
Vol.:(0123456789)

Optimization and Engineering (2022) 23:479–525
https://doi.org/10.1007/s11081-021-09597-0

1 3

RESEARCH ARTICLE

New general mixed‑integer linear programming model
for mobile workforce management

András Éles1 · István Heckl1 · Heriberto Cabezas2

Received: 28 February 2020 / Revised: 10 January 2021 / Accepted: 10 January 2021 /
Published online: 26 February 2021
© The Author(s) 2021

Abstract
A mathematical model is introduced to solve a mobile workforce management prob-
lem. In such a problem there are a number of tasks to be executed at different loca-
tions by various teams. For example, when an electricity utility company has to deal
with planned system upgrades and damages caused by storms. The aim is to deter-
mine the schedule of the teams in such a way that the overall cost is minimal. The
mobile workforce management problem involves scheduling. The following ques-
tions should be answered: when to perform a task, how to route vehicles—the vehi-
cle routing problem—and the order the sites should be visited and by which teams.
These problems are already complex in themselves. This paper proposes an inte-
grated mathematical programming model formulation, which, by the assignment of
its binary variables, can be easily included in heuristic algorithmic frameworks. In
the problem specification, a wide range of parameters can be set. This includes abso-
lute and expected time windows for tasks, packing and unpacking in case of team
movement, resource utilization, relations between tasks such as precedence, mutual
exclusion or parallel execution, and team-dependent travelling and execution times
and costs. To make the model able to solve larger problems, an algorithmic frame-
work is also implemented which can be used to find heuristic solutions in accept-
able time. This latter solution method can be used as an alternative. Computational
performance is examined through a series of test cases in which the most important
factors are scaled.

Keywords VRP · Scheduling · Mobile workforce · MILP · Optimization

 * András Éles
 eles@dcs.uni-pannon.hu

1 Department of Computer Science and Systems Technology, University of Pannonia, Veszprém,
Hungary

2 Research Institute of Applied Earth Sciences, University of Miskolc, Miskolc, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09597-0&domain=pdf

480 A. Éles et al.

1 3

1 Introduction

The mobile workforce management problem in question has characteristics from
both scheduling and vehicle routing problems. Scheduling problems arise when
some activities must be carried out, but the sequence and timing of the required
steps, usually called tasks, are to be decided. A wide range of scheduling problems
appears in the industry, which are usually given by the recipe of the process and an
objective. The most common objectives are the minimization of processing time, i.e.
the makespan, the minimization of costs, or the maximization of the throughput or
profit over a fixed time horizon. Vehicle routing problems (VRP) can be regarded as
generalizations of the travelling salesman problem (TSP). In a TSP, a set of nodes
must be visited by the same actor with minimal transportation effort. In a VRP, there
are multiple such actors sharing the work, and the overall goal can be more complex.
These problems are difficult on themselves, and were subject to various, mostly heu-
ristic solution methods, each focusing on some specific problem class.

The literature review to be presented has three main parts: the first part focuses
on scheduling, the second part on VRP, and the third part on specific mobile work-
force problem definitions, solution approaches and case studies.

1.1 Scheduling problems

Scheduling focuses on timing several activities, usually called tasks. With the excep-
tion of some special problem classes, scheduling can be an NP-hard problem, requir-
ing heuristic methods to tackle. For instance, flow shop scheduling with multiple
machines is already falling into this category (Osman and Potts 1989). There are
heuristic, combinatorial and mathematical programming approaches as well. Among
the heuristic approaches are the Simulated Annealing (SA) used for job shop sched-
uling (Raaymakers and Hoogeveen 2000), and Genetic Algorithm (GA) applications
(Bierwirth and Mattfeld 1999). The common advantage of these methods is that
they are able to consider a very large search space, a disadvantage is the specificity
and lack of global optimality. A combinatorial approach for scheduling is, for exam-
ple, the S-Graph framework, which can handle different storage policies in batch
process scheduling (Romero et al. 2004), or timing constraints between tasks as well
(Hegyhati et al. 2011). The framework can also be enhanced by mathematical pro-
gramming tools (Lainez et al. 2010).

Mathematical programming methods are popular either alone or as part of an
algorithmic framework for a range of problems, including scheduling. A good com-
promise between modelling power and computational complexity is the class of
Mixed-Integer Linear Programming (MILP), which is widely used. Mendez et al.
(2006) provided a state-of-the-art review on different MILP modelling approaches.
Although the shown approaches focus on batch processes, the MILP modelling tech-
niques can be easily adapted to different contexts, which is a strong advantage of
mathematical programming in general. In the model development point of view,
MILP approaches either use some concept of time points or time slots (Pinto and
Grossmann 1995), or the precedence relationship between tasks (Mendez and Cerda

481

1 3

New general mixed‑integer linear programming model for mobile…

2003) to define the key decision variables. One property of mathematical program-
ming approaches is the possibility of equivalent, but technically easier model for-
mulations. This had been demonstrated particularly for scheduling problems (Sahi-
nidis and Grossmann 1991). Therefore, the choice of decision variables is a critical
part of model development. Kim et al. (2000) proposed a slot-based approach for
a multipurpose scheduling problem dealing with different storage methods. Bradac
et al. (2015) used an MILP model based on time slots for the scheduling of domestic
appliances subject to time-based energy prices and user preferences, suggesting that
time slots can be a useful technique for other purposes.

1.2 Vehicle routing problems

In VRP problems, the main decisions are the assignment of sites to vehicles, and
the visit order of sites by the assigned vehicles. The problem may involve other con-
straints and features, for example time windows for visits, precedence relationships,
resource capacity, and multiple depots. A recent review by Vidal et al. (2020) pro-
vides an insight into the wide range of possible real-life considerations for VRP case
studies.

Standalone MILP solutions were developed for different classes of both the TSP
and the more general VRP problems, including problems with multiple vehicle
depots (Kulkarni and Bhave 1985). A wide range of generic algorithmic improve-
ments were proposed to traverse the search space of models for VRP problems faster
(Costa et al. 2019). However, due to computational complexity, a more common
approach is the consideration of an algorithmic framework that is only based on a
mathematical programming model, but controls the traverse of the search space on
its own.

Transportation efforts are a key factor in VRP problems, usually expressed in
terms of time or costs. Travelling efforts can be estimated a priori, and in some sce-
narios, may depend on current vehicle load. Camm et al. (2017) proposed a solution
to the VRP problem where distances to be travelled are weighted by passengers on
board. The authors first formulate the problem as an MILP, then solved it by a spe-
cific algorithmic framework. Chitty and Hernandez (2004) applied the Ant Colony
Optimization method (ACO) for minimizing the total mean time and variance of
vehicles.

Time windows for the vehicles arriving at certain sites are a common extension
for VRP problems. A common scenario is when products with a limited lifespan
have to be delivered. In these cases, production is usually part of the decision prob-
lem together with routing. Chen et al. (2009) proposes a solution for VRP with
time windows for perishable products by a nonlinear programming model, which
is then solved by an adaptation of the Nelder-Mead method. Geismar et al. (2008)
addressed a similar problem with a GA framework. Kergosien et al. (2017) formu-
lated an MILP model for chemotherapy production and delivery. In this scenario,
although only a single vehicle was used multiple times, the model turned out compu-
tationally costly and the authors applied the Benders decomposition method (Bend-
ers 1962) to solve it. Lee et al. (2014) formulated an MILP for a similar problem of

482 A. Éles et al.

1 3

nuclear medicine delivery, and the algorithmic framework was the Large Neighbor-
hood Search (LNS) in their case. Ben Abdelaziz et al. (2017) proposed a stochastic
programming approach for a VRP when passenger transport had to be organized
from various points by airport buses. Their model also considered desired timing
constraints for each passenger group. Gong et al. (2012) showed that the Particle
Swarm Optimization method (PSO) can also be used to solve VRP problems with
time windows. Another common extension for VRP problems is vehicle capacity,
which limits the routes possible to a single vehicle. Liu et al. (2017) proposed a
Tabu Search method for the effective solution of VRP where both vehicle capacities
and timing constraints were considered. The authors proposed a Lagrangian relaxa-
tion for larger problem instances.

The increasing popularity of electric vehicles and other alternative delivery
technologies also had an impact on research towards VRP. Current electric vehi-
cles usually have a relatively short capacity, and their routes have to be designed
accordingly. Pelletier et al. (2019) proposed a solution for VRP of electric vehicles
with uncertain data. Macrina et al. (2019) considered the VRP with time windows
for a fleet of conventional and electric vehicles. The authors apply a variant of the
Large Neighborhood Search heuristic based on an MILP model. Paz et al. (2018)
solved the VRP problem involving electric vehicles with a standalone MILP model,
which also takes multiple depots, time windows, and different battery technologies
into consideration. The model was tested on small scale problem instances with few
vehicles and sites. Wang et al. (2017) considered the problem of VRP with available
drones as an alternative for using trucks only for product delivery. An MILP-based
approach was also proposed which used a Branch and price algorithm (Wang and
Sheu 2019).

1.3 Mobile workforce management

Mobile workforce is needed to be managed in many areas, including product deliv-
ery, maintenance of spatially distributed infrastructure, and any kind of service that
involves travelling to clients (Castillo-Salazar et al. 2016). Working personnel must
travel to one or multiple sites in some order and must also perform tasks, there-
fore both routing and scheduling decisions are made. The spreading and evolution
of communication tools introduce new possibilities for monitoring and managing
mobile workforce (Bakewell et al. 2018). Nevertheless, there is a huge potential in
optimizing workforce management for existing businesses. Mobile workforce man-
agement problems in this sense do not have a strict formal definition which clearly
distinguishes them from VRP—in fact, the main solution approaches are similar.
Instead, these problems are characterized by the importance of tasks to be executed
by the workforce. For example, tasks usually take a considerable amount of time. In
some cases, a complex activity is modelled as a set of different tasks, the execution
of which are usually related. Nevertheless, routing decisions that determine travel-
ling efforts are still an important factor in decision making.

Dependency of tasks on each other is a common trait of workforce scheduling
problems. Precedence is the most common example of such a relation between

483

1 3

New general mixed‑integer linear programming model for mobile…

tasks, which requires particular pairs of tasks to be executed in a given order. As
constraints, precedence can appear in simpler problems like TSP as well (Sung and
Jeong 2014). In the modelling point of view, the vast majority of mathematical pro-
gramming approaches exploit the precedence of tasks at different sites as decision
variables. Also, standalone mathematical programming approaches are uncom-
mon. Instead, MILP models can be effectively included in algorithmic frameworks,
as the integer decision variables can be assigned by heuristics as well (Goel and
Meisel 2013). A mobile workforce management problem with precedence relation-
ships were solved by Pereira et al. (2020) with an ACO solution approach, which
was based on an MILP model. The authors remark that the presence of depend-
encies between tasks often make local neighbourhood search methods difficult to
implement.

Goel et al. (2010) proposed an MILP model for scheduling mobile workforce,
where time windows and precedence relations are simultaneously considered, and
suggested an iterative solution algorithm. Starkey et al. (2016) defined the mobile
workforce management problem as grouping places into worker areas served inde-
pendently by travelling engineers, motivated by the telecommunications field. The
proposed solution involves genetic algorithms and fuzzy logic. In a more recent
work, a similar approach is presented to address the question when to optimize and
rearrange existing worker areas (Chimatapu et al. 2018).

The vehicles may have different properties, for example due to team member
expertise differences. Decision on how the teams can be formed based on individual
skills is on itself a hard problem which requires heuristic methods (Starkey et al.
2018). The workforce management of an electricity utility company was considered
by Çakırgil et al. (2020). Their model involves different skills, multiple depots and
two concurrent objectives of weighted total time and execution costs. The proposed
solution involves a multi-stage heuristic that relies on an MILP model.

It can be observed that mobile workforce applications usually specialize in the
single case study which had to be solved, and the corresponding heuristic algorithms
are designed accordingly. Standalone MILP, or general algorithmic approaches are
usually proposed to more general problem classes. The aim of this work is to pre-
sent an MILP approach that can be used either as a standalone solution or as part
of an algorithmic framework. A key feature of the model is that the slot-based deci-
sion variables are applied instead of precedence-based decisions, which are the more
common for VRP case studies. This choice makes a wide range of features possible
to be easily modelled, including time windows, vehicle capacities, resource usage,
different vehicle efficiencies, and multiple kinds of relations between tasks. To our
best knowledge, there is neither a slot-based MILP approach in the literature specific
to mobile workforce management, nor one which supports the aforementioned fea-
tures in a single model. A previous work was dedicated to the possible options of the
algorithmic framework for mobile workforce management (Eles et al. 2018). In this
work, the MILP model is proposed for scheduling and routing of mobile workforce,
which can be used alone or as part of an algorithmic framework. The capabilities of
both methods were thoroughly investigated.

The rest of the paper is structured as follows. The second section describes the
problem formulation with an example motivational problem and its solution shown.

