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Abstract
A mathematical model is introduced to solve a mobile workforce management prob-
lem. In such a problem there are a number of tasks to be executed at different loca-
tions by various teams. For example, when an electricity utility company has to deal 
with planned system upgrades and damages caused by storms. The aim is to deter-
mine the schedule of the teams in such a way that the overall cost is minimal. The 
mobile workforce management problem involves scheduling. The following ques-
tions should be answered: when to perform a task, how to route vehicles—the vehi-
cle routing problem—and the order the sites should be visited and by which teams. 
These problems are already complex in themselves. This paper proposes an inte-
grated mathematical programming model formulation, which, by the assignment of 
its binary variables, can be easily included in heuristic algorithmic frameworks. In 
the problem specification, a wide range of parameters can be set. This includes abso-
lute and expected time windows for tasks, packing and unpacking in case of team 
movement, resource utilization, relations between tasks such as precedence, mutual 
exclusion or parallel execution, and team-dependent travelling and execution times 
and costs. To make the model able to solve larger problems, an algorithmic frame-
work is also implemented which can be used to find heuristic solutions in accept-
able time. This latter solution method can be used as an alternative. Computational 
performance is examined through a series of test cases in which the most important 
factors are scaled.
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1  Introduction

The mobile workforce management problem in question has characteristics from 
both scheduling and vehicle routing problems. Scheduling problems arise when 
some activities must be carried out, but the sequence and timing of the required 
steps, usually called tasks, are to be decided. A wide range of scheduling problems 
appears in the industry, which are usually given by the recipe of the process and an 
objective. The most common objectives are the minimization of processing time, i.e. 
the makespan, the minimization of costs, or the maximization of the throughput or 
profit over a fixed time horizon. Vehicle routing problems (VRP) can be regarded as 
generalizations of the travelling salesman problem (TSP). In a TSP, a set of nodes 
must be visited by the same actor with minimal transportation effort. In a VRP, there 
are multiple such actors sharing the work, and the overall goal can be more complex. 
These problems are difficult on themselves, and were subject to various, mostly heu-
ristic solution methods, each focusing on some specific problem class.

The literature review to be presented has three main parts: the first part focuses 
on scheduling, the second part on VRP, and the third part on specific mobile work-
force problem definitions, solution approaches and case studies.

1.1 � Scheduling problems

Scheduling focuses on timing several activities, usually called tasks. With the excep-
tion of some special problem classes, scheduling can be an NP-hard problem, requir-
ing heuristic methods to tackle. For instance, flow shop scheduling with multiple 
machines is already falling into this category (Osman and Potts 1989). There are 
heuristic, combinatorial and mathematical programming approaches as well. Among 
the heuristic approaches are the Simulated Annealing (SA) used for job shop sched-
uling (Raaymakers and Hoogeveen 2000), and Genetic Algorithm (GA) applications 
(Bierwirth and Mattfeld 1999). The common advantage of these methods is that 
they are able to consider a very large search space, a disadvantage is the specificity 
and lack of global optimality. A combinatorial approach for scheduling is, for exam-
ple, the S-Graph framework, which can handle different storage policies in batch 
process scheduling (Romero et al. 2004), or timing constraints between tasks as well 
(Hegyhati et al. 2011). The framework can also be enhanced by mathematical pro-
gramming tools (Lainez et al. 2010).

Mathematical programming methods are popular either alone or as part of an 
algorithmic framework for a range of problems, including scheduling. A good com-
promise between modelling power and computational complexity is the class of 
Mixed-Integer Linear Programming (MILP), which is widely used. Mendez et  al. 
(2006) provided a state-of-the-art review on different MILP modelling approaches. 
Although the shown approaches focus on batch processes, the MILP modelling tech-
niques can be easily adapted to different contexts, which is a strong advantage of 
mathematical programming in general. In the model development point of view, 
MILP approaches either use some concept of time points or time slots (Pinto and 
Grossmann 1995), or the precedence relationship between tasks (Mendez and Cerda 
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2003) to define the key decision variables. One property of mathematical program-
ming approaches is the possibility of equivalent, but technically easier model for-
mulations. This had been demonstrated particularly for scheduling problems (Sahi-
nidis and Grossmann 1991). Therefore, the choice of decision variables is a critical 
part of model development. Kim et  al. (2000) proposed a slot-based approach for 
a multipurpose scheduling problem dealing with different storage methods. Bradac 
et al. (2015) used an MILP model based on time slots for the scheduling of domestic 
appliances subject to time-based energy prices and user preferences, suggesting that 
time slots can be a useful technique for other purposes.

1.2 � Vehicle routing problems

In VRP problems, the main decisions are the assignment of sites to vehicles, and 
the visit order of sites by the assigned vehicles. The problem may involve other con-
straints and features, for example time windows for visits, precedence relationships, 
resource capacity, and multiple depots. A recent review by Vidal et al. (2020) pro-
vides an insight into the wide range of possible real-life considerations for VRP case 
studies.

Standalone MILP solutions were developed for different classes of both the TSP 
and the more general VRP problems, including problems with multiple vehicle 
depots (Kulkarni and Bhave 1985). A wide range of generic algorithmic improve-
ments were proposed to traverse the search space of models for VRP problems faster 
(Costa et  al. 2019). However, due to computational complexity, a more common 
approach is the consideration of an algorithmic framework that is only based on a 
mathematical programming model, but controls the traverse of the search space on 
its own.

Transportation efforts are a key factor in VRP problems, usually expressed in 
terms of time or costs. Travelling efforts can be estimated a priori, and in some sce-
narios, may depend on current vehicle load. Camm et al. (2017) proposed a solution 
to the VRP problem where distances to be travelled are weighted by passengers on 
board. The authors first formulate the problem as an MILP, then solved it by a spe-
cific algorithmic framework. Chitty and Hernandez (2004) applied the Ant Colony 
Optimization method (ACO) for minimizing the total mean time and variance of 
vehicles.

Time windows for the vehicles arriving at certain sites are a common extension 
for VRP problems. A common scenario is when products with a limited lifespan 
have to be delivered. In these cases, production is usually part of the decision prob-
lem together with routing. Chen et  al. (2009) proposes a solution for VRP with 
time windows for perishable products by a nonlinear programming model, which 
is then solved by an adaptation of the Nelder-Mead method. Geismar et al. (2008) 
addressed a similar problem with a GA framework. Kergosien et al. (2017) formu-
lated an MILP model for chemotherapy production and delivery. In this scenario, 
although only a single vehicle was used multiple times, the model turned out compu-
tationally costly and the authors applied the Benders decomposition method (Bend-
ers 1962) to solve it. Lee et al. (2014) formulated an MILP for a similar problem of 
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nuclear medicine delivery, and the algorithmic framework was the Large Neighbor-
hood Search (LNS) in their case. Ben Abdelaziz et al. (2017) proposed a stochastic 
programming approach for a VRP when passenger transport had to be organized 
from various points by airport buses. Their model also considered desired timing 
constraints for each passenger group. Gong et  al. (2012) showed that the Particle 
Swarm Optimization method (PSO) can also be used to solve VRP problems with 
time windows. Another common extension for VRP problems is vehicle capacity, 
which limits the routes possible to a single vehicle. Liu et  al. (2017) proposed a 
Tabu Search method for the effective solution of VRP where both vehicle capacities 
and timing constraints were considered. The authors proposed a Lagrangian relaxa-
tion for larger problem instances.

The increasing popularity of electric vehicles and other alternative delivery 
technologies also had an impact on research towards VRP. Current electric vehi-
cles usually have a relatively short capacity, and their routes have to be designed 
accordingly. Pelletier et al. (2019) proposed a solution for VRP of electric vehicles 
with uncertain data. Macrina et al. (2019) considered the VRP with time windows 
for a fleet of conventional and electric vehicles. The authors apply a variant of the 
Large Neighborhood Search heuristic based on an MILP model. Paz et  al. (2018) 
solved the VRP problem involving electric vehicles with a standalone MILP model, 
which also takes multiple depots, time windows, and different battery technologies 
into consideration. The model was tested on small scale problem instances with few 
vehicles and sites. Wang et al. (2017) considered the problem of VRP with available 
drones as an alternative for using trucks only for product delivery. An MILP-based 
approach was also proposed which used a Branch and price algorithm (Wang and 
Sheu 2019).

1.3 � Mobile workforce management

Mobile workforce is needed to be managed in many areas, including product deliv-
ery, maintenance of spatially distributed infrastructure, and any kind of service that 
involves travelling to clients (Castillo-Salazar et al. 2016). Working personnel must 
travel to one or multiple sites in some order and must also perform tasks, there-
fore both routing and scheduling decisions are made. The spreading and evolution 
of communication tools introduce new possibilities for monitoring and managing 
mobile workforce (Bakewell et al. 2018). Nevertheless, there is a huge potential in 
optimizing workforce management for existing businesses. Mobile workforce man-
agement problems in this sense do not have a strict formal definition which clearly 
distinguishes them from VRP—in fact, the main solution approaches are similar. 
Instead, these problems are characterized by the importance of tasks to be executed 
by the workforce. For example, tasks usually take a considerable amount of time. In 
some cases, a complex activity is modelled as a set of different tasks, the execution 
of which are usually related. Nevertheless, routing decisions that determine travel-
ling efforts are still an important factor in decision making.

Dependency of tasks on each other is a common trait of workforce scheduling 
problems. Precedence is the most common example of such a relation between 
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tasks, which requires particular pairs of tasks to be executed in a given order. As 
constraints, precedence can appear in simpler problems like TSP as well (Sung and 
Jeong 2014). In the modelling point of view, the vast majority of mathematical pro-
gramming approaches exploit the precedence of tasks at different sites as decision 
variables. Also, standalone mathematical programming approaches are uncom-
mon. Instead, MILP models can be effectively included in algorithmic frameworks, 
as the integer decision variables can be assigned by heuristics as well (Goel and 
Meisel 2013). A mobile workforce management problem with precedence relation-
ships were solved by Pereira et  al. (2020) with an ACO solution approach, which 
was based on an MILP model. The authors remark that the presence of depend-
encies between tasks often make local neighbourhood search methods difficult to 
implement.

Goel et  al. (2010) proposed an MILP model for scheduling mobile workforce, 
where time windows and precedence relations are simultaneously considered, and 
suggested an iterative solution algorithm. Starkey et al. (2016) defined the mobile 
workforce management problem as grouping places into worker areas served inde-
pendently by travelling engineers, motivated by the telecommunications field. The 
proposed solution involves genetic algorithms and fuzzy logic. In a more recent 
work, a similar approach is presented to address the question when to optimize and 
rearrange existing worker areas (Chimatapu et al. 2018).

