf (r)(η) = pf (I)
αr,p

|γr |
f (r)(η)

f (r)(ξ)
, (15)

by (13) and (14) we have that the ratio of any two local errors is upper bounded by

‖f − L∗∗
m,rf ‖Lp([xi−1,xi])

‖f − L∗∗
m,rf ‖Lp([xj−1,xj])

= pf ([xi−1, xi])
pf ([xj−1, xj])

(
f (r)(ηi)/f

(r)(ξi)

f (r)(ηj)/f (r)(ξj)

)

≤ 2r+1/p (1 + ω(δ)/d)2

1 − ω(δ)/d
.

Since δ can be arbitrarily small, the right-hand side can be made arbitrarily close to
2r+1/p, as claimed.

Example 1 Figure 1 shows results of a numerical experiment for regularity r = 4.
The tested function is

f (x) = 1

x + 1
100

, 0 ≤ x ≤ 1,

for which the 4th derivative is positive. The approximations are based on the adaptive
partitions obtained from ALGORITHM, and those based on the uniform (nonadap-
tive) partitions. In this and all the numerical examples that follow we take t0 = 0.5
and the optimal points t∗1 , t∗2 , t∗3 , t∗4 , cf. Remark 2. The errors are measured in the Lp

norms with p ∈ {1, 2, +∞}. The results perfectly confirm the theoretical findings.

288 Numerical Algorithms (2022) 89:277–302

Fig. 1 Adaptive vs. nonadaptive strategies for the function f

(An artifact for p = +∞, in case of adaptive partitions and m close to 104, is a
consequence of round-off errors that show up earlier for p = +∞ than for p = 1, 2.)

Remark 6 In this paper, we consider the algorithm error versus the number m of
subintervals. One may want to consider the error versus the number n of function
values used. Then the choice of the equispaced points ti = (i − 1)/(r − 1) may lead
to a better asymptotic constant than the choice of t∗i , 1 ≤ i ≤ r, despite the fact that
the factor αr,p is in this case slightly larger, cf. Table 1. Consider, for instance, our
algorithm for r = 4. If the points t∗i are applied, then the algorithm produces an mth
partition using n ≈ 10m function values. On the other hand, for the equispaced tis
we have n ≈ 4m, since all 5 function values computed for a given subinterval can be
re-used when halving this interval in one of the following steps.

Unfortunately, Theorem 1 does not hold for all f satisfying f (r) ≥ 0 or
f (r) ≤ 0. Indeed, suppose that t̂ := max0≤i≤r ti < 1 and consider the function
f (x) = (x − t̂)r+1+ for x ∈ [0, 2]. Then, pf ([0, 1]) = 0 and pf (I) > 0 for all inter-
vals I ⊂ [1, 2]. Hence, the interval [0, 1] will never be subdivided and the error does
not go to zero as m → +∞.

A key point in this example is that the set of points ti , 0 ≤ i ≤ r, does not contain
both endpoints of the interval [0, 1]. If this obstacle is removed, then Theorem 1 holds
true for all functions such that f (r) does not change its sign. To show this, we need
the following auxiliary result.

Lemma 1 Let 1 ≤ p ≤ +∞. Let

min(t0, t1) = 0 and max(t0, tr) = 1. (16)

289Numerical Algorithms (2022) 89:277–302

Then, there exists βr,p > 0 (given, e.g., by (19)) such that the following holds. For
any interval [c, d] of length h = d − c and any function g ∈ Cr([c, d]) such that

(i) the derivative g(r) does not change its sign in [c, d], and
(ii) g nullifies at ui = c + tih for all 1 ≤ i ≤ r,

we have
‖g‖Lp(c,d) ≤ βr,p h1/p |g(u0)| where u0 = c + t0h. (17)

In particular, if g(u0) = 0, then g nullifies on the whole interval [c, d].

Proof Assume without loss of generality that g(r) ≥ 0. We estimate g(u) for u

different from any of the points ui . We have two cases: either u < u0 or u > u0.
If u < u0 then, by the explicit formula for divided differences, we have

g[u1, u2, . . . , ur , u] = g(u)∏r
i=1(u − ui)

≥ 0, and

g[u0, u2, . . . , ur , u] = g(u)

(u − u0)
∏r

i=2(u − ui)
+ g(u0)

(u0 − u)
∏r

i=2(u0 − ui)
≥ 0

(18)

Combining both inequalities we get that if
∏r

i=1(u − ui) > 0 then

0 ≤ g(u) ≤ �1(u)g(u0) where �1(u) =
r∏

i=2

u − ui

u0 − ui

.