484 A. Éles et al.

1 3

The third section presents the MILP model in detail, and the fourth section pre-
sents the algorithmic framework. The case study regarding the standalone MILP
and the algorithmic solution approaches are discussed in the fifth and sixth section,
respectively.

2 Problem specification

In this section the mobile workforce management problem is described which can be
regarded as mix of traveling salesman problem (how to visit the sites) and schedul-
ing problem (when each task should be performed). The assumptions made for each
component of the real-world problem in order to formulate our model are also listed.

The scope of the problem governs a single workday of a company responsible for
executing tasks arising in various locations. An illustrative example for this scenario
could be a public service company which executes maintenance jobs and repairs on-
demand. The tasks take place at different points of the infrastructure (e.g., the power
grid). Nevertheless, the formulation is intended to be more general.

The company has several working teams which can be assigned to the jobs. These
teams start at their depot at the beginning of the day, must travel to the tasks, execute
them one by one, and then return to their depot by the end of the workday. Briefly,
the company has to decide for each team what tasks to do, in which order, and at
what exact times (see Fig. 1), subject to a broad range of restrictions. A motivational
example which serves as a demonstration for the problem specification is included
in the case study.

2.1 Objective and scope of optimization

The objective function is cost minimization where all tasks are mandatory. There-
fore, the list of tasks is treated as parameter to the problem and is not subject to deci-
sion making.

This is due to practical considerations. Skipping a critical repair job is not
allowed for a utility company and the original problem definition is motivated by
this scenario. The decision about non-urgent maintenance tasks is made on a higher
level, usually by the management, which is out of scope of our target problem.

Note that, as will be shown, the cost functions can be used to express a difference
for the same task being executed in different situations.

2.2 Task scheduling

The key question is how task execution is performed. In short, each task must be
assigned to one team. The problem involves decision about how to make these
assignments. The following assumptions are made.

• Teams are fixed.
• Task execution cannot be interrupted once started (non-preemptive execution).

485

1 3

New general mixed‑integer linear programming model for mobile…

• Task execution takes a fixed amount of time and cost, both depending on the
team chosen.

Teams execute tasks by visiting their sites one by one. If the team executes two
tasks consecutively on different locations, travelling has to be taken into account.
Teams also travel from the depot to their first task, and from their last task back to
the depot. Therefore, a team’s schedule for a workday consists of working on tasks
and travelling between locations. Assumptions about travelling are the following:

• A task is located at a single location, called task site.
• Multiple tasks may be located at the same site.
• Distances of the sites are given as a parameter.
• Travelling time and costs are proportional to distance. Teams have their own

average speed and cost ratio given as parameters.

Teams also have a limited working capacity in three different aspects: the total
time travelled, the total distance travelled, and the total time spent in duty are all
limited by an upper constant each, specific for each team. Just before and after exe-
cuting a task, a team may perform several additional activities, one at a time. See
Fig. 2 for the complete list in logical order, more about these later.

Fig. 1 Illustration of the goal of the optimization problem: given a set of tasks, decide on the precise
timetable of the teams for a single workday

486 A. Éles et al.

1 3

Fi
g.

 2

Po
ss

ib
le

 a
ct

iv
iti

es
 a

 te
am

 m
ay

 p
er

fo
rm

 b
ef

or
e

an
d

af
te

r e
xe

cu
tin

g
a

ta
sk

487

1 3

New general mixed‑integer linear programming model for mobile…

2.3 Packing and unpacking

Our problem formulation includes special activities called packing and unpacking.
These represent preparations and post-work that are performed once when teams
execute one or more tasks in a row at the same site. The rules describing how pack-
ing and unpacking activities work are the following.

• If a team arrives to a task site, an unpacking activity must be performed.
• Unpacking is not performed if the previous task is at the same site.
• If a team leaves a task site, a packing activity must be performed.
• Packing is not performed if the next task is at the same site.
• Packing and unpacking costs and times are fixed, and specific for the team.

2.4 Time windows

Although all tasks are mandatory, the exact time of execution may affect costs, or
can be subject to restrictions. For this reason, time windows are introduced in the
problem formulation. Two different kinds of time windows are assumed: absolute
and expected (see Fig. 3).

• An absolute time window is a time interval, which must wholly contain the exe-
cution of the task.

• An expected time window is a time interval, which should contain the execution
of the task, but it is allowed to be violated for a specific cost. Both starting a task
earlier than the window, and finishing a task later than the window incurs cost
proportional to the extent of earliness or lateness. The two cost factors are spe-
cific for the task.

• Each task may have its own absolute and expected time window independently,
provided as parameters.

2.5 Resource management

Task execution may require additional kinds of resources from teams, independ-
ent of previously mentioned times and costs. The assumptions on resources are the
following.

Fig. 3 Absolute and expected time windows

488 A. Éles et al.

1 3

• Each task has a requirement for each resource, given as a parameter. The exact
amount depends on both the task and the team selected.

• Each team has its own maximum capacity for carrying an amount of each
resource.

• Each resource has a maximum capacity for the workday, shared among all teams.
• Each resource has a proportional cost of usage.

There are two kinds of resources considered: consumables and tools. Consuma-
bles are used up in a single task, but tools can be used any number of times. That
implies, the total amount of a resource needed for multiple tasks is a sum for a con-
sumable, and a maximum for a tool resource (see Fig. 4).

2.6 Pairwise task relations

The problem formulation also allows tasks to be dependent on each other. Relations
between particular pairs of tasks can be defined, which impose additional constraints
on the execution of the two tasks. Let K1 and K2 be two different tasks. The relations
that can be defined on K1 and K2 are the following (see Fig. 5).

• Free precedence: K2 must start after K1 finished.
• Same-team precedence: free precedence, also requiring K1 and K2 to be executed

by the same team.
• Protected precedence: free precedence, also requiring security measures between

 K1 and K2 (see later).
• Mutual exclusion: execution times of K1 and K2 may not overlap.
• Parallel execution: K1 and K2 are executed in parallel by two adequate teams

simultaneously. Execution starts at the same time and ends according to the
longer of the two task execution times.

Protected precedence is intended to model situations where two activities must be
performed one after the other on the same site by different teams. Leaving the site
unattended can be hazardous, e.g. in case of unfinished roadworks, electric boxes.
Two options are available:

• The team executing K1 may wait until the team executing K2 arrives.

Fig. 4 Illustration of consumable and tool resource utilization for one team

489

1 3

New general mixed‑integer linear programming model for mobile…

(A
)

(B
)

(C
)

(D
)

Fi
g.

 5

Ill
us

tra
tio

n
of

 p
os

si
bl

e
re

la
tio

ns
 b

et
w

ee
n

ta
sk

s

490 A. Éles et al.

1 3

• The team executing K1 may perform a closing activity and leave the site. The
team executing K2 must first perform an opening activity. Both the closing and
opening activity has a fixed cost and time requirement.

3 MILP model formulation

A Mixed-Integer Linear Programming model was designed to address the problem
of mobile workforce management described in the previous section.

The model was developed in GNU MathProg modelling language, as a sin-
gle MILP model file. Problem data consisting all the required parameters must be
provided through one or more data files. The model can be solved with a general-
purpose MILP solver in a single call. From now on, we refer to the model as the
Standalone MILP, which consists of the constraints and the objective to be presented
in this section. The groups of constraints correspond to main components of the
problem specification. Variables are denoted by lowercase, parameters and sets are
denoted by uppercase symbols. The complete list can be found in the nomenclature.

Since the problem is quite complex, it is unlikely that a purely MILP-based solu-
tion can find a globally optimal solution fast in the general case. Therefore, the aim
in model design was to easily support the widest range of features, so that the MILP
can be utilized in various heuristic optimization algorithms in the future. The selec-
tion of the binary decision variables also reflects this purpose, because it is techni-
cally easy to preset some variables and solve the model in a reduced search space.

3.1 Key decision variables

The MILP model developed—in contrast to most literature examples for VRP and
mobile workforce management problems—is not a precedence-based but a slot-
based model. This is characterized by the main decision variables in the model.
Slots allow a more straightforward definition of other decision variables and imple-
menting other modelling features, as well as an algorithmic framework afterwards.

For each team, a predefined set of “job slots” is introduced. Job slots are num-
bered for each team, and a job slot is a placeholder for a single task. Each task must
be assigned to a single job slot, but a job slot may remain unused, meaning there
is no task assigned. The assignment of tasks to job slots is the core of the decision
problem, as it determines which tasks a team must perform, and in what order.

Also, a set of “travelling slots” is also introduced for each team. These are place-
holders for possible travelling between two tasks, at the beginning and at the end of
the workday. Travelling and job slots of a team are alternating after each other.

Finally, for modelling purposes, the term “site slot” is also introduced. These
are simply all job slots, plus the time point of the beginning, and the time point of
the ending of the workday, numbered accordingly. Site slots serve as points in time
where an exact position of a team is in question. These are helpful because all travel-
ling slots, including the very first and very last one, are now surrounded by two site
slots, allowing uniform constraint definitions for travelling slots.

491

1 3

New general mixed‑integer linear programming model for mobile…

In Fig. 6, the scheme of all slot concepts is illustrated. The team is named m , and it
has a predefined number of Nm job slots, where Nm is a parameter to be decided a priori
in the model. However, after solving the problem, team m might only execute some L
tasks out of the possible Nm , therefore some slots remain unused. Note that even more
travelling slots can be unused, depending on how many tasks m executes at the same
place consecutively.

From now on, the i th job slot of a team m is denoted by the ordered pair (m, i) , start-
ing by i = 1 . The set of all job slots is Jslots , and the set of all tasks is K. Based on job
slots, we can now define the core binary decision variables in the model. These are the
assignment variables ak,m,i , where the index k ∈ K stands for a task, and (m, i) ∈ Jslots
stand for a job slot. The value of ak,m,i is 1, whenever task k is assigned to job slot (m, i) ,
and 0 otherwise. Note that in the motivational example, there was 2 teams and 8 tasks,
8 job slots for each team. This results in 8 ⋅ 2 ⋅ 8 = 128 binary variables and theoreti-
cally covers all possible cases.

An example is provided in Fig. 7 to demonstrate the meaning of variable ak,m,i with a
small example of 2 teams Team1 and Team2, and 3 tasks KA, KB and KC. In the exam-
ple shown, there are 3 predefined job slots for both teams, and Team1 uses 1, Team2
uses 2 of them. From the resulting 18 binary variables, only three take the value 1,
which are aKA,Team2,1 , aKB,Team2,2 and aKC,Team1,1.

Variables ak,m,i determine the routing decisions. The rest of the decision variables
define he exact timing of events, resource usages, costs incurred, and some other deci-
sions. It is notable that most binary decision variables can be (and are) directly calcu-
lated from the variables ak,m,i , and therefore those variables can possibly be left contin-
uous in the model implementation. The two exceptions for this are the binary variables
for mutual exclusions and protected precedence relations, as they involve a further dis-
crete decision.

From now on, constraints of the model are presented grouped by the main logical
parts.

3.2 Allocation constraints

Allocation constraints are responsible for the basic logic of assignment of tasks to job
slots, which are the core decisions in the model. The positions of tasks at starting and
ending points of time slots are also determined here.

3.2.1 Assignment of tasks

Task k is assigned to team m (denoted by atask
k,m

) if and only if it is assigned to a sin-
gle job slot (m, i) of team m . As variable atask

k,m
 is binary, Constraint (1) also implicitly

ensures that at a task is assigned to at most one job slot of a particular team m.

(1)atask
k,m

=
∑

(m,i)∈Jslots

ak,m,i ∀k ∈ K,m ∈ M

492 A. Éles et al.

1 3

Fi
g.

 6

Sl
ot

 c
on

ce
pt

s i
n

th
e

M
IL

P
m

od
el

. T
ea

m
 m

 h
as

 N
m
 p

re
de

fin
ed

 jo
b

sl
ot

s,
bu

t o
nl

y
ex

ec
ut

es
 L

 ta
sk

s i
n

th
e

en
d

493

1 3

New general mixed‑integer linear programming model for mobile…

Fi
g.

 7

Ex
am

pl
e

us
ag

e
of

 a
ss

ig
nm

en
t v

ar
ia

bl
es

 a
k
,
m
,
i ,

w
hi

ch
 re

pr
es

en
t t

he
 c

or
e

de
ci

si
on

s i
n

th
e

m
od

el

494 A. Éles et al.

1 3

Constraint (2) ensures that all tasks k are assigned to exactly one team. For
a particular task k , exactly one of the variables atask

k,m
 for all m must be 1 and the

rest must be 0 to satisfy the equation.

3.2.2 Positions of teams

Job slots are used consecutively from the first one (i = 1) and cannot be skipped
unless there are no other tasks assigned to further job slots. This can be inter-
preted in the following way: if a job slot (m, i) is used and a task is assigned to it,
then so does the previous job slot (m, i − 1) , expressed in Constraint (3).

