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Abstract We present a conservative extension of a Bayesian account of confirmation
that can deal with the problem of old evidence and new theories. So-called open-
minded Bayesianism challenges the assumption—implicit in standard Bayesianism—
that the correct empirical hypothesis is among the ones currently under consideration.
It requires the inclusion of a catch-all hypothesis, which is characterized by means
of sets of probability assignments. Upon the introduction of a new theory, the former
catch-all is decomposed into a new empirical hypothesis and a new catch-all. As
will be seen, this motivates a second update rule, besides Bayes’ rule, for updating
probabilities in light of a new theory. This rule conserves probability ratios among the
old hypotheses. This framework allows for old evidence to confirm a new hypothesis
due to a shift in the theoretical context. The result is a version of Bayesianism that,
in the words of Earman, “keep[s] an open mind, but not so open that your brain falls
out”.
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1 Introduction

Bayesianism offers a way to revise our degrees of belief in light of new evidence. How-
ever, it does not capture all the relevant belief dynamics: in the process of evaluating
our evidence, we may want to consider a new theory, and thus reconsider some of the
assumptions on which all of our former degrees of belief co-depend. Standard forms
of Bayesianism do not foresee the option of adopting a new theory in its formalism, so
it seems that when a new theory does surface we have to start from scratch: assigning
priors to the empirical hypotheses belonging to the new theories, and revising the
degrees of belief in the face of further evidence. In the current paper, we propose a
conservative extension of Bayesianism that is able to encompass theory change, while
retaining comparative aspects of probabilities that have been computed prior to this
change.

1.1 Example: food inspector raising a new hypothesis

Throughout the paper, especially the more technical Sect. 3, it may be helpful to keep
in mind a simple example. For this purpose, we offer the following scenario (inspired
by an example from Romeijn 2005).

A food safety inspector wants to determine whether or not a restaurant is taking
the legally required precautions against food poisoning. She enters the restaurant
anonymously and orders a number of dishes. She uses food testing strips to determine
for each of the dishes whether or not it is infected by a particularly harmful strain of
Salmonella. She assumes that these tests work perfectly, interpreting a positive test
result as a Salmonella-infected dish and a negative result as an uninfected one. She
also assumes that in kitchens that implement the precautionary practices each dish has
a probability of 1% of being infected, whereas this probability rises to 20% in kitchens
that do not implement the practices. She orders five dishes from the kitchen and they
all turn out to be infected. This prompts her to consider a third hypothesis: the test
strips may have been contaminated, rendering all test results positive, irrespective of
whether the dish is infected or not.

After considering this third option, the inspectorwill not order any additional dishes.
Instead, she will take the old evidence (that five dishes out of five appeared to be
infected) to confirm the new theory (that the test strips were infected) and it seems
reasonable enough for her to do so. Our challenge is how to represent this positive
confirmation of the old evidence for the new theory within (an extension of) the
Bayesian framework.

1.2 Old evidence and new theories

The confirmation-theoretic model of this paper sheds new light on the problem
of old evidence and new theories. This problem for Bayesianism was first identi-
fied by Clark Glymour (1980). The problem arises from the discrepancy between
descriptive, historical examples, in which old evidence does seem to lend posi-
tive confirmation to new theories, and the normative, Bayesian position, in which
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old evidence cannot confirm new theories. In particular, by updating via Bayes’
rule (used here to refer to Bayesian conditionalization), taking into account evi-
dence that has already been conditioned upon cannot change the probabilities.
And since all expressions of confirmation hinge on differences in probabilities, it
seems that old evidence cannot lead to confirmation of new theories. Many later
authors have called Glymour’s problem simply “the problem of old evidence”.1

A minority of philosophers has stressed the importance of the other side of the
problem: “the problem of new theories” (for example Earman 1992). In what fol-
lows, we will clarify that both problems can be resolved in open-minded Bayesian-
ism.

New theories pose a bigger problem for Bayesianism than usually recognized.2

In fact, without a way of introducing a new theory into the domain of an agent’s
degrees of belief, its prior and posterior degrees of belief simply do not show up in the
model. In effect, as we will explain in Sect. 3.3.2, those probabilities are set to zero.
Either way, for want of a way to express non-zero probability assignments to a new
theory, the problem of old evidence does not even occur—or it is worse than the usual
presentations suggest. Therefore, we analyze the problem of new theories first and
offer a conservative extension of Bayesianism to deal with this problem: a framework
for open-minded Bayesianism. In the course of doing so, it will become clear what is
missing to deal adequately with old evidence and to determine the confirmation it may
give to a new theory. In particular, ourmodel is compatiblewithGlymour’s observation
that in important historical examples old evidence does offer positive confirmation to
new theories.

Some proposals for addressing the problem of old evidence (in particular that of
Garber 1983) observe that the crucial content that is being learned and that lends
positive confirmation to a new theory, is not the old evidence itself, but rather the fact
that this new theory implies or explains the old evidence. Recently, Sprenger (2014)
has proposed a new solution along these lines. We are sympathetic to this approach.3

However, Sprenger’s results presuppose that the old evidence, the new theory, and the
relevant relation between the two are all elements of some algebra (see his Theorems
1 and 2). As such, this approach does not address a more fundamental question: how
can a new theory (or a new relation between a theory and a piece of evidence) be
incorporated in the algebra? This is the problem of new theories, which is especially
pressing in the presence of old evidence, that we tackle here.

1.3 Bayesian confirmation theory

Since the problem of old evidence and new theories is ultimately a problem concerning
Bayesian confirmation, we should first be clear on how we intend to measure confir-

1 See for instance Easwaran (2011) for a recent overview of approaches to the problem of old evidence.
2 Yet, this has been noted in the literature. See for example Gillies (2001).
3 We also agree with Sprenger (2014) that, if we intend to capture objective confirmation in a scientific
context, the relevant credence function belongs to an abstract agent representing any unbiased scientist in
the relevant context, rather than a particular historical person.
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mation of a hypothesis by a body of evidence. This is in itself an interesting problem
in formal epistemology, and some reactions to the problem of old evidence are in fact
proposals for a new measure of confirmation (e.g., Christensen 1999; Joyce 1999). In
qualitative terms, a piece of evidence E lends positive confirmation to a theory T if
the posterior P(T | E) exceeds the prior P(T ). To turn this into a quantitative notion,
different measures of confirmation have been proposed: for instance, the difference or
(the log of) the ratio of posterior and prior.

However, our current investigation focuses on how to deal with new theories, which
is a problem that besets Bayesianismmore broadly, and quite independently of the cho-
sen confirmation measure. Therefore, we will not opt for any such measure, and focus
our attention on what they supervene on: the probability assignment over hypotheses
themselves. Nothing in our exposition hinges on the precise measure of confirmation
that may be grafted onto the probabilistic models.

1.4 The catch-all hypothesis

Our proposal of open-minded Bayesianism relies on the use of a catch-all hypothesis:
given a set of explicit hypotheses, we introduce an additional hypothesis that is the
negation of the union of the previous hypotheses. Facing the possibility of currently
unexplored theoretical alternatives is relevant, not only for the formal framework of
Bayesian confirmation theory, but also for the philosophy of science more generally.
See for instance the discussion on the pessimistic meta-induction by Sklar (1981),
who speaks of “unborn hypotheses”, and by Stanford (2006), who uses the term
“unconceived alternatives”. In statistical parlance, the catch-all hypothesismakes good
on Lindley’s demand for observing Cromwell’s rule (Lindley 1991 p. 104), which
states that prior probabilities of zero or one should only be assigned to logical truths
or falsehoods (cf. strict coherence and regularity; see, e.g., Hájek 2012).

We aim to develop a particular way of observing Cromwell’s rule, which can be
found already in Shimony (1970). He discussed the idea of a catch-all hypothesis in
the context of his “tempered personalist” account of probability: he suggested it as
a way to represent open-mindedness, which he regarded as a tempering condition to
obtain a weakened form of Bayesianism adequate for scientific inference. Shimony
(1970, p. 96) suggested not to assign numerical weights (priors) to the catch-all (in
contrast to the other hypotheses).

