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Abstract A vision-based weed control robot for agricultural field application requires

robust vegetation segmentation. The output of vegetation segmentation is the fundamental

element in the subsequent process of weed and crop discrimination as well as weed control.

There are two challenging issues for robust vegetation segmentation under agricultural

field conditions: (1) to overcome strongly varying natural illumination; (2) to avoid the

influence of shadows under direct sunlight conditions. A way to resolve the issue of

varying natural illumination is to use high dynamic range (HDR) camera technology. HDR

cameras, however, do not resolve the shadow issue. In many cases, shadows tend to be

classified during the segmentation as part of the foreground, i.e., vegetation regions. This

study proposes an algorithm for ground shadow detection and removal, which is based on

color space conversion and a multilevel threshold, and assesses the advantage of using this

algorithm in vegetation segmentation under natural illumination conditions in an agri-

cultural field. Applying shadow removal improved the performance of vegetation seg-

mentation with an average improvement of 20, 4.4, and 13.5% in precision, specificity and

modified accuracy, respectively. The average processing time for vegetation segmentation

with shadow removal was 0.46 s, which is acceptable for real-time application (\1 s

required). The proposed ground shadow detection and removal method enhances the

performance of vegetation segmentation under natural illumination conditions in the field

and is feasible for real-time field applications.
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Introduction

This work was part of the EU-funded project SmartBot, a project with the research goal to

develop a small-sized vision-based robot for control of volunteer potato (weed) in a sugar

beet field. Such a vision-based weed control robot for agricultural field application requires

robust vegetation segmentation, i.e. a vegetation segmentation that has good performance

under a wide range of circumstances. The output of vegetation segmentation is the fun-

damental element in the subsequent process of weed and crop discrimination as well as

weed control (Meyer and Camargo Neto 2008; Steward et al. 2004). There are two

challenging issues for robust vegetation segmentation in agricultural field conditions: (1) to

overcome the strongly varying natural illumination (Jeon et al. 2011; Wang et al. 2012); (2)

to avoid the influence of shadows under direct sunlight conditions (Guo et al. 2013; Zheng

et al. 2009).

Illumination conditions constantly change in an agricultural field environment

depending on the sky and weather conditions. These illumination variations greatly affect

Red–Green–Blue pixel values of acquired field images and lead to the inconsistent color

representation of plants (Sojodishijani et al. 2010; Teixidó et al. 2012). In addition,

shadows often create extreme illumination contrast, causing substantial luminance dif-

ferences within a single image scene. These extreme intensity differences make vegetation

segmentation a very challenging task.

Researchers addressed the above two problems by using a hood covering both the scene

and the vision acquisition device. By doing so, any ambient visible light was blocked

(Ahmed et al. 2012; Åstrand and Baerveldt 2002; Haug et al. 2014; Lee et al. 1999).

Constant illumination under the cover was then obtained using artificial lighting

(Nieuwenhuizen et al. 2010; Polder et al. 2014).

Such a solution was not feasible within the framework of the Smartbot project because a

small-sized mobile robotic platform was to be used. An extra structure for the cover was

not viable due to the reduced carrying capacity of the platform. Moreover, using additional

energy for artificial lighting would be another critical issue, considering the mobile plat-

form was battery operated. Therefore, a solution was needed that uses the ambient light

while overcoming the drawbacks mentioned earlier.

A way to resolve the issue of varying natural illumination and substantial intensity

differences within a single image scene is to use high dynamic range (HDR) camera

technology as has been indicated by a number of studies (Graham 2011; Hrabar et al. 2009;

Irie et al. 2012; Mann et al. 2012; Slaughter et al. 2008). Under direct sunlight conditions,

the dynamic range of the scene is much larger than a traditional non-HDR camera covers,

especially if an image scene contains shadows (Dworak et al. 2013). Having a larger

dynamic range, an HDR camera enables the capture of stable and reliable images even

under strong and direct solar radiation or under faint starlight (Reinhard et al. 2010).