Binary variable bpresent
m,i,s

 denotes whether the exact position of m at job slot (or
site slot) (m, i) is site s or not. All values of bpresent

m,i,s
 are directly calculated now by

constraints (4–7).
At the beginning, when the first travelling slot (m, 0) of team m is started, the

team m is at its starting depot. In the end of the workday, which is at the end of
travelling slot

(
m,Nm

)
 , at time point

(
m,Nm + 1

)
 , it is at its final depot.

At the beginning of each job slot (m, i) of a team m , the team is present at the
task execution site s if and only if a task k whose site is Stask

k
= s is assigned to

the job slot (m, i).

Finally, Constraint (7) ensures that the team is in exactly one position
throughout the day, which can be a depot or a task site.

Throughout this work, we assumed that vehicles return where they started,
Sstart
m

= Send
m

. If this is the case, Constraints (4–7) well-define values of bpresent
m,i,s

 ,
even if this variable is continuous.

(2)1 =
∑

m∈M

atask
k,m

∀k ∈ K

(3)
∑

k∈K

ak,m,i−1 ≥
∑

k∈K

ak,m,i∀(m, i) ∈ Jslots ∶ i > 1

(4)b
present

m,0,Sstart
m

= 1∀m ∈ M

(5)b
present

m,0,Send
m

= 1∀m ∈ M

(6)b
present

m,i,s
=

∑

k∈K∶Stask
k

=s

ak,m,i ∀(m, i) ∈ Jslots, s ∈ Stasksites

(7)
∑

s∈Stasksites∪{Sstartm
,Send

m }

b
present

m,i,s
= 1∀(m, i) ∈ Sslots

495

1 3

New general mixed‑integer linear programming model for mobile…

3.3 Travelling and continuity constraints

There is a set of constraints that establish the connection between consecutive
tasks of the same team. These constraints make sure that the travelling times,
costs and possible idle times are managed correctly, as well as the continuity of
the alternating travelling and job slots, and some global limitations for the teams.

3.3.1 Movement between sites

Binary variables bsch
m,i,s1,s2

 denote movement between sites s1 and s2 in a travelling
slot, while btravel,move

m,i
 denotes if there is any movement. These must be forced to be

1 whenever needed.
Constraint (8) expresses that for all travelling slots (m, i) , and pairs of differ-

ent sites s1 and s2 , there is a movement between these two sites in this travelling
slot if team m is at s1 at the beginning, and at s2 at the end of travelling slot (m, i).
These two events are referred by site slots (m, i) and (m, i + 1) , respectively.

There is movement in travelling slot (m, i) if and only if there are two sites s1
and s2 between which the movement occurs. Constraint (9) expressing this fact is
an equation, because there can only be one such

(
s1, s2

)
 pair.

Distance between sites travelled is determined similarly in Constraint (10). For
each pair of sites, their distance is taken into account as a factor to determine the
total distance travelled by team m in its travelling slot (m, i).

3.3.2 Slot continuity

It must be ensured that job slots have a nonnegative length (even if they are out of
use). This can be done by the Constraint (11), since the job slot (m, i) starts when
travelling slot (m, i − 1) ends, and ends when travelling slot (m, i) starts.

The nonnegative length of travelling slots is implicitly guaranteed by their
length formula, expressed by Constraint (12). Travelling slot (m, i) consist of trav-
elling time, depending on distance dm,i and team speed Vm , packing and unpacking

(8)bsch
m,i,s1,s2

≥ b
present

m,i,s1
+ b

present

m,i+1,s2
− 1∀(m, i) ∈ Tslots, s1, s2 ∈ S ∶ s1 ≠ s2

(9)b
travel,move

m,i
=

∑

s1,s2∈S∶s1≠s2

bsch
m,i,s1,s2

∀(m, i) ∈ Tslots

(10)dm,i =
∑

s1,s2∈S∶s1≠s2

bsch
m,i,s1,s2

⋅ Ds1,s2
∀(m, i) ∈ Tslots

(11)t
travel,start

m,i
≥ t

travel,end

m,i
∀(m, i) ∈ Jslots

496 A. Éles et al.

1 3

time, and idle time. If there is no movement in this travelling slot, only idle time
may occur.

3.3.3 Team limitations

Constraints (13–15) ensure global limitations for the teams.
For each team m , the total travelling time has an upper limit Ttravel,MAX

m
 . For all job

slots (m, i) , travelling times without idle and packing times are added up against this
limit.

Total time in duty including any activities is also bounded by a parameter
Twork,MAX
m

 , for each team m.

The total distance travelled, which is the sum of actual distances dm,i , is also lim-
ited by a parameter Dtravel,MAX

m
.

3.4 Task execution constraints

In a job slot, several events may happen before, during, and after a task is executed.
This set of constraints is responsible for calculating timings and costs of task execu-
tion, and possible preconditions for them. A common property of these constraints is
that they are formulated for all tasks k ∈ K.

3.4.1 Job slot sequencing

The start of the presence of team m at site for executing task k , denoted by
t
presence,start

k
 , takes place at the beginning of some job slot (m, i) of a team m the task is

assigned to. Constraint (16) formulates this fact for all possible allocations ak,m,i as a
big-M constraint.

(12)t
travel,end

m,i
− t

travel,start

m,i
=

dm,i

Vm

+ b
travel,move

m,i
⋅

(
Tpack
m

+ Tunpack
m

)
+ tidle

m,i

∀(m, i) ∈ Tslots

(13)
∑

(m,i)∈Tslots

(
t
travel,end

m,i
− t

travel,start

m,i

)
≤ Ttravel,MAX

m
∀m ∈ M

(14)t
travel,end

m,Nm
− t

travel,start

m,0
≤ Twork,MAX

m
∀m ∈ M

(15)
∑

(m,i)∈Tslots

dm,i ≤ Dtravel,MAX
m

∀m ∈ M

497

1 3

New general mixed‑integer linear programming model for mobile…

After the team is present at the site, nonnegative waiting and site opening times
may take place before the task execution begins. Site opening depends on choices
made at protected precedence relations, which will be discussed later. The final
value in Constraint (17) is tstart

k
 , the actual starting time of execution.

The net execution time is the time between the starting time (tstart
k

) and ending
time (tend

k
). This depends on team selection, so summed for each allocation candidate

atask
k,m

 . There is also a nonnegative slack term tslack
k

 which relaxes this interval. This is
essential for parallel execution of tasks to take place, where the faster team should
“wait” for the other one to finish. In reality, the slower team’s working speed is the
bottleneck as they work together. Parallel execution relations are also discussed later.

After finishing execution, the team may wait additionally, and possibly close the
task site due to some protected precedence relation of k , similarly to opening sites
before execution. Then, presence of the team at the task site ends.

Finally, the end of presence of team m at site for executing task k , denoted by
t
presence,end

k
 , happens in the end of job slot (m, i) of some team m . The big-M con-

straint has condition ak,m,i = 1 and coefficient TWORKDAY , similarly to the constraint
for the start of the presence.

3.4.2 Task time windows

There are two kinds of time windows in the model. A task must be executed within
its absolute time window

[
Tearliest
k

, Tlatest
k

]
 which must be strictly respected. Also, a

task should be executed in its narrower expected time window [
T
expected,start

k
, T

expected,end

k

]
 , the violation of which is possible in exchange for a pen-

alty cost proportional to the extent of early starting or late ending.

(16)

t
presence,start

k
− t

travel,end

m,i−1
≥ (−1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

t
presence,start

k
− t

travel,end

m,i−1
≤ (+1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

∀k ∈ K, (m, i) ∈ Jslots

(17)t
presence,start

k
+ t

wait,before

k
+ p

open

k
⋅ T

open

k
= tstart

k
∀k ∈ K

(18)tstart
k

+
∑

m∈M

(
atask
k,m

⋅ Texec
k,m

)
+ tslack

k
= tend

k
∀k ∈ K

(19)tend
k

+ t
wait,after

k
+ pclose

k
⋅ Tclose

k
= t

presence,end

k
∀k ∈ K

(20)

t
presence,end

k
− t

travel,begin

m,i
≥ (−1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

t
presence,end

k
− t

travel,begin

m,i
≤ (+1) ⋅ TWORKDAY

⋅

(
1 − ak,m,i

)

∀k ∈ K, (m, i) ∈ Jslots

498 A. Éles et al.

1 3

Constraints (21–22) implement absolute time windows. The earliest starting
time of a task is the beginning of its absolute time window, a lower bound for
task starting time that cannot be violated.

The latest ending time of a task, similarly, is an upper bound for task ending
time.

The expected window can be violated in either direction, with an earliness
penalty cost Cearliness

k
 , and lateness penalty cost Clateness

k
 , expressed in Constraints

(23–24). Both are proportional to the extent of the violation. Variable cpen,early
k

 and
c
pen,late

k
 denote the penalty costs incurred in these ways. Note that the formulation

allows both kinds of penalties to be present at the same time, which might be inevi-
table when the expected time window is shorter than the task execution time.

If a task starts too early, the penalty cost must be calculated proportional to
earliness.

If a task ends too late, the penalty cost must be calculated proportional to lateness.

Note that neither of the two windows are mandatory. To omit an absolute time
window, it must be set to coincide the start and end of the workday. To omit an
expected time window, it must coincide the absolute time window. In both cases, the
corresponding constraints become redundant.

3.5 Resource management constraints

There are two kinds of resources in the proposed model: consumables, which are
used up at tasks, and tools, which must be at hand for the teams.

We are interested in the requirement qreq
r,m,i

 of resource r in job slot (m, i) . As the
requirement parameter in a particular assignment Qreq

r,k,m
 depends on both the task

executed and the team, these must be summed for all tasks k multiplied by the allo-
cation variable ak,m,i . Since at most one task k is assigned to job slot (m, i) , the sum
yields the desired qreq

r,m,i
 in Constraint (25).

If resource r is a consumable, then for any team m the amount carried is the sum
required for the execution of tasks.

(21)Tearliest
k

≤ tstart
k

∀k ∈ K

(22)tend
k

≤ Tlatest
k

∀k ∈ K

(23)
(
T
expected,start

k
− tstart

k

)
⋅ Cearliness

k
≤ c

pen,early

k
∀k ∈ K

(24)
(
tstart
k

− T
expected,end

k

)
⋅ Clateness

k
≤ c

pen,late

k
∀k ∈ K

(25)q
req

r,m,i
=
∑

k∈K

(
ak,m,i ⋅ Q

req

r,k,m

)
∀r ∈ R, (m, i) ∈ Jslots

499

1 3

New general mixed‑integer linear programming model for mobile…

If resource r is a tool, then for any team m the amount carried must be equal or
greater than the maximum required for tasks. Note that these constraints do not force
the carried amount to be minimal, but the optimization does, because resource utili-
zation has a cost.

For each team m and resource r , the carried amount is limited by the capacity of
team m , denoted by QMAX

r,m
.

For each resource r , being either a consumable or a tool, the total resource
amount utilized by all teams m is limited to the available amount for the company.
Constraint (29) expresses this statement. All utilized amounts are summed.

3.6 Pairwise relations’ constraints

In the problem description point of view, pairwise task relations are provided as sets
of ordered pairs

(
ka, kb

)
 of tasks for each kind of relation. These are precedence in

general (Pprec), same-team precedence (Psame), protected precedence (Pprot), mutual
exclusion (Pmutex), and parallel execution (Pparallel). Note that the set Pprec includes
free, same-team and protected precedence relations.

3.6.1 Precedence

For any kind of precedence relations
(
k1, k2

)
∈ Pprec , the ending time of the first task

k1 must precede the starting time of the second task k2 . Constraint (30) expressing
this fact implicitly assures that k2 is done by a different team, or by the same team in
a later job slot.

For all same-team precedence relations
(
k1, k2

)
∈ Psame , besides the original prec-

edence relation, the same team must execute the two tasks. Constraint (31) expresses
that these two tasks are assigned to any team m exactly in the same case.

(26)qcarry
r,m

=
∑

(m,i)∈Jslots

q
req

r,m,i
∀r ∈ Rcons,m ∈ M

(27)qcarry
r,m

≥ q
req

r,m,i
∀r ∈ Rtool, (m, i) ∈ Jslots

(28)qcarry
r,m

≤ QMAX
r,m

∀r ∈ R,m ∈ M

(29)
∑

m∈M

qcarry
r,m

≤ QCAP
r

∀r ∈ R

(30)tend
k1

≤ tstart
k2

∀
(
k1, k2

)
∈ Pprec

(31)atask
k1,m

= atask
k2,m

∀
(
k1, k2

)
∈ Psame,m ∈ M

500 A. Éles et al.

1 3

3.6.2 Protected precedence

Protected precedence relations are more complex, there are two choices for each (
k1, k2

)
∈ Pprot . A binary variable pprot

k1,k2
 is introduced to denote this choice. If

p
prot

k1,k2
= 1 , then teams are not waiting for each other, but the team executing k1 closes

the site of k1 there and leaves, and when the other team arrives to execute k2 , it also
opens the site of k2 . The alternative pprot

k1,k2
= 0 is when the team executing k1 waits

until the second team arrives. Protected precedence relations only have a practical
meaning if the tasks are at the same site. Also, it may be theoretically possible that a
third team is involved in the procedure, for example, by helping guarding the site,
but this possibility is not investigated.