Also Earman (1992) discussed the use of a catch-all to make room for later theory
change. According to Earman (1992, p. 196), new theories are “shaven off” from the
catch-all hypothesis, which thus “serves as a well for initial probabilities for as yet
unborn theories, and the actual introduction of new theories results only in drawing
upon this well without disturbing the probabilities of previously formulated theories.”
However, he is not satisfied by the proposal of shaving off from a catch-all; according
to Earman (1992, pp. 195–196) it leads to the assignment of successively smaller prob-
abilities to later theories (cf. Romeijn 2004), and shaving off does not give an adequate
description of scientific revolutions (in the Kuhnian sense) that involve radically new
theories. These reservations do not apply to the way in which we formalize the notion
of a catch-all, as we will explain in Sect. 4.
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1.5 Assigning open-minded probabilities

When Bayesian ideas are applied within the sciences, the domain of the probability
function tends to have a small scope: it is used to compare parametric models that
apply to a single, well-delineated target system. In philosophy, however, we often
speak as if the domain of the probability function captures every thinkable thought. In
particular, in philosophy of science and Bayesian confirmation theory, the probability
function assigns values to scientific theories.

If all later changes to the probability assignment are to be due to conditioning, as
standard forms of Bayesianism prescribe, we have to be able to specify the domain in
such a way as to include all possible scientific theories, including those that are yet to
be developed. Nevertheless, it may happen that genuinely new scientific theories do
emerge. It is unclear how those can be incorporated in a domain that has to be defined
upfront.

In Sect. 2, we will make explicit what the domain of the probability function is on
the standard account. Since probability functions assign values to scientific theories as
well as to particular pieces of evidence, we have to define a domain that can represent
all these objects, even though they are of very different kinds. Specifying this domain
provides us with a good opportunity to formalize the notion of the catch-all hypothesis,
and how it is used to change the domain of the probability function.

In Sect. 3, we will introduce two forms of open-minded Bayesianism, called vocal
and silent, which both employ a catch-all hypothesis. Both are based on the idea that
we can remain open-minded about our probabilities by employing sets of probability
functions rather than single functions. But both approach the (incomplete) assignment
of probabilities in slightly different ways. Also the rule for updating on new theories
takes a different form in both contexts.

In Sect. 4, we evaluate the proposals and offer a hybrid approach that alternates
between silent and vocal episodes.

2 Bayesianism and the catch-all hypothesis

Upon the introduction of a new theory, the domain of the probability function may
change. Before we decide how we will capture this change, let us first specify the
domain for the standard form of Bayesianism. We will start this investigation by con-
sidering Bayes’ theorem. This set-upwill also prove fruitful to formalize the notions of
hypothesis, evidence, and the catch-all, which prepares us for the subsequent treatment
of domain changes and associated changes in probability.

2.1 Domain of the probability function

Bayes’ theorem is often presented as follows:4

P(H | E) = P(E | H) P(H)

P(E)
,

4 Throughout the paper, we assume denominators to be non-zero.
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where H is a hypothesis and E is a piece of evidence. But what is P? This function
symbol appears four times in the equation, but can it be interpreted in the same way
in all four appearances?5

We maintain that the four occurrences of P in Bayes’ theorem do refer to the same
probability function with the same domain. We take probability to be a one-place
function, and we employ the standard definition of conditional probability to make
sense of posterior and likelihood. As the common domain, we consider an algebra
spanned by the Cartesian product of a set of elementary hypotheses, Θ , and a sample
space, Ω (more on these in the following subsections):

A(Θ × Ω).

To be precise, we interpret the argument H of the prior and the posterior as shorthand
for H × Ω and the argument E of the marginal likelihood as shorthand for Θ × E .
The interpretation of these elements of the algebra A remains as before.

Dynamics: time stamps In Bayesian confirmation theory, we model the rational
degrees of belief of an agent by a probability function. To capture the dynamics of the
agent’s degrees of belief, we consider a succession of probability functions, indexed
by a time stamp: Pt is the probability function that represents the rational degrees of
belief of the agent at time t . In standard Bayesianism, these belief states are linked by
Bayes’ rule, as detailed below.

2.2 Evidence and updating

Beforewe can start applying probability theory,wehave tofix a particular sample space
(or set of atomic events), Ω , which is chosen such that any result of a measurement
can be represented as a subset of Ω . The sample space can be a Cartesian product of
sets, which allows us to represent very different types of empirical data.6 We represent
(actual and hypothetical) pieces of evidence as elements of an algebra on the sample
space,A(Ω). This set is usually called the event space, but in the current context it is
better to call it the ‘evidence space’.

Dynamics: Bayes’ rule If an agent receives evidence E at t = n, then Bayes’ rule
prescribes that the agent has to adopt a new probability function Pt=n that is equal
to the posterior of the agent’s immediately preceding probability function: Pt=n(·) =
Pt=n−1(· | E), which can be computed via Bayes’ theorem.

5 Some introductory texts, such as Hogg (2012, p. 4) and Bertsekas and Tsitsiklis (2008) even argue that
we are dealing with four different functions and suggest the use of subscripts to distinguish between them.
But we follow a different approach.
6 In the discrete case, we may think of the sample space as the set of infinitely long sequences (ranging over
temporal instants or individuals) of the values of a property (from a discrete set S) or a vector of properties
(each from a discrete set Si ): Ω = SI , with S the possible values of a certain property or a Cartesian
product set of such value sets S = ∏

i Si and I the infinite index set (e.g., N); see for instance Romeijn
(2011, Sect. 2). Considering the algebra spanned by the cylindrical subsets of this sample space allows us
to represent measurements as initial segments of infinitely long streams of data.
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2.3 Explicit hypotheses and the catch-all

In the Bayesian framework, probability functions range over evidence and hypotheses.
Hence, in addition to specifying Ω and A(Ω), we need to define a set of hypotheses,
H, and an algebra over this set, A(H). The hypotheses are only specified up to their
empirical content. The scientific theories that motivate them are not brought into view.
The way to characterize an empirical hypothesis, H , is by specifying a likelihood
function P(· | H) ranging over the evidence space, A(Ω). Because the empirical
content of hypotheses is spelled out in terms of probability functions over the data,
the hypotheses are called statistical.7

Under a hypothesis we may also subsume an entire family (i.e., a set) of likelihood
functions, which have the same form except for a different value of a parameter (or
vector of parameters).8 Henceforth, we will treat all hypotheses as sets of probability
functions on the domain A(Ω). Hypotheses that correspond with singleton sets will
be called elementary hypotheses, others will be called composite. Observe that the
hypotheses inH need not be elementary in this sense.

Like the elementary events in Ω , the hypotheses in H need to be mutually exclu-
sive and jointly exhaustive. However, merely exhausting the union of the hypotheses
in H, which is the set of hypotheses that are being considered at a given point in
time, may not suffice. In particular, it does not suffice once a new hypothesis emerges,
because in that case we want to involve a hypothesis outside

⋃
H∈H H . As indi-

cated before, if we do not offer a domain in which possibilities outside H can be
denoted, we cannot begin to formulate the problem of old evidence and new theo-
ries.

Our first and important deviation from what we call ‘standard Bayesianism’ is that
we give the probability function a domain that includes hypotheses outside the set that
is currently under consideration. We propose that the hypotheses ought to be mutually
exclusive and jointly exhaustive of the vast set of all probability functions on the
evidence space A(Ω):9

Θ = {P : A(Ω) → [0, 1] | P is a probability function}.

Then, we can represent an empirical, or statistical, hypothesis as a non-empty set of
probability functions on A(Ω); hypotheses are thus elements of an algebra on Θ .