On the other hand, if
∏r

i=1(u − ui) < 0, then �1(u)g(u0) ≤ g(u) ≤ 0.
In the case u > u0, we similarly combine (18) with

g[u1, . . . , ur−1, u0, u] = g(u)

(u − u0)
∏r−1

i=1 (u − ui)
+ g(u0)

(u0 − u)
∏r−1

i=1 (u0 − ui)
≥ 0

to get that either

0 ≤ g(u) ≤ �r(u)g(u0) where �r(u) =
r−1∏
i=1

u − ui

u0 − ui

,

or �r(u)g(u0) ≤ g(u) ≤ 0.
Thus,

|g(u)| ≤ |�(u)g(u0)| where �(u) = �1(u)1[c,u0)(u) + �r(u)1[u0,d](u),

and ‖g‖Lp(c,d) ≤ ‖�‖Lp(c,d)|g(u0)|. Letting l(t) = l1(t)1[0,t0)(t) + lr (t)1[t0,1](t),
where

l1(t) =
r∏

i=2

t − ti

t0 − ti
, lr (t) =

r−1∏
i=1

t − ti

t0 − ti
,

and applying the substitution u = c + th, we finally obtain that ‖�‖Lp(c,d) =
h1/p‖l‖Lp(0,1); hence, the lemma holds with

βr,p = ‖l‖Lp(0,1). (19)

290 Numerical Algorithms (2022) 89:277–302

Remark 7 An important consequence of Lemma 1 is that for any subinterval I of a
given partition we have

‖f − Lm,rf ‖Lp(I) ≤ βr,p pf (I). (20)

Indeed, it suffices to take g = f − Lm,rf in Lemma 1 and recall the definition of
pf (I). If so, then for any partition we have

‖f − Lm,rf ‖Lp(a,b) ≤ βr,p

(
m∑

i=1

∣∣pf (Ii)
∣∣p)1/p

, 1 ≤ p < +∞,

‖f − Lm,rf ‖L∞(a,b) ≤ βr,∞ max
1≤i≤m

pf (Ii),

which means that the inequality (20) allows us to control the exact error of approxi-
mation. For instance, if r = 2 and (t0, t1, t2) = (1/2, 0, 1), then βr,p = ‖l(t)‖Lp(0,1),

where l(t) = 1 + 2|t − 1/2|. We have β2,1 = 1.5, β2,∞ = 2, and

β2,p = 21+1/p(p + 1)−1/p
(

1 − 2−(p+1)
)1/p

for 1 < p < +∞.

We stress that the exact inequalities hold true only under the assumptions of
Lemma 1. The values of βr,p given by (19) are by no means best possible.
Optimization of βr,p is a separate problem and is not addressed in the present paper.

Theorem 2 Let the assumption (16) of Lemma 1 be fulfilled. Then, the error estimate
of Theorem 1 holds true if the derivative f (r) does not change its sign in [a, b].

Proof Choose 0 < ε < ‖f (r)‖C([a,b]). For a given m, define

I0 = { 1 ≤ i ≤ m : ‖f (r)‖C(Ii) = 0 },
I1 = { 1 ≤ i ≤ m : 0 < ‖f (r)‖C(Ii) < ε },
I2 = { 1 ≤ i ≤ m : ‖f (r)‖C(Ii) ≥ ε },

where Ii is the ith subinterval. We assume that m is large enough, m ≥ mε, so that
I2
= ∅ and the modulus of continuity of f (r) at

max { |Ii | : i ∈ I1 ∪ I2} ,

denoted by ω, is smaller than ε. Such an mε exists since by Lemma 1 we have
pf (Ii) > 0 for i ∈ I1 ∪ I2, which implies that the maximum length of such
subintervals decreases to zero as m → +∞.

Let

p∗
f = max

1≤i≤m
pf (Ii).