If waiting is chosen (pprot
k1,k2

= 0), then the time (tpresence,end
k1

) until the first team is
present at the site of task k1 must follow the time (tpresence,start

k2
) when the team for the

second task becomes available at its site. The big-M Constraint (32) has condition
p
prot

k1,k2
= 0 and coefficient Tworkday and implements case pprot

k1,k2
= 0 . The amount of

time k1 waits if pprot
k1,k2

= 0 is represented by variable twait,after
k

 in Constraint (19).

If closing and opening is chosen (pprot
k1,k2

= 1), then the fact of closing after k1 must
be indicated in the corresponding binary variable pclose

k1
 , like the fact of opening at k2

in its variable popen
k2

 . These are expressed in Constraints (33–34). Note that variables
pclose
k1

 and popen
k2

 also appear in the job slot sequencing constraints and in the objec-
tive, to ensure the time and cost requirement of choice pprot

k1,k2
= 1.

It must also be ensured that closing or opening only take place at any task k if it
appears in a protected precedence relation where the closing and opening solution is
actually chosen.

3.6.3 Mutual exclusion

Mutual exclusion
(
k1, k2

)
∈ Pmutex means that two tasks cannot be in progress at any

same time. A binary variable pmutex
k1,k2

 is introduced to differentiate two possible sce-

(32)t
presence,start

k2
− t

presence,end

k1
≤ (+1) ⋅ Tworkday

⋅ p
prot

k1,k2
∀
(
k1, k2

)
∈ Pprot

(33)pclose
k1

≥ p
prot

k1,k2
∀
(
k1, k2

)
∈ Pprot

(34)p
open

k2
≥ p

prot

k1,k2
∀
(
k1, k2

)
∈ Pprot

(35)pclose
k1

≤
∑

(k1,k2)∈Pprot

p
prot

k1,k2
∀k1 ∈ K

(36)p
open

k2
≤

∑

(k1,k2)∈Pprot

p
prot

k1,k2
∀k2 ∈ K

501

1 3

New general mixed‑integer linear programming model for mobile…

narios for assessing this requirement. Since tasks are mandatory, one of k1 and k2
them must be started after the other one is finished. This is expressed by big-M Con-
straints (37–38) based on the choice of pmutex

k1,k2
.

If pmutex
k1,k2

= 1 , then ending time of k1 is followed by the starting time of k2.

If pmutex
k1,k2

= 0 , in contrast, starting time of k1 follows the ending time of k2.

3.6.4 Parallel execution

Parallel execution is a model for activities that must be performed as a cooperation
between teams, possibly at different sites. The parallel execution relation ensures
that starting and ending times coincide.

When tasks k1 and k2 must be executed in parallel,
(
k1, k2

)
∈ Pparallel , both their

starting and ending times are synchronized, this is done by Constraints (39–40).
Note that this implicitly ensures that the two tasks are done by different teams.

Note that in many cases a faster and a slower team are considered to execute the
two tasks, as parameters Texec

k,m
 are generally independent. In this case, the common

completion time is always the highest. This is made possible by a nonnegative vari-
able tslack

k
 , see Constraint (18), which implements job slot sequencing. Variable tslack

k

imposes a phantom waiting time on either team so they could actually finish at the
same later time.

3.7 Objective function

The objective in the model is the total cost, which must be minimized. Costs arise
for various reasons which are listed below and then summed up.

Travelling costs are calculated from travelled distances, speed, and cost factor for
each team.

Packing costs are coming from packing and unpacking for each travelling slot
where travelling actually happens. This is also true for moving out and arriving back
into the depot.

(37)tstart
k2

− tend
k1

≥ (−1) ⋅ TWORKDAY
⋅

(
1 − pmutex

k1,k2

)
∀
(
k1, k2

)
∈ Pmutex

(38)tstart
k1

− tend
k2

≥ (−1) ⋅ TWORKDAY
⋅ pmutex

k1,k2
∀
(
k1, k2

)
∈ Pmutex

(39)tstart
k1

= tstart
k2

∀
(
k1, k2

)
∈ Pparallel

(40)tend
k1

= tend
k2

∀
(
k1, k2

)
∈ Pparallel

(41)ctravel =
∑

(m,i)∈Tslots

dm,i

Vm

⋅ Ctravel
m

502 A. Éles et al.

1 3

Time window costs are composed of penalties of earliness and lateness from
task executions.

Execution costs of tasks are based solely on the team and the task assigned.

Resource costs are derived from the total amounts used for both consumables
and tools.

Opening and closing costs are incurred for each of the closing choices made
at protected precedence relations.

Finally, working time costs are proportional to total times each team spends
in duty.

The objective value is obtained as a sum of components listed above.

4 Algorithmic framework

While designing the MILP model, the focus was on the wide range of features it
supports, so that heuristic algorithmic solutions could be implemented on them
afterwards. Although the Standalone MILP is an option, for large scale problems
the model is computationally too difficult. For this reason, an algorithmic frame-
work was implemented which allows us to find heuristic solutions for larger
problems in an acceptable amount of time.

(42)cpacking =
∑

(m,i)∈Tslots

(
∑

s1∈S,s2∈S

bsch
m,i,s1s2

⋅

(
Cunpack
m

+ Cpack
m

)
)

(43)ctw =
∑

k∈K

(
c
pen,early

k
+ c

pen,late

k

)

(44)cexec =
∑

k∈K

∑

(m,i)∈Jslots

(
ak,m,i ⋅ C

k,m
exec

)

(45)cres =
∑

r∈R

∑

m∈M

(
qcarry
r,m

⋅ Cr

)

(46)copcl =
∑

(k1,k2)∈Pprot

p
prot

k1,k2
⋅ C

prot,co

k1,k2

(47)cwork =
∑

m∈M

(
t
travel,end

m,Nm
− t

travel,start

m,0

)
⋅ Cwork

m

(48)minimize ∶ ctotal = ctravel + cpacking + ctw + cexec + cres + copcl + cwork

503

1 3

New general mixed‑integer linear programming model for mobile…

4.1 Algorithm description

The main idea is to schedule only a single task at once. The algorithm involves five
steps:

Start from the initial solution where no tasks are scheduled yet.
Choose a new task to be included in the schedule.
Determine the position of the new task in the schedule.
Update task timings, resource, cost calculation and other decisions according to
the new schedule.
Repeat Steps 2–4 until all tasks are scheduled.

Steps 2–4 together are called an “iteration” of the algorithm. Each iteration begins
with an existing “schedule” of some tasks, and ends with another schedule contain-
ing one more task than in the beginning. A schedule consists solely of an ordered list
of tasks to execute for each team. In other words, a schedule answers which tasks a
team will execute, and in which order, but nothing more specific.

A key characteristic of Step 3 of the algorithm is that the relative order of already
scheduled tasks is maintained. That means, the new task is inserted into the list of
one of the teams.

Finally, the method for performing an iteration of the algorithm is by the utiliza-
tion of an MILP model obtained by the modification of the Standalone MILP model.
We call this version the Modified MILP model. In short, the Modified MILP model
uses the original problem data, plus the already existing schedule as an input, and

Fig. 8 In a single step, a new task is selected and inserted into the existing schedule, maintaining relative
order of already scheduled tasks. Decision is based on a single run of the Modified MILP model

504 A. Éles et al.

1 3

determines the next schedule as an output. This requires a single MILP execution.
Therefore, the involved operations are not even separated. The algorithm is illus-
trated in Fig. 8.

The Modified MILP is obtained from the Standalone MILP by the following
modifications:

• The existing schedule of tasks is added as model input.
• The existing schedule acts as a constraint on the execution.
• The restriction of all tasks being mandatory no longer applies.
• Instead, only the tasks from the existing schedule are mandatory, plus exactly

one additional task must also be executed.

Although the Modified MILP model contains more variables and constraints, its
search space is significantly reduced. This makes the modified version fast to solve,
even multiple times in a row as the algorithm proceeds. Meanwhile, the MILP model
still maintains the constraints about timing, resources, and costs. Therefore, the final
run of the Modified MILP model scheduling the last task results in a detailed, cost-
optimal solution for that particular schedule.

The only feature of the Standalone MILP model which is not supported is the
usage of pairwise relations. A relation can interfere with the algorithmic framework
in unexpected ways. A single step of the algorithm can easily make decisions that
later turn out to be infeasible, because relations of unscheduled tasks are ignored.
Taking into consideration pairwise relations in the algorithmic framework is subject
to future research.

4.2 Modified MILP model

Here the details of the Modified MILP model are presented. At each step of the
algorithm, the set of tasks K is split into Kdone and Krem denoting tasks in the existing
schedule and remaining to be selected from. For all tasks k ∈ Kdone there is a job slot
it is currently assigned to. This job slot is denoted by Hslot

k
∈ Jslots . The decisions to

be made are the following:

• Select a single remaining task k ∈ Krem , which is included in the already existing
schedule. This decision is represented by a new binary variable xtask

k
 , which has

the value of 1 when k is selected.
• Select a team m the new task is assigned to. This decision is represented by

a new binary variable xteam
m

 , where the value 1 means that the selected task is
included in the existing schedule of team m , while the schedules of other teams
remain unchanged.

• Select a job slot (m, i) ∈ Jslots , where the new task is inserted in the existing
schedule. The new binary variable xslot

m,i
 represents this decision by a value of 1.

Note that xslot
m,i

 also implicitly determines xteam
m

 , but for model representation pur-
poses, it is easier to introduce these three binary decision variables mentioned. For

505

1 3

New general mixed‑integer linear programming model for mobile…

modelling purposes, an auxiliary variable ym,i is also introduced, which denotes
whether the new task is inserted before already existing travelling slot (m, i) ∈ Tslots
or not. Values of ym,i are unambiguously determined by values of xslots

m,i
 and vice

versa.
The MILP model requires a priori the number of job slots as parameter Nm . In

the algorithm, each team m has one more job slot than the number of tasks already
assigned to m . In short, for each m , one extra slot is provided for the new task if it is
assigned to m.

The connection of decision variables and the algorithmic framework is illustrated
in Fig. 9. In the example, team m already has a schedule with tasks K1 , K5 , and K2 in
this order, and in the algorithmic step, a decision is made to select new task K4 and
insert it between K5 and K2 . Note that other teams may be present. The order of tasks
selected during the whole algorithm can also be arbitrary.

The additional decision variables xtask
k

 , xteam
m

 and xslot
m,i

 should determine the assign-
ment according to the new schedule unambiguously. The rest of the variables and
constraints of the original MILP model ensure feasibility like decision on exact tim-
ing and resource utilization. Therefore, a new set of constraints is added to the origi-
nal model to establish the connection of the new decision variables and the assign-
ment decisions in the original formulation. The original Constraint (2) is dropped,
because we do not intend to schedule all tasks at once. Besides, the following new
constraints are introduced.

No task can be inserted before travelling slot (m, 0) of any team m.

Insertion before a travelling slot (m, i) happens if and only if there is also insertion
before the previous travelling slot (m, i − 1) or the new task is inserted just in job slot
(m, i) . The first two cases are established by Constraints (50) and (51), respectively.
Also, ym,i = 0 is enforced by Constraint (52) if neither condition holds. This com-
pletes the consistency of auxiliary values ym,i.

Inserting before any travelling slot (m, i) of team m can be allowed only if team m
is selected.

Any new task candidate k ∈ Krem is assigned to a job slot (m, i) if and only if k
is the selected new task, and (m, i) is the selected new job slot. Constraints (54) and
(55) ensure ak,m,i = 0 if either condition is not met, while Constraint (56) ensures
ak,m,i = 1 if both conditions hold.

(49)ym,0 = 0∀m ∈ M

(50)ym,i ≥ ym,i−1 ∀(m, i) ∈ Jslots

(51)ym,i ≥ xslot
m,i

∀(m, i) ∈ Jslots

(52)ym,i ≤ ym,i−1 + xslot
m,i

∀(m, i) ∈ Jslots

(53)xteam
m

≥ ym,i ∀(m, i) ∈ Jslots

506 A. Éles et al.

1 3

Fi
g.

 9

Ex
am

pl
e

us
ag

e
of

 d
ec

is
io

n
va

ria
bl

es
 in

 th
e

al
go

rit
hm

ic
 fr

am
ew

or
k

507

1 3

New general mixed‑integer linear programming model for mobile…

Tasks k ∈ Kdone already scheduled must be scheduled again, therefore they
must be assigned to exactly one team. On the other hand, new task candidates
k ∈ Krem are only scheduled if selected, therefore the sum in that case is exactly
xtask
k

 instead of 1.