Let us consider a collection of N + 1 hypotheses (with N a positive integer) that
are mutually exclusive and jointly exhaustive: this partition of Θ contains N explic-
itly formulated hypotheses, H0, . . . , HN−1, and one catch-all, ΘN . By an ‘explicitly
formulated’ hypothesis, Hi , we mean an empirical hypothesis that is produced by a

7 Using this terminology, this article deals with the problem of new hypotheses, rather than the problem of
new theories.
8 See for instance Romeijn (2011, Sect. 7). In such a case, it is more common to speak of a statistical model
or a theory, but we stick to the term ‘hypothesis’, to avoid confusion with scientific theories.
9 It would be more accurate to label the set as ΘA(Ω), but we omit the subscript to keep the notation light.
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scientific theory. We do not discuss in detail the scientific theories themselves, or even
how they lead to statistical hypotheses.10

We will denote the set of explicitly formulated hypotheses (previously indicated by
H) by

TN = {Hi | i ∈ {0, . . . , N − 1}} .

TN represents the ‘theoretical context’ against which hypotheses are being considered.
We will denote the union of the hypotheses in TN by

ΘN =
N−1⋃

i=0

Hi .

Hence, TN is a partition of ΘN . ΘN is the subset of Θ that is currently being covered
by some scientific theory. The catch-all, ΘN , is the complement of ΘN within Θ (so,
TN ∪{ΘN } is a partition ofΘ): this hypothesis is the set of all the probability functions
that are not produced by any known scientific theory. Whereas the other hypotheses
come with a—possibly very intricate—theoretical background story, the catch-allΘN

has no content other than “none of the explicitly formulated hypotheses”. So,ΘN is the
setΘ\⋃N−1

i=0 Hi and that is all that can be said about it. In the same vein, we cannot say
anything about the probabilities that the catch-all hypothesis assigns to the evidence.

Dynamics: shaving off In the previous subsection, we have seen that the incorpora-
tion of evidence leads to an update of the probability function governed by Bayes’
rule. Standard Bayesianism lacks an analogous procedure for revising the probability
function in light of a new hypothesis. We will now discuss how the presence of the
catch-all allows us to represent the dynamics of the set of hypotheses. This prepares
us for the proposal of open-minded Bayesianism in the next section.

After a new scientific theory has been developed, the statistical hypothesis it pro-
duces may be added to the partition of Θ by “shaving off” from the catch-all (by the
terminology of Earman 1992, p. 196) . At this point in time, the former catch-all may
be decomposed into an additional explicitly formulated hypothesis HN (disjoint from
the earlier hypotheses) and a new (smaller) catch-all,ΘN+1. So, the algebra onΘ ×Ω

changes.11

10 It is clear that an indeterministic theory can generate statistical predictions about measurable quantities.
In the case of deterministic theories, such as Newtonian mechanics, it may be less clear how they lead
to hypotheses that are expressed in terms of a probability assignment. However, when we combine such
a theory with measured values for masses, velocities, etc. the associated measurement uncertainty can be
represented in terms of probability distributions, which in turn leads to statistical predictions concerning
other measurable quantities.
11 Typically, this will happen because the evidence was surprising according to the hypotheses currently
under consideration, as witnessed by a very low likelihood (i.e., P(E |Hi ) is very small for every i) and
initially it did seem possible to obtain evidence with a higher likelihood. A principled decision to introduce
a new theory may be based on the computation of a model score, or on the application of a model selection
tool. But such scores and tools fall outside the scope of the present paper. The procedure for deciding to
introduce a new theory is not intended to be a part of our model.
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2.4 Summary of key ideas

Webriefly recapitulate our approach so far and our use of the following terms: scientific
theory, statistical hypothesis, sample space, evidence, and catch-all.

A scientific theory together with background assumptions produces an empirical,
or statistical, hypothesis. (How this happens requires engaging with the details of
a scientific theory, which falls outside the scope of our current framework.) Such
an empirical or statistical hypothesis is a set, possibly a singleton, of probability
functions. In order to compare hypotheses produced by different theories in the light of
a common body of empirical data (and thus to compare their measures of confirmation
or evidential support), their probability functions need to have a common domain. This
domain is called the evidence space: it is an algebra on a sample space (which may
be a Cartesian product set to allow for the representation of mutually independent
measurable quantities).

The union of all statistical hypotheses produced by the currently available scientific
theories (ΘN ) does not exhaust the set of all probability functions on the evidence
space (Θ).12 The complement of the former set relative to the latter set is called
the catch-all hypothesis (ΘN ): unlike the other hypotheses, it is not produced by a
scientific theory, but rather it results from a meta-theory. The catch-all hypothesis is
included to express that many other hypotheses are conceivable, each associated with
a probability assignment or a set of such assignments over the evidence.

With the idea of a catch-all hypothesis in place, we can now turn to a full specifica-
tion of open-minded Bayesianism. The inclusion of a catch-all hypothesis makes room
for modeling the introduction of new hypotheses, namely by shaving them off from
the catch-all. But this in itself is not sufficient: we still need to specify how shaving off
influences probability assignments over the hypotheses. This is the task undertaken in
the next section.

3 Open-minded probability assignments

In the previous section, we have introduced the formal framework of open-minded
Bayesianism. It is a form of Bayesianism that requires the set of hypotheses to include
a catch-all hypothesis. In the current section, we develop the probability kinematics
for open-minded Bayesianism. Two versions will be considered: vocal and silent. The
two approaches suggest slightly different rules for revising probability functions upon
theory change.13

12 See for instance Duhem (1906, p. 311): “Entre deux théorèmes de Géométrie qui sont contradictoires
entre eux, il n’y a pas place pour un troisième jugement; si l’un est faux, l’autre est nécessairement vrai. Deux
hypothèses de Physique constituent-elles jamais un dilemme aussi rigoureux? Oserons-nous jamais affirmer
qu’aucune autre hypothèse n’est imaginable?” As an example, he considers the hypotheses concerning the
nature of light (particles versus wave) and asks if it is forbidden that light may have a different nature
altogether.
13 See Morey et al. (2013) for a less rigourous exposition of open-minded Bayesianism, which they term
humble Bayesianism, in a statistics context. As said above, the idea of open-mindedness is already present
in what Lindley (1991, p. 104) called Cromwell’s Rule.
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3.1 Vocal and silent open-mindedness

In open-minded Bayesianism, hypotheses are represented as sets of probability func-
tions. If prior probabilities are assigned to the functions within a set, then a single
marginal probability function can be associated with the set. But without such a prior
probability assignmentwithin the set, the set specifies so-called imprecise probabilities
(see, for instance, Walley 2000).

We first clarify probability assignments over explicitly formulated hypotheses. In
standard Bayesianism, prior probabilities are assigned to the hypotheses, which are all
explicitly formulated.We can furthermore assign priors over the individual probability
functions contained within composite hypotheses, if there are any. We call such priors
within a composite hypothesis sub-priors. The use of sub-priors leads to a marginal
likelihood function for the composite hypothesis.14 Upon the receipt of evidence we
can update all these priors, i.e., those over elementary and composite hypotheses as
well as those within composite hypotheses.

Now recall that in open-minded Bayesianism, the space of hypotheses also contains
a catch-all, which is a composite hypothesis encompassing all statistical hypotheses
that are not explicitly specified. In standard Bayesianism, this catch-all hypothesis
is usually not mentioned, and all probability mass is concentrated on the hypotheses
that are formulated explicitly.Within the framework of open-minded Bayesianism, we
will represent this standard form of Bayesianism by setting the prior of the catch-all
hypothesis to zero.15

Let us turn to open-minded Bayesianism itself. To express that we are prepared to
revise our theoretical background, we assign a strictly positive prior to the catch-all.
However, we agree with Shimony (1970) that it is not sensible to assign any definite
value to the prior of the catch-all. Since the catch-all is not based on a scientific theory,
the usual “arational” considerations (to employ the terminology of Earman 1992,
p. 197) for assigning it a prior, namely by comparing it to hypotheses produced by
other theories, do not come into play here. Moreover, it seems clear that the catch-
all should give rise to imprecise marginal likelihoods as well, which suggests that we
should refrain from assigning sub-priors to its constituents, too. (Recall that the algebra
on Θ × Ω cannot pick out any strict subset of the catch-all.) These considerations
lead us to consider two closely connected forms of open-minded Bayesianism, which
both avoid assigning a definite prior to the catch-all:

Vocal open-minded Bayesianism assigns an indefinite prior and likelihood to the
catch-all hypothesis,ΘN . We represent its prior by τN ∈]0, 1[ and its likelihood by
xN (· | E). To ensure normalization over all hypotheses (including the catch-all),
the priors assigned to the explicitly formulated hypotheses are set equal to the
value they would have in a model without a catch-all now multiplied by (1− τN ).