HDR cameras, however, do not resolve the shadow issue. When the scene in the field is

not covered by a hood or similar structure, shadows are inevitable. In many cases in

vegetation segmentation, shadows tend to be classified as part of the foreground, i.e., as

vegetation regions (Fig. 1). Therefore, shadows need to be detected and preferably

removed for better segmentation performance. However, shadow detection is extremely

challenging especially in an agricultural field environment because shadows change dra-

matically throughout the day depending on position and intensity of the sun. Besides,

shadows have no regular shape, size, or texture, and can even be distorted on an uneven

ground surface. In recent years, many shadow detection and removal algorithms have been
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proposed in the computer vision research area using a feature-based or a brightness based

compensation (Sanin et al. 2012). However, these shadow detection and removal algo-

rithms are difficult to implement and require a significant amount of computation time,

which is an important issue for real-time field applications. Moreover, these algorithms

provide poor shadow removal for outdoor scenes (Al-Najdawi et al. 2012). Therefore, a

simple and effective shadow detection and removal algorithm is needed for real-time weed

detection and control application in an agricultural field environment.

This paper proposes an algorithm for ground shadow detection and removal, and

assesses the effectiveness of using this algorithm in vegetation segmentation under natural

illumination conditions in an agricultural field. The proper quantitative measure to evaluate

the performance of vegetation segmentation are discussed.

Materials and methods

High dynamic range (HDR) camera

A common definition of the dynamic range of an image is the ratio of the maximum and

minimum illuminance in a given scene. More precisely, Bloch (2007) defines dynamic

range as the logarithmic ratio between the largest and the smallest readable signal (an

image is treated as a signal from the camera hardware):

Dynamic Range ðdB) ¼ 20� log10
Max Signal

Min Signal
ð1Þ

The illumination difference in a real-life image scene can easily exceed a dynamic range

of 80 dB. In outdoor field conditions, the dynamic range can exceed 120 dB (Radonjić

et al. 2011). Human eyes have a dynamic range of around 200 dB, while a conventional

imaging device such as a non-HDR CCD digital camera typically has a dynamic range of

around 60 dB (Bandoh et al. 2010; Ohta 2007). Under direct sunlight conditions, the

dynamic range of the scene can be much higher than a traditional non-HDR camera can

cover, especially when the image scene contains sharp dark shadows. Thus, a conventional

imaging device is not feasible for machine vision applications in a natural agricultural

environment, because strong direct solar radiation and shadows frequently cause extreme

lighting intensity changes. Piron et al. (2010) used an exposure fusion method to generate a

high dynamic range scene in plant images and reported that high dynamic range acquisition

supported obtaining a quality image of the scene with a strong signal to noise ratio. In the

past few years, HDR cameras have become commercially available at an affordable price.

In this study, a HDR camera (NSC1005c, New Imaging Technologies, Paris, France)

having a dynamic range of 140 dB and a bit depth of 36 bits per pixel was used (Fig. 2).

Fig. 1 Example of shadow images (top), and vegetation segmentation output with excess green (ExG)
segmentation (bottom). Shadows are partially segmented as vegetation
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This camera has two identical CMOS sensors providing the stereo images (left and right),

but only the left sensor image was used in this study.

Example images of a similar scene made with the HDR and traditional non-HDR CCD

camera are shown in Fig. 3. The HDR camera captures the objects even in the dark shadow

region (Fig. 3a) where as a traditional non-HDR CCD camera (Sony NEX-5R) captures no

objects but produces black pixels (Fig. 3c). The histogram of the HDR image is well

balanced across the darkest and lightest margins (Fig. 3b) while the histogram of a tra-

ditional non-HDR CCD camera image is imbalanced with peaks both on the left and right

edges due to clipping (Fig. 3d).

An example field image that was acquired with an HDR camera under very bright sunny

conditions is shown in Fig. 4. Some pixels in the green leaves were bright due to specular

reflection; while some pixels in the shadow region were very dark. The extreme lighting

intensity difference with a high dynamic range is often found in a field image scene. In

such a condition in the field, a conventional non-HDR imaging device would not be able to

adequately capture the objects in both the bright regions as well as in the dark shadow

regions but an HDR camera does adequately capture these objects under these lighting

conditions.