It must be ensured that exactly one new task k ∈ Krem , one team m for it, and
one of its job slots (m, i) are selected. This is done by Constraints (59–61).

Finally, the position of a task k ∈ Kdone previously scheduled to job slot (m, i)
is either job slot (m, i) or (m, i + 1) based on whether the new task was inserted
before it or not, denoted by ym,i . Constraints (62) and (63) enforce this for all
tasks k ∈ Kdone already scheduled, finishing the connection between ym,i and the
decision variables.

All other assignment variables can be explicitly set to zero as in Constraint
(64) for already scheduled tasks k ∈ Kdone . The only allowed job slots are (m, i)
and (m, i + 1) . Note that Constraint (64) is redundant because Constraints (62–63)
implicitly assure these decisions, but it is inserted to help the MILP solver at
pre-processing.

(54)ak,m,i ≤ xtask
k

∀k ∈ Krem, (m, i) ∈ Jslots

(55)ak,m,i ≤ xslot
m,i

∀k ∈ Krem, (m, i) ∈ Jslots

(56)ak,m,i ≥ xtask
k

+ xslot
m,i

− 1∀k ∈ Krem, (m, i) ∈ Jslots

(57)1 =
∑

m∈M

atask
k,m

∀k ∈ Kdone

(58)xtask
k

=
∑

m∈M

atask
k,m

∀k ∈ Krem

(59)1 =
∑

k∈Krem

xtask
k

(60)1 =
∑

m∈M

xteam
m

(61)1 =
∑

(m,i)∈Jslots

xslot
m,i

(62)ym,i = ak,m,i+1 ∀k ∈ Kdone ∶ (m, i) = Hslot
k

(63)1 − ym,i = ak,m,i ∀k ∈ Kdone ∶ (m, i) = Hslot
k

508 A. Éles et al.

1 3

5 Case study for the Standalone MILP model

To demonstrate the usability of the proposed model and the algorithmic framework,
a case study was performed, which has two major parts. In the first part, the Stan-
dalone MILP model was tested on different problem instances. In the second part,
the algorithmic framework involving the Modified MILP model was tested. This
section presents the first part involving the Standalone MILP model.

First, a motivational problem instance is presented in detail, with its optimal solu-
tion, as a demonstration for the problem specification and the capabilities of the
model. This required a single execution of an MILP solver. Afterwards, several test
sets are presented, with multiple, slightly different problem instances to demonstrate
how some key parameters of the model affect computational complexity.

The model, all problem data and results presented here are available as “MWM
model and case studies” supplementary material, see Eles et al. (2020), as source
codes and executable format.

5.1 Motivational problem

In this example problem, a company is responsible for the infrastructure of public
lighting and traffic signals.

By the beginning of the working day, 8 mandatory maintenance tasks are
reported, named K1a, K1b, K1c1, K1c2, K1d, K2, K3a, and K3b. These tasks must be
executed between 8:00 and 16:00, and are located at three different sites on the
map, named S1, S2, and S3, the first digit in the index of tasks refer to the site.
The company has two working teams for these tasks, named Team1 and Team2,
who are stationed at depot site D in the beginning, and should get back there until
the end of the workday. Note that in a general problem, teams may be at different

(64)0 = ak,m,j ∀k ∈ Kdone, (m, j) ∈ Jslots ∶ (m, i) = Hslot
k

∧ j ≠ i ∧ j ≠ i + 1

Fig. 10 Geographic positions of sites, with corresponding tasks in parentheses, and depot with teams

509

1 3

New general mixed‑integer linear programming model for mobile…

starting depots. The positions are depicted in Fig. 10. The distance between sites
is assumed to be the Manhattan-distance, which is calculated between any points
P1

(
x1, y1

)
 and P2

(
x2, y2

)
 by the formula ||x1 − x2

|| + ||y1 − y2
||.

Teams have different properties, but both work for 60 EUR/hour, regardless of
activities they make. Team1 is lightweight, having a speed of 75 km/h and move
for 0.4 EUR/km, and doing each task in 45 min. The cost of a task, if done by
 Team1, is 100 EUR. Team2 operates with heavier machinery and therefore work
faster, although all other traits are worse. They have a speed of 50 km/h and
movement cost of 0.9 EUR/km, and doing each task in 30 min. The cost of a task,
if done by Team2, is 150 EUR. Note that the problem specification would allow
distinct execution costs and times for each team and each task, but in this exam-
ple, both teams see tasks as equally difficult. The specification would also allow
limits for total time in duty, total travelled time and distance, but these were omit-
ted in the example.

The next part of the problem formulation is packing and unpacking. These rep-
resent the teams setting the scene ready for working and cleaning up afterwards,
regardless of the number of tasks executed. Both packing and unpacking can have
a unique cost and time requirement for each team separately. In the motivational
example, both packing and unpacking costs 10 EUR and takes 10 min.

Absolute and expected time windows can be set for each task, but in the motiva-
tional example, only task Kb1 has an absolute time window of 10:00 to 13:00, and
an expected time window of 11:30 to 12:30. The reason behind a time window can
be an external co-operator or a client only available in this interval. Task execution
must fit inside the absolute time window, but it may start earlier, or end later than
the beginning and ending of the expected time window. Violating the expected time
window in either direction incurs a very high proportional cost of 600 EUR/hour.

Resource utilization is also present in the example problem. For demonstration
purposes, there is one consumable and one tool resource. Both teams may carry
5 pieces of the consumable and 1 piece of the tool resource with themselves,
the costs of usage are 15 EUR and 100 EUR per piece, respectively. Each task
requires 1 piece of consumable and 1 piece of tool present. Note that this basi-
cally means that tool requirements are trivially satisfied if a team carries a single
piece, nevertheless, its cost must be paid. In general, there could be upper limits
on resource availability and unique requirements for each task and each team.

Fig. 11 Pairwise task relations in the motivational example

510 A. Éles et al.

1 3

The last part of the problem formulation is the relations between tasks. These can
be described by ordered pairs of tasks as listed below, also depicted in Fig. 11.

• Tasks K1a, K1b, K1c1, K1c2, K1d describe a single complex procedure which is
divided into simple tasks. These must be carried out in the following order: first
 K1a, then K1b, then K1c1 and K1c2 in parallel by two teams, and finally K1d. Leav-
ing the site before completing the procedure would be hazardous – therefore,
either a team shall be present to guard the site while a next team arrives, or the
site must be secured by a closing activity, and then an opening activity must be
performed by the next team. Therefore, the following five protected precedence
relations are included in the problem formulation: (K1a, K1b), (K1b, K1c1), (K1b,
 K1c2), (K1c1, K1d), (K1c2, K1d). There is also a parallel execution relation, for
 (K1c1, K1c2).

• If, at any point, a protected precedence relation is chosen to be satisfied by secur-
ing the site, a cost of 30 EUR is incurred and the closing and opening activities
take 15 min each.

• Tasks K3a and K3b represent two pieces of the same procedure, they must be
done in the given order, and by the same team, as information from completing
 K3a is required for K3b and communication between teams is problematic. There-
fore, a same-team precedence relation is included for (K3a, K3b).

• Tasks K1a involves operating a sensitive part of the electric system which would
interfere with K2 and K3a. Therefore, two mutual exclusion relations are also
included: (K1a, K2), (K1a, K3a). These relations prevent execution times from
overlapping. Note that K2 and K3a are not related and may overlap.

5.2 Solution of the motivational problem

The data file describing the motivational problem was implemented in GNU Math-
Prog, and was solved to optimality with the GLPSOL solver.

In the optimal solution, all the required relation constraints are met: K3a and K3b
are executed by the same team (Team1), K1c1 and K1c2 are executed in parallel, K1a
is solved in an interval disjoint to both K3a and K2, and the site S1 is never left unse-
cured between executing tasks there. In fact, teams always choose to wait in case of
a protected precedence relation and no closing and opening activities are ever per-
formed. Also, K1b is fit in its expected time window, therefore no penalties arise. See
Table 1 for the detailed timetable of the teams.

The objective is 1944 EUR, this is the minimal cost for which all tasks can be
executed in this workday. This is achieved by Team1 visiting all three sites. Mean-
while Team2 only does some specific tasks at S1 which are the first part of the con-
secutive tasks there, before both teams start executing K1c1 and K1c2 simultane-
ously. It seems that Team1 executes as many tasks as possible. The faster but more
expensive Team2 is only used to reduce the load on Team1, and to help with the two
parallel tasks which need cooperation. Note that Team2 would do the parallel task
 K1c2 in 30 min, but their execution time is prolonged by 15 min, because Team1
requires 45 min for K1c1. Additional waiting and idle times are not needed, as every

511

1 3

New general mixed‑integer linear programming model for mobile…

constraint is already satisfied and teams’ working cost of 60 EUR/hour is incurred
even if the teams are idle.

This optimal solution was actually generated by the Standalone MILP model for-
mulation. As the example is small, the Standalone MILP was sufficient without any
algorithmic framework to provide this globally optimal solution for the motivational
problem.

5.3 Overview of standalone tests

Three series of tests were performed, each focusing on the impact of a specific com-
ponent of the MILP model on its overall performance.

Table 1 Schedules according to the optimal solution of the motivational example

Site From To Action of Team1

D 8:02 8:12 Packing
D 8:12 8:36 Move from D to S3 (30.00 km)
S3 8:36 8:46 Unpacking
S3 8:46 9:31 Execute task K3a

S3 9:31 10:16 Execute task K3b

S3 10:16 10:26 Packing
S3 10:26 10:50 Move from S3 to S1 (30.00 km)
S1 10:50 11:00 Unpacking
S1 11:00 11:45 Execute task K1c2. (Parallel with K1c1.)
S1 11:45 12:30 Execute task K1d

S1 12:30 12:40 Packing
S1 12:40 12:56 Move from S1 to S2 (20.00 km)
S2 12:56 13:06 Unpacking
S2 13:06 13:51 Execute task K2

S2 13:51 14:01 Packing
S2 14:01 14:17 Move from S2 to D (20.00 km)
D 14:17 14:27 Unpacking. (End of workday.)

Site From To Action of Team2

D 9:16 9:26 Packing
D 9:26 9:50 Move from D to S1 (20.00 km)
S1 9:50 10:00 Unpacking
S1 10:00 10:30 Execute task K1a

S1 10:30 11:00 Execute task K1b

S1 11:00 11:30 Execute task K1c1. (Parallel with K1c2.)
S1 11:30 11:45 Prolong execution by 15 min
S1 11:45 11:55 Packing
S1 11:55 12:19 Move from S1 to D (20.00 km). End of workday
D 12:19 12:29 Unpacking

512 A. Éles et al.

1 3

• The first series focuses on the effect of task site count.
• The second series focuses on pairwise relationships between tasks.
• The third series focuses on the parameter Nm which determines available job

slots.

In each of the three series, a set of mobile workforce management prob-
lem instances were constructed. The basis of these test sets is a “main problem
instance”. This main problem instance consists of 18 tasks to be solved on 4 dif-
ferent sites by 3 working teams. Each team has its own constant travelling and
task execution costs and times, and six predefined job slots (∀m ∶ Nm = 6). Tasks
were subject to absolute and expected time windows, which slightly reduce the
possible execution from the 08:00 in the morning to 16:00 in the afternoon inter-
val for all tasks. The first five tasks mutually exclude each other, the other tasks
involve all other kinds of relations mentioned. The problem contains a single con-
sumable and a tool resource. Full details of the problem can be found in the sup-
plementary material.

To obtain the test set for each series, minor modifications were made to the
main problem instance, according to the currently investigated model component,
resulting in several, slightly different problem instances.

Solutions for all instances were found by the Gurobi MILP solver, version 8.1,
on a workstation with Ubuntu 18.04.1 LTS, Intel i7-4770 3.40 GHz CPU and
16 GB RAM. The time limit was one hour per test case.

Our main interests were the time required by the solver to finish an instance,
and the optimal objective it reported (total costs, displayed in EUR). In the tables
presented, the number of constraints (rows) and variables (columns) are also
shown for each test case, as well as the number of integer (binary) variables. Note
that these data shall be interpreted with caution when concluding model com-
plexity, as many of the rows and columns could be eliminated even in the pre-
processing steps of modern MILP solvers, also, there are many strong knapsack
constraints for the binaries as well.

5.4 Task site count

In the first series, the sites of the tasks were in focus. A set of 9 problem instances
was constructed based on the following guidelines.

• All data are equivalent to the main problem instance except for the number of
task sites and their distribution among tasks.

• 3, 4, and 5 different task sites were considered. Note that the main problem
instance features 4 sites.

• For each site count, three different variations are constructed. The variations
differ only in the site distribution of tasks, but in all cases, the occurrence of
all available sites is well-balanced (the difference is at most 1).

513

1 3

New general mixed‑integer linear programming model for mobile…

One of the instances is the main problem instance itself. Note that although the
number of different task sites is not the same, these were included in the problem
data, just not always used.