14 In statistics this is known as hierarchical modeling (cf. Gelman et al. 2004). A useful philosophical angle
on this is provided in Henderson et al. (2010).
15 If the option of a catch-all simply hasn’t been considered, one might intuitively expect its probability
to be undefined rather than zero. However, if we represent Bayesianism without a catch-all within an
open-minded framework, a probability has to be assigned to the catch-all and its value has to be zero: see
Sect. 3.3.2.
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Silent open-minded Bayesianism assigns no prior or likelihood to the catch-all
hypothesis, not even symbolically. To achieve this, all probabilistic statements are
conditionalized on the algebra on ΘN (shorthand for ΘN ×Ω).ΘN represents the
union of the hypotheses in the current theoretical context. From the viewpoint of
the algebra on Θ × Ω , the probability assignments are incomplete.

In both cases, we deviate from the standard Bayesian account in that we give a strictly
positive prior to the catch-all, and then allow opinions to be partially unspecified:
vocal open-minded Bayesianism retains the entire algebra but uses symbols with-
out numerical evaluation as placeholders, whereas silent open-minded Bayesianism
restricts the algebra to which probabilities are assigned (leaving out the catch-all).16

Formally, the partial specification of a probability function comes down to specify-
ing the epistemic state of the agent by means of a set of probability assignments (cf.
Halpern 2003; Haenni et al. 2003).

3.2 A conservative extension of standard Bayesianism

As detailed in the foregoing, we aim to represent probability assignments of an agent
that change over time. An agent’s probability function therefore receives a time stamp
t . Informally, this is often presented as if the probability function changes over time, but
it is more accurate to say that the entire probability function gets replaced by a different
probability function at certain points in time. Accordingly, subsequent functions need
not even have the same domain.

Standard Bayesianism has one way to replace an agent’s probability function once
the agent learns a new piece of evidence: Bayes’ rule. It amounts to restricting the
algebra to those sets that intersect with the evidence just obtained. Equivalently, it
amounts to setting all the probability assignments outside this domain to zero. If at
time t an agent learns evidence E with certainty, Bayes’ rule amounts to setting Pt=n

equal to Pt=n−1(· | E). If E is the first piece of evidence that the agent learns, this
amounts to restricting the domain from an algebra on Θ × Ω to an algebra on Θ × E
and redistributing the probability over the remaining parts of the algebra according to
Bayes’ theorem.

In addition to this, open-mindedBayesianism requires a rule for replacing an agent’s
probability function once the agent learns information of a different kind: the introduc-
tion of a newhypothesis. This amounts to expanding the algebra towhich explicit prob-
ability values are assigned (from an algebra on ΘN × E to an algebra on ΘN+1 × E).
Or in other words, it amounts to refining the algebra onΘ × E . On both views, the new
algebra is larger (i.e., it contains more sets). What is still missing from our framework
is a principle for determining the probability over the larger algebra. In analogy with
Bayes’ rule, one natural conservativity constraint is that the new probability distribu-
tion must respect the old distribution on the preexisting parts of the algebra.

16 Although we do not advocate this here, the vocal formalism is compatible with assigning a definite prior
to the catch-all. See Sect. 4.4 for some thoughts on the case in which the prior of the catch-all is either close
to unity or close to zero.
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Viewed in this way, our proposal does not introduce any radical departure from
standard Bayesianism. Open-minded Bayesianism respects Bayes’ rule, but this rule
already concerns changes in the algebra, namely reductions. The only new part is that
we require a separate rule for enlarging the algebra (extending ΘN or refining the
partition of Θ) rather than for reducing it (restricting Ω). The principle that governs
this change of the algebra again satisfies conservativity constraints akin to Bayes’
rule. As detailed below, silent and vocal open-minded Bayesianism will give a slightly
different rendering of this rule.

3.3 Updating due to a new hypothesis17

In this section, we consider how the probability function ought to change upon the
introduction of a new hypothesis after some evidence has been gathered. We first
consider an abstract formulation of a reduction and extension of the domain, as well
as an example of such an episode in the life of an epistemic agent. After that, we
consider both versions of open-minded Bayesianism as developments of the standard
Bayesian account.

3.3.1 Reducing and enlarging: setting the stage

The epistemic episode that we aim to model has three stages:

(t = 0)N explicit hypothesesAt time t = 0, the theoretical context of the agent consists
of N explicit hypotheses: TN = {H0, . . . , HN−1}. The union of the hypotheses in
TN is ΘN . The catch-all is the complement of the latter (within Θ): ΘN .

(t = 1) Evidence E At time t = 1, the agent receives evidence E . The initial likelihood
of obtaining this evidence given any one of the hypotheses Hi (i ∈ {0, . . . , N −1})
is a particular value Pt=0(E | Hi ).

(t = 2) New hypothesis HN At time t = 2, a new scientific theory is introduced, which
produces a statistical hypothesis that is a subset of ΘN ; call this additional hypoth-
esis HN . The new set of explicit hypotheses is thus TN+1 = {H0, . . . , HN−1, HN }.
The union of the hypotheses in TN+1 is ΘN+1 ⊃ ΘN . The new catch-all is the
complement of ΘN+1: ΘN+1 ⊂ ΘN . In other words: in the algebra on Θ , the old
catch-all ΘN is replaced by two disjoint parts, HN and ΘN+1. The new explicit
hypothesis HN is shaven-off from the old catch-all, ΘN , leaving us with a smaller
new catch-all, ΘN+1.

Our first question is how the agent ought to revise her probability assignments at
t = 2. The second question is whether the old evidence (E obtained at t = 1)
can lend positive confirmation to the new hypothesis (HN formulated at t = 2).
We will consider these questions in the context of standard Bayesianism and both
forms of open-minded Bayesianism. As will be seen, the probability assignments
that result from open-minded Bayesianism will show the relevant similarities with

17 Readers only interested in the gist of our account may skip this subsection and continue reading at
Sect. 4.
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those of standard Bayesianism: withinΘN , both have the same proportions among the
probabilities for the hypotheses Hi .

Food inspection example While reading our general treatment of the three stages, it
may be helpful to keep inmind the example of Sect. 1.1. In this example, the number of
explicit hypotheses is N = 2. The hypotheses H0 (meaning, informally, “the kitchen
is clean”) and H1 (“this kitchen is not clean”) can be made formal in the following
way: the distribution of infections follows a binomial distribution with bias parameter
p0 = 0.01 (H0) or with bias parameter p1 = 0.2 (H1). The sample space is the same
for both hypotheses: Ω = {0, 1}N, where 0 means that a dish tested negatively and 1
means that a dish tested positively. In this case, the evidence takes the form of initial
segments of the sequences in the sample space (cylindrical sets of {0, 1}N).18 At t = 1,
the inspector tests five dishes and receives as evidence an initial segment of five times
‘1’. The initial likelihood of obtaining this evidence E given hypothesis H0 is

Pt=0(E | H0) = p50 = 10−10,

and given hypothesis H1 the initial likelihood of the evidence is

Pt=0(E | H1) = p51 = 3.2 × 10−4.

At t = 2, the inspector considers a new hypothesis, H2, which can be modeled as a
binomial distribution with p2 = 1.

3.3.2 No update rule for standard Bayesianism

Standard Bayesianism works on a fixed algebra on a fixed set ΘN × Ω . On this view,
none of the probabilities can change due to hypotheses that are external to ΘN .