Then, for i ∈ I0, we have

p∗
f ≤ |γr |

r! (2hi)
r+1/pω,

291Numerical Algorithms (2022) 89:277–302

since otherwise the predecessor of Ii would not be subdivided. This implies

hi ≥ 1

2

(
r!

|γr |
p∗

f

ω

)1/(r+1/p)

. (21)

For the same reason, for i ∈ I1 we have

p∗
f ≤ |γr |

r! (2hi)
r+1/p(ε + ω),

which implies

hi ≥ 1

2

(
r!

|γr |
p∗

f

ε + ω

)1/(r+1/p)

. (22)

For i ∈ I2 we have in turn

p∗
f ≥ |γr |

r! h
r+1/p
i (ε − ω),

which implies

hi ≤
(

r!
|γr |

p∗
f

ε − ω

)1/(r+1/p)

. (23)

Now, let mk = #Ik and Bk = ∪i∈Ik
Ii , k = 0, 1, 2. Obviously m = m0 +m1 +m2

and [a, b] = B0 ∪ B1 ∪ B2. Using (21), (22), (23), we get that

m0 ≤ 2 |B0|
(

|γr | ω
r! p∗

f

)1/(r+1/p)

,

m1 ≤ 2 |B1|
(

|γr | (ε + ω)

r! p∗
f

)1/(r+1/p)

,

m2 ≥ |B2|
(

|γr | (ε − ω)

r! p∗
f

)1/(r+1/p)

.

Hence,

lim
m→∞

m0

m2
≤ 2 lim

m→∞
|B0|
|B2|

(
ω

ε − ω

)1/(r+1/p)

= 0, (24)

where the last equality follows from the fact that if m → +∞ then: ω goes to zero,
|B0| monotonically increases to |B0|, where B0 = {x ∈ [a, b] : f (r)(x) = 0}, and
|B2| monotonically decreases to |B2| > 0, where B2 = {x ∈ [a, b] : |f (r)(x)| ≥ ε}.
We also have that

lim sup
m→∞

m1

m2
≤ 2 lim

m→∞
|B1|
|B2|

(
ε + ω

ε − ω

)1/(r+1/p)

= 2
|B1|
|B2|

, (25)

where B1 = {x ∈ [a, b] : 0 < |f (r)(x)| < ε}. Note that the right-hand side of this
inequality goes to zero when ε → 0+.

We now estimate the error of our approximation. Obviously ‖f −L∗∗
m,rf ‖Lp(B0) =

0. From (20) it follows that

‖f − L∗∗
m,rf ‖Lp(B1) ≤ βr,pp∗

f m
1/p

1 .

292 Numerical Algorithms (2022) 89:277–302

For B2 we use (14) and (15) to get that

‖f − L∗∗
m,rf ‖Lp(B2) � αr,p

2r+1/p|γr | p∗
f m

1/p

2 .

In view of (25), this means that the error on B1 vanishes compared to that on B2 when
ε → 0+.

Since for x ∈ B2 the derivative f (r) is separated away from zero, we can use
Theorem 1 together with (24) and (25) to obtain that

lim sup
m→+∞

mr‖f − L∗∗
m,rf ‖Lp(B2) ≤ κr,p

αr,p

r! ‖f (r)‖L1/(r+1/p)(B2)

(
1 + 2

|B1|
|B2|

)
.

Taking the limit of both sides of this inequality with respect to ε → 0+ and using the
fact that then the error on B2 dominates the error on the remaining part of the interval
[a, b], we finally claim that

lim sup
m→+∞

mr‖f − L∗∗
m,rf ‖Lp(a,b) ≤ κr,p

αr,p

r! ‖f (r)‖L1/(r+1/p)(a,b).

The proof is complete.

Now we want to relax the requirement that the derivative f (r) does not change its
sign. It is clear that then our original algorithm may fail since, again, for an interval
I we may have that pf (I) = 0 and this interval will not be further subdivided, while
f (r)
= 0 in I .

To obtain a result similar to that of Theorem 1 in this case, we generalize the
priority function pf leaving the algorithm unchanged. We also do not assume that
the points ti for 0 ≤ i ≤ r contain 0 and 1. The modified priority uses a predefined
nonincreasing function δ : (0, +∞) → [0, +∞) and is given as

pf (I) = max
(
pf (I), δ(h)hr+1/p

)
,

where h is the length of the interval I . Obviously, we always have pf (I) ≥ pf (I),

and pf (I) = pf (I) if δ(h) = 0. Hence, pf is indeed a generalization of pf .
Denote the resulting approximation by L∗∗∗

m,rf . The following theorem generalizes
Theorem 1.