Algorithm—ground shadow detection and removal

As was shown in Fig. 1, shadows in agricultural field images are often classified as part of

vegetation when applying a commonly used vegetation segmentation method based on the

excessive green index (2 g–r–b), ExG (Woebbecke et al. 1995). To further process the

shadows, a ground shadow detection algorithm was developed using color space conver-

sion. Color pixel values in RGB space can be highly influenced by the illumination

conditions because illumination and color parts are not separated in this color represen-

tation (Florczyk 2005). Using a different color space (or conversion of the RGB image to

another color space) that uses a color representation separating color and illumination,

pixel values are less influenced by the illumination conditions with the shadow detection

1m

0.45m

Field of view
: 1.3x0.7 m

Fig. 2 Field images were acquired with an HDR camera (left) which was mounted at a height of 1 m
viewing perpendicular to the ground surface, resulting in a field of view: 1.3 9 0.7 m (right)
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procedure. Many studies have shown that a color space conversion approach is simple to

implement and computationally inexpensive; thus, is very useful for real-time field

applications (Sanin et al. 2012).

Fig. 3 An example outdoor image scene on a sunny day: (a) HDR camera image with (b) image histogram
(c) traditional non-HDR CCD camera (Sony NEX-5R, ISO 100, 1/80, f/11, dynamic range optimizer
activated) image with (d) image histogram. The red ellipses indicate that (b) the histogram of the HDR
image is well balanced across the darkest and lightest margins, but (d) the histogram of a traditional non-
HDR CCD camera image is imbalanced with peaks both on the left and right edges due to clipping

Fig. 4 HDR camera image in a sugar beet field (left) and its image histogram (right). The red circles
indicate that some pixels in the green leaves are bright due to specular reflection; while some pixels in the
shadow region are very dark
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In this study, the XYZ color space was chosen because the normalized form of this color

space separates luminance from color (or rather from chromaticity). Also this color space is

based on how a human would perceive light (Pascale 2003). The XYZ system provides a

standard way to describe colors and contains all real colors (Corke 2011). Besides, this

particular color space has been shown to be robust under illumination variations (Lati et al.

2013).

The procedure used for ground shadow detection and removal is shown in Fig. 5. Two

main processes are shown: (1) ExG with Otsu (1979) threshold (Fig. 5 steps a–c), and (2)

ground shadow detection and removal (Fig. 5 steps d–h).

The left column in Fig. 5, steps (a)–(c), shows the conventional vegetation segmentation

procedure. ExG, one of the most commonly used methods, was used in this study to

compare the performance of vegetation segmentation before and after shadow removal

because ExG showed good performance in most cases in our preliminary studies. The Otsu

threshold was used because the Otsu method showed good performance in a preliminary

study.

Fig. 5 Flow diagram of ground shadow detection and removal algorithm
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The right column in Fig. 5, step (d)–(h), shows the ground shadow detection and

removal procedure. The three individual steps (d)–(f) are referred to as a ground shadow

detection, and pixel-by-pixel subtraction in step (g) is referred to as ground shadow

removal. The detected ground shadow region was subtracted from ExG with Otsu

threshold (ExG ? Otsu) which resulted from step (c). Then, the shadow-removed image

(Fig. 5h) was compared with ExG ? Otsu (Fig. 5c) to evaluate the performance

improvement when using vegetation segmentation after shadow detection and removal.

The details of the algorithms are described below

Step a: excess green (ExG)

The excess green index (ExG = 2 g - r-b) was applied to the RGB image (Woebbecke

et al. 1995). The normalized r, g and b components, in the range [0,1], were obtained with

(Gée et al. 2008):

r ¼ Rn

Rn þ Gn þ Bn

; g ¼ Gn

Rn þ Gn þ Bn

; b ¼ Bn

Rn þ Gn þ Bn

ð2Þ

where Rn, Gn and Bn are the normalized RGB co-ordinates ranging from 0 to 1. They were

obtained as follows:

Rn ¼
R

Rmax

; Gn ¼
G

Rmax

; Bn ¼
B

Bmax

ð3Þ

where Rmax = Gmax = Bmax = 255.