(t = 0) N explicit hypotheses Each explicit hypothesis receives a prior probability,
Pt=0(Hi ). If we assume that, initially, the agent is completely undecided with regard
to the N hypotheses, she will assign equal priors to them: Pt=0(Hi ) = 1/N (for all
i ∈ {0, . . . , N − 1}).19
(t = 1) Evidence E The marginal likelihood of the evidence can be obtained via the
law of total probability:

Pt=0(E) =
N−1∑

j=0

Pt=0(Hj ) Pt=0(E | Hj ),

18 Since the inspector assumes that the test is perfect, instead of representing the test results, she may just as
well represent these data in terms of dishes being infected or not (such that 0 means that a dish is not infected
and 1 that a dish is infected.) This illustrates how data and evidence may come apart: we regard evidence
as interpreted data, where the interpretation depends on the sample space that is used in a hypothesis. For
an example, see footnote 29.
19 The assumption of equal priors is not essential for the framework. The agent may assign different priors,
based on considerations that are external to the Bayesian framework, such as relevant base rates (where the
usual reference class problem emerges; cf. Hájek 2007).
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which is about 1.6×10−4 for the example. The posterior probability of each hypothesis
given the evidence can be obtained by Bayes’ theorem:

Pt=0(Hi | E) = Pt=0(Hi ) Pt=0(E | Hi )

Pt=0(E)
(for all i ∈ {0, . . . , N − 1}).

In the example, this is about 3.1× 10−7 for H0 and 1− 3.1× 10−7 for H1. According
to Bayes’ rule, upon receiving the evidence E , the agent should replace her probability
function by Pt=1 = Pt=0(· | E). The inspector should now assign a probability to H1
that is more than three million times higher than the probability she assigns to H0. So,
in the example, the confirmation is positive for H1 and negative for H0.

(t = 2) New hypothesis HN Suppose a new hypothesis is formulated: some HN ∈ ΘN .
In terms of the example: the inspector was in a situation in which she could have
received evidence with a much higher initial probability than that of the evidence
she actually received, and we might imagine that this makes her decide to take the
hypothesis H2 concerning infected test strips into consideration.Now since, in general,
the new hypothesis HN is not a part of the theoretical context, TN , the intersection of
HN with ΘN is empty. Hence, the probability assigned to HN is zero, simply because
P(TN ) = 0. And since the prior of this hypothesis is zero, the confirmation of this
hypothesis is zero as well. In other words, standard Bayesianism simply does not
allow us to represent new hypotheses (other than by the empty set). In this sense, the
ensuing problem of old evidence does not even occur: new theories cannot be taken
into account in the first place.

3.3.3 Update rule for vocal open-minded Bayesianism

Vocal open-minded Bayesianism employs a refinable algebra on a fixed setΘ ×Ω . In
this view, none of the previous probability assignments change upon theory change,
but additional probabilities can be expressed and earlier expressions can be rewritten
accordingly.

(t = 0) N explicit hypotheses Each explicit hypothesis receives a prior, Pt=0(Hi ) (and,
where appropriate, sub-priors). The proposal of vocal open-mindedness is to assign
an undefined prior, τN ∈ (0, 1), to the catch-all hypothesis, ΘN :

Pt=0(ΘN ) = τN .

No subsets of the catch-all receive (sub-)priors at t = 0, but certain subsets of the
catch-all will receive a prior later on. To ensure normalization over all hypotheses
(including the catch-all), the priors assigned to the explicitly formulated hypotheses
are set equal to the value they had in the model without a catch-all now multiplied by
(1 − τN ); for each i ∈ {0, . . . , N − 1}:

Pt=0(Hi ) = (1 − τN ) Pt=0(Hi | ΘN ).

123



Synthese (2016) 193:1225–1250 1239

Although the value of τN is unknown, the N + 1 priors sum to unity. In the example,
we have as prior of the catch-all Pt=0(Θ2) = τ2 and as prior for the two explicit
hypotheses Pt=0(H0) = 1/2 × (1 − τ2) = Pt=0(H1).

The likelihood functions of the explicit hypotheses Hi are the same as in the usual
model. Regarding the likelihood of the catch-all, the proposal is to represent it by an
undefined weighted average of functions in Θ \ ΘN : Pt=0(· | ΘN ) = xN (·).
(t = 1) Evidence E The marginal likelihood of the evidence has an additional term as
compared to the standard model:

Pt=0(E) =
N−1∑

j=0

Pt=0(Hj ) Pt=0(E | Hj ) + τN xN (E).

Due to the presence of undetermined factors associated with the catch-all, Pt=0(E)

cannot be evaluated numerically. As a result, also the updated probability function,
Pt=1(·) = Pt=0(· | E), contains unknown factors. These are the posteriors for Hi (for
all i ∈ {0, . . . , N − 1}):

Pt=0(Hi | E) = Pt=0(Hi ) Pt=0(E |Hi )
Pt=0(E)

= (1−τN ) Pt=0(Hi |ΘN ) Pt=0(E |Hi )∑N−1
j=0 (1−τN ) Pt=0(Hj |ΘN ) Pt=0(E |Hj ) + τN xN (E)

.

Although this expression cannot be evaluated numerically, some comparative prob-
ability evaluations can be computed since the unknown factors cancel. In particular,
the ratio of two posterior probabilities assigned to explicit hypotheses can still be
obtained; for i, j ∈ {0, . . . , N − 1}:

Pt=1(Hi )

Pt=1(Hj )
= Pt=0(Hi | ΘN ) Pt=0(E | Hi )

Pt=0(Hj | ΘN ) Pt=0(E | Hj )
.

In the example, it can still be established that after receiving evidence E the inspector
should assign a probability to H1 that is more than three million times higher than the
probability she assigns to H0. Similarly, we can still establish that both hypotheses
have a very small likelihood for the evidence that is obtained. And this may be enough
to motivate the introduction of a new hypothesis.

In the context of vocal open-mindedness, any expression of the belief change will
contain unknown factors, and the implications are worse than for the posteriors: if
the change is measured as the difference between posterior and prior, both terms have
different unknown factors ( 1−τN

Pt=0(E)
and 1 − τN , respectively).

(t = 2) New hypothesis HN Recall that the old catch-allΘN is replaced by two disjoint
parts: the hypothesis that is shaven off, HN , and the remaining part of the catch-all,
ΘN+1. Finite additivity suggests to decompose the prior that was assigned to ΘN into
two corresponding terms:

τN = Pt=0(HN ) + τN+1,
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where Pt=0(HN ) is the prior of the newhypothesis HN and τN+1 ∈]0, τN [ is the (indef-
inite) prior of the remaining catch-all ΘN+1, both of which are assigned retroactively.
Although the value of τN+1 is unknown, the N + 2 priors sum to unity.

The priors for the hypotheses in TN can thence be written in three ways:

Pt=0(Hi ) = (1 − τN ) Pt=0(Hi | ΘN )

= (1 − τN+1)Pt=0(Hi | ΘN+1)

= (1 − τN+1) (1 − Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ),

where Pt=0(HN | ΘN+1) is some definite number ∈]0, τN [. For instance, if we had a
uniform prior over TN and we want to keep a uniform prior over TN+1, we have to set
Pt=0(HN | ΘN+1) = 1

N+1 .
Now that HN is an explicit hypothesis, its likelihood is a definite function Pt=0

(· | HN ) (also specified retroactively). In the example, the likelihood for obtaining the
evidence Pt=0(E | H2) is 1 on the new hypothesis. We assign an undefined likelihood
to the new catch-all: Pt=0(· | ΘN+1) = xN+1(·). This allows us to rewrite the previous
expression obtained for the marginal likelihood:

P(E) =
∑N−1

j=0
(1 − τN+1) (1 − Pt=0(HN | ΘN+1)) Pt=0(Hj | ΘN ) Pt=0(E | Hj )

+ Pt=0(HN ) Pt=0(E | HN ) + τN+1 xN+1(E),

where the last two terms equal τN xN (E).
At this point, we can also rewrite the expressions for the posteriors (for all i ∈

{0, . . . , N − 1}):

Pt=2(Hi ) = (1 − τN+1) (1 − Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ) Pt=0(E | Hi )

P(E)
.