The vehicles may have different properties, for example due to team member 
expertise differences. Decision on how the teams can be formed based on individual 
skills is on itself a hard problem which requires heuristic methods (Starkey et  al. 
2018). The workforce management of an electricity utility company was considered 
by Çakırgil et al. (2020). Their model involves different skills, multiple depots and 
two concurrent objectives of weighted total time and execution costs. The proposed 
solution involves a multi-stage heuristic that relies on an MILP model.

It can be observed that mobile workforce applications usually specialize in the 
single case study which had to be solved, and the corresponding heuristic algorithms 
are designed accordingly. Standalone MILP, or general algorithmic approaches are 
usually proposed to more general problem classes. The aim of this work is to pre-
sent an MILP approach that can be used either as a standalone solution or as part 
of an algorithmic framework. A key feature of the model is that the slot-based deci-
sion variables are applied instead of precedence-based decisions, which are the more 
common for VRP case studies. This choice makes a wide range of features possible 
to be easily modelled, including time windows, vehicle capacities, resource usage, 
different vehicle efficiencies, and multiple kinds of relations between tasks. To our 
best knowledge, there is neither a slot-based MILP approach in the literature specific 
to mobile workforce management, nor one which supports the aforementioned fea-
tures in a single model. A previous work was dedicated to the possible options of the 
algorithmic framework for mobile workforce management (Eles et al. 2018). In this 
work, the MILP model is proposed for scheduling and routing of mobile workforce, 
which can be used alone or as part of an algorithmic framework. The capabilities of 
both methods were thoroughly investigated.

The rest of the paper is structured as follows. The second section describes the 
problem formulation with an example motivational problem and its solution shown. 
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The third section presents the MILP model in detail, and the fourth section pre-
sents the algorithmic framework. The case study regarding the standalone MILP 
and the algorithmic solution approaches are discussed in the fifth and sixth section, 
respectively.

2 � Problem specification

In this section the mobile workforce management problem is described which can be 
regarded as mix of traveling salesman problem (how to visit the sites) and schedul-
ing problem (when each task should be performed). The assumptions made for each 
component of the real-world problem in order to formulate our model are also listed.

The scope of the problem governs a single workday of a company responsible for 
executing tasks arising in various locations. An illustrative example for this scenario 
could be a public service company which executes maintenance jobs and repairs on-
demand. The tasks take place at different points of the infrastructure (e.g., the power 
grid). Nevertheless, the formulation is intended to be more general.

The company has several working teams which can be assigned to the jobs. These 
teams start at their depot at the beginning of the day, must travel to the tasks, execute 
them one by one, and then return to their depot by the end of the workday. Briefly, 
the company has to decide for each team what tasks to do, in which order, and at 
what exact times (see Fig. 1), subject to a broad range of restrictions. A motivational 
example which serves as a demonstration for the problem specification is included 
in the case study.

2.1 � Objective and scope of optimization

The objective function is cost minimization where all tasks are mandatory. There-
fore, the list of tasks is treated as parameter to the problem and is not subject to deci-
sion making.

This is due to practical considerations. Skipping a critical repair job is not 
allowed for a utility company and the original problem definition is motivated by 
this scenario. The decision about non-urgent maintenance tasks is made on a higher 
level, usually by the management, which is out of scope of our target problem.

Note that, as will be shown, the cost functions can be used to express a difference 
for the same task being executed in different situations.

2.2 � Task scheduling

The key question is how task execution is performed. In short, each task must be 
assigned to one team. The problem involves decision about how to make these 
assignments. The following assumptions are made.

•	 Teams are fixed.
•	 Task execution cannot be interrupted once started (non-preemptive execution).
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•	 Task execution takes a fixed amount of time and cost, both depending on the 
team chosen.

Teams execute tasks by visiting their sites one by one. If the team executes two 
tasks consecutively on different locations, travelling has to be taken into account. 
Teams also travel from the depot to their first task, and from their last task back to 
the depot. Therefore, a team’s schedule for a workday consists of working on tasks 
and travelling between locations. Assumptions about travelling are the following:

•	 A task is located at a single location, called task site.
•	 Multiple tasks may be located at the same site.
•	 Distances of the sites are given as a parameter.
•	 Travelling time and costs are proportional to distance. Teams have their own 

average speed and cost ratio given as parameters.

Teams also have a limited working capacity in three different aspects: the total 
time travelled, the total distance travelled, and the total time spent in duty are all 
limited by an upper constant each, specific for each team. Just before and after exe-
cuting a task, a team may perform several additional activities, one at a time. See 
Fig. 2 for the complete list in logical order, more about these later.

Fig. 1   Illustration of the goal of the optimization problem: given a set of tasks, decide on the precise 
timetable of the teams for a single workday
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2.3 � Packing and unpacking

Our problem formulation includes special activities called packing and unpacking. 
These represent preparations and post-work that are performed once when teams 
execute one or more tasks in a row at the same site. The rules describing how pack-
ing and unpacking activities work are the following.

•	 If a team arrives to a task site, an unpacking activity must be performed.
•	 Unpacking is not performed if the previous task is at the same site.
•	 If a team leaves a task site, a packing activity must be performed.
•	 Packing is not performed if the next task is at the same site.
•	 Packing and unpacking costs and times are fixed, and specific for the team.

2.4 � Time windows

Although all tasks are mandatory, the exact time of execution may affect costs, or 
can be subject to restrictions. For this reason, time windows are introduced in the 
problem formulation. Two different kinds of time windows are assumed: absolute 
and expected (see Fig. 3).

•	 An absolute time window is a time interval, which must wholly contain the exe-
cution of the task.

•	 An expected time window is a time interval, which should contain the execution 
of the task, but it is allowed to be violated for a specific cost. Both starting a task 
earlier than the window, and finishing a task later than the window incurs cost 
proportional to the extent of earliness or lateness. The two cost factors are spe-
cific for the task.

•	 Each task may have its own absolute and expected time window independently, 
provided as parameters.

2.5 � Resource management

Task execution may require additional kinds of resources from teams, independ-
ent of previously mentioned times and costs. The assumptions on resources are the 
following.

Fig. 3   Absolute and expected time windows
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•	 Each task has a requirement for each resource, given as a parameter. The exact 
amount depends on both the task and the team selected.

•	 Each team has its own maximum capacity for carrying an amount of each 
resource.

•	 Each resource has a maximum capacity for the workday, shared among all teams.
•	 Each resource has a proportional cost of usage.

There are two kinds of resources considered: consumables and tools. Consuma-
bles are used up in a single task, but tools can be used any number of times. That 
implies, the total amount of a resource needed for multiple tasks is a sum for a con-
sumable, and a maximum for a tool resource (see Fig. 4).

2.6 � Pairwise task relations

The problem formulation also allows tasks to be dependent on each other. Relations 
between particular pairs of tasks can be defined, which impose additional constraints 
on the execution of the two tasks. Let K1 and K2 be two different tasks. The relations 
that can be defined on K1 and K2 are the following (see Fig. 5).

•	 Free precedence: K2 must start after K1 finished.
•	 Same-team precedence: free precedence, also requiring K1 and K2 to be executed 

by the same team.
•	 Protected precedence: free precedence, also requiring security measures between 

K1 and K2 (see later).
•	 Mutual exclusion: execution times of K1 and K2 may not overlap.
•	 Parallel execution: K1 and K2 are executed in parallel by two adequate teams 

simultaneously. Execution starts at the same time and ends according to the 
longer of the two task execution times.

Protected precedence is intended to model situations where two activities must be 
performed one after the other on the same site by different teams. Leaving the site 
unattended can be hazardous, e.g. in case of unfinished roadworks, electric boxes. 
Two options are available:

•	 The team executing K1 may wait until the team executing K2 arrives.

Fig. 4   Illustration of consumable and tool resource utilization for one team
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•	 The team executing K1 may perform a closing activity and leave the site. The 
team executing K2 must first perform an opening activity. Both the closing and 
opening activity has a fixed cost and time requirement.

3 � MILP model formulation

A Mixed-Integer Linear Programming model was designed to address the problem 
of mobile workforce management described in the previous section.

The model was developed in GNU MathProg modelling language, as a sin-
gle MILP model file. Problem data consisting all the required parameters must be 
provided through one or more data files. The model can be solved with a general-
purpose MILP solver in a single call. From now on, we refer to the model as the 
Standalone MILP, which consists of the constraints and the objective to be presented 
in this section. The groups of constraints correspond to main components of the 
problem specification. Variables are denoted by lowercase, parameters and sets are 
denoted by uppercase symbols. The complete list can be found in the nomenclature.

Since the problem is quite complex, it is unlikely that a purely MILP-based solu-
tion can find a globally optimal solution fast in the general case. Therefore, the aim 
in model design was to easily support the widest range of features, so that the MILP 
can be utilized in various heuristic optimization algorithms in the future. The selec-
tion of the binary decision variables also reflects this purpose, because it is techni-
cally easy to preset some variables and solve the model in a reduced search space.

3.1 � Key decision variables

The MILP model developed—in contrast to most literature examples for VRP and 
mobile workforce management problems—is not a precedence-based but a slot-
based model. This is characterized by the main decision variables in the model. 
Slots allow a more straightforward definition of other decision variables and imple-
menting other modelling features, as well as an algorithmic framework afterwards.

For each team, a predefined set of “job slots” is introduced. Job slots are num-
bered for each team, and a job slot is a placeholder for a single task. Each task must 
be assigned to a single job slot, but a job slot may remain unused, meaning there 
is no task assigned. The assignment of tasks to job slots is the core of the decision 
problem, as it determines which tasks a team must perform, and in what order.

Also, a set of “travelling slots” is also introduced for each team. These are place-
holders for possible travelling between two tasks, at the beginning and at the end of 
the workday. Travelling and job slots of a team are alternating after each other.

Finally, for modelling purposes, the term “site slot” is also introduced. These 
are simply all job slots, plus the time point of the beginning, and the time point of 
the ending of the workday, numbered accordingly. Site slots serve as points in time 
where an exact position of a team is in question. These are helpful because all travel-
ling slots, including the very first and very last one, are now surrounded by two site 
slots, allowing uniform constraint definitions for travelling slots.
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In Fig. 6, the scheme of all slot concepts is illustrated. The team is named m , and it 
has a predefined number of Nm job slots, where Nm is a parameter to be decided a priori 
in the model. However, after solving the problem, team m might only execute some L 
tasks out of the possible Nm , therefore some slots remain unused. Note that even more 
travelling slots can be unused, depending on how many tasks m executes at the same 
place consecutively.

From now on, the i th job slot of a team m is denoted by the ordered pair (m, i) , start-
ing by i = 1 . The set of all job slots is Jslots , and the set of all tasks is K. Based on job 
slots, we can now define the core binary decision variables in the model. These are the 
assignment variables ak,m,i , where the index k ∈ K stands for a task, and (m, i) ∈ Jslots 
stand for a job slot. The value of ak,m,i is 1, whenever task k is assigned to job slot (m, i) , 
and 0 otherwise. Note that in the motivational example, there was 2 teams and 8 tasks, 
8 job slots for each team. This results in 8 ⋅ 2 ⋅ 8 = 128 binary variables and theoreti-
cally covers all possible cases.