Step b: Otsu threshold

The Otsu threshold method was applied to obtain an optimum threshold value. The pixels

of the image were divided into two classes: C0 for [0,…,t] and C1 for [t ? 1,…,L], where

t was the threshold value (0 B t\L) and L was the number of distinct intensity levels. An

optimum threshold value t* was chosen by maximizing the between-class variances, r2B
(Otsu 1979):

t� ¼ arg max
0� t\L

fr2BðtÞg ð4Þ

Step c: ExG ? Otsu

Using the optimum threshold value t*(Eq. 4), vegetation pixels were classified:

Background region; if ExGði; jÞ\t�

Vegetation region; if ExGði; jÞ� t�

�
ð5Þ

where ExG(i,j) was the ExG value of the pixel (i,j).

Step d: color space conversion

The first step involved color space conversion. The RGB values were converted to the 1931

International Commission on Illumination (CIE) XYZ space using the following matrix

(Lati et al. 2013):
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X

Y

Z

2
4

3
5 ¼

0:4124 0:3576 0:1805
0:2126 0:7152 0:0722
0:0193 0:1192 0:9505

2
4

3
5 R

G

B

2
4

3
5 ð6Þ

where R, G and B were pixel values in RGB color space in the range [0, 255]. X,Y and Z

were pixel values in XYZ color space. Finally, XYZ values were then normalized using the

following equation:

x ¼ X

X þ Y þ Z
; y ¼ Y

X þ Y þ Z
; z ¼ z

X þ Y þ Z
ð7Þ

Step e: contrast enhancement of the ground shadow region

The contrast of the ground shadow region was enhanced from the rest of the image. This

contrast enhancement was achieved by dividing the product of the chromaticity values x

and y by z:

Contrasted Ground Shadow ðCGS i; jð ÞÞ ¼ xði; jÞ � yði; jÞ
zði; jÞ ð8Þ

where CGS(i,j) was the contrasted pixel (i,j) of the ground shadow, and x(i,j), y(i,j),

z(i,j) were normalized values of the pixel (i,j) in the XYZ color space.

Step f: Otsu multi-level threshold

The Otsu multi-level threshold method was applied to the image based on the observation

that the shadow image contained three components–ground shadow, plant material and soil

background. The previous steps (d) and (e) made the ground shadow region more distinct

from other components. Thus, the Otsu multi-level threshold enabled to separate the

ground shadow region, which had the lowest intensity level, from plant material and soil

background. The lowest intensity level was selected as the ground shadow region, but plant

material and soil background regions were not separated because they were not clearly

distinct from each other.

All pixels of the image obtained in the previous step (e) were divided into the following

three classes: C0 for [0,…,t1], C1, for [t1 ? 1,…,t2], and C2 for [t2 ? 1,…,L], where t1 and

t2 were threshold values (0 B t1\ t2\L), and L was the total number of distinct intensity

levels. An optimal set of threshold values t�1 and t
�
2 was chosen by maximizing the between-

class variances, r2B (Otsu 1979):

t�1; t
�
2

� �
¼ arg max

0� t1\t2\L
r2Bðt1; t2Þ

� �
ð9Þ

For the ground shadow detection, the optimal threshold value t�1 was used. The threshold
value t�2 was ignored since it did not have any added value in this ground shadow detection

process. Consequently, the ground shadow pixels were classified in two classes as follows:

Ground shadow ðGSÞ if CGSði; jÞ\t�1
NonGround shadow ðNGSÞ if CGSði; jÞ� t�1

�
ð10Þ
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Step g: Ground shadow removal by subtraction

Once the ground shadow region was identified, the shadow-removed image was generated

by a pixel-by-pixel subtraction from the ExG ? Otsu. The shadow-removed pixel values

were simply the values of ExG minus the corresponding pixel values from the ground

shadow region image (Eq. 11).

F i; jð Þ ¼ ExG i; jð Þ � GS i; jð Þ ð11Þ

where F(i,j) was the shadow-removed pixel (i,j), and GS(i,j) was the detected ground

shadow pixel (i,j).