Moreover, we can now assign a posterior to HN :

Pt=2(HN ) = (1 − τN+1) Pt=0(HN | ΘN+1) Pt=0(E | HN )

P(E)
.

Although it is still not possible to evaluate these posteriors numerically, we can
compute new comparative probability evaluations for ratios involving HN . For all
i ∈ {0, . . . , N − 1}:

Pt=2(HN )

Pt=2(Hi )
= Pt=0(HN | ΘN+1) Pt=0(E | HN )

(1 − Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ) Pt=0(E | Hi )
.
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In the case of uniform priors, additional factors cancel:20

(1 − Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ) =
(

1 − 1

N + 1

)
1

N

= 1

N + 1
= Pt=0(HN | ΘN+1).

And so, in the case of uniform priors, we obtain:

Pt=2(HN )

Pt=2(Hi )
= Pt=0(E | HN )

Pt=0(E | Hi )
.

For the example, we can compute Pt=2(H2)
Pt=2(H1)

= 1
p50

= 1
3.2×10−4 = 3, 125. So, in the

new theoretical context (T3) the posterior of the new hypothesis (H2) given the old
evidence E , namely the sequence of five positive tests, is more than three thousand
times higher than that of the hypothesis that was best confirmed (H1) within the old
theoretical context (T2).21

At t = 1, no degree of belief can be expressed for HN , but at t = 2 the degrees
regarding HN at t = 1 can be expressed and the expressions for the old hypotheses
Hi can be rewritten. We are still left with two terms that have different unknown
factors, which do not simply cancel out.22 At any rate, degrees of confirmation can be
evaluated if we first condition the probability assignments on the current theoretical
context, ΘN . We return to this point below.

3.3.4 Update rule for silent open-minded Bayesianism

Silent open-minded Bayesianism employs an algebra on a set ΘN × Ω , which may
be extended to ΘN+1 × Ω (and beyond). On this view, when the theoretical context
changes, new conditional probabilities become relevant to the agent.

Let us brieflymotivate the silent version as an alternative to vocal open-mindedness.
We have seen that the vocal version comes with a heavy notational load. Given that,
in the end, we can only compute comparative probabilities, it seems desirable to
dispense with the symbolic assignment of a prior and a likelihood to the catch-all
hypothesis. Silent open-mindedness achieves this by conditioning all evaluations on
ΘN , the union of the hypotheses in the theoretical context. This allows us to express
the agent’s opinions concerning the relative probability of Hi and Hj (for any i, j ∈
{0, . . . , N − 1}) without saying anything, not even in terms of free parameters, about

20 Since these factors are all known at t = 2, it is not a problem if they do not cancel.
21 Observe that the catch-all Θ2 is strictly larger than the family of binomial distributions with p ∈
[0, 1] \ {0.01, 0.2}. The binomial distribution only applies to situations that can be thought of as having a
fixed bias and producing independent outcomes. The catch-all should be large enough to allow the agent to
reconsider even these assumptions at a later point in time.
22 This may be a reason to consider a particular measure of confirmation, such as P(H | E) − P(H | E)

(cf. Christensen 1999; Joyce 1999), for which the factors do cancel out.
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the absolute probability that they have. Opinions about the theories in the current
theoretical context TN are thus comparative only.

(t = 0) N explicit hypotheses Instead of assigning absolute priors to Pt=0(Hi ) =
Pt=0(Hi | Θ), silent Bayesianism suggests to only assign priors that are conditional-
ized on the theoretical context, Pt=0(Hi | ΘN ).
(t = 1) Evidence E Since Hi ⊆ ΘN , the likelihoods of explicit hypotheses are
statistically independent of the theoretical context:

Pt=0(E |Hi ∩ ΘN ) = Pt=0(E |Hi ).

Silent open-mindedness suggests not to assign a likelihood to the catch-all. This “prob-
ability gap” is not problematic (by the terminology of Hájek 2003), since all the other
probability assignments are conditionalized on ΘN . The agent can update her com-
parative opinion in the usual Bayesian way, as long as she conditionalizes everything
on this context:23

Pt=1(Hi | ΘN ) = Pt=0(Hi |E ∩ ΘN ) = Pt=0(Hi |ΘN )
Pt=0(E |Hi )

P0(E |ΘN )
.

(t = 2) New hypothesis HN After a new hypothesis has been introduced, the silently
open-minded Bayesian has to start conditionalizing on the expanded (union of the)
theoretical context ΘN+1 rather than on ΘN . Once HN gets formulated, its likelihood
will be known too. We require that the probability evaluations conditional on the old
contextΘN do not change. In this way, we cohere with standard Bayesianism and with
the vocal open-minded variant.

We can treat Pt=2(HN | ΘN+1) much like a ‘postponed prior’, and give it a
value based on arational considerations that are not captured by constraints within
the (extended) Bayesian framework. In particular, we can engage in the kind of
reconstructive work as is done in vocal open-mindedness, but this is not manda-
tory here. We might also determine the posterior probability of HN and so reverse-
engineer what the prior must have been to make this posterior come out after the
occurrence of E . In any case, when moving to a new context, the other posteri-
ors need to be changed accordingly (such that the N + 1 posteriors sum to unity):
Pt=2(Hi | ΘN+1) = (1 − Pt=2(HN | ΘN+1))Pt=1(Hi | ΘN ). So, the move from TN

to TN+1 essentially amounts to a kind of recalibration of the posteriors.
Importantly, we can compute all known confirmation measures using the priors

and posteriors that are conditional on a particular theoretical context. Once the context
changes, this clearly impacts on the confirmation allotted to the respective hypotheses.
The price for this transparency is of course that we can only establish the confirmation
of a hypothesis relative to a theoretical context ΘN . The natural use of a degree
of confirmation thus becomes comparative: it tells us which hypothesis among the
currently available ones is best supported by the evidence, but there is no attempt to
offer an absolute indication of this support.

23 Recall from Sect. 2 that we interpret E as shorthand for Θ × E , so E ∩ ΘN should be understood as
(Θ ∩ ΘN ) × E = ΘN × E .
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4 Evaluation and conclusion

In this section we critically evaluate open-minded Bayesianism. We clarify our views
on it, and conclude that it provides a handle on the problem of old evidence: it explains
how old evidence can be used afresh without violating Bayesian coherence norms.
Towards the end, we sketch a number of ideas and problems that deserve further
exploration.

4.1 Evaluation of open-minded Bayesianism

It may be argued that open-minded Bayesianism fails to provide us with the required
normative guidance. In the silent version, it only concerns suppositional reasoning and
hence cannot inform our unconditional beliefs. Inmetaphorical terms, the worry is that
the agent cannot keep hiding behind the conditionalization stroke. In the vocal form,
the same worry arises in relation to the use of factors with indefinite numerical values,
which are introduced to represent the prior and likelihood of the catch-all hypothesis,
but which soon ‘infect’ all probability assignments and measures of confirmation.
Either way, it may seem that the agent must come clean on her absolute commitments
at some point.

We respond to this worry by biting the bullet. If we want to allow new theories
to enter the conceptual scene, then we will have to provide room for this in our
formal framework. There are attempts to accommodate (other forms of) theory change
in a Bayesian framework that employ fully specified probability assignments (e.g.,
Romeijn 2004, 2005). In this paper, by contrast, we have offered a framework that
creates room for new theories by leaving part of the probability assignment unspecified.
We accept that this leads to a model that only concerns conditional belief.

We should emphasize that we are not alone in preaching an open-minded form
of Bayesianism. We already mentioned the proposal for tempered Bayesianism by
Shimony (1970), who suggested the use of a catch-all hypothesis in this context. This
suggestion was also discussed by Earman (1992), who introduced the evocative termi-
nology of shaving off new hypotheses from the catch-all. Furthermore, our proposal of
humble Bayesianism is related to earlier work by Salmon (1990) and Lindley (1991).
Morey et al. (2013) recently introduced what they call humble Bayesianism in a debate
over the nature of statistical model comparisons.