Theorem 3 Suppose that limh→0+ δ(h) = 0. If f ∈ Cr([a, b]) is such that its
derivative f (r) does not nullify in [a, b], or the modulus of continuity of f (r), denoted
ωf , satisfies

lim sup
h→0+

ωf (h)

δ(h)
= 0, (26)

then the error estimate of Theorem 1 holds true, i.e.,

‖f − L∗∗∗
m,rf ‖Lp(a,b) � κr,p

αr,p

r!
∥∥∥f (r)

∥∥∥
L1/(r+1/p)(a,b)

m−r .

Proof If f (r) does not nullify, then for all sufficiently large m we have pf (Ii) =
pf (Ii), for any subinterval Ii in the mth partition, and the theorem follows from
Theorem 1.

293Numerical Algorithms (2022) 89:277–302

Assume (26). The fact that the priority function is always positive assures that

h∗ = max
1≤i≤m

hi

decreases to zero as m → +∞. For a given m, define

I1 = {1 ≤ i ≤ m : pf (Ii) > pf (Ii)}, I2 = {1 ≤ i ≤ m : pf (Ii) = pf (Ii)}.
Let

p∗
f = max

1≤i≤m
pf (Ii).

For i ∈ I1 we have |γr |
r! |f (r)(ξi)| < δ(hi) for some ξi ∈ Ii, and

p∗
f ≤ (2hi)

r+1/p max

(|γr |
r!

∣∣∣f (r)(ξ ′
i)

∣∣∣ , δ(2hi)

)
,

since otherwise the predecessor of Ii (to which ξ ′
i belongs) would not be subdivided.

We also have∣∣∣f (r)(ξ ′
i)

∣∣∣ ≤
∣∣∣f (r)(ξi)

∣∣∣ + ωf (2hi) ≤ r!
|γr | δ(hi) + ωf (2hi).

Hence, by (26), for all m sufficiently large is p∗
f ≤ (2hi)

r+1/p2δ(2hi), which implies
that

hi ≥ 1

2

(
p∗

f

2δ(2h∗)

)1/(r+1/p)

,

and the number m1 = #I1 is at most proportional to

(
δ(2h∗)

p∗
f

)1/(r+1/p)

.

For i ∈ I2 we have

p∗
f ≥ |γr |

r! h
r+1/p
i

∣∣∣f (r)(ξi)

∣∣∣ .

Let 0 < ε < ‖f (r)‖C([a,b]) and

I ′
2 =

{
i ∈ I2 : |f (r)(x)| ≥ ε for all x ∈ Ii

}
.

Then, the set B ′
2 = ∪i∈I ′

2
Ii is for large m nonempty and nondecreasing as m

increases. Hence, for i ∈ I ′
2 we have

hi ≤
(

r!
|γr |

p∗
f

ε

)1/(r+1/p)

,

which implies that the number m2 = #I2 is at least proportional to

(
ε

p∗
f

)1/(r+1/p)

.

Thus, we have shown that

lim
m→∞

m1

m2
= 0. (27)

294 Numerical Algorithms (2022) 89:277–302

To estimate the error, observe that for i ∈ I1 we have

‖f − L∗∗∗
m,rf ‖Lp(Ii) = αr,p

r! h
r+1/p
i

∣∣∣f (r)(ηi)

∣∣∣ ≤ αr,p

r! h
r+1/p
i

(
r!

|γr |δ(hi) + ωf (hi)

)

� αr,p

|γr | p∗
f ,

which implies

‖f − L∗∗∗
m,rf ‖Lp(B1) � αr,p

|γr | p∗
f m

1/p

1 , B1 = ∪i∈I1Ii .

For i ∈ I2 we use the condition (26) to claim, as in the proof of Theorem 2, that

‖f − L∗∗∗
m,rf ‖Lp(B2) � αr,p

2r+1/p|γr | p∗
f m

1/p

2 , B2 = ∪i∈I2Ii .