An example is provided in Fig. 7 to demonstrate the meaning of variable ak,m,i with a 
small example of 2 teams Team1 and Team2, and 3 tasks KA, KB and KC. In the exam-
ple shown, there are 3 predefined job slots for both teams, and Team1 uses 1, Team2 
uses 2 of them. From the resulting 18 binary variables, only three take the value 1, 
which are aKA,Team2,1 , aKB,Team2,2 and aKC,Team1,1.

Variables ak,m,i determine the routing decisions. The rest of the decision variables 
define he exact timing of events, resource usages, costs incurred, and some other deci-
sions. It is notable that most binary decision variables can be (and are) directly calcu-
lated from the variables ak,m,i , and therefore those variables can possibly be left contin-
uous in the model implementation. The two exceptions for this are the binary variables 
for mutual exclusions and protected precedence relations, as they involve a further dis-
crete decision.

From now on, constraints of the model are presented grouped by the main logical 
parts.

3.2 � Allocation constraints

Allocation constraints are responsible for the basic logic of assignment of tasks to job 
slots, which are the core decisions in the model. The positions of tasks at starting and 
ending points of time slots are also determined here.

3.2.1 � Assignment of tasks

Task k is assigned to team m (denoted by atask
k,m

 ) if and only if it is assigned to a sin-
gle job slot (m, i) of team m . As variable atask

k,m
 is binary, Constraint (1) also implicitly 

ensures that at a task is assigned to at most one job slot of a particular team m.

(1)atask
k,m

=
∑

(m,i)∈Jslots

ak,m,i ∀k ∈ K,m ∈ M
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Constraint (2) ensures that all tasks k are assigned to exactly one team. For 
a particular task k , exactly one of the variables atask

k,m
 for all m must be 1 and the 

rest must be 0 to satisfy the equation.

3.2.2 � Positions of teams

Job slots are used consecutively from the first one ( i = 1 ) and cannot be skipped 
unless there are no other tasks assigned to further job slots. This can be inter-
preted in the following way: if a job slot (m, i) is used and a task is assigned to it, 
then so does the previous job slot (m, i − 1) , expressed in Constraint (3).

Binary variable bpresent
m,i,s

 denotes whether the exact position of m at job slot (or 
site slot) (m, i) is site s or not. All values of bpresent

m,i,s
 are directly calculated now by 

constraints (4–7).
At the beginning, when the first travelling slot (m, 0) of team m is started, the 

team m is at its starting depot. In the end of the workday, which is at the end of 
travelling slot 

(
m,Nm

)
 , at time point 

(
m,Nm + 1

)
 , it is at its final depot.

At the beginning of each job slot (m, i) of a team m , the team is present at the 
task execution site s if and only if a task k whose site is Stask

k
= s is assigned to 

the job slot (m, i).

Finally, Constraint (7) ensures that the team is in exactly one position 
throughout the day, which can be a depot or a task site.

Throughout this work, we assumed that vehicles return where they started, 
Sstart
m

= Send
m

. If this is the case, Constraints (4–7) well-define values of bpresent
m,i,s

 , 
even if this variable is continuous.

(2)1 =
∑

m∈M

atask
k,m

∀k ∈ K

(3)
∑

k∈K

ak,m,i−1 ≥
∑

k∈K

ak,m,i∀(m, i) ∈ Jslots ∶ i > 1

(4)b
present

m,0,Sstart
m

= 1∀m ∈ M

(5)b
present

m,0,Send
m

= 1∀m ∈ M

(6)b
present

m,i,s
=

∑

k∈K∶Stask
k

=s

ak,m,i ∀(m, i) ∈ Jslots, s ∈ Stasksites

(7)
∑

s∈Stasksites∪{Sstartm
,Send

m }

b
present

m,i,s
= 1∀(m, i) ∈ Sslots
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3.3 � Travelling and continuity constraints

There is a set of constraints that establish the connection between consecutive 
tasks of the same team. These constraints make sure that the travelling times, 
costs and possible idle times are managed correctly, as well as the continuity of 
the alternating travelling and job slots, and some global limitations for the teams.

3.3.1 � Movement between sites

Binary variables bsch
m,i,s1,s2

 denote movement between sites s1 and s2 in a travelling 
slot, while btravel,move

m,i
 denotes if there is any movement. These must be forced to be 

1 whenever needed.
Constraint (8) expresses that for all travelling slots (m, i) , and pairs of differ-

ent sites s1 and s2 , there is a movement between these two sites in this travelling 
slot if team m is at s1 at the beginning, and at s2 at the end of travelling slot (m, i). 
These two events are referred by site slots (m, i) and (m, i + 1) , respectively.

There is movement in travelling slot (m, i) if and only if there are two sites s1 
and s2 between which the movement occurs. Constraint (9) expressing this fact is 
an equation, because there can only be one such 

(
s1, s2

)
 pair.

Distance between sites travelled is determined similarly in Constraint (10). For 
each pair of sites, their distance is taken into account as a factor to determine the 
total distance travelled by team m in its travelling slot (m, i).

3.3.2 � Slot continuity

It must be ensured that job slots have a nonnegative length (even if they are out of 
use). This can be done by the Constraint (11), since the job slot (m, i) starts when 
travelling slot (m, i − 1) ends, and ends when travelling slot (m, i) starts.

The nonnegative length of travelling slots is implicitly guaranteed by their 
length formula, expressed by Constraint (12). Travelling slot (m, i) consist of trav-
elling time, depending on distance dm,i and team speed Vm , packing and unpacking 

(8)bsch
m,i,s1,s2

≥ b
present

m,i,s1
+ b

present

m,i+1,s2
− 1∀(m, i) ∈ Tslots, s1, s2 ∈ S ∶ s1 ≠ s2

(9)b
travel,move

m,i
=

∑

s1,s2∈S∶s1≠s2

bsch
m,i,s1,s2

∀(m, i) ∈ Tslots

(10)dm,i =
∑

s1,s2∈S∶s1≠s2

bsch
m,i,s1,s2

⋅ Ds1,s2
∀(m, i) ∈ Tslots

(11)t
travel,start

m,i
≥ t

travel,end

m,i
∀(m, i) ∈ Jslots
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time, and idle time. If there is no movement in this travelling slot, only idle time 
may occur.

3.3.3 � Team limitations

Constraints (13–15) ensure global limitations for the teams.
For each team m , the total travelling time has an upper limit Ttravel,MAX

m
 . For all job 

slots (m, i) , travelling times without idle and packing times are added up against this 
limit.

Total time in duty including any activities is also bounded by a parameter 
Twork,MAX
m

 , for each team m.

The total distance travelled, which is the sum of actual distances dm,i , is also lim-
ited by a parameter Dtravel,MAX

m
.

3.4 � Task execution constraints

In a job slot, several events may happen before, during, and after a task is executed. 
This set of constraints is responsible for calculating timings and costs of task execu-
tion, and possible preconditions for them. A common property of these constraints is 
that they are formulated for all tasks k ∈ K.

3.4.1 � Job slot sequencing

The start of the presence of team m at site for executing task k , denoted by 
t
presence,start

k
 , takes place at the beginning of some job slot (m, i) of a team m the task is 

assigned to. Constraint (16) formulates this fact for all possible allocations ak,m,i as a 
big-M constraint.

(12)t
travel,end

m,i
− t

travel,start

m,i
=

dm,i

Vm

+ b
travel,move

m,i
⋅

(
Tpack
m

+ Tunpack
m

)
+ tidle

m,i

∀(m, i) ∈ Tslots

(13)
∑

(m,i)∈Tslots

(
t
travel,end

m,i
− t

travel,start

m,i

)
≤ Ttravel,MAX

m
∀m ∈ M

(14)t
travel,end

m,Nm
− t

travel,start

m,0
≤ Twork,MAX

m
∀m ∈ M

(15)
∑

(m,i)∈Tslots

dm,i ≤ Dtravel,MAX
m

∀m ∈ M
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After the team is present at the site, nonnegative waiting and site opening times 
may take place before the task execution begins. Site opening depends on choices 
made at protected precedence relations, which will be discussed later. The final 
value in Constraint (17) is tstart

k
 , the actual starting time of execution.

The net execution time is the time between the starting time ( tstart
k

 ) and ending 
time ( tend

k
 ). This depends on team selection, so summed for each allocation candidate 

atask
k,m

 . There is also a nonnegative slack term tslack
k

 which relaxes this interval. This is 
essential for parallel execution of tasks to take place, where the faster team should 
“wait” for the other one to finish. In reality, the slower team’s working speed is the 
bottleneck as they work together. Parallel execution relations are also discussed later.

After finishing execution, the team may wait additionally, and possibly close the 
task site due to some protected precedence relation of k , similarly to opening sites 
before execution. Then, presence of the team at the task site ends.

Finally, the end of presence of team m at site for executing task k , denoted by 
t
presence,end

k
 , happens in the end of job slot (m, i) of some team m . The big-M con-

straint has condition ak,m,i = 1 and coefficient TWORKDAY , similarly to the constraint 
for the start of the presence.

3.4.2 � Task time windows

There are two kinds of time windows in the model. A task must be executed within 
its absolute time window 

[
Tearliest
k

, Tlatest
k

]
 which must be strictly respected. Also, a 

task should be executed in its narrower expected time window [
T
expected,start

k
, T

expected,end

k

]
 , the violation of which is possible in exchange for a pen-

alty cost proportional to the extent of early starting or late ending.

(16)

t
presence,start

k
− t

travel,end

m,i−1
≥ (−1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

t
presence,start

k
− t

travel,end

m,i−1
≤ (+1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

∀k ∈ K, (m, i) ∈ Jslots

(17)t
presence,start

k
+ t

wait,before

k
+ p

open

k
⋅ T

open

k
= tstart

k
∀k ∈ K

(18)tstart
k

+
∑

m∈M

(
atask
k,m

⋅ Texec
k,m

)
+ tslack

k
= tend

k
∀k ∈ K

(19)tend
k

+ t
wait,after

k
+ pclose

k
⋅ Tclose

k
= t

presence,end

k
∀k ∈ K

(20)

t
presence,end

k
− t

travel,begin

m,i
≥ (−1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

t
presence,end

k
− t

travel,begin

m,i
≤ (+1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

∀k ∈ K, (m, i) ∈ Jslots
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Constraints (21–22) implement absolute time windows. The earliest starting 
time of a task is the beginning of its absolute time window, a lower bound for 
task starting time that cannot be violated.

The latest ending time of a task, similarly, is an upper bound for task ending 
time.