The latter paper lends further support to open-minded Bayesianism. The point of
Morey et al. (2013) is that an agent may want to use Bayesian methods to evaluate
statisticalmodels, without buying into the conviction, implicit in the standardBayesian
framework, that one of the theories under consideration is true. After all, a standard
Bayesian will have the probabilities of the hypotheses under consideration add up to
one, and so judges herself to be perfectly calibrated (cf. Dawid 1982). The standard
Bayesian is overly confident, hence a more open-minded form of Bayesianism seems
called for.

The price to pay is that the epistemic attitudes for which the framework of the open-
minded Bayesian provides the norms are different: they have a conditional nature.
Whether we spell out the details using a vocal or a silent open-mindedness, the nor-
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mative framework tells the agent what to believe only if she temporarily supposes,
without committing to it, that the true theory is among those currently under consid-
eration.

4.2 The old evidence problem

Now that we have bitten the bullet, we better make sure that we do so for good reasons.
In this section, we argue that open-minded Bayesianism provides a new handle on the
problem of old evidence, by explaining how old evidence can be re-used.

In his encyclopedia entry on Bayesianism, Talbott (2008) summarizes the Bayesian
problem of new theories as follows: “Suppose that there is one theory H1 that is
generally regarded as highly confirmed by the available evidence E . It is possible
that simply the introduction of an alternative theory H2 can lead to an erosion of
H1’s support. […] This sort of change cannot be explained by conditionalization.”
It is precisely this “erosion” of support that can be captured by the update rule for
open-minded Bayesianism, since both approaches make the agent reconsider the
posteriors of the old hypotheses. The strong point of open-minded Bayesianism is
that this reconsideration of the posteriors does not render the agent probabilistically
incoherent.

When writing about the operation of shaving off new hypotheses, Earman (1992,
p. 195) worried that a point may be reached “where the new theory has such a low
initial probability as to stand not much of a fighting chance.” This worry, however,
does not apply to our framework. Notice that we do not assign an explicit value to
the prior of the current theoretical context. We may think of the prior associated with
the catch-all hypothesis as a number extremely close to unity—and the humbler we
are, the closer to unity we can imagine it to be. At any rate, no matter how large the
discrepancy between the posteriors of the old hypotheses and the new one, the impact
that the decomposition of the catch-all has on the catch-all’s posterior will remain
unknown, or indefinite. Of course, once we pin down a value for the probability τN ,
the worry of Earman becomes a live one. But lacking such a definite value,24 the
problem that the catch-all gets crowded out by explicit hypotheses does not arise.

There are, however, differences in how the vocal and silent approaches to open-
minded Bayesianism deal with reassessing the posteriors, and in what role they give
to old evidence. The vocal approach requires us to assign a prior to the new hypothesis
HN after the fact, and to compute its current posterior on the basis of this assignment.
The other posteriors are obtained via a renormalization.25 This approach requires us
to evaluate probabilities retroactively: priors have to be set post hoc, for hypotheses
that were not known at the time.26 To our mind this need not be a cause of concern
though. One cannot unlearn the evidence that has been gathered, but it is still possible

24 Or assuming it to be unity minus an infinitesimal: see Sect. 4.4.
25 More accurately, the decomposition into definite and indefinite factors changes in a way that is reminis-
cent of a renormalization.
26 In this regard, our approach resembles proposed solutions that employ counterfactual credences.

123



Synthese (2016) 193:1225–1250 1245

to use base rates or other sources of objective information to determine the priors
retroactively.27

The silent approach, by contrast, requires us to assign a posterior to the new hypoth-
esis HN without offering an explicit recourse to the prior probability assignments over
the old hypotheses. The point here is rather subtle. It is in virtue of a prior probability
assignment of τN to the old catch-allΘN that we canmeaningfully claim, as part of the
vocal approach, that the prior of the old catch-all is decomposed into the prior of a new
hypothesis HN and the prior of a newcatch-allΘN+1. Since the silent approach remains
silent precisely on this prior, it is hard to see howwe can retroactively decompose it. So
in this approach, it is not clearwhether old evidence ever confirms new theories. Unless
we have set the value of Pt=2(HN | ΘN+1) by means of a reconstruction that ulti-
mately depends on Pt=0(HN | ΘN+1), its value is not obtained via conditionalization
on E . In silent Bayesianism, the old evidence is therefore not given a new role.

Now that we have discussed the role of evidence in two forms of open-minded
Bayesianism, it is time to take stock. Both approaches suffer some drawbacks. The
vocal proposal comeswith the complication of a heavy notational load that hampers the
evaluation of the degree of confirmation. The silent proposal allows too much freedom
in the assignment of a posterior to the new hypothesis—so much freedom, that it is
not clear that the old evidence has any impact. For these reasons, we propose a hybrid
approach to open-minded Bayesianism, that combines the best elements of both.

On our hybrid proposal, the open-minded Bayesian remains in the silent phase,28

except for the times at which her theoretical context changes. Unlike a standard
Bayesian, the open-minded Bayesian is allowed to change the algebra to which prob-
abilities are assigned and thus to assign non-zero probabilities to the new hypothesis,
which is impossible without a catch-all. Then she enters the vocal phase: she engages
in assigning a prior to the new hypothesis (retroactively) and computing its posterior
given the evidence (also retroactively) and renormalizing the other priors.

Open-minded Bayesianism thus offers a particular perspective on the use of old
evidence for confirming a new theory. On the conceptual level, it shows how our
perception of evidence and confirmation changes if we move from one theoretical
context to another. Relative to one set of hypotheses, the data were telling towards
one particular candidate hypothesis, and so counted as evidence that confirms this
candidate. But with the inclusion of a new hypothesis, the data may tell against the
formerly best candidate, and so count as evidence that disconfirms it. We take it to
be a virtue of our model that it brings out this context-sensitivity of evidence and
confirmation.

27 Vocal open-minded Bayesianism can be compared with the analysis of the problem of old evidence
given by both Garber (1983) and Jeffrey (1983), who concluded that what is discovered is the fact that the
new theory entails the old evidence. To model agents who discover a statement of this kind, they proposed
weakening the Bayesian background assumption of logical omniscience. The vocal approach paints a
similar, reconstructive picture, though it is not logical omniscience that fails the agent: what is discovered
upon the change in the algebra at t = 2, is how to express the posterior (and hence the confirmation) of the
new hypothesis given the old evidence, which was inexpressible at t = 1.
28 We might call the silently open-minded Bayesian a relativized standard Bayesian: the probabilities con-
ditionalized on the theoretical context appearing in the humble approach equal the corresponding uncondi-
tional probabilities of the approach without a catch-all.

123



1246 Synthese (2016) 193:1225–1250

4.3 Illustration of the hybrid approach

Tomake our proposal for a hybrid approach more vivid, we apply it to the food inspec-
tion example. Initially, when the food inspector implicitly assumes her equipment to
be working properly, she can be described by the silent approach to open-minded
Bayesianism.Within the initial context, she only needs to take into account two explicit
hypotheses: the kitchen is clean or it is not. She assigns prior probabilities to these
hypotheses and she computes posteriors, but these assignments are conditional on her
implicit assumption that the testing strips are uncontaminated (as well as the many
other background assumptions collected in the theoretical context). So far, she acts
much like anyBayesianwould; her open-mindednesswill surface onlywhen provoked.

The result, that five dishes out of five appear to be infected, was initially unlikely
on both of her explicit hypotheses. (Recall that the initial likelihood was 10−10 in the
case of a clean kitchen and 3.2× 10−4 in the case of an unclean kitchen.) Computing
the posterior probabilities, which implicitly requires us to assume that the correct
hypothesis is among the two hypotheses being considered, leads to a value close to
zero (3.1×10−7) for a clean kitchen and a value near to unity (1−3.1×10−7) for an
unclean kitchen. If the priors were equal (or at least of the same order of magnitude),
then on any measure of confirmation, the evidence provides very strong confirmation
for the hypothesis that the kitchen was unclean.