Field image collection

For crop image acquisition, the HDR camera was mounted at a height of 1 m viewing

perpendicular to the ground surface on a custom-made frame carried by a mobile platform

(Husky A200, Clear path, Canada), as was shown in Fig. 2. The camera was equipped with

two identical Kowa 5 mm lenses (LM5JC10 M, Kowa, Japan) with a fixed aperture. The

camera was set to operate in automatic acquisition mode with automatic point and shoot,

having an image resolution of 1280 9 580 pixels per image of left and right sensors. The

ground-covered area was 1.3 9 0.7 m, corresponding to three sugar beet crop rows. The

acquisition program was implemented in LabVIEW (National Instruments, Austin, USA)

to acquire five images per second. Field images were taken while the mobile platform was

manually controlled with a joystick and driven along crop rows using a controlled traveling

speed of 0.5 m/s.

Sugar beet was seeded three times (Spring, Summer, and Fall) in 2013 and 2014 in two

different soil types (sandy and clay soil) on the Unifarm experimental sites in Wageningen,

The Netherlands. Crop images were acquired under various illumination and weather

conditions on several days in June, August and October of 2013 as well as in May, July and

September of 2014.

Image dataset

The following image datasets were chosen for this study: (1) Set 1: only containing images

with shadow to purely test and evaluate the performance of the shadow detection algorithm

against human generated ground truth, and (2) Set 2: containing a mix of images with and

without shadows to assess the effectiveness of shadow removal on segmentation.

Set 1 consisted of 30 field images that all contained shadows ranging from shallow to

dark with various shadow shapes (Fig. 6). The images in this set were acquired on several

days under various weather conditions at different growth stages of the crop. Ground truth

images for shadow regions was manually generated using Photoshop CC (Adobe Systems

Inc., San Jose, USA).

For Set 2, a total of 110 field images was selected from all acquired field images. During

the selection of this set, a wide range of natural conditions was considered, including

different stages of plant growth, various illumination conditions from a cloudy dark to

sunny bright day conditions and extreme illumination scenes caused by strong direct solar

radiation and shadows. Half of the images in this set contained shadows (from shallow to

dark shadows) while the other half contained no shadows. Vegetation regions were
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manually labeled for ground truth using Photoshop CC. All images were processed with

the Image Processing Toolbox in Matlab (The MathWorks Inc., Natick, USA).

Quantitative performance measures of vegetation segmentation

The segmentation results were compared and evaluated at pixel level with human-labeled

ground truth images. In this study, a set of quantitative measures based on the confusion

matrix (Table 1) was used to assess the performance of the vegetation segmentation.

Positive prediction value (precision), true-positive rate (recall or sensitivity), true-negative

rate (specificity) and modified accuracy (MA) were used. Each of these has a different goal

to measure, thus assessing above measures altogether helps to evaluate the performance of

vegetation segmentation in a balanced way. The details of the measures are described

below (Benezeth et al. 2008; Metz 1978; Prati et al. 2003):

Precision ðPositive predict valueÞ ¼ TP

TPþ FP
ð12Þ

Recall ðTrue positive rate or sensitivityÞ ¼ TP

TPþ FN
ð13Þ

Specificity ðTrue negative rateÞ ¼ TN

TN þ FP
ð14Þ

where TP is true-positive; FP is false-positive; TN is true-negative; FN is false-negative.

Precision indicates how many of the positively segmented pixels are relevant. Pre-

cision refers to the ability to minimize the number of false-positives. Recall indicates

how well a segmentation performs in detecting the vegetation and thus relates to the

ability to correctly detect vegetation pixels that belong to the vegetation region (true-

positive). Specificity, on the other hand, specifies how well the segmentation algorithm

performs in avoiding false-positive error, which also indicates the ability to correctly

Fig. 6 Example images in Set 1 (top) and its human-labeled ground truth of ground shadow regions
(bottom)

Table 1 Confusion matrix

TP true-positive, TN true-
negative, FP false-positive, and
FN false-negative

Algorithm

Vegetation Background

Ground truth

Vegetation TP FN

Background FP TN
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detect non-vegetation pixels that belong to non-vegetation regions (true-negative). A

single measure above does not fully reflect the performance of vegetation segmentation

because each one can have a biased value under certain conditions. For example, if a

segmentation produces vegetation pixels only when there are strong green components,

precision will have a higher value (close to 1) in a poorly segmented image. Moreover, if

a segmentation always identifies all the pixels as vegetation, recall will attain large

values.