The expected window can be violated in either direction, with an earliness 
penalty cost Cearliness

k
 , and lateness penalty cost Clateness

k
 , expressed in Constraints 

(23–24). Both are proportional to the extent of the violation. Variable cpen,early
k

 and 
c
pen,late

k
 denote the penalty costs incurred in these ways. Note that the formulation 

allows both kinds of penalties to be present at the same time, which might be inevi-
table when the expected time window is shorter than the task execution time.

If a task starts too early, the penalty cost must be calculated proportional to 
earliness.

If a task ends too late, the penalty cost must be calculated proportional to lateness.

Note that neither of the two windows are mandatory. To omit an absolute time 
window, it must be set to coincide the start and end of the workday. To omit an 
expected time window, it must coincide the absolute time window. In both cases, the 
corresponding constraints become redundant.

3.5 � Resource management constraints

There are two kinds of resources in the proposed model: consumables, which are 
used up at tasks, and tools, which must be at hand for the teams.

We are interested in the requirement qreq
r,m,i

 of resource r in job slot (m, i) . As the 
requirement parameter in a particular assignment Qreq

r,k,m
 depends on both the task 

executed and the team, these must be summed for all tasks k multiplied by the allo-
cation variable ak,m,i . Since at most one task k is assigned to job slot (m, i) , the sum 
yields the desired qreq

r,m,i
 in Constraint (25).

If resource r is a consumable, then for any team m the amount carried is the sum 
required for the execution of tasks.

(21)Tearliest
k

≤ tstart
k

∀k ∈ K

(22)tend
k

≤ Tlatest
k

∀k ∈ K

(23)
(
T
expected,start

k
− tstart

k

)
⋅ Cearliness

k
≤ c

pen,early

k
∀k ∈ K

(24)
(
tstart
k

− T
expected,end

k

)
⋅ Clateness

k
≤ c

pen,late

k
∀k ∈ K

(25)q
req

r,m,i
=
∑

k∈K

(
ak,m,i ⋅ Q

req

r,k,m

)
∀r ∈ R, (m, i) ∈ Jslots
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If resource r is a tool, then for any team m the amount carried must be equal or 
greater than the maximum required for tasks. Note that these constraints do not force 
the carried amount to be minimal, but the optimization does, because resource utili-
zation has a cost.

For each team m and resource r , the carried amount is limited by the capacity of 
team m , denoted by QMAX

r,m
.

For each resource r , being either a consumable or a tool, the total resource 
amount utilized by all teams m is limited to the available amount for the company. 
Constraint (29) expresses this statement. All utilized amounts are summed.

3.6 � Pairwise relations’ constraints

In the problem description point of view, pairwise task relations are provided as sets 
of ordered pairs 

(
ka, kb

)
 of tasks for each kind of relation. These are precedence in 

general ( Pprec ), same-team precedence ( Psame ), protected precedence ( Pprot ), mutual 
exclusion ( Pmutex ), and parallel execution ( Pparallel ). Note that the set Pprec includes 
free, same-team and protected precedence relations.

3.6.1 � Precedence

For any kind of precedence relations 
(
k1, k2

)
∈ Pprec , the ending time of the first task 

k1 must precede the starting time of the second task k2 . Constraint (30) expressing 
this fact implicitly assures that k2 is done by a different team, or by the same team in 
a later job slot.

For all same-team precedence relations 
(
k1, k2

)
∈ Psame , besides the original prec-

edence relation, the same team must execute the two tasks. Constraint (31) expresses 
that these two tasks are assigned to any team m exactly in the same case.

(26)qcarry
r,m

=
∑

(m,i)∈Jslots

q
req

r,m,i
∀r ∈ Rcons,m ∈ M

(27)qcarry
r,m

≥ q
req

r,m,i
∀r ∈ Rtool, (m, i) ∈ Jslots

(28)qcarry
r,m

≤ QMAX
r,m

∀r ∈ R,m ∈ M

(29)
∑

m∈M

qcarry
r,m

≤ QCAP
r

∀r ∈ R

(30)tend
k1

≤ tstart
k2

∀
(
k1, k2

)
∈ Pprec

(31)atask
k1,m

= atask
k2,m

∀
(
k1, k2

)
∈ Psame,m ∈ M
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3.6.2 � Protected precedence

Protected precedence relations are more complex, there are two choices for each (
k1, k2

)
∈ Pprot . A binary variable pprot

k1,k2
 is introduced to denote this choice. If 

p
prot

k1,k2
= 1 , then teams are not waiting for each other, but the team executing k1 closes 

the site of k1 there and leaves, and when the other team arrives to execute k2 , it also 
opens the site of k2 . The alternative pprot

k1,k2
= 0 is when the team executing k1 waits 

until the second team arrives. Protected precedence relations only have a practical 
meaning if the tasks are at the same site. Also, it may be theoretically possible that a 
third team is involved in the procedure, for example, by helping guarding the site, 
but this possibility is not investigated.

If waiting is chosen ( pprot
k1,k2

= 0 ), then the time ( tpresence,end
k1

 ) until the first team is 
present at the site of task k1 must follow the time ( tpresence,start

k2
 ) when the team for the 

second task becomes available at its site. The big-M Constraint (32) has condition 
p
prot

k1,k2
= 0 and coefficient Tworkday and implements case pprot

k1,k2
= 0 . The amount of 

time k1 waits if pprot
k1,k2

= 0 is represented by variable twait,after
k

 in Constraint (19).

If closing and opening is chosen ( pprot
k1,k2

= 1 ), then the fact of closing after k1 must 
be indicated in the corresponding binary variable pclose

k1
 , like the fact of opening at k2 

in its variable popen
k2

 . These are expressed in Constraints (33–34). Note that variables 
pclose
k1

 and popen
k2

 also appear in the job slot sequencing constraints and in the objec-
tive, to ensure the time and cost requirement of choice pprot

k1,k2
= 1.

It must also be ensured that closing or opening only take place at any task k if it 
appears in a protected precedence relation where the closing and opening solution is 
actually chosen.

3.6.3 � Mutual exclusion

Mutual exclusion 
(
k1, k2

)
∈ Pmutex means that two tasks cannot be in progress at any 

same time. A binary variable pmutex
k1,k2

 is introduced to differentiate two possible sce-

(32)t
presence,start

k2
− t

presence,end

k1
≤ (+1) ⋅ Tworkday

⋅ p
prot

k1,k2
∀
(
k1, k2

)
∈ Pprot

(33)pclose
k1

≥ p
prot

k1,k2
∀
(
k1, k2

)
∈ Pprot

(34)p
open

k2
≥ p

prot

k1,k2
∀
(
k1, k2

)
∈ Pprot

(35)pclose
k1

≤
∑

(k1,k2)∈Pprot

p
prot

k1,k2
∀k1 ∈ K

(36)p
open

k2
≤

∑

(k1,k2)∈Pprot

p
prot

k1,k2
∀k2 ∈ K
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narios for assessing this requirement. Since tasks are mandatory, one of k1 and k2 
them must be started after the other one is finished. This is expressed by big-M Con-
straints (37–38) based on the choice of pmutex

k1,k2
.

If pmutex
k1,k2

= 1 , then ending time of k1 is followed by the starting time of k2.

If pmutex
k1,k2

= 0 , in contrast, starting time of k1 follows the ending time of k2.

3.6.4 � Parallel execution

Parallel execution is a model for activities that must be performed as a cooperation 
between teams, possibly at different sites. The parallel execution relation ensures 
that starting and ending times coincide.

When tasks k1 and k2 must be executed in parallel, 
(
k1, k2

)
∈ Pparallel , both their 

starting and ending times are synchronized, this is done by Constraints (39–40). 
Note that this implicitly ensures that the two tasks are done by different teams.

Note that in many cases a faster and a slower team are considered to execute the 
two tasks, as parameters Texec

k,m
 are generally independent. In this case, the common 

completion time is always the highest. This is made possible by a nonnegative vari-
able tslack

k
 , see Constraint (18), which implements job slot sequencing. Variable tslack

k
 

imposes a phantom waiting time on either team so they could actually finish at the 
same later time.

3.7 � Objective function

The objective in the model is the total cost, which must be minimized. Costs arise 
for various reasons which are listed below and then summed up.

Travelling costs are calculated from travelled distances, speed, and cost factor for 
each team.

Packing costs are coming from packing and unpacking for each travelling slot 
where travelling actually happens. This is also true for moving out and arriving back 
into the depot.

(37)tstart
k2

− tend
k1

≥ (−1) ⋅ TWORKDAY
⋅

(
1 − pmutex

k1,k2

)
∀
(
k1, k2

)
∈ Pmutex

(38)tstart
k1

− tend
k2

≥ (−1) ⋅ TWORKDAY
⋅ pmutex

k1,k2
∀
(
k1, k2

)
∈ Pmutex

(39)tstart
k1

= tstart
k2

∀
(
k1, k2

)
∈ Pparallel

(40)tend
k1

= tend
k2

∀
(
k1, k2

)
∈ Pparallel

(41)ctravel =
∑

(m,i)∈Tslots

dm,i

Vm

⋅ Ctravel
m
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Time window costs are composed of penalties of earliness and lateness from 
task executions.

Execution costs of tasks are based solely on the team and the task assigned.

Resource costs are derived from the total amounts used for both consumables 
and tools.

Opening and closing costs are incurred for each of the closing choices made 
at protected precedence relations.

Finally, working time costs are proportional to total times each team spends 
in duty.

The objective value is obtained as a sum of components listed above.

4 � Algorithmic framework

While designing the MILP model, the focus was on the wide range of features it 
supports, so that heuristic algorithmic solutions could be implemented on them 
afterwards. Although the Standalone MILP is an option, for large scale problems 
the model is computationally too difficult. For this reason, an algorithmic frame-
work was implemented which allows us to find heuristic solutions for larger 
problems in an acceptable amount of time.

(42)cpacking =
∑

(m,i)∈Tslots

(
∑

s1∈S,s2∈S

bsch
m,i,s1s2

⋅

(
Cunpack
m

+ Cpack
m

)
)

(43)ctw =
∑

k∈K

(
c
pen,early

k
+ c

pen,late

k

)

(44)cexec =
∑

k∈K

∑

(m,i)∈Jslots

(
ak,m,i ⋅ C

k,m
exec

)

(45)cres =
∑

r∈R

∑

m∈M

(
qcarry
r,m

⋅ Cr

)

(46)copcl =
∑

(k1,k2)∈Pprot

p
prot

k1,k2
⋅ C

prot,co

k1,k2

(47)cwork =
∑

m∈M

(
t
travel,end

m,Nm
− t

travel,start

m,0

)
⋅ Cwork

m

(48)minimize ∶ ctotal = ctravel + cpacking + ctw + cexec + cres + copcl + cwork
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4.1 � Algorithm description

The main idea is to schedule only a single task at once. The algorithm involves five 
steps:

Start from the initial solution where no tasks are scheduled yet.
Choose a new task to be included in the schedule.
Determine the position of the new task in the schedule.
Update task timings, resource, cost calculation and other decisions according to 
the new schedule.
Repeat Steps 2–4 until all tasks are scheduled.