Results reported by the MILP solver for these 9 test cases can be observed in
Table 2.

It can be observed that the number of sites has a very large impact on the prob-
lem complexity. Comparing the main problem instance to its two variations required
significantly more time to be solved, where the objective only changed a little or not
at all.

Two test cases with 5 sites could not be completed in time limit.
One important property of the model is that the number of sites can be a bottle-

neck, as the more sites are there, the more are the variables and constraints required
by constraints for travelling. It is reflected from the results that as the number of
sites increases, so does the time required for solving the model, while the objective
only changes a little. A problem with different sites for all tasks should contain con-
siderably fewer tasks to be able to be solved with this form of the model in a short
time. Likewise, even fewer sites might lead to faster solutions.

Note that the distribution of sites among tasks, although seem to greatly affect
solver performance, does not affect the number of rows, columns or binaries. The
equal number of rows (that means, constraints) is due to the fact that all task sites
were included in the model each time, but only a smaller subset was used in the dif-
ferent instances. The results indicate that the Standalone MILP model is only effec-
tive in those mobile workforce scenarios where the number of sites is small.

5.5 Task relations

The usage of relations between tasks can make problems harder or easier. Relations
actually constrain the search space, thus making the problem effectively smaller. On
the other hand, some additional variables, even binaries are introduced, which can
make the model more complex.

Two of the supported pairwise relations are selected to be tested thoroughly:
free precedence and mutual exclusions. The free precedence is interesting

Table 2 Impact of task sites on solver performance

Test case Rows Columns Integers Solver runtime (s) Objective

3 sites 3096 1794 337 593.33 14,482
3 sites, variation #1 3096 1794 337 1048.95 15,020
3 sites, variation #2 3096 1794 337 1015.77 15,018
4 sites, Main problem instance 3096 1794 337 285.45 13,842
4 sites, variation #1 3096 1794 337 2348.23 14,834
4 sites, variation #2 3096 1794 337 939.03 14,844
5 sites 3096 1794 337 977.29 14,338
5 sites, variation #1 3096 1794 337 out, gap = 14.44% 16,286
5 sites, variation #2 3096 1794 337 out, gap = 13.00% 16,074

514 A. Éles et al.

1 3

because it only imposes a constraint, meanwhile the mutual exclusion introduces
a binary decision variable.

The test set was constructed as follows.

• From the main problem instance, exactly 1, 2, and 3 of the existing free prec-
edence relations are excluded to obtain 3 additional instances.

• From the main problem instance, 1–10 of the already existing mutual exclusion
relations were excluded one by one to obtain 10 additional instances.

Results for the 14 test cases obtained this way are shown in Table 3.
The objective was not affected in this scenario, only the runtimes varied

between 2 and 7 min.
Excluding free precedence relations, each of which imposes a single con-

straint, might lead to more or less difficult models, but not changes in magni-
tude. An interesting outcome is a gradual decrease in solver runtime as there were
less precedence relationships, as the opposite could be expected because of the
increasing search space. This property of MILP models is very hard to foresee:
sometimes constraints that decrease the number of cases to be checked makes the
model a bit more difficult in practice. This depends on the solver as well.

With the exclusion of mutual exclusion relations, however, the time needed for
the solver to prove optimality greatly varies, as for a mutual exclusion, not only
two constraints, but an additional binary variable is also introduced. But again,
there is no difference in magnitude. It is therefore not possible to tell a rule of
thumb on how a mutual exclusion affects the complexity of a specific problem.

Table 3 Impact of pairwise task relations on solver performance

Test case Rows Columns Integers Solver runtime (s) Objective

Main problem instance 3096 1794 337 285.45 13,842
1 free precedence excluded 3095 1794 337 307.65 13,842
2 free precedences excluded 3094 1794 337 243.81 13,842
3 free precedences excluded 3093 1794 337 199.77 13,842
1 mutex excluded 3094 1793 336 119.57 13,842
2 mutexes excluded 3092 1792 335 208.87 13,842
3 mutexes excluded 3090 1791 334 125.90 13,842
4 mutexes excluded 3088 1790 333 258.38 13,842
5 mutexes excluded 3086 1789 332 236.65 13,842
6 mutexes excluded 3084 1788 331 242.69 13,842
7 mutexes excluded 3082 1787 330 392.80 13,842
8 mutexes excluded 3080 1786 329 165.05 13,842
9 mutexes excluded 3078 1785 328 256.34 13,842
10 mutexes excluded 3076 1784 327 338.31 13,842

515

1 3

New general mixed‑integer linear programming model for mobile…

5.6 Task and job slot count

One main drawback of the Standalone MILP model is the requirement of the Nm
parameters to be provided beforehand. These determine the available job slots for
each team, and has a great impact on the number of binary variables, hence we
expect a great impact on the computational performance as well. A too small Nm
may exclude valuable optimal solutions, while a too large Nm may result in a model
which is computationally too complex.

In this series, the test cases were constructed in the following way.

• The motivational problem is included in this test set to illustrate problem sizes.
Recall that the motivational problem includes two teams and 8 tasks, with
Nm = 8 for both teams.

• The main problem instance is itself included, and is the basis for further
instances. Recall that the main problem instance consists of 3 teams and 18
tasks, with Nm = 6 for all three teams.

• 1–3 tasks were excluded from the original problem, together with their relation
constraints to obtain 3 additional problem instances.

• From the instance where 3 tasks were already excluded, 1–3 additional job slots
were removed from each team one by one, resulting in 3 additional instances.
Therefore, the problem instance obtained in the end had only 15 tasks and
Nm = 5 for all three teams, which is just enough to schedule all tasks.

• Finally, based on the main problem instance again, 1–3 new job slots were added
to the teams one by one, resulting in 3 further problem instances. Therefore, the
last instance in this direction had Nm = 7 for all three teams.

Results for these 11 instances in total can be seen in Table 4.
If tasks are excluded from the model, the complexity clearly and rapidly drops.

When the resulting free job slots are also eliminated one by one, the objec-
tive increases, which means that some optimal solutions become infeasible, as

Table 4 Effects of task and job slot count on solver performance

Test case Rows Columns Integers Solver runtime (s) Objective

Motivational problem 1208 669 135 0.73 1944
Main problem instance 3096 1794 337 285.45 13,842
1 task excluded 2992 1762 319 93.77 13,507
2 tasks excluded 2889 1730 301 91.65 13,202
3 tasks excluded 2785 1698 283 35.73 12,815
3 tasks and 1 job slot excluded 2653 1627 268 21.74 12,815
3 tasks and 2 job slots excluded 2521 1556 253 24.54 12,963
3 tasks and 3 job slots excluded 2389 1485 238 13.40 13,133
1 job slot added 3243 1868 355 225.96 13,664
2 job slots added 3390 1942 373 479.66 13,664
3 job slots added 3537 2016 391 725.77 13,664

516 A. Éles et al.

1 3

expected. This phenomenon indicates that the eliminated job slot was used in the
previous optimal solution.

On the other hand, when job slots are added, the objective does not increase
after the second one, but the solver still needs more time to find the optimum. In
any case, the more job slots are there, the more complex the model is, possibly
having better solutions as well.

6 Case study for the algorithmic framework

To demonstrate the usage of the MILP model with the algorithmic framework, a
different group of test instances is presented here. These instances are randomly
generated problems with 6 task sites, 3 teams, each at different depots, and task
count is gradually increased. Again, the full test results, problem generation,
MILP model and algorithm codes are available as “MWM model and case stud-
ies”, see Eles et al. (2020), in an executable format.

It shall be noted that task data were the same through all cases with the excep-
tion of task count and job slot count variation. To run the Standalone MILP, the
number of predefined job slots, Nm must be set. In this case study, the formula
of Eq. (65) is used. This is sufficient to schedule all tasks for any task count |K|
and team count |M| , although does not allow any single team to execute too many
tasks.

Note that this series of tests lacks pairwise relations.

(65)Nm =
|K|
|M|

⋅ 1.2 + 1∀m ∈ M

Table 5 Comparison of the Standalone MILP solution and the algorithmic framework

Task count Objective
(stan-
dalone)

Runtime (s)(standalone) Objective
(algorithm)

Runtime (s)
(algorithm)

Gap between
objectives (%)

5 1604.13 0.31 1648.40 0.34 2.76
6 1812.05 0.63 1823.87 0.41 0.65
7 2192.30 1.39 2192.30 0.53 0
8 2151.56 48.07 2269.55 0.75 5.48
9 2416.80 203.79 2518.08 0.79 4.19
10 2467.14 2600.96 2607.26 1.31 5.68
11 2714.46 out, gap = 13.39% 2875.99 1.59 5.95–20.14
12 2933.69 out, gap = 15.75% 3130.61 1.88 6.71–23.52
13 2934.91 out, gap = 20.10% 3076.68 2.09 4.83–25.90
14 3170.23 out, gap = 21.79% 3385.92 2.10 6.80–30.08
15 3165.45 out, gap = 22.77% 3378.81 2.69 6.74–31.05

517

1 3

New general mixed‑integer linear programming model for mobile…

The test series was conducted in the following manner. Starting from 5, the task
count was gradually increased, and for each task count a random problem instance
was generated, and solved by the two methods.

6.1 Comparison of the two methods

The Standalone MILP model and the algorithmic framework was executed on test
cases randomly generated for 5–15 tasks. Found objective values and solver runt-
imes are shown in Table 5.

It can be seen that the Standalone MILP model solution procedure exceeds the
one-hour time limit early, at 11 tasks, due to the higher number of sites in this prob-
lem series. Meanwhile the algorithmic framework succeeds in 2.69 s for 15 tasks.
We can see that the difference between the two methods in terms of objective is no
more than 5.68% when both methods finish in an hour, and it is no more than 6.74%
when considering the other instances when the standalone MILP model timed out.
In the latter cases, we can give a rough estimate between the optimal solution of
the MILP and the solution the algorithm presented, and it obtains its maximum at

Table 6 Results of the
algorithmic framework for
20–130 tasks

Task count Integers in
the MILP

Objective (algorithm) Runtime (s)
(algorithm)

20 466 3961.96 4.87
25 706 4740.18 8.42
30 996 5434.43 13.66
35 1336 6131.49 20.59
40 1726 6682.10 31.74
45 2166 7254.24 44.82
50 2656 7960.95 68.37
55 3196 9296.89 119.25
60 3786 9244.28 186.19
65 4426 9703.81 182.64
70 5116 10,626.84 212.01
75 5856 11,522.22 429.95
80 * * 541.33
85 7486 12,741.65 802.32
90 8376 13,032.99 794.29
95 9316 13,892.74 1008.72
100 10,306 14,056.89 1265.55
105 11,346 14,776.31 1475.97
110 12,436 15,753.90 1884.86
115 13,576 15,713.98 2236.08
120 14,766 16,363.13 2354.14
125 16,006 17,057.40 3054.47
130 17,296 17,387.84 4151.19

518 A. Éles et al.

1 3

31.05% for 15 tasks. There was even a case, for 7 tasks, where the algorithm found
the optimal solution of the MILP model.

6.2 Larger instances

To test the algorithmic framework, task count was further increased by 5 each time,
from 20 to 130. Again, for each particular task count, a problem instance was gener-
ated, but this time only solved by the algorithmic framework. See Table 6 for the
problem size, solver runtime and achieved objective for each problem instance. For
130 tasks the algorithm did not finish in 1 h so larger instances were not generated.

It can be observed that the overall size of the problem increases rapidly, while the
objective and the time needed by the algorithm increases gradually. Recall that the
MILP model used by the framework has a relatively small search space, as most of
the integer variables are set a priori. This is why the algorithm is much faster than
the Standalone MILP model.

One interesting result in this series is that the algorithm failed to finish for the
test case of 80 tasks (marked by asterisks). This can happen as a consequence of
the heuristic nature: the only feasible solutions may be excluded by early decisions.
The last task could not be inserted to the schedule because of the previous ordering,
so finally only 79 tasks were scheduled. This situation is more likely when narrow
absolute time windows or relations between tasks are given. For these cases, more
sophisticated algorithms will be needed in the future which are capable, for exam-
ple, of looking ahead during the search to accommodate pairwise relations between
tasks as well.

7 Conclusions

A novel MILP model was developed for the mobile workforce management prob-
lem. The problem can be regarded as a generalization of well-known problems like
vehicle routing, scheduling and resource allocation. The problem definition is stated
in detail with the help of an illustrative example and its optimal solution. The MILP
model is unique in two different ways. First, a wide range of features is supported as
problem data that can be set, which has not yet been done before. Second, the logic
of decision variables of the MILP falls into the slot-based category which was devel-
oped for scheduling problems, but not thoroughly investigated for the case of VRP
or mobile workforce management.