Accuracy is commonly used as a single representative performance indicator in the

literature. However, this measure has a drawback if there is a significant imbalance

between vegetation and background (Bac et al. 2013; Rosin and Ioannidis 2003). An

alternative way to measure the performance would be balanced accuracy, i.e. the average

of sensitivity and specificity. However, this measure can also provide a biased value if

segmentation output has a large number of false-positives in case an image contains only

a small amount of vegetation. Therefore, the amount of vegetation (foreground area)

needs to be considered to reflect better the performance of vegetation segmentation.

Sezgin and Sankur (2004) used the relative foreground area error (RAE) and combined

this indicator with accuracy (misclassification error). Many studies have used this

combined approach since then (Guan and Yan 2013; Nacereddine et al. 2005; Navarro

et al. 2010; Shaikh et al. 2011). Inspired by these studies, the modified accuracy (MA)

was defined in this study. This performance indicator uses a harmonic mean of relative

vegetation area error (RVAE) and balanced accuracy (BA). Both measures have values

between 0 and 1, where 0 represents very poor segmentation, and 1 represents perfect

segmentation. The harmonic mean indicates if there is a large imbalance between these

two measures, thus providing a better indication of the performance. The equations are

described below:

Balanced accuracy (BA) ¼ Recallþ Specificity

2
ð15Þ

Relative vegetation area error ðRVAEÞ ¼
1� AGT � ASEG

AGT

if ASEG\AGT

1� ASEG � AGT

ASEG

if AGT �ASEG

8><
>: ð16Þ

Modified accuracy ðMAÞ ¼ 2 � BA � RVAE
BAþ RVAE

ð17Þ

where AGT is the vegetation area in ground truth (TP ? FN); ASEG is the vegetation area in

segmented image (TP ? FP).

In addition, receiver operating characteristic (ROC) and precision-recall curves were

used. These curves have been used in several studies on image processing (Bai et al. 2014;

Bulanon et al. 2009) helping to visually assess the segmentation performance. One per-

formance indicator that is often used in these curves is the Area Under Curve (AUC), a

measure represented with a single scalar value ranging from 0 to 1. AUC indicates how

reliably the segmentation can be performed. An AUC value of 1 indicates a perfect

segmentation (Mery and Pedreschi 2005).

Finally, processing time was measured to indicate how fast the algorithm performed.

The processing time was measured on a PC equipped with an Intel(R) Core(TM) i7-377T

2.5 GHz processor and 8 GB RAM running 64bit Windows 7.
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Results

Ground shadow detection

The performance measures of the ground shadow detection with Set 1 is shown in Table 2.

Ground shadow detection performance was generally successful (modified accuracy C0.9)

under natural lighting conditions. An average processing time of 0.33 s is satisfactory for

real-time application as well. Example images in Set 1 and their ground shadow detection

output are shown in Fig. 7. From the original field images (Fig. 7a), enhanced contrast of

the ground shadow region is shown in the second column (Fig. 7b). The third column

shows the detected ground shadow region (Fig. 7c), and its ground truth images are dis-

played in the fourth column (Fig. 7d). The last column (Fig. 7e) displays the difference

image between detected shadow and ground truth.

Ground shadow removal and vegetation segmentation performance

The images with shadow removal (ExG ? Otsu ? shadow removal, Fig. 5h) were com-

pared with those without shadow removal (ExG ? Otsu, Fig. 5c) to assess the performance

improvement in vegetation segmentation when using ground shadow removal. The

quantitative performance comparison is shown in Fig. 8. When it comes to precision,

sensitivity and modified accuracy, the figure indicates that the vegetation segmentation

with shadow removal has a higher performance than the segmentation without shadow

removal. The average values of precision, specificity and modified accuracy for vegetation

segmentation with shadow removal were 0.67, 0.96 and 0.71, respectively, indicating 20,

4.4 and 13.5% improvement over indicator values achieved without shadow removal. A T-

test revealed that these improvements are significantly different (P\ 0.001). Only recall

indicated that there were some losses of true-positive pixels (vegetation pixels) due to the

shadow subtraction process. This minor loss was mainly observed when the shadow

removal was applied to images without shadows (see the last column in Fig. 9). The

combined measure, modified accuracy, indicated considerable improvement (13.5%) in

vegetation segmentation. The average processing time for vegetation segmentation without

shadow removal was 0.12 s, and was 0.46 s for segmentation with shadow removal. This is

acceptable for a real-time application (\ 1s).