Steps 2–4 together are called an “iteration” of the algorithm. Each iteration begins 
with an existing “schedule” of some tasks, and ends with another schedule contain-
ing one more task than in the beginning. A schedule consists solely of an ordered list 
of tasks to execute for each team. In other words, a schedule answers which tasks a 
team will execute, and in which order, but nothing more specific.

A key characteristic of Step 3 of the algorithm is that the relative order of already 
scheduled tasks is maintained. That means, the new task is inserted into the list of 
one of the teams.

Finally, the method for performing an iteration of the algorithm is by the utiliza-
tion of an MILP model obtained by the modification of the Standalone MILP model. 
We call this version the Modified MILP model. In short, the Modified MILP model 
uses the original problem data, plus the already existing schedule as an input, and 

Fig. 8   In a single step, a new task is selected and inserted into the existing schedule, maintaining relative 
order of already scheduled tasks. Decision is based on a single run of the Modified MILP model
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determines the next schedule as an output. This requires a single MILP execution. 
Therefore, the involved operations are not even separated. The algorithm is illus-
trated in Fig. 8.

The Modified MILP is obtained from the Standalone MILP by the following 
modifications:

•	 The existing schedule of tasks is added as model input.
•	 The existing schedule acts as a constraint on the execution.
•	 The restriction of all tasks being mandatory no longer applies.
•	 Instead, only the tasks from the existing schedule are mandatory, plus exactly 

one additional task must also be executed.

Although the Modified MILP model contains more variables and constraints, its 
search space is significantly reduced. This makes the modified version fast to solve, 
even multiple times in a row as the algorithm proceeds. Meanwhile, the MILP model 
still maintains the constraints about timing, resources, and costs. Therefore, the final 
run of the Modified MILP model scheduling the last task results in a detailed, cost-
optimal solution for that particular schedule.

The only feature of the Standalone MILP model which is not supported is the 
usage of pairwise relations. A relation can interfere with the algorithmic framework 
in unexpected ways. A single step of the algorithm can easily make decisions that 
later turn out to be infeasible, because relations of unscheduled tasks are ignored. 
Taking into consideration pairwise relations in the algorithmic framework is subject 
to future research.

4.2 � Modified MILP model

Here the details of the Modified MILP model are presented. At each step of the 
algorithm, the set of tasks K is split into Kdone and Krem denoting tasks in the existing 
schedule and remaining to be selected from. For all tasks k ∈ Kdone there is a job slot 
it is currently assigned to. This job slot is denoted by Hslot

k
∈ Jslots . The decisions to 

be made are the following:

•	 Select a single remaining task k ∈ Krem , which is included in the already existing 
schedule. This decision is represented by a new binary variable xtask

k
 , which has 

the value of 1 when k is selected.
•	 Select a team m the new task is assigned to. This decision is represented by 

a new binary variable xteam
m

 , where the value 1 means that the selected task is 
included in the existing schedule of team m , while the schedules of other teams 
remain unchanged.

•	 Select a job slot (m, i) ∈ Jslots , where the new task is inserted in the existing 
schedule. The new binary variable xslot

m,i
 represents this decision by a value of 1.

Note that xslot
m,i

 also implicitly determines xteam
m

 , but for model representation pur-
poses, it is easier to introduce these three binary decision variables mentioned. For 
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modelling purposes, an auxiliary variable ym,i is also introduced, which denotes 
whether the new task is inserted before already existing travelling slot (m, i) ∈ Tslots 
or not. Values of ym,i are unambiguously determined by values of xslots

m,i
 and vice 

versa.
The MILP model requires a priori the number of job slots as parameter Nm . In 

the algorithm, each team m has one more job slot than the number of tasks already 
assigned to m . In short, for each m , one extra slot is provided for the new task if it is 
assigned to m.

The connection of decision variables and the algorithmic framework is illustrated 
in Fig. 9. In the example, team m already has a schedule with tasks K1 , K5 , and K2 in 
this order, and in the algorithmic step, a decision is made to select new task K4 and 
insert it between K5 and K2 . Note that other teams may be present. The order of tasks 
selected during the whole algorithm can also be arbitrary.

The additional decision variables xtask
k

 , xteam
m

 and xslot
m,i

 should determine the assign-
ment according to the new schedule unambiguously. The rest of the variables and 
constraints of the original MILP model ensure feasibility like decision on exact tim-
ing and resource utilization. Therefore, a new set of constraints is added to the origi-
nal model to establish the connection of the new decision variables and the assign-
ment decisions in the original formulation. The original Constraint (2) is dropped, 
because we do not intend to schedule all tasks at once. Besides, the following new 
constraints are introduced.

No task can be inserted before travelling slot (m, 0) of any team m.

Insertion before a travelling slot (m, i) happens if and only if there is also insertion 
before the previous travelling slot (m, i − 1) or the new task is inserted just in job slot 
(m, i) . The first two cases are established by Constraints (50) and (51), respectively. 
Also, ym,i = 0 is enforced by Constraint (52) if neither condition holds. This com-
pletes the consistency of auxiliary values ym,i.

Inserting before any travelling slot (m, i) of team m can be allowed only if team m 
is selected.

Any new task candidate k ∈ Krem is assigned to a job slot (m, i) if and only if k 
is the selected new task, and (m, i) is the selected new job slot. Constraints (54) and 
(55) ensure ak,m,i = 0 if either condition is not met, while Constraint (56) ensures 
ak,m,i = 1 if both conditions hold.

(49)ym,0 = 0∀m ∈ M

(50)ym,i ≥ ym,i−1 ∀(m, i) ∈ Jslots

(51)ym,i ≥ xslot
m,i

∀(m, i) ∈ Jslots

(52)ym,i ≤ ym,i−1 + xslot
m,i

∀(m, i) ∈ Jslots

(53)xteam
m

≥ ym,i ∀(m, i) ∈ Jslots
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Tasks k ∈ Kdone already scheduled must be scheduled again, therefore they 
must be assigned to exactly one team. On the other hand, new task candidates 
k ∈ Krem are only scheduled if selected, therefore the sum in that case is exactly 
xtask
k

 instead of 1.

It must be ensured that exactly one new task k ∈ Krem , one team m for it, and 
one of its job slots (m, i) are selected. This is done by Constraints (59–61).

Finally, the position of a task k ∈ Kdone previously scheduled to job slot (m, i) 
is either job slot (m, i) or (m, i + 1) based on whether the new task was inserted 
before it or not, denoted by ym,i . Constraints (62) and (63) enforce this for all 
tasks k ∈ Kdone already scheduled, finishing the connection between ym,i and the 
decision variables.

All other assignment variables can be explicitly set to zero as in Constraint 
(64) for already scheduled tasks k ∈ Kdone . The only allowed job slots are (m, i) 
and (m, i + 1) . Note that Constraint (64) is redundant because Constraints (62–63) 
implicitly assure these decisions, but it is inserted to help the MILP solver at 
pre-processing.

(54)ak,m,i ≤ xtask
k

∀k ∈ Krem, (m, i) ∈ Jslots

(55)ak,m,i ≤ xslot
m,i

∀k ∈ Krem, (m, i) ∈ Jslots

(56)ak,m,i ≥ xtask
k

+ xslot
m,i

− 1∀k ∈ Krem, (m, i) ∈ Jslots

(57)1 =
∑

m∈M

atask
k,m

∀k ∈ Kdone

(58)xtask
k

=
∑

m∈M

atask
k,m

∀k ∈ Krem

(59)1 =
∑

k∈Krem

xtask
k

(60)1 =
∑

m∈M

xteam
m

(61)1 =
∑

(m,i)∈Jslots

xslot
m,i

(62)ym,i = ak,m,i+1 ∀k ∈ Kdone ∶ (m, i) = Hslot
k

(63)1 − ym,i = ak,m,i ∀k ∈ Kdone ∶ (m, i) = Hslot
k
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5 � Case study for the Standalone MILP model

To demonstrate the usability of the proposed model and the algorithmic framework, 
a case study was performed, which has two major parts. In the first part, the Stan-
dalone MILP model was tested on different problem instances. In the second part, 
the algorithmic framework involving the Modified MILP model was tested. This 
section presents the first part involving the Standalone MILP model.

First, a motivational problem instance is presented in detail, with its optimal solu-
tion, as a demonstration for the problem specification and the capabilities of the 
model. This required a single execution of an MILP solver. Afterwards, several test 
sets are presented, with multiple, slightly different problem instances to demonstrate 
how some key parameters of the model affect computational complexity.

The model, all problem data and results presented here are available as “MWM 
model and case studies” supplementary material, see Eles et  al. (2020), as source 
codes and executable format.

5.1 � Motivational problem

In this example problem, a company is responsible for the infrastructure of public 
lighting and traffic signals.

By the beginning of the working day, 8 mandatory maintenance tasks are 
reported, named K1a, K1b, K1c1, K1c2, K1d, K2, K3a, and K3b. These tasks must be 
executed between 8:00 and 16:00, and are located at three different sites on the 
map, named S1, S2, and S3, the first digit in the index of tasks refer to the site. 
The company has two working teams for these tasks, named Team1 and Team2, 
who are stationed at depot site D in the beginning, and should get back there until 
the end of the workday. Note that in a general problem, teams may be at different 

(64)0 = ak,m,j ∀k ∈ Kdone, (m, j) ∈ Jslots ∶ (m, i) = Hslot
k

∧ j ≠ i ∧ j ≠ i + 1

Fig. 10   Geographic positions of sites, with corresponding tasks in parentheses, and depot with teams
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starting depots. The positions are depicted in Fig. 10. The distance between sites 
is assumed to be the Manhattan-distance, which is calculated between any points 
P1

(
x1, y1

)
 and P2

(
x2, y2

)
 by the formula ||x1 − x2

|| + ||y1 − y2
||.

Teams have different properties, but both work for 60 EUR/hour, regardless of 
activities they make. Team1 is lightweight, having a speed of 75 km/h and move 
for 0.4 EUR/km, and doing each task in 45 min. The cost of a task, if done by 
Team1, is 100 EUR. Team2 operates with heavier machinery and therefore work 
faster, although all other traits are worse. They have a speed of 50  km/h and 
movement cost of 0.9 EUR/km, and doing each task in 30 min. The cost of a task, 
if done by Team2, is 150 EUR. Note that the problem specification would allow 
distinct execution costs and times for each team and each task, but in this exam-
ple, both teams see tasks as equally difficult. The specification would also allow 
limits for total time in duty, total travelled time and distance, but these were omit-
ted in the example.