In view of (27), the error on B2 dominates the error on B1. Moreover, from (26) it
follows that the value of 	 in (10) with i, j restricted to those in I2 is asymptotically
at most 2r+1/p. Hence,

lim sup
m→+∞

mr ‖f − L∗∗
m,rf ‖Lp(a,b) = lim sup

m→+∞
mr

2 ‖f − L∗∗∗
m,rf ‖Lp(B2)

� κr,p

αr,p

r! ‖f (r)‖L1/(r+1/p)(B2)
≤ κr,p

αr,p

r! ‖f (r)‖L1/(r+1/p)(a,b),

where the asymptotic inequality follows from Theorem 1. The proof is complete.

Theorem 3 still does not cover the whole range of r-times continuously differ-
entiable functions. The last theorem of this section does it at the expense of the
asymptotic factor depending on f .

Theorem 4 If δ(h) = δ0 > 0, then for all f ∈ Cr([a, b]) we have
‖f − L∗∗∗

m,rf ‖Lp(a,b) � κr,p

αr,p

r!
∥∥∥f

(r)
δ0

∥∥∥
L1/(r+1/p)(a,b)

m−r ,

where f
(r)
δ0

(x) = max
(|f (r)(x)|, δ0

)
.

Proof For any subinterval Ii of an mth partition we have

‖f − L∗∗∗
m,rf ‖Lp(Ii) = αr,p

r! h
r+1/p
i

∣∣∣f (r)(ηi)

∣∣∣ ≤ αr,p

r! h
r+1/p
i f

(r)
δ0

(ηi).

Since the maximum ratio of the highest to the lowest values of f
(r)
δ0

(x) in the same
subinterval goes to one as m → +∞, the theorem follows directly from the proof of
Theorem 1.

Example 2 Consider the function

g(x) = cos(100x)

x + 1
100

, 0 ≤ x ≤ 1,

295Numerical Algorithms (2022) 89:277–302

for which the 4th derivative,

g(4)(x) = −4 000 000 sin(100x)

(x + 1
100)2

+ 2 400 sin(100x)

(x + 1
100)4

+100 000 000 cos(100x)

(x + 1
100)

− 120 000 cos(100x)

(x + 1
100)3

+ 24 cos(100x)

(x + 1
100)5

,

changes its sign 32 times (see Fig. 2).
In Fig. 3, we present the quality of L∞ approximation of g using ALGORITHM,

for two extreme choices of the function δ; namely δ(h) = 0 and δ(h) = 104. For
comparison, we also include the corresponding error for the uniform subdivision.

For δ(h) = 0, i.e., for pf (I) = |LI (f)|, the error seems to decrease at speed m−4,

despite the fact that neither the assumptions of Theorem 3 nor those of Theorem 4
are fulfilled. However, the error fluctuates because of difficulties in proper estimation
of the local errors in the intervals where g(4) changes its sign. Much better results
are for the “safe” choice δ(h) = 104, i.e., for pf (I) = max

(|LI (f)|, (10h)4
)
, for

which Theorem 4 applies.

5 Automatic approximation

In this section, we deal with automatic approximation. Ideally, we should have a
procedure that for a given function f and an error threshold ε > 0 returns a partition,
for which the corresponding approximation, say A(f, ε), satisfies

‖f − A(f, ε)‖Lp(a,b) ≤ ε. (28)

Obviously, such a procedure does not exist if it is supposed to work for all f ∈
Cr([a, b]) and ε > 0, and use only finitely many function evaluations. We shall show
however that the inequality (28) can be achieved asymptotically, as ε → 0+.

Since the accuracy ε (instead of m of function evaluations) is now an input param-
eter, in this section we use the asymptotic notation with respect to ε → 0+. That

Fig. 2 The graph of g(4)

296 Numerical Algorithms (2022) 89:277–302

Fig. 3 Adaptive vs. nonadaptive strategies for the function g

is,

a(ε) � b(ε) iff lim sup
ε→0+

a(ε)

b(ε)
≤ 1, and a(ε) ≈ b(ε) iff lim

ε→0+
a(ε)

b(ε)
= 1.

To begin with, consider the following recursive procedure that corresponds to a
local subdivision strategy. Here S is a set of subintervals. It is initially empty, and at
the end it contains all subintervals in the resulting partition.