The observation that it is highly unlikely even for an unclean kitchen to produce
five infected dishes may suggest that there is an even better hypothesis ‘out there’ that
has not yet been taken into account. Indeed, seeing the result prompts the inspector
to reconsider one of her implicit assumptions and she turns its negation into a new
theory (and associated statistical hypothesis): the testing stripsmay not have been clean
after all (bias = 1).29 (Of course, this is still but one out of many other alternative
hypotheses.) Our framework for open-minded Bayesianism is able to represent this
formally.

In the vocal phase, the agent shaves off her third hypothesis from the catch-all
and revises her probability assignments: she retroactively assigns a prior to the new
hypothesis, adjusts the priors of the two old hypotheses by a suitable factor, and
computes the likelihood of the old evidence on the new hypothesis (as described in
Sect. 3.3.3). All this leads her to reassess the posteriors of the old hypotheses and to
assign a posterior to the new hypothesis. Assuming equal priors, the final result is
this: within the new theoretical context, the posterior of the new hypothesis given the
old evidence is more than three thousand times higher than that of the hypothesis that
was best confirmed within the old theoretical context. Irrespective of the details of the
confirmation measure and assuming priors of at least equal orders of magnitude, this
implies that the old evidence strongly confirms the new hypothesis and disconfirms
the others. This illustrates that it is the shift in theoretical context itself that may cause
old evidence to confirm a new hypothesis.

29 The old evidence was simply ‘five out of five dishes are infected’, whereas in the new theoretical context,
the old data (five positive test results) are reinterpreted as ‘five out of five dishes appear to be infected’.
This illustrates how the evidence itself may change with the advent of a new hypothesis and that raw data
should be sacrosanct; cf. footnote 18.
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Once the agent is satisfied that, for the evidence currently at hand, the new theoretical
context includes all the relevant hypotheses, she may start to conditionalize all her
findings on this context and thereby enter a new silent phase. The remaining catch-all
hypothesis need not be mentioned again until new doubts arise.

In Kuhnian terminology, the silent version of open-minded Bayesianism is suffi-
cient for describing episodes of normal science (and if the conditionalization on the
theoretical context remains implicit, it is indistinguishable from the usual Bayesian
picture), but the vocal version of open-minded Bayesianism is required to model rev-
olutionary changes in the theoretical context.

4.4 Further research

With the foregoing, we believe we have only scratched the surface of the matter at
hand. Many avenues for further research lay open for exploration. In what follows,
we briefly mention a number of these avenues. With this we showcase our ongoing
research on this, we invite the reader to join in, but mostly we indicate where we
ourselves feel that our account is lacking.

One important consideration that has received relatively little attention in the fore-
going concerns degrees of confirmation. Our goal with this paper was to show that
we can accommodate the introduction of a new theory and hence a new empirical
hypothesis in the Bayesian framework, and that old evidence can play a role in the
determination of the posterior probability of this new hypothesis without violating
probabilistic coherence. We have been mostly silent on how the posteriors may be
used to compute a degree of confirmation, so that the impact of old evidence can
be expressed more precisely: any such story will supervene on the probability assign-
ments. However, a complete account of open-mindedBayesianismmight involvemore
detail on degrees of confirmation.

Another aspect of the process of theory change targeted in this article certainly
deserves a more detailed normative treatment: the decision to introduce a new theory.
In the foregoing, we have treated this decision as completely external to the model.
However, we also indicated that the search for new theories may be motivated by
a so-called statistical model selection criterion, e.g., by a measure of the predictive
performance of the agent, or by some other score that attaches to the data and the
hypotheses currently under consideration. We think that our account, which may pro-
vide rationality constraints on the transition from one theoretical context to another,
can be combined fruitfully with an account of how theoretical contexts are evaluated
and selected.

Furthermore, we should stress that we have only considered one type of theory
change—a change that may be captured by shaving off new hypotheses from a catch-
all hypothesis.30 In general, theory change may lead to other types of change to the

30 Earman (1992, p. 196) has introduced a distinction between two forms of theory change: “The mildest
form occurs when the new theory articulates a possibility that lay within the boundaries of the space of
theories to be taken seriously but that, because of the failure of logical omniscience […], had previously
been unrecognized as an explicit possibility. The more radical form occurs when the space of possibilities
is itself significantly altered.” Although this is a helpful way of categorizing theory change, it is not an
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domain of the probability function,A(Θ ×Ω), in various ways. For one, we have not
explicitly considered changes in the space Ω of empirical possibilities. Notice that
such changes are generally more radical than changes in the theoretical realm: theories
obtain their empirical content in terms of hypotheses that are formulated by means of
Ω . One captivating question concerns the exact reach of our account of new theory
and old evidence. Specifically, can we assume at the outset that Θ and Ω are rich
enough to accommodate all conceivable theory changes? An answer to this question
requires us to survey a rich landscape of theory changes as moves in an encompassing
space of possible theories.31

We would like to mention one other aspect to theory change that is related to two
issues discussed above, namely the decision to introduce a new theory and the type of
theory change effected by that. It concerns the notion of awareness. Hill (2010) and
Dietrich and List (2013) have argued that a decision problem obtains new dimensions
when the agent is made aware of considerations that were previously not live to her.
We think that roughly the same can be said about the epistemic problems an agent
faces, and that the foregoing offers a natural model for an agent that becomes aware of
a theory while performing a predictive, or more generally an epistemic task. It seems
natural to combine the frameworks for modeling awareness.

Finally, we briefly mention two possibilities that open-minded Bayesianism offers,
when it is combined with ideas on relative infinitesimals (in the sense of Wenmack-
ers 2013). On one side of the spectrum, the framework allows us to model radically
skeptical yet empiricist epistemic attitudes: all the priors and posteriors of explicit
hypotheses, old and new ones, may be very small, indeed infinitesimally small, com-
pared to the probabilities associated with the catch-all. That is, we may choose τN

to be some number very close to one. Despite that, a particular theory may have a
large prior or posterior relative to the other theories in the theoretical context. The
framework thus allows us to model a radical sceptic who is nevertheless sensitive to
differences in empirical support. On the other side of the spectrum, the framework of
open-minded Bayesianism allows us to model practical certainty without spilling over
into dogmatism.Wemay be aware of the existence of certain hypotheses, but wemight
choose not to include them in our considerations: theymay seem irrelevant to the kinds
of evidence under study (assuming statistical independence), they are deemed highly
unlikely,32 including them requires too high a number of computations, or other prag-
matic reasons. However, upon receiving falsifying or strongly disconfirming evidence,

Footnote 30 continued
absolute one: the kind of theory change that we have discussed can be reconstructed as a radical one in the
silent approach (in which ΘN is extended to ΘN+1) or as a mild one in the vocal approach (in which the
partition on Θ is refined). Presumably, radical changes that can be reconstructed as mild changes are best
considered as intermediate cases, since both milder and more radical changes are conceivable.
31 Recall that we have defined Θ as the set of all probability functions on a common domain, A(Ω).
Arguably, it may suffice to choose a smaller set Θ , namely the set of all computable probability functions
on the domain A(Ω). This is the idea behind the celebrated theory of universal prediction by Solomonoff
(1964).
32 In a probabilistic framework, very few theories (or better: the associated statistical hypotheses) can ever
be refuted completely, yet some theories—say, phlogiston theory—may become so unlikely that no scientist
ever considers them again once a better alternative has been found.
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we might want to reconsider some of these omissions.33 The catch-all hypothesis with
an infinitesimal prior may then serve as a reservoir for the hypotheses that seemed
dispensable at one point in time, but that later on turn out to be relevant. Falsifying
or strongly disconfirming evidence may lead to a situation in which the probability of
the catch-all is no longer regarded as a relative infinitesimal: the marginal likelihood
becomes so small that it becomes comparable to the probability of the catch-all.34

The above list of research topics indicates that our resolution to the problem of old
evidence and new theories leaves much to be done. However, the list also suggests
that the framework of open-minded Bayesianism provides access to several interesting
aspects of belief dynamics that fall outside the scope of standard Bayesianism.We call
to mind what Sue says in Earman (1992, p. 235): “By all means keep an open mind,
but not so open that your brain falls out.” It seems to us that open-minded Bayesianism
does precisely that.
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