The next part of the problem formulation is packing and unpacking. These rep-
resent the teams setting the scene ready for working and cleaning up afterwards, 
regardless of the number of tasks executed. Both packing and unpacking can have 
a unique cost and time requirement for each team separately. In the motivational 
example, both packing and unpacking costs 10 EUR and takes 10 min.

Absolute and expected time windows can be set for each task, but in the motiva-
tional example, only task Kb1 has an absolute time window of 10:00 to 13:00, and 
an expected time window of 11:30 to 12:30. The reason behind a time window can 
be an external co-operator or a client only available in this interval. Task execution 
must fit inside the absolute time window, but it may start earlier, or end later than 
the beginning and ending of the expected time window. Violating the expected time 
window in either direction incurs a very high proportional cost of 600 EUR/hour.

Resource utilization is also present in the example problem. For demonstration 
purposes, there is one consumable and one tool resource. Both teams may carry 
5 pieces of the consumable and 1 piece of the tool resource with themselves, 
the costs of usage are 15 EUR and 100 EUR per piece, respectively. Each task 
requires 1 piece of consumable and 1 piece of tool present. Note that this basi-
cally means that tool requirements are trivially satisfied if a team carries a single 
piece, nevertheless, its cost must be paid. In general, there could be upper limits 
on resource availability and unique requirements for each task and each team.

Fig. 11   Pairwise task relations in the motivational example
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The last part of the problem formulation is the relations between tasks. These can 
be described by ordered pairs of tasks as listed below, also depicted in Fig. 11.

•	 Tasks K1a, K1b, K1c1, K1c2, K1d describe a single complex procedure which is 
divided into simple tasks. These must be carried out in the following order: first 
K1a, then K1b, then K1c1 and K1c2 in parallel by two teams, and finally K1d. Leav-
ing the site before completing the procedure would be hazardous – therefore, 
either a team shall be present to guard the site while a next team arrives, or the 
site must be secured by a closing activity, and then an opening activity must be 
performed by the next team. Therefore, the following five protected precedence 
relations are included in the problem formulation: (K1a, K1b), (K1b, K1c1), (K1b, 
K1c2), (K1c1, K1d), (K1c2, K1d). There is also a parallel execution relation, for 
(K1c1, K1c2).

•	 If, at any point, a protected precedence relation is chosen to be satisfied by secur-
ing the site, a cost of 30 EUR is incurred and the closing and opening activities 
take 15 min each.

•	 Tasks K3a and K3b represent two pieces of the same procedure, they must be 
done in the given order, and by the same team, as information from completing 
K3a is required for K3b and communication between teams is problematic. There-
fore, a same-team precedence relation is included for (K3a, K3b).

•	 Tasks K1a involves operating a sensitive part of the electric system which would 
interfere with K2 and K3a. Therefore, two mutual exclusion relations are also 
included: (K1a, K2), (K1a, K3a). These relations prevent execution times from 
overlapping. Note that K2 and K3a are not related and may overlap.

5.2 � Solution of the motivational problem

The data file describing the motivational problem was implemented in GNU Math-
Prog, and was solved to optimality with the GLPSOL solver.

In the optimal solution, all the required relation constraints are met: K3a and K3b 
are executed by the same team (Team1), K1c1 and K1c2 are executed in parallel, K1a 
is solved in an interval disjoint to both K3a and K2, and the site S1 is never left unse-
cured between executing tasks there. In fact, teams always choose to wait in case of 
a protected precedence relation and no closing and opening activities are ever per-
formed. Also, K1b is fit in its expected time window, therefore no penalties arise. See 
Table 1 for the detailed timetable of the teams.

The objective is 1944 EUR, this is the minimal cost for which all tasks can be 
executed in this workday. This is achieved by Team1 visiting all three sites. Mean-
while Team2 only does some specific tasks at S1 which are the first part of the con-
secutive tasks there, before both teams start executing K1c1 and K1c2 simultane-
ously. It seems that Team1 executes as many tasks as possible. The faster but more 
expensive Team2 is only used to reduce the load on Team1, and to help with the two 
parallel tasks which need cooperation. Note that Team2 would do the parallel task 
K1c2 in 30  min, but their execution time is prolonged by 15  min, because Team1 
requires 45 min for K1c1. Additional waiting and idle times are not needed, as every 
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constraint is already satisfied and teams’ working cost of 60 EUR/hour is incurred 
even if the teams are idle.

This optimal solution was actually generated by the Standalone MILP model for-
mulation. As the example is small, the Standalone MILP was sufficient without any 
algorithmic framework to provide this globally optimal solution for the motivational 
problem.

5.3 � Overview of standalone tests

Three series of tests were performed, each focusing on the impact of a specific com-
ponent of the MILP model on its overall performance.

Table 1   Schedules according to the optimal solution of the motivational example

Site From To Action of Team1

D 8:02 8:12 Packing
D 8:12 8:36 Move from D to S3 (30.00 km)
S3 8:36 8:46 Unpacking
S3 8:46 9:31 Execute task K3a

S3 9:31 10:16 Execute task K3b

S3 10:16 10:26 Packing
S3 10:26 10:50 Move from S3 to S1 (30.00 km)
S1 10:50 11:00 Unpacking
S1 11:00 11:45 Execute task K1c2. (Parallel with K1c1.)
S1 11:45 12:30 Execute task K1d

S1 12:30 12:40 Packing
S1 12:40 12:56 Move from S1 to S2 (20.00 km)
S2 12:56 13:06 Unpacking
S2 13:06 13:51 Execute task K2

S2 13:51 14:01 Packing
S2 14:01 14:17 Move from S2 to D (20.00 km)
D 14:17 14:27 Unpacking. (End of workday.)

Site From To Action of Team2

D 9:16 9:26 Packing
D 9:26 9:50 Move from D to S1 (20.00 km)
S1 9:50 10:00 Unpacking
S1 10:00 10:30 Execute task K1a

S1 10:30 11:00 Execute task K1b

S1 11:00 11:30 Execute task K1c1. (Parallel with K1c2.)
S1 11:30 11:45 Prolong execution by 15 min
S1 11:45 11:55 Packing
S1 11:55 12:19 Move from S1 to D (20.00 km). End of workday
D 12:19 12:29 Unpacking
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•	 The first series focuses on the effect of task site count.
•	 The second series focuses on pairwise relationships between tasks.
•	 The third series focuses on the parameter Nm which determines available job 

slots.

In each of the three series, a set of mobile workforce management prob-
lem instances were constructed. The basis of these test sets is a “main problem 
instance”. This main problem instance consists of 18 tasks to be solved on 4 dif-
ferent sites by 3 working teams. Each team has its own constant travelling and 
task execution costs and times, and six predefined job slots (∀m ∶ Nm = 6 ). Tasks 
were subject to absolute and expected time windows, which slightly reduce the 
possible execution from the 08:00 in the morning to 16:00 in the afternoon inter-
val for all tasks. The first five tasks mutually exclude each other, the other tasks 
involve all other kinds of relations mentioned. The problem contains a single con-
sumable and a tool resource. Full details of the problem can be found in the sup-
plementary material.

To obtain the test set for each series, minor modifications were made to the 
main problem instance, according to the currently investigated model component, 
resulting in several, slightly different problem instances.

Solutions for all instances were found by the Gurobi MILP solver, version 8.1, 
on a workstation with Ubuntu 18.04.1 LTS, Intel i7-4770 3.40  GHz CPU and 
16 GB RAM. The time limit was one hour per test case.

Our main interests were the time required by the solver to finish an instance, 
and the optimal objective it reported (total costs, displayed in EUR). In the tables 
presented, the number of constraints (rows) and variables (columns) are also 
shown for each test case, as well as the number of integer (binary) variables. Note 
that these data shall be interpreted with caution when concluding model com-
plexity, as many of the rows and columns could be eliminated even in the pre-
processing steps of modern MILP solvers, also, there are many strong knapsack 
constraints for the binaries as well.

5.4 � Task site count

In the first series, the sites of the tasks were in focus. A set of 9 problem instances 
was constructed based on the following guidelines.

•	 All data are equivalent to the main problem instance except for the number of 
task sites and their distribution among tasks.

•	 3, 4, and 5 different task sites were considered. Note that the main problem 
instance features 4 sites.

•	 For each site count, three different variations are constructed. The variations 
differ only in the site distribution of tasks, but in all cases, the occurrence of 
all available sites is well-balanced (the difference is at most 1).
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One of the instances is the main problem instance itself. Note that although the 
number of different task sites is not the same, these were included in the problem 
data, just not always used.

Results reported by the MILP solver for these 9 test cases can be observed in 
Table 2.

It can be observed that the number of sites has a very large impact on the prob-
lem complexity. Comparing the main problem instance to its two variations required 
significantly more time to be solved, where the objective only changed a little or not 
at all.

Two test cases with 5 sites could not be completed in time limit.
One important property of the model is that the number of sites can be a bottle-

neck, as the more sites are there, the more are the variables and constraints required 
by constraints for travelling. It is reflected from the results that as the number of 
sites increases, so does the time required for solving the model, while the objective 
only changes a little. A problem with different sites for all tasks should contain con-
siderably fewer tasks to be able to be solved with this form of the model in a short 
time. Likewise, even fewer sites might lead to faster solutions.

Note that the distribution of sites among tasks, although seem to greatly affect 
solver performance, does not affect the number of rows, columns or binaries. The 
equal number of rows (that means, constraints) is due to the fact that all task sites 
were included in the model each time, but only a smaller subset was used in the dif-
ferent instances. The results indicate that the Standalone MILP model is only effec-
tive in those mobile workforce scenarios where the number of sites is small.

5.5 � Task relations

The usage of relations between tasks can make problems harder or easier. Relations 
actually constrain the search space, thus making the problem effectively smaller. On 
the other hand, some additional variables, even binaries are introduced, which can 
make the model more complex.

Two of the supported pairwise relations are selected to be tested thoroughly: 
free precedence and mutual exclusions. The free precedence is interesting 

Table 2   Impact of task sites on solver performance

Test case Rows Columns Integers Solver runtime (s) Objective

3 sites 3096 1794 337 593.33 14,482
3 sites, variation #1 3096 1794 337 1048.95 15,020
3 sites, variation #2 3096 1794 337 1015.77 15,018
4 sites, Main problem instance 3096 1794 337 285.45 13,842
4 sites, variation #1 3096 1794 337 2348.23 14,834
4 sites, variation #2 3096 1794 337 939.03 14,844
5 sites 3096 1794 337 977.29 14,338
5 sites, variation #1 3096 1794 337 out, gap = 14.44% 16,286
5 sites, variation #2 3096 1794 337 out, gap = 13.00% 16,074
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because it only imposes a constraint, meanwhile the mutual exclusion introduces 
a binary decision variable.