The model introduces a set of job slots for each team, separated by travelling
slots representing possible movement between sites. The execution and travelling
times, and potential limits can be different for each team. Tasks can also be subject
to absolute or expected time windows. Packing and unpacking times can be taken
into account, based on whether the team does consecutive tasks at the same site or
not. Consumable and tool resources are also considered. Pairwise task relations like
mutual exclusion, precedence of tasks, parallel execution are supported. The MILP

519

1 3

New general mixed‑integer linear programming model for mobile…

model is described in detail in this work and was implemented in GNU MathProg
modelling language.

To make it able to solve larger problems, an algorithmic framework is also pre-
sented, with which heuristic solutions can be found in acceptable time. The algo-
rithm uses a greedy heuristic. At a single time, one new task is chosen and inserted
into the already existing schedule, using an extension of the original MILP model
and optimizing for its objective.

One test problem and its scaled versions were solved in a case study by a com-
mercial MILP solver, Gurobi. Most variants of this problem with 18 tasks, 4 sites
and 3 teams were solved in an hour to optimality. The impact of the number of sites,
tasks, job slots and pairwise relations were investigated for the Standalone MILP
model. Results suggest that the model works best for a low number of task sites.
Care must be taken to adjust the number of job slots to the number of tasks, as the
former severely affects performance but not always the optimal solution.

The case study also involved the algorithmic framework, with which we can get
heuristic solutions for problems with 20–125 tasks in an hour. Although optimality
is not guaranteed and sometimes not all tasks could be scheduled, the framework
was capable to report solutions for much larger problem instances than what the
MILP model could handle.

The wide range of features the model supports to be taken into account makes
it a candidate for more elaborate heuristic algorithms to be developed and imple-
mented in the future. The algorithm can be improved to better adapt to time win-
dows, resource utilization, and most importantly, pairwise relations between tasks.
Extension of the search space of the MILP model during an algorithmic step is a
promising direction. This may involve scheduling multiple new tasks at the same
time, exchanging or dropping present tasks, or other manipulations of the existing
schedule.

Nomenclature

Note that some of the sets, parameters and variables are only used in the algorithmic
framework for the MILP model. This is explicitly mentioned in the nomenclature for
those elements.

Sets

Sets are described here with typical index symbols for their elements.

k ∈ K Set of tasks
k ∈ Kdone Set of tasks already scheduled (algorithm only)
Kdone ⊆ Kk ∈ Krem Set of tasks not scheduled yet (algorithm only)
Krem = K ⧵ Kdonem ∈ M Set of teams
(m, i) ∈ Jslots Set of job slots
i ∈

[
1,Nm

]
(m, i) ∈ Tslots Set of travelling slots

520 A. Éles et al.

1 3

i ∈
[
0,Nm

]
(m, i) ∈ Spoints Set of site time points of interest (or site slots)

i ∈
[
0,Nm + 1

](
k1, k2

)
∈ Pfree Set of free precedence relationships

k1, k2 ∈ K
(
k1, k2

)
∈ Pprot Set of protected precedence relationships

k1, k2 ∈ K
(
k1, k2

)
∈ Psame Set of same-team precedence relationships

k1, k2 ∈ K
(
k1, k2

)
∈ Pprec Set of all precedence relations.

Pprec = Pfree ∪ Pprot ∪ Psame
(
k1, k2

)
∈ Pmutex Set of mutual exclusion relationships. k1, k2 ∈ K(

k1, k2
)
∈ Pparallel Set of parallel execution relationships. k1, k2 ∈ K

r ∈ Rcons Set of consumable resources
r ∈ Rtool Set of tool resources
r ∈ R Set of all resources. R = Rcons ∪ Rtool

s ∈ Sdepot Set of depot sites
s ∈ Stasksites Set of task execution sites. Stasksites ∩ Sdepot = ∅

s ∈ S Set of all sites. S = Stasksites ∪ Sdepot

Parameters

All numeric parameters are assumed to be nonnegative numbers.

C
unpack
m ∶ m ∈ M Unpacking cost of team m at arrival on a site

C
pack
m ∶ m ∈ M Packing cost of team m before departure from a site

Cexec
k,m

∶ k ∈ K,m ∈ M Cost of task k if executed by team m
Ctravel
m

∶ m ∈ M Cost factor for travelling time of team m
Cwork
m

∶ m ∈ M Cost factor for total working time of team m
Cearliness
k

∶ k ∈ K Penalty cost factor if task k if executed earlier than
T
expected,start

k

Clateness
k

∶ k ∈ K Penalty cost factor if task k if finished later than
T
expected,end

k

Cres
r

∶ r ∈ R Cost of utilization of one unit of resource r
Ds1,s2

∶ s1, s2 ∈ S Travelling distance between sites s1 and s2
Dtravel,MAX

m
∶ m ∈ M Maximum total distance team m may travel

Hslot
k

∶ k ∈ Kdone Job slot task k was scheduled at (algorithm only).
Hslot

k
∈ Jslots

Nm ∶ m ∈ M Number of predefined job slots for team m
QCAP

r
∶ r ∈ R Total available amount of resource r

Q
req

r,k,m
∶ r ∈ R, k ∈ K,m ∈ M Requirement of resource r for execution of k by team

m

QMAX
r,m

∶ r ∈ R,m ∈ M Maximal amount of resource r that team m may
carry

Sstart
m

∶ k ∈ K Starting position of team m . Sstart
m

∈ Sdepot
Send
m

∶ k ∈ K Final position of team m . Sstart
m

= Send
m

 is assumed for
simplicity

Stask
k

∶ k ∈ K Site of task k
Tclose
k

∶ k ∈ K Site closing time after task k in a protected prece-
dence relation

521

1 3

New general mixed‑integer linear programming model for mobile…

T
open

k
∶ k ∈ K Site opening time before task k in a protected prec-

edence relation
T
pack
m ∶ m ∈ M Packing time of team m , before departure from a site

T
unpack
m ∶ m ∈ M Unpacking time of team m , after arrival on a site

Texec
k,m

∶ k ∈ K Net time spent on execution of task k if done by
team m

Tearliest
k

∶ k ∈ K Start of absolute time window of task k
Tlatest
k

∶ k ∈ K End of absolute time window of task k
T
expected,start

k
∶ k ∈ K Start of expected time window of task k

T
expected,end

k
∶ k ∈ K End of expected time window of task k

Ttravel,MAX
m

∶ m ∈ M Total time that team m may spend travelling, (un)
packing and idle

Twork,MAX
m

∶ m ∈ M Total time that team m may be in duty during the
day

TDAY ,start Starting time of the workday
TDAY ,end Ending time of the workday
TWORKDAY Length of the whole workday.

TWORKDAY = TDAY ,end − TDAY ,start

Vm ∶ m ∈ M Speed of team m on the map. Vm > 0

Binary decision variables

In general, 1 means that the logical statement described by the variable is true, oth-
erwise the value is zero. Note that only ak,m,i , p

prot

k1,k2
 , pmutex

k1,k2
 from the original formula-

tion, and xtask
k

 , xteam
m

 xslot
m,i

 used in the algorithmic framework are mandatorily binary.
All other binaries mentioned here are unambiguously derived from the former six,
and hence are treated as continuous [0, 1] variables in the model implementation.

ak,m,i ∶ k ∈ K, (m, i) ∈ Jslots Task k is executed by team m in the i th job slot
(m, i)

atask
k,m

∶ k ∈ K,m ∈ M Task k is assigned to team m to be executed
b
present

m,i,s
∶ (m, i) ∈ Sslots, s ∈ S Team m is at site s at site slot (m, i)

bsch
m,i,s1,s2

∶ (m, i) ∈ Tslots, s1, s2 ∈ S Team m moves from s1 to s2 in travelling slot
(m, i) . s1 ≠ s2

b
travel,move

m,i
∶ (m, i) ∈ Tslots Team m changes site in travelling slot (m, i)

p
open

k
∶ k ∈ K Site Stask

k
 of task k must be opened before exe-

cuting task k
pclose
k

∶ k ∈ K Site Stask
k

 of task k must be closed before execut-
ing task k

p
prot

k1,k2
∶ (k1, k2) ∈ Pprot Task sites between k1 and k2 are closed and

opened
pmutex
k1,k2

∶ (k1, k2) ∈ Pmutex Task k1 is executed before task k2 to respect
mutual exclusion

xtask
k

∶ k ∈ Krem Task k is selected to be the new task (algorithm
only)

522 A. Éles et al.

1 3

xteam
m

∶ m ∈ M Team m is selected to do the new task (algo-
rithm only)

xslot
m,i

∶ (m, i) ∈ Jslots The new task goes to job slot (m, i) of team m
(algorithm only)

ym,i ∶ (m, i) ∈ Tslots The new task goes before travelling slot (m, i)
(algorithm only)

Continuous variables

By default, all variables have a lower bound of zero and no upper bound, except
those referring to points in time, which must fit in the interval

[
TDAY ,start, TDAY ,end

]
.

c
pen,early

k
∶ k ∈ K Penalty for starting task k earlier than its expected

window
c
pen,late

k
∶ k ∈ K Penalty for finishing task k later than its expected

window
ctravel Total cost of travelling
cpacking Total cost of packing and unpacking at sites
ctw Total cost of penalties related to time windows
cexec Total cost of executions of tasks
cres Total cost of resource utilization
copcl Total cost of opening/closing in protected precedence

relations
cwork Total cost of team working times
ctotal Sum of costs from all sources
q
req

r,m,i
∶ r ∈ R, (m, i) ∈ Jslots Amount of resource r used in job slot(m, i)

q
carry
r,m ∶ r ∈ R,m ∈ M Amount of resource r carried by team m from the start-

ing depot
tstart
k

∶ k ∈ K Starting time of the execution of taskk
tend
k

∶ k ∈ K Ending time of the execution of taskk
t
open

k
∶ k ∈ K Opening time at the site Sk of task k before its

execution.
tclose
k

∶ k ∈ K Closing time at site Sk of task k after its execution
tidle
m,i

∶ (m, i) ∈ Tslots Idle time in travelling slot(m, i)
t
presence,start

k
∶ k ∈ K Start of job slot in which task k is executed

t
presence,end

k
∶ k ∈ K End of job slot in which task k is executed

tslack
k

∶ k ∈ K Delay in net execution for a taskk
t
travel,start

m,i
∶ (m, i) ∈ Tslots Starting time of travelling slot(m, i)

t
travel,end

m,i
∶ (m, i) ∈ Tslots Ending time of travelling slot(m, i)

t
wait,before

k
∶ k ∈ K Waiting time spent by the team before executing taskk

t
wait,after

k
∶ k ∈ K Waiting time spent by the team after executing taskk

523

1 3

New general mixed‑integer linear programming model for mobile…

Supplementary information The online version contains supplementary material available at (https ://doi.
org/10.1007/s1108 1-021-09597 -0).

Acknowledgement Open Access funding provided by University of Pannonia. We acknowledge the
financial support of Széchenyi 2020 under the EFOP-3.6.1-16-2016-00015. This research was supported
from the Thematic Excellence Program 2019 the grant of the Hungarian Ministry for Innovation and
Technology. (Grant Number: NKFIH-843-10/2019)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Bakewell LL, Vasileiou K, Long KS, Atkinson M, Rice H, Barreto M, Barnett J, Wilson M, Lawson S,
Vines J (2018) Everything we do, everything we press: data-driven remote performance manage-
ment in a mobile workplace. In: proceedings of the 2018 CHI conference on human factors in com-
puting systems. association for computing machinery. New York, NY, USA. 371:1–14. https ://doi.
org/10.1145/31735 74.31739 45

Ben Abdelaziz F, Masri H, Alaya H (2017) A recourse goal programming approach for airport bus rout-
ing problem. Ann Oper Res 251:383–396. https ://doi.org/10.1007/s1047 9-015-1851-3

Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer
Math 4:238–252. https ://doi.org/10.1007/BF013 86316

Bierwirth C, Mattfeld DC (1999) Production scheduling and rescheduling with genetic algorithms. Evol
Comput 7:1–17. https ://doi.org/10.1162/evco.1999.7.1.1

Bradac Z, Kaczmarczyk V, Fiedler P (2015) Optimal scheduling of domestic appliances via MILP. Ener-
gies 8:217–232. https ://doi.org/10.3390/en801 0217

Çakırgil S, Yücel E, Kuyzu G (2020) An integrated solution approach for multi-objective, multi-
skill workforce scheduling and routing problems. Comput Oper Res 118:104908. https ://doi.
org/10.1016/j.cor.2020.10490 8

Camm JD, Magazine MJ, Kuppusamy S, Martin K (2017) The demand weighted vehicle routing prob-
lem. Eur J Oper Res 262:151–162. https ://doi.org/10.1016/j.ejor.2017.03.033

Castillo-Salazar JA, Landa-Silva D, Qu R (2016) Workforce scheduling and routing problems: lit-
erature survey and computational study. Ann Oper Res 239:39–67. https ://doi.org/10.1007/s1047
9-014-1687-2