For simplicity, we restrict our analysis to the priority function

pf (I) = max
(
pf (I), δ(h)hr+1/p

)
with δ(h) = |γr |

αr,p

�, (29)

for some � > 0 (for the case � = 0, see Remark 8).
Suppose that AUTO1 is run for a given f ∈ Cr([a, b]) and a threshold e = ε. Let

mε be the number of subintervals in the resulting partition. Then

pf (Ii) ≤ ε
|γr |
αr,p

(
hi

b − a

)1/p

for all 1 ≤ i ≤ mε,

297Numerical Algorithms (2022) 89:277–302

which implies that for the corresponding approximation

‖f − A1(f, ε)‖Lp(a,b) � αr,p

|γr |

(
mε∑
i=1

pf (Ii)
p

)1/p

≤ ε

(
mε∑
i=1

hi

b − a

)1/p

= ε.

Admittedly, we achieved our goal; however, the obtained partition is (almost) opti-
mal only for p = +∞. Indeed, it is easy to see that AUTO1 tries to keep all the local
errors proportional to h

1/p
i , which results in that the factor depending on f in the

overall error equals
∥∥∥f

(r)
�

∥∥∥
L1/r (a,b)

instead of
∥∥∥f

(r)
�

∥∥∥
L1/(r+1/p)(a,b)

, where f� is any

function in Cr([a, b]) such that f
(r)
� (x) = max

(
|f (r)(x)|, |γr |

αr,p
�

)
.

To construct a procedure for 1 ≤ p < +∞ that uses an (almost) optimal partition,
consider the following modification of AUTO1.

When run for f ∈ Cr([a, b]) with e = ε, this procedure keeps all the local
errors at most ε, and the approximation corresponding to the resulting partition equals
L∗∗∗

mε,r
f, where mε is as before the number of subintervals in the resulting partition.

Then

‖f − L∗∗∗
mε,r

f ‖Lp(a,b) � ‖f� − L∗∗∗
mε,r

f�‖Lp(a,b)

� αr,p

|γr |

(
mε∑
i=1

pf (Ii)
p

)1/p

≤ ε m1/p
ε , (30)

where the first inequality follows from Theorem 3. Thus, to reach an ε-approximation
it suffices to run AUTO2 with e = ε∗ such that ε∗m1/p

ε∗ ≤ ε.
The value of ε∗ can be found as follows. We first use the lower bound of

Proposition 2,

‖f� − L∗∗∗
mε,r

f�‖Lp(a,b) � αr,p

r!
∥∥∥f

(r)
�

∥∥∥
L1/(r+1/p)(a,b)

m−r
ε ,

together with (30) to get that
∥∥∥f

(r)
�

∥∥∥
L1/(r+1/p)(a,b)

� r!
αr,p

ε m
r+1/p
ε . Then

lim sup
m→∞

mr‖f� −L∗∗∗
m,rf�‖Lp(a,b) ≤ κr,p

αr,p

r!
∥∥∥f

(r)
�

∥∥∥
L1/(r+1/p)(a,b)

� κr,p ε mr+1/p
ε .

Hence, to have the error asymptotically at most ε, it suffices that

m ≥ κ
1/r
r,p m

1+ 1
rp

ε .

298 Numerical Algorithms (2022) 89:277–302

That is, the procedure AUTO2 may be run with

ε∗ = ε

/(
κ

1/r
r,p m

1+ 1
rp

ε

)1/p

. (31)

(Observe that ε∗ = ε if p = +∞, which is consistent with the previous
considerations).

To summarize, our algorithm consists of two steps. First, we run the recursive
procedure AUTO2 with the error threshold e = ε and find mε. Second, we resume
the recursion with the updated threshold e = ε∗ given by (31) to get the final parti-
tion. If the recursion is implemented using a stack, then the cost of the algorithm is
proportional to mε∗, which in turn is proportional to ‖f (r)

� ‖1/r

L1/(r+1/p)(a,b)
ε−1/r .

Denote the resulting approximation by A2(f, ε).

Theorem 5 For all functions f ∈ Cr([a, b]) we have
‖f − A2(f, ε)‖Lp(a,b) � ε,

i.e., an ε-approximation is achieved asymptotically as ε → 0+.