The test set was constructed as follows.

•	 From the main problem instance, exactly 1, 2, and 3 of the existing free prec-
edence relations are excluded to obtain 3 additional instances.

•	 From the main problem instance, 1–10 of the already existing mutual exclusion 
relations were excluded one by one to obtain 10 additional instances.

Results for the 14 test cases obtained this way are shown in Table 3.
The objective was not affected in this scenario, only the runtimes varied 

between 2 and 7 min.
Excluding free precedence relations, each of which imposes a single con-

straint, might lead to more or less difficult models, but not changes in magni-
tude. An interesting outcome is a gradual decrease in solver runtime as there were 
less precedence relationships, as the opposite could be expected because of the 
increasing search space. This property of MILP models is very hard to foresee: 
sometimes constraints that decrease the number of cases to be checked makes the 
model a bit more difficult in practice. This depends on the solver as well.

With the exclusion of mutual exclusion relations, however, the time needed for 
the solver to prove optimality greatly varies, as for a mutual exclusion, not only 
two constraints, but an additional binary variable is also introduced. But again, 
there is no difference in magnitude. It is therefore not possible to tell a rule of 
thumb on how a mutual exclusion affects the complexity of a specific problem.

Table 3   Impact of pairwise task relations on solver performance

Test case Rows Columns Integers Solver runtime (s) Objective

Main problem instance 3096 1794 337 285.45 13,842
1 free precedence excluded 3095 1794 337 307.65 13,842
2 free precedences excluded 3094 1794 337 243.81 13,842
3 free precedences excluded 3093 1794 337 199.77 13,842
1 mutex excluded 3094 1793 336 119.57 13,842
2 mutexes excluded 3092 1792 335 208.87 13,842
3 mutexes excluded 3090 1791 334 125.90 13,842
4 mutexes excluded 3088 1790 333 258.38 13,842
5 mutexes excluded 3086 1789 332 236.65 13,842
6 mutexes excluded 3084 1788 331 242.69 13,842
7 mutexes excluded 3082 1787 330 392.80 13,842
8 mutexes excluded 3080 1786 329 165.05 13,842
9 mutexes excluded 3078 1785 328 256.34 13,842
10 mutexes excluded 3076 1784 327 338.31 13,842
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5.6 � Task and job slot count

One main drawback of the Standalone MILP model is the requirement of the Nm 
parameters to be provided beforehand. These determine the available job slots for 
each team, and has a great impact on the number of binary variables, hence we 
expect a great impact on the computational performance as well. A too small Nm 
may exclude valuable optimal solutions, while a too large Nm may result in a model 
which is computationally too complex.

In this series, the test cases were constructed in the following way.

•	 The motivational problem is included in this test set to illustrate problem sizes. 
Recall that the motivational problem includes two teams and 8 tasks, with 
Nm = 8 for both teams.

•	 The main problem instance is itself included, and is the basis for further 
instances. Recall that the main problem instance consists of 3 teams and 18 
tasks, with Nm = 6 for all three teams.

•	 1–3 tasks were excluded from the original problem, together with their relation 
constraints to obtain 3 additional problem instances.

•	 From the instance where 3 tasks were already excluded, 1–3 additional job slots 
were removed from each team one by one, resulting in 3 additional instances. 
Therefore, the problem instance obtained in the end had only 15 tasks and 
Nm = 5 for all three teams, which is just enough to schedule all tasks.

•	 Finally, based on the main problem instance again, 1–3 new job slots were added 
to the teams one by one, resulting in 3 further problem instances. Therefore, the 
last instance in this direction had Nm = 7 for all three teams.

Results for these 11 instances in total can be seen in Table 4.
If tasks are excluded from the model, the complexity clearly and rapidly drops. 

When the resulting free job slots are also eliminated one by one, the objec-
tive increases, which means that some optimal solutions become infeasible, as 

Table 4   Effects of task and job slot count on solver performance

Test case Rows Columns Integers Solver runtime (s) Objective

Motivational problem 1208 669 135 0.73 1944
Main problem instance 3096 1794 337 285.45 13,842
1 task excluded 2992 1762 319 93.77 13,507
2 tasks excluded 2889 1730 301 91.65 13,202
3 tasks excluded 2785 1698 283 35.73 12,815
3 tasks and 1 job slot excluded 2653 1627 268 21.74 12,815
3 tasks and 2 job slots excluded 2521 1556 253 24.54 12,963
3 tasks and 3 job slots excluded 2389 1485 238 13.40 13,133
1 job slot added 3243 1868 355 225.96 13,664
2 job slots added 3390 1942 373 479.66 13,664
3 job slots added 3537 2016 391 725.77 13,664
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expected. This phenomenon indicates that the eliminated job slot was used in the 
previous optimal solution.

On the other hand, when job slots are added, the objective does not increase 
after the second one, but the solver still needs more time to find the optimum. In 
any case, the more job slots are there, the more complex the model is, possibly 
having better solutions as well.

6 � Case study for the algorithmic framework

To demonstrate the usage of the MILP model with the algorithmic framework, a 
different group of test instances is presented here. These instances are randomly 
generated problems with 6 task sites, 3 teams, each at different depots, and task 
count is gradually increased. Again, the full test results, problem generation, 
MILP model and algorithm codes are available as “MWM model and case stud-
ies”, see Eles et al. (2020), in an executable format.

It shall be noted that task data were the same through all cases with the excep-
tion of task count and job slot count variation. To run the Standalone MILP, the 
number of predefined job slots, Nm must be set. In this case study, the formula 
of Eq. (65) is used. This is sufficient to schedule all tasks for any task count |K| 
and team count |M| , although does not allow any single team to execute too many 
tasks.

Note that this series of tests lacks pairwise relations.

(65)Nm =
|K|
|M|

⋅ 1.2 + 1∀m ∈ M

Table 5   Comparison of the Standalone MILP solution and the algorithmic framework

Task count Objective 
(stan-
dalone)

Runtime (s)(standalone) Objective 
(algorithm)

Runtime (s) 
(algorithm)

Gap between  
objectives (%)

5 1604.13 0.31 1648.40 0.34 2.76
6 1812.05 0.63 1823.87 0.41 0.65
7 2192.30 1.39 2192.30 0.53 0
8 2151.56 48.07 2269.55 0.75 5.48
9 2416.80 203.79 2518.08 0.79 4.19
10 2467.14 2600.96 2607.26 1.31 5.68
11 2714.46 out, gap = 13.39% 2875.99 1.59 5.95–20.14
12 2933.69 out, gap = 15.75% 3130.61 1.88 6.71–23.52
13 2934.91 out, gap = 20.10% 3076.68 2.09 4.83–25.90
14 3170.23 out, gap = 21.79% 3385.92 2.10 6.80–30.08
15 3165.45 out, gap = 22.77% 3378.81 2.69 6.74–31.05
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The test series was conducted in the following manner. Starting from 5, the task 
count was gradually increased, and for each task count a random problem instance 
was generated, and solved by the two methods.

6.1 � Comparison of the two methods

The Standalone MILP model and the algorithmic framework was executed on test 
cases randomly generated for 5–15 tasks. Found objective values and solver runt-
imes are shown in Table 5.

It can be seen that the Standalone MILP model solution procedure exceeds the 
one-hour time limit early, at 11 tasks, due to the higher number of sites in this prob-
lem series. Meanwhile the algorithmic framework succeeds in 2.69 s for 15 tasks. 
We can see that the difference between the two methods in terms of objective is no 
more than 5.68% when both methods finish in an hour, and it is no more than 6.74% 
when considering the other instances when the standalone MILP model timed out. 
In the latter cases, we can give a rough estimate between the optimal solution of 
the MILP and the solution the algorithm presented, and it obtains its maximum at 

Table 6   Results of the 
algorithmic framework for 
20–130 tasks

Task count Integers in 
the MILP

Objective (algorithm) Runtime (s) 
(algorithm)

20 466 3961.96 4.87
25 706 4740.18 8.42
30 996 5434.43 13.66
35 1336 6131.49 20.59
40 1726 6682.10 31.74
45 2166 7254.24 44.82
50 2656 7960.95 68.37
55 3196 9296.89 119.25
60 3786 9244.28 186.19
65 4426 9703.81 182.64
70 5116 10,626.84 212.01
75 5856 11,522.22 429.95
80 * * 541.33
85 7486 12,741.65 802.32
90 8376 13,032.99 794.29
95 9316 13,892.74 1008.72
100 10,306 14,056.89 1265.55
105 11,346 14,776.31 1475.97
110 12,436 15,753.90 1884.86
115 13,576 15,713.98 2236.08
120 14,766 16,363.13 2354.14
125 16,006 17,057.40 3054.47
130 17,296 17,387.84 4151.19
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31.05% for 15 tasks. There was even a case, for 7 tasks, where the algorithm found 
the optimal solution of the MILP model.

6.2 � Larger instances

To test the algorithmic framework, task count was further increased by 5 each time, 
from 20 to 130. Again, for each particular task count, a problem instance was gener-
ated, but this time only solved by the algorithmic framework. See Table 6 for the 
problem size, solver runtime and achieved objective for each problem instance. For 
130 tasks the algorithm did not finish in 1 h so larger instances were not generated.

It can be observed that the overall size of the problem increases rapidly, while the 
objective and the time needed by the algorithm increases gradually. Recall that the 
MILP model used by the framework has a relatively small search space, as most of 
the integer variables are set a priori. This is why the algorithm is much faster than 
the Standalone MILP model.

One interesting result in this series is that the algorithm failed to finish for the 
test case of 80 tasks (marked by asterisks). This can happen as a consequence of 
the heuristic nature: the only feasible solutions may be excluded by early decisions. 
The last task could not be inserted to the schedule because of the previous ordering, 
so finally only 79 tasks were scheduled. This situation is more likely when narrow 
absolute time windows or relations between tasks are given. For these cases, more 
sophisticated algorithms will be needed in the future which are capable, for exam-
ple, of looking ahead during the search to accommodate pairwise relations between 
tasks as well.

7 � Conclusions

A novel MILP model was developed for the mobile workforce management prob-
lem. The problem can be regarded as a generalization of well-known problems like 
vehicle routing, scheduling and resource allocation. The problem definition is stated 
in detail with the help of an illustrative example and its optimal solution. The MILP 
model is unique in two different ways. First, a wide range of features is supported as 
problem data that can be set, which has not yet been done before. Second, the logic 
of decision variables of the MILP falls into the slot-based category which was devel-
oped for scheduling problems, but not thoroughly investigated for the case of VRP 
or mobile workforce management.

The model introduces a set of job slots for each team, separated by travelling 
slots representing possible movement between sites. The execution and travelling 
times, and potential limits can be different for each team. Tasks can also be subject 
to absolute or expected time windows. Packing and unpacking times can be taken 
into account, based on whether the team does consecutive tasks at the same site or 
not. Consumable and tool resources are also considered. Pairwise task relations like 
mutual exclusion, precedence of tasks, parallel execution are supported. The MILP 
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model is described in detail in this work and was implemented in GNU MathProg 
modelling language.