Chen HK, Hsueh CF, Chang MS (2009) Production scheduling and vehicle routing with time win-
dows for perishable food products. Comput Oper Res 36:2311–2319. https ://doi.org/10.1016/j.
cor.2008.09.010

Chimatapu R, Hagras H, Starkey A, Owusu G (2018) A big-bang big-crunch type-2 fuzzy logic sys-
tem for generating interpretable models in workforce optimization. 2018 IEEE international con-
ference on fuzzy systems (FUZZ-IEEE). Rio de Janeiro, Brazil. https ://doi.org/10.1109/FUZZ-
IEEE.2018.84916 62

Chitty DM, Hernandez ML (2004) A hybrid ant colony optimisation technique for dynamic vehicle rout-
ing. In: Deb K (ed) Genetic and evolutionary computation-GECCO 2004. Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, pp 48–59

Costa L, Contardo C, Desaulniers G (2019) Exact branch-price-and-cut algorithms for vehicle routing.
Transport Sci 53:946–985. https ://doi.org/10.1287/trsc.2018.0878

https://doi.org/10.1007/s11081-021-09597-0
https://doi.org/10.1007/s11081-021-09597-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3173574.3173945
https://doi.org/10.1145/3173574.3173945
https://doi.org/10.1007/s10479-015-1851-3
https://doi.org/10.1007/BF01386316
https://doi.org/10.1162/evco.1999.7.1.1
https://doi.org/10.3390/en8010217
https://doi.org/10.1016/j.cor.2020.104908
https://doi.org/10.1016/j.cor.2020.104908
https://doi.org/10.1016/j.ejor.2017.03.033
https://doi.org/10.1007/s10479-014-1687-2
https://doi.org/10.1007/s10479-014-1687-2
https://doi.org/10.1016/j.cor.2008.09.010
https://doi.org/10.1016/j.cor.2008.09.010
https://doi.org/10.1109/FUZZ-IEEE.2018.8491662
https://doi.org/10.1109/FUZZ-IEEE.2018.8491662
https://doi.org/10.1287/trsc.2018.0878

524 A. Éles et al.

1 3

Eles A, Cabezas H, Heckl I (2018) Heuristic Algorithm Utilizing Mixed-Integer Linear Programming
to Schedule Mobile Workforce. Chem Engineer Trans 70:895–900. https ://doi.org/10.3303/CET18
70150

Eles A, Cabezas H, Heckl I (2020) Mobile workforce management model and case studies https ://dcs.
uni-panno n.hu/files /docs/users /eles/downl oads/MWM-2020-suppl ement ary.7zAcc essed 22 Decem-
ber 2020

Geismar JHN, Laporte G, Lei L, Sriskandarajah C (2008) The integrated production and transporta-
tion scheduling problem for a product with a short lifespan. INFORMS J Comput 20:21–33.
https ://doi.org/10.1287/ijoc.1060.0208

Goel A, Gruhn V, Richter T (2010) Mobile workforce scheduling problem with multitask-processes.
In: Rinderle-Ma S, Sadiq S, Leymann F (eds) Business process management workshops-BPM
2009. Lecture notes in business information processing, Springer, Berlin, Heidelberg, pp 81–91

Goel A, Meisel F (2013) Workforce routing and scheduling for electricity network maintenance with
downtime minimization. Eur J Oper Res 231:210–228. https ://doi.org/10.1016/j.ejor.2013.05.021

Gong YJ, Zhang J, Liu O, Huang RZ, Chung HSH, Shi YH (2012) Optimizing the vehicle routing
problem with time windows: a discrete particle swarm optimization approach. IEEE T Syst Man
Cy C 42:254–267. https ://doi.org/10.1109/TSMCC .2011.21487 12

Hegyhati M, Holczinger T, Szoldatics A, Friedler F (2011) Combinatorial approach to address
batch scheduling problems with limited storage time. Chem Eng Trans 25:495–499. https ://doi.
org/10.3303/CET11 25083

Kergosien Y, Gendreau M, Billaut JC (2017) A Benders decomposition-based heuristic for a produc-
tion and outbound distribution scheduling problem with strict delivery constraints. Eur J Oper
Res 262:287–298. https ://doi.org/10.1016/j.ejor.2017.03.028

Kim SB, Lee HK, Lee IB, Lee ES, Lee B (2000) Scheduling of non-sequential multipurpose batch
processes under finite intermediate storage policy. Comput Chem Eng 24:1603–1610. https ://doi.
org/10.1016/S0098 -1354(00)00548 -2

Kulkarni RV, Bhave PR (1985) Integer programming formulations of vehicle routing problems. Eur J
Oper Res 20:58–67. https ://doi.org/10.1016/0377-2217(85)90284 -X

Lainez JM, Hegyhati M, Friedler F, Puigjaner L (2010) Using S-graph to address uncertainty in batch
plants. Clean Technol Envir 12:105–115. https ://doi.org/10.1007/s1009 8-009-0240-5

Lee J, Kim BI, Johnson AL, Lee K (2014) The nuclear medicine production and delivery problem.
Eur J Oper Res 236:461–472. https ://doi.org/10.1016/j.ejor.2013.12.024

Liu L, Li K, Liu Z (2017) A capacitated vehicle routing problem with order available time in e-com-
merce industry. Eng Optimiz 49:449–465. https ://doi.org/10.1080/03052 15X.2016.11880 92

Macrina G, Laporte G, Guerriero F, Di Puglia Pugliese L (2019) An energy-efficient green-vehicle
routing problem with mixed vehicle fleet, partial battery recharging and time windows. Eur J
Oper Res 276:971–982. https ://doi.org/10.1016/j.ejor.2019.01.067

Mendez CA, Cerda J (2003) An MILP continuous-time framework for short-term scheduling of mul-
tipurpose batch processes under different operation strategies. Optim Eng 4:7–22. https ://doi.
org/10.1023/A:10218 56229 236

Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M (2006) State-of-the-art review of optimi-
zation methods for short-term scheduling of batch processes. Comput Chem Eng 30(913):946.
https ://doi.org/10.1016/j.compc hemen g.2006.02.008

Osman I, Potts C (1989) Simulated annealing for permutation flow-shop scheduling. Omega 17:551–
557. https ://doi.org/10.1016/0305-0483(89)90059 -5

Paz JC, Granada-Echeverri M, Escobar JW (2018) The multi-depot electric vehicle location routing
problem with time windows. Int J Ind Eng Comput 9:123–136. https ://doi.org/10.5267/j.ijiec
.2017.4.001

Pelletier S, Jabali O, Laporte G (2019) The electric vehicle routing problem with energy consumption
uncertainty. Trans Res B-Meth 126:225–255. https ://doi.org/10.1016/j.trb.2019.06.006

Pereira DL, Alves JC, Moreira MCO (2020) A multiperiod workforce scheduling and routing problem
with dependent tasks. Comput Oper Res 118:104930. https ://doi.org/10.1016/j.cor.2020.10493 0

Pinto JM, Grossmann IE (1995) A continuous time mixed integer linear programming model for
short term scheduling of multistage batch plants. Ind Eng Chem Res 34:3037–3051. https ://doi.
org/10.1021/ie000 48a01 5

Raaymakers WHM, Hoogeveen JA (2000) Scheduling multipurpose batch process industries with no-
wait restrictions by simulated annealing. Eur J Oper Res 126:131–151. https ://doi.org/10.1016/
S0377 -2217(99)00285 -4

https://doi.org/10.3303/CET1870150
https://doi.org/10.3303/CET1870150
https://dcs.uni-pannon.hu/files/docs/users/eles/downloads/MWM-2020-supplementary.7zAccessed
https://dcs.uni-pannon.hu/files/docs/users/eles/downloads/MWM-2020-supplementary.7zAccessed
https://doi.org/10.1287/ijoc.1060.0208
https://doi.org/10.1016/j.ejor.2013.05.021
https://doi.org/10.1109/TSMCC.2011.2148712
https://doi.org/10.3303/CET1125083
https://doi.org/10.3303/CET1125083
https://doi.org/10.1016/j.ejor.2017.03.028
https://doi.org/10.1016/S0098-1354(00)00548-2
https://doi.org/10.1016/S0098-1354(00)00548-2
https://doi.org/10.1016/0377-2217(85)90284-X
https://doi.org/10.1007/s10098-009-0240-5
https://doi.org/10.1016/j.ejor.2013.12.024
https://doi.org/10.1080/0305215X.2016.1188092
https://doi.org/10.1016/j.ejor.2019.01.067
https://doi.org/10.1023/A:1021856229236
https://doi.org/10.1023/A:1021856229236
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1016/0305-0483(89)90059-5
https://doi.org/10.5267/j.ijiec.2017.4.001
https://doi.org/10.5267/j.ijiec.2017.4.001
https://doi.org/10.1016/j.trb.2019.06.006
https://doi.org/10.1016/j.cor.2020.104930
https://doi.org/10.1021/ie00048a015
https://doi.org/10.1021/ie00048a015
https://doi.org/10.1016/S0377-2217(99)00285-4
https://doi.org/10.1016/S0377-2217(99)00285-4

525

1 3

New general mixed‑integer linear programming model for mobile…

Romero J, Puigjaner L, Holczinger T, Friedler F (2004) Scheduling intermediate storage multipurpose
batch plants using the S-graph. AIChE J 50:403–417. https ://doi.org/10.1002/aic.10036

Sahinidis NV, Grossmann IE (1991) Reformulation of multiperiod MILP models for planning and
scheduling of chemical processes. Comput Chem Eng 15:255–272. https ://doi.org/10.1016/0098-
1354(91)85012 -J

Starkey A, Hagras H, Shakya S, Owusu G (2016) A multi-objective genetic type-2 fuzzy logic based
system for mobile field workforce area optimization. Inform Sciences 329:390–411. https ://doi.
org/10.1016/j.ins.2015.09.014

Starkey A, Hargas H, Shakya S, Owusu G (2018) A genetic algorithm based system for simultaneous
optimisation of workforce skills and teams. Künstl Intell 32:245–260. https ://doi.org/10.1007/s1321
8-018-0527-y

Sung J, Jeong B (2014) An adaptive evolutionary algorithm for traveling salesman. Sci World J 2014:1–
11. https ://doi.org/10.1155/2014/31376 7

Vidal T, Laporte G, Matl P (2020) A concise guide to existing and emerging vehicle routing problem
variants. Eur J Oper Res 286:401–416. https ://doi.org/10.1016/j.ejor.2019.10.010

Wang X, Poikonen S, Golden B (2017) The vehicle routing problem with drones: several worst-case
results. Optim Lett 11:679–697. https ://doi.org/10.1007/s1159 0-016-1035-3

Wang Z, Sheu JB (2019) Vehicle routing problem with drones. Trans Res B-Meth 122:350–364. https ://
doi.org/10.1016/j.trb.2019.03.005

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1002/aic.10036
https://doi.org/10.1016/0098-1354(91)85012-J
https://doi.org/10.1016/0098-1354(91)85012-J
https://doi.org/10.1016/j.ins.2015.09.014
https://doi.org/10.1016/j.ins.2015.09.014
https://doi.org/10.1007/s13218-018-0527-y
https://doi.org/10.1007/s13218-018-0527-y
https://doi.org/10.1155/2014/313767
https://doi.org/10.1016/j.ejor.2019.10.010
https://doi.org/10.1007/s11590-016-1035-3
https://doi.org/10.1016/j.trb.2019.03.005
https://doi.org/10.1016/j.trb.2019.03.005

	New general mixed-integer linear programming model for mobile workforce management
	Abstract
	1 Introduction
	1.1 Scheduling problems
	1.2 Vehicle routing problems
	1.3 Mobile workforce management

	2 Problem specification
	2.1 Objective and scope of optimization
	2.2 Task scheduling
	2.3 Packing and unpacking
	2.4 Time windows
	2.5 Resource management
	2.6 Pairwise task relations

	3 MILP model formulation
	3.1 Key decision variables
	3.2 Allocation constraints
	3.2.1 Assignment of tasks
	3.2.2 Positions of teams

	3.3 Travelling and continuity constraints
	3.3.1 Movement between sites
	3.3.2 Slot continuity
	3.3.3 Team limitations

	3.4 Task execution constraints
	3.4.1 Job slot sequencing
	3.4.2 Task time windows

	3.5 Resource management constraints
	3.6 Pairwise relations’ constraints
	3.6.1 Precedence
	3.6.2 Protected precedence
	3.6.3 Mutual exclusion
	3.6.4 Parallel execution

	3.7 Objective function

	4 Algorithmic framework
	4.1 Algorithm description
	4.2 Modified MILP model

	5 Case study for the Standalone MILP model
	5.1 Motivational problem
	5.2 Solution of the motivational problem
	5.3 Overview of standalone tests
	5.4 Task site count
	5.5 Task relations
	5.6 Task and job slot count

	6 Case study for the algorithmic framework
	6.1 Comparison of the two methods
	6.2 Larger instances

	7 Conclusions
	Acknowledgement
	References