Example 3 Results of numerical tests for the automatic approximation of the func-
tions f and g of Examples 1 and 2 using AUTO2 are presented, correspondingly, in
Tables 4 and 5. We observe a perfect behavior of the algorithm for f and � = 0,

and for p = 1, 2, +∞. Things are quite different for g. If � = 0, then the algorithm
wrongly estimates the L∞ error and terminates too early. A much better is the “safe”
choice � = 104.

Remark 8 It is easy to verify using Theorems 1 and 2 that if � = 0 in (29), i.e., when
the priority pf = pf , then Theorem 5 holds true provided f (r) does not nullify,

Table 4 Results from AUTO2 for the function f

p = 1 p = 2 p = ∞

ε err m err m err m

10−1 4.8120e−03 7 4.8579e−03 8 8.3071e−02 8

10−2 2.4475e−03 8 3.4434e−03 9 1.0140e−02 12

10−3 2.1955e−04 15 2.4042e−04 19 1.1791e−03 21

10−4 1.6440e−05 29 2.6927e−05 32 1.0668e−04 37

10−5 2.0967e−06 49 2.3621e−06 59 1.0210e−05 66

10−6 1.9377e−07 89 2.3729e−07 104 9.4524e−07 119

10−7 1.8953e−08 159 2.3978e−08 184 9.8516e−08 210

10−8 1.9625e−09 279 2.2696e−09 333 9.9832e−09 373

10−9 1.8928e−10 499 2.2775e−10 595 9.9825e−10 653

10−10 1.8066e−11 900 2.3532e−11 1054 9.9678e−11 1168

299Numerical Algorithms (2022) 89:277–302

Table 5 Results from AUTO2
for p = ∞, for the function g � = 0 � = 104

ε err m err m

10−1 1.0120e+00 34 1.0120e+00 34

10−2 4.6830e−02 61 4.6830e−02 61

10−3 3.1252e−02 126 1.2133e−03 129

10−4 1.5755e−04 233 1.5755e−04 233

10−5 2.0817e−05 377 1.0686e−05 385

10−6 1.1227e−05 660 1.0308e−06 673

10−7 1.9048e−06 1183 1.0056e−07 1223

10−8 1.6912e−08 2167 1.1125e−08 2169

10−9 4.0518e−09 3980 1.0548e−09 3992

10−10 1.3303e−10 7086 1.0597e−10 7124

or f (r) does not change its sign and the condition (16) is fulfilled. Moreover, in the
latter case, it is possible to obtain an ε-approximation non-asymptotically. Indeed, it
is enough to change the “if” condition in AUTO1 to βr,p pf ([a, b]) ≤ e, where βr,p

is as in Lemma 1, and run the procedure with e = ε. It immediately follows from
(20) that then we get for sure an approximation with error at most ε.

The existence of a corresponding to AUTO2 recursive procedure that uses an
(almost) optimal partition is problematic. Instead one can apply the following
iterative procedure that is based on our initial algorithm discussed in Section 4.

It is worth mentioning that AUTO3 produces an approximation with unnecessar-
ily much smaller error than the required ε, and consequently its running time is much
higher than that of AUTO2. This is due to the fact that βr,ppf (I) in (20) usually con-
siderably overestimates the error in any interval I . For instance, consider again the
L∞ approximation of the function f from previous examples. Let β4,∞ be defined
as in (19). Then, for ε = 10−3, 10−6, 10−9, the procedure AUTO3 produces respec-
tively approximations with errors 3.0211e−06, 3.3098e−10 and 5.6843e−14 using
88, 878, and 9749 subintervals (compare with the corresponding results for AUTO2
in Table 4).

300 Numerical Algorithms (2022) 89:277–302

6 Remarks on numerical integration

Adaptive quadratures are frequently used for automatic integration,

If =
∫ b

a

f (x) dx. (32)

Such quadratures can be obtained, for instance, by integrating the interpolant Lm,rf,

which results in the compound quadrature

Qm,rf = I(Lm,rf).

Then, our results for the L1 approximation provide upper bounds for the quadrature
error, and the procedures constructed for automatic approximation can be as well
used for automatic integration. For we have

|If − Qm,rf
∣∣ =

∣∣∣∣
∫ b

a

(f − Lm,rf)(x) dx

∣∣∣∣
≤

∫ b

a

∣∣(f − Lm,rf)(x)
∣∣ dx = ∥∥f − Lm,rf

∥∥
L1(a,b)

.