Figure 9 shows the results of the segmentation process with ground shadow removal

applied to Set 2, including images without and with shadows. When there was a shadow in

the image scene, the ground shadow detection algorithm was, in general, successful in

Table 2 Quantitative performance measure of ground shadow detection in Set 1 (30 images)

Precision
(PPV)

Recall
(sensitivity)

Specificity
(TNR)

Modified
accuracy

Processing time,
s

Mean 0.94 0.87 0.99 0.92 0.33

Median 0.96 0.87 0.99 0.92 0.33

SD 0.07 0.04 0.01 0.03 0.01

The mean, median, and standard deviation (SD) of the performance measures are indicated

PPV positive predictive value, TNR true negative rate
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Fig. 7 Example images in Set 1 using the ground shadow detection process: (a) original image,
(b) contrasted ground shadow region, (c) ground shadow detected, (d) ground truth, and (e) difference
between (c) and (d)

0

0.25

0.5

0.75

1

Precision
(PPV)

Recall
(Sensitivity)

Specificity
(True Negative Rate)

Modified Accuracy

Without Shadow Removal (ExG+Otsu)
With Shadow Removal (ExG+Otsu+shadow removal)

Fig. 8 The performance of vegetation segmentation: without shadow removal (ExG ? Otsu) versus with
shadow removal (ExG ? Otsu ? shadow removal)
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detecting the ground shadow region; but when there was no shadow in the image scene,

almost the entire soil background was classified as a ground shadow region (Fig. 9d). In

both cases, however, green-related pixels (plant materials) were not included in the ground

shadow region, leading to no significant loss of vegetation pixels in the shadow removal

process (Fig. 9e). The last column in Fig. 9 contains some examples of vegetation pixel

loss with shadow removal indicated by circles.

The ROC and precision-recall curves with a shadow image before and after the ground

shadow removal are shown in Fig. 10. The AUC before and after shadow removal in ROC

analysis were 0.944 and 0.987 respectively, and those in the precision-recall analysis were

0.729 and 0.908 respectively. Both curves showed that after ground shadow removal the

performance improved and the vegetation segmentation (with a shadow image) succeeded

(AUC C 0.9).

The ROC and precision-recall curves are shown in Fig. 11 for segmentation with

ground shadow removal applied to an image which contained no shadows. Then, the AUC

Fig. 9 Example of images with vegetation segmentation and ground shadow removal process: (a) original
image, (b) vegetation segmentation without shadow removal (ExG ? Otsu), (c) contrasted ground shadow
region, (d) ground shadow detected, (e) vegetation segmentation with shadow removal (ExG ? Otsu ? sh-
adow removal), (f) vegetation ground truth, (g) difference between (b) and (f), and (h) difference between
(e) and (f). Indicated with circles in the last column are some vegetation pixels lost during shadow removal
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values before and after shadow removal in ROC analysis were 0.981 and 0.980 respec-

tively, and those in the precision-recall analysis were 0.957 and 0.951 respectively. Both

curves showed that the performance was not considerably different before and after ground

shadow removal. The vegetation segmentation in an image without shadows was suc-

cessful even after ground shadow removal. The ground shadow removal led to better

performance of vegetation segmentation when applied to an image containing a shadow

and did not negatively affect the result when applied to an image without shadows (Fig. 10

and 11).

Fig. 10 Segmentation of a shadow image with ground shadow removal and its performance analysis:
(a) original image, (b) vegetation segmentation without shadow removal (ExG ? Otsu), (c) vegetation
segmentation with shadow removal (ExG ? Otsu ? shadow removal), (d) ground truth, (e) difference
between (b) and (d), (f) difference between (c) and (d), (g) and (h) ROC and precision-recall curves for
vegetation segmentation with and without shadow removal, the area under curve (AUC) in parenthesis
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Discussion

High dynamic range (HDR) camera

The HDR camera enabled capture of quality images in the high dynamic range scene of the

field. During the field image acquisition, no image saturation caused by strong direct solar

radiation was observed, and plants under sharp dark shadows were still clearly noticeable.