To make it able to solve larger problems, an algorithmic framework is also pre-
sented, with which heuristic solutions can be found in acceptable time. The algo-
rithm uses a greedy heuristic. At a single time, one new task is chosen and inserted 
into the already existing schedule, using an extension of the original MILP model 
and optimizing for its objective.

One test problem and its scaled versions were solved in a case study by a com-
mercial MILP solver, Gurobi. Most variants of this problem with 18 tasks, 4 sites 
and 3 teams were solved in an hour to optimality. The impact of the number of sites, 
tasks, job slots and pairwise relations were investigated for the Standalone MILP 
model. Results suggest that the model works best for a low number of task sites. 
Care must be taken to adjust the number of job slots to the number of tasks, as the 
former severely affects performance but not always the optimal solution.

The case study also involved the algorithmic framework, with which we can get 
heuristic solutions for problems with 20–125 tasks in an hour. Although optimality 
is not guaranteed and sometimes not all tasks could be scheduled, the framework 
was capable to report solutions for much larger problem instances than what the 
MILP model could handle.

The wide range of features the model supports to be taken into account makes 
it a candidate for more elaborate heuristic algorithms to be developed and imple-
mented in the future. The algorithm can be improved to better adapt to time win-
dows, resource utilization, and most importantly, pairwise relations between tasks. 
Extension of the search space of the MILP model during an algorithmic step is a 
promising direction. This may involve scheduling multiple new tasks at the same 
time, exchanging or dropping present tasks, or other manipulations of the existing 
schedule.

Nomenclature

Note that some of the sets, parameters and variables are only used in the algorithmic 
framework for the MILP model. This is explicitly mentioned in the nomenclature for 
those elements.

Sets

Sets are described here with typical index symbols for their elements.

k ∈ K	� Set of tasks
k ∈ Kdone	� Set of tasks already scheduled (algorithm only)
Kdone ⊆ Kk ∈ Krem	� Set of tasks not scheduled yet (algorithm only)
Krem = K ⧵ Kdonem ∈ M	� Set of teams
(m, i) ∈ Jslots	� Set of job slots
i ∈

[
1,Nm

]
(m, i) ∈ Tslots	� Set of travelling slots
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i ∈
[
0,Nm

]
(m, i) ∈ Spoints	� Set of site time points of interest (or site slots)

i ∈
[
0,Nm + 1

](
k1, k2

)
∈ Pfree	� Set of free precedence relationships

k1, k2 ∈ K
(
k1, k2

)
∈ Pprot	� Set of protected precedence relationships

k1, k2 ∈ K
(
k1, k2

)
∈ Psame	� Set of same-team precedence relationships

k1, k2 ∈ K
(
k1, k2

)
∈ Pprec	� Set of all precedence relations. 

Pprec = Pfree ∪ Pprot ∪ Psame
(
k1, k2

)
∈ Pmutex	� Set of mutual exclusion relationships. k1, k2 ∈ K(

k1, k2
)
∈ Pparallel	� Set of parallel execution relationships. k1, k2 ∈ K

r ∈ Rcons	� Set of consumable resources
r ∈ Rtool	� Set of tool resources
r ∈ R	� Set of all resources. R = Rcons ∪ Rtool

s ∈ Sdepot	� Set of depot sites
s ∈ Stasksites	� Set of task execution sites. Stasksites ∩ Sdepot = ∅

s ∈ S	� Set of all sites. S = Stasksites ∪ Sdepot

Parameters

All numeric parameters are assumed to be nonnegative numbers.

C
unpack
m ∶ m ∈ M	� Unpacking cost of team m at arrival on a site

C
pack
m ∶ m ∈ M	� Packing cost of team m before departure from a site

Cexec
k,m

∶ k ∈ K,m ∈ M	� Cost of task k if executed by team m
Ctravel
m

∶ m ∈ M	� Cost factor for travelling time of team m
Cwork
m

∶ m ∈ M	� Cost factor for total working time of team m
Cearliness
k

∶ k ∈ K	� Penalty cost factor if task k if executed earlier than 
T
expected,start

k

Clateness
k

∶ k ∈ K	� Penalty cost factor if task k if finished later than 
T
expected,end

k

Cres
r

∶ r ∈ R	� Cost of utilization of one unit of resource r
Ds1,s2

∶ s1, s2 ∈ S	� Travelling distance between sites s1 and s2
Dtravel,MAX

m
∶ m ∈ M	� Maximum total distance team m may travel

Hslot
k

∶ k ∈ Kdone	� Job slot task k was scheduled at (algorithm only). 
Hslot

k
∈ Jslots

Nm ∶ m ∈ M	� Number of predefined job slots for team m
QCAP

r
∶ r ∈ R	� Total available amount of resource r

Q
req

r,k,m
∶ r ∈ R, k ∈ K,m ∈ M	� Requirement of resource r for execution of k by team 

m

QMAX
r,m

∶ r ∈ R,m ∈ M	� Maximal amount of resource r that team m may 
carry

Sstart
m

∶ k ∈ K	� Starting position of team m . Sstart
m

∈ Sdepot
Send
m

∶ k ∈ K	�  Final position of team m . Sstart
m

= Send
m

 is assumed for 
simplicity

Stask
k

∶ k ∈ K	� Site of task k
Tclose
k

∶ k ∈ K	� Site closing time after task k in a protected prece-
dence relation
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T
open

k
∶ k ∈ K	� Site opening time before task k in a protected prec-

edence relation
T
pack
m ∶ m ∈ M	� Packing time of team m , before departure from a site

T
unpack
m ∶ m ∈ M	� Unpacking time of team m , after arrival on a site

Texec
k,m

∶ k ∈ K	� Net time spent on execution of task k if done by 
team m

Tearliest
k

∶ k ∈ K	� Start of absolute time window of task k
Tlatest
k

∶ k ∈ K	� End of absolute time window of task k
T
expected,start

k
∶ k ∈ K	� Start of expected time window of task k

T
expected,end

k
∶ k ∈ K	� End of expected time window of task k

Ttravel,MAX
m

∶ m ∈ M	� Total time that team m may spend travelling, (un)
packing and idle

Twork,MAX
m

∶ m ∈ M	� Total time that team m may be in duty during the 
day

TDAY ,start	� Starting time of the workday
TDAY ,end	� Ending time of the workday
TWORKDAY	� Length of the whole workday. 

TWORKDAY = TDAY ,end − TDAY ,start

Vm ∶ m ∈ M	� Speed of team m on the map. Vm > 0

Binary decision variables

In general, 1 means that the logical statement described by the variable is true, oth-
erwise the value is zero. Note that only ak,m,i , p

prot

k1,k2
 , pmutex

k1,k2
 from the original formula-

tion, and xtask
k

 , xteam
m

 xslot
m,i

 used in the algorithmic framework are mandatorily binary. 
All other binaries mentioned here are unambiguously derived from the former six, 
and hence are treated as continuous [0, 1] variables in the model implementation.

ak,m,i ∶ k ∈ K, (m, i) ∈ Jslots	� Task k is executed by team m in the i th job slot 
(m, i)

atask
k,m

∶ k ∈ K,m ∈ M	� Task k is assigned to team m to be executed
b
present

m,i,s
∶ (m, i) ∈ Sslots, s ∈ S	� Team m is at site s at site slot (m, i)

bsch
m,i,s1,s2

∶ (m, i) ∈ Tslots, s1, s2 ∈ S	� Team m moves from s1 to s2 in travelling slot 
(m, i) . s1 ≠ s2

b
travel,move

m,i
∶ (m, i) ∈ Tslots	� Team m changes site in travelling slot (m, i)

p
open

k
∶ k ∈ K	� Site Stask

k
 of task k must be opened before exe-

cuting task k
pclose
k

∶ k ∈ K	� Site Stask
k

 of task k must be closed before execut-
ing task k

p
prot

k1,k2
∶ (k1, k2) ∈ Pprot	� Task sites between k1 and k2 are closed and 

opened
pmutex
k1,k2

∶ (k1, k2) ∈ Pmutex	� Task k1 is executed before task k2 to respect 
mutual exclusion

xtask
k

∶ k ∈ Krem	� Task k is selected to be the new task (algorithm 
only)
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xteam
m

∶ m ∈ M	� Team m is selected to do the new task (algo-
rithm only)

xslot
m,i

∶ (m, i) ∈ Jslots	� The new task goes to job slot (m, i) of team m 
(algorithm only)

ym,i ∶ (m, i) ∈ Tslots	� The new task goes before travelling slot (m, i) 
(algorithm only)

Continuous variables

By default, all variables have a lower bound of zero and no upper bound, except 
those referring to points in time, which must fit in the interval 

[
TDAY ,start, TDAY ,end

]
.

c
pen,early

k
∶ k ∈ K	� Penalty for starting task k earlier than its expected 

window
c
pen,late

k
∶ k ∈ K	�  Penalty for finishing task k later than its expected 

window
ctravel	� Total cost of travelling
cpacking	� Total cost of packing and unpacking at sites
ctw	� Total cost of penalties related to time windows
cexec	� Total cost of executions of tasks
cres	� Total cost of resource utilization
copcl	� Total cost of opening/closing in protected precedence 

relations
cwork	� Total cost of team working times
ctotal	� Sum of costs from all sources
q
req

r,m,i
∶ r ∈ R, (m, i) ∈ Jslots	� Amount of resource r used in job slot(m, i)

q
carry
r,m ∶ r ∈ R,m ∈ M	� Amount of resource r carried by team m from the start-

ing depot
tstart
k

∶ k ∈ K	� Starting time of the execution of taskk
tend
k

∶ k ∈ K	� Ending time of the execution of taskk
t
open

k
∶ k ∈ K	� Opening time at the site Sk of task k before its 

execution.
tclose
k

∶ k ∈ K	� Closing time at site Sk of task k after its execution
tidle
m,i

∶ (m, i) ∈ Tslots	�  Idle time in travelling slot(m, i)
t
presence,start

k
∶ k ∈ K	� Start of job slot in which task k is executed

t
presence,end

k
∶ k ∈ K	� End of job slot in which task k is executed

tslack
k

∶ k ∈ K	� Delay in net execution for a taskk
t
travel,start

m,i
∶ (m, i) ∈ Tslots	� Starting time of travelling slot(m, i)

t
travel,end

m,i
∶ (m, i) ∈ Tslots	� Ending time of travelling slot(m, i)

t
wait,before

k
∶ k ∈ K	� Waiting time spent by the team before executing taskk

t
wait,after

k
∶ k ∈ K	� Waiting time spent by the team after executing taskk
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