The bound above often overestimates the actual error. This happens when the
degree of exactness of the quadrature Qm,r is at least r . Then, for s ≥ r + 1 and for
any function f ∈ Cs([a, b]) with f (s)
= 0, the error |If − Qm,rf | is of order m−s ,

while ‖f − Lm,rf ‖L1(a,b) decreases to zero no faster than m−r .
Consider now the case when the base quadrature Qr for approximating the integral∫ 1

0 f (x) dx is such that its degree of exactness equals r−1, and the Peano kernel of the

error functional f �→ ∫ 1
0 f (x) dx −Qrf does not change its sign. The quadrature Qr

may, but does not have to, use the points (1). (Obvious examples include the Newton-
Cotes quadratures or Gauss-Legendre quadratures). Suppose that the integral (32) is
approximated by the corresponding to Qr compound quadrature Qm,r applied to a
given partition consisting of m subintervals. Then, there is λr such that the quadrature
error in each subinterval [xj−1, xj] equals

λr hr+1
j f (r)(ζj) for some ζj ∈ [xj−1, xj]. (33)

If f (r) does not change its sign in [a, b], then the formula (33) allows us to apply the
whole machinery of Sections 3 and 4 to claim that an asymptotically optimal partition
makes all local integration errors equal. For the corresponding quadrature Q∗

m,r we
have

|If − Q∗
m,rf | ≈ λr

∥∥∥f (r)
∥∥∥

L1/(r+1)(a,b)
m−r as m → +∞,

which reproduces the results of [8] for r = 4, and those of [2, 3] for arbitrary r .
Moreover, if the quadrature uses the partition produced by ALGORITHM, then its
error bound is asymptotically worse than the optimal error by the factor of κr,1.

An example is provided by the standard adaptive Simpson quadrature [5], where
r = 4, the points in (1) are (t0, t1, t2, t3, t4) = (0, 1

4 , 1
2 , 3

4 , 1), and

Q4f = 1
12

(
f (0) + 4f (1

4) + 2f (1
2) + 4f (3

4) + f (1)
)

.

301Numerical Algorithms (2022) 89:277–302

Funding L. Plaskota was supported by the National Science Centre, Poland, under project 2017/25/B/ST1/00945.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York
(1984)

2. Goćwin, M.: On the optimal adaptive quadratures for automatic integration. BIT Numerical Mathe-
matics, to appear

3. Jagieła, K.: Construction of optimal adaptive quadratures of arbitrary order (in Polish). Master Thesis,
University of Warsaw (2015)

4. Kincaid, D., Cheney, W.: Numerical Analysis. Mathematics of Scientific Computing, 3rd ed. AMS,
Providence (2002)

5. Lyness, J.N.: Notes on the adaptive Simpson quadrature routine. J. ACM 16, 483–495 (1969)
6. Lyness, J.N.: Guidelines for automatic quadrature routines. In: Freeman, C.V. (ed.) Information

Processing 71, vol. 2, pp. 1351–1355. North-Holland Publ (1972)
7. Novak, E.: On the power of adaption. J. Complex. 12, 199–238 (1996)
8. Plaskota, L.: Automatic integration using asymptotically optimal adaptive Simpson quadrature.

Numer. Math. 131, 173–198 (2015)
9. Plaskota, L., Wasilkowski, G.W.: Adaption allows efficient integration of functions with unknown

singularities. Numer. Math. 102, 123–144 (2005)
10. Plaskota, L., Wasilkowski, G.W.: Uniform approximation of piecewise r-smooth and globally

continuous functions. SIAM J. Numer. Anal. 47, 762–785 (2009)
11. Plaskota, L., Wasilkowski, G.W., Zhao, Y.: The power of adaption for approximating functions with

singularities. Math. Comput. 77, 2309–2338 (2008)
12. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press,

Boston (1988)
13. Trojan, G.M.: Asymptotic setting for linear problems, manuscript (See also [12]) (1983)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

302 Numerical Algorithms (2022) 89:277–302

http://creativecommons.org/licenses/by/4.0/

	Automatic approximation using asymptotically optimal adaptive interpolation
	Abstract
	Introduction
	Preliminaries
	Optimal partition
	An algorithm for (almost) optimal partitions
	Automatic approximation
	Remarks on numerical integration
	References