Fig. 11 Segmentation of a non-shadow image with and without ground shadow removal and its
performance analysis: (a) original image, (b) vegetation segmentation without shadow removal
(ExG ? Otsu), (c) vegetation segmentation with shadow removal (ExG ? Otsu ? shadow removal),
(d) ground truth, (e) difference between (b) and (d), (f) difference between (c) and (d), (g) and (h) ROC and
precision-recall curves for vegetation segmentation with and without shadow removal, the area under curve
(AUC) in parenthesis
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Two other studies (Dworak et al. 2013; Piron et al. 2010) also reported that high dynamic

range acquisition enabled a strong signal to noise ratio for all pixels of the image as well as

a better Normalized Difference Vegetation Index (NDVI). In this study, however, an HDR

and a conventional non-HDR cameras were not simultaneously used in parallel in the field.

Thus, a quantitative comparison between these two cameras under agricultural field con-

ditions could not be made. However, the added value of using a HDR camera is expected in

the agricultural field under natural light conditions.

Shadow detection and removal

Although the proposed algorithm effectively detects and removes ground shadows, and

thus improves the performance of vegetation segmentation, the algorithm itself alone

does not extract any green material. The algorithm has to be combined with vegetation

extraction methods (vegetation index), such as ExG, NDVI and CIVE. However, the

shadow detection and removal algorithm is not limited to any specific vegetation

extraction method because the algorithm is a separate procedure that can work as an add-

on process.

The algorithm is based on color space conversion and chromaticity difference. This

approach is simple, easy-to-implement and computationally inexpensive. Sanin et al.

(2012) reported that the color space conversion approach needed the least computation

time among the reviewed methods. However, the color space conversion approach requires

the selection of an optimal threshold value that relies on the assumption that the image

scene consists of a fixed number of components. In this study, a hypothesis was made that

the field image scene can be divided into three classes: vegetation (green plants), back-

ground (soil) and ground shadow. Although hardly any other materials than these three

were found in field images, a crop image scene may contain, according to Yang et al.

(2015), various kinds of straw, straw ash or non-green plants. If an image scene contains a

significant amount of the above mentioned or other materials, the algorithm may have

limited performance.

There were few losses of true-positive pixels (vegetation pixels) during the shadow

removal process. Although this loss was not critical, there are two ways to improve this

procedure: post-image processing, and selective application of shadow removal. Post-

image processing such as a hole filling or erode/dilate operation can recover some true-

positive pixels that were lost during the removal process. Alternatively, applying shadow

removal only when an image contains a shadow can improve the performance. In this

study, shadow removal was applied to all images (images with and without shadows).

However, technically there is no need to apply shadow removal when the image contains

no shadows. This selective approach, however, would require a procedure that detects the

presence of shadows in a given image scene. An alternative might be to use an illuminant-

invariant image based on physical models of illumination and colors (Álvarez and Ĺopez

2011; Finlayson et al. 2006).

The processing time for vegetation segmentation with shadow removal was 0.46 s, and

this should be acceptable in a real-time application (\1 s required). There is a way to

further reduce the processing time. If the processing time is highly critical for certain

applications, a faster processor with multiple/parallel processing implementations might be

an alternative approach to reduce the processing time.
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Conclusions

In this study, a ground shadow detection and removal method based on color space con-

version and multi-level threshold was proposed. This method is to be used in a real-time

automated weed detection and control system that has to operate under natural light

conditions. Then vegetation segmentation is challenging due to shadows.

Applying shadow removal improved the performance of vegetation segmentation with

an average improvement of 20, 4.4 and 13.5% in precision, specificity and modified

accuracy, respectively, compared with no shadow removal. The average processing time

for vegetation segmentation with shadow removal was 0.46 s, which is acceptable for the

real-time application (\1 s required).

The proposed method for ground shadow detection and removal enhances the perfor-

mance of vegetation segmentation under natural illumination conditions in the field, and is

feasible for real-time field applications and does not reduce segmentation performance

when shadows are not present.
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