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Abstract
What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and
the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be
integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based
stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future
and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and
available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on
software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for
areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric
vision.
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1 Introduction

Designing and building tools able to support human activi-
ties, improvequality of life, and enhance individuals’ abilities
to achieve their goals is the ever-lasting aspiration of our
species. Among all inventions, digital computing has already
had a revolutionary effect on human history. Of particular
note is mobile technology, currently integrated in our lives
through hand-held devices, i.e. mobile smart phones. These
are nowadays the de facto for outdoor navigation, capturing
static and moving footage of our everyday and connecting us
to both familiar and novel connections and experiences.

However, humans have been dreaming about the next-
version of such mobile technology—wearable computing,
for a considerable amount of time. Imaginations are present
inmovies, fictional novels and pop culture1.Notwithstanding
the fast progress of Artificial Intelligence, and the hardware
advances of the last 10 years, our ability to fulfil this dream
is lagging behind.

In computer vision, research papers on egocentric vision
have instead limited their focus to a handful of applications,
where current technology can already make a difference.
These are: training or monitoring in industrial settings, per-
forming adhoc and infrequent tasks such as assembling a
piece of furniture, preparing a new recipe, or playing a group
game in a social setting. These showcase egocentric wear-
ables as niche devices very distant from everyone’s everyday
needs. This perspective has not only limited our chances to
convince others that egocentric vision is a key technology of
our future, but it also restricted our ability to push the bound-
aries and remove obstacles to the integration of egocentric
devices as the ultimate replacement of themobile phonewith
unlocking of additional capabilities.

To make a difference, we choose a future-to-present per-
spective in this paper, where we start from the envisaged
future then analyse the fundamental tasks that are required.
This approach allowsus to take amore systemic and informed
perspective, highlight the gap between the expected appli-
cations and the current technological status, and provide
insights into promising future research directions. While

1 Few examples: (1)Molly’sVision-Enhancing Lenses from theNeuro-
mancer novel, William Gibson, 1984. (2) JVC Personal Video Glasses
from the Back to the Future II movie, 1989. (3) Iron Man Suits with
J.A.R.V.I.S. AI system from Marvel movies 2008–2015. (4) AI Ear-
buds and smartphone in shirt pocket from the Her movie, 2013. (5)
E.D.I.T.H. smart glasses from the Spider-Man: Far From Homemovie,
2019.

technology forecasting is not a very common approach to
research review, Firat et al. (2008) note its value in prioritis-
ing R&D. We take a scenario-based approach, amongst the
options proposed in Firat et al. (2008) for future forecasting.

Our work is related to previous surveys in egocentric
vision. Betancourt et al. (2015) summarised the evolution of
the state of the art in egocentric vision analysis from 1997 to
2014, the year of writing of the survey. Nguyen et al. (2016)
reviewed algorithms for the recognition of activities of daily
living from egocentric vision. Bolaños et al. (2016) surveyed
approaches for visual storytelling from the analysis of ego-
centric photo-streams. Del Molino et al. (2016) provided a
survey of techniques for used to summarise egocentric video.
Rodin et al. (2021) analysed algorithms, datasets and tasks
for action anticipation in egocentric vision. Núñez-Marcos
et al. (2022) summarised works in egocentric action recog-
nition. Bandini and Zariffa (2023) considered works based
on the analysis of hands in egocentric vision.

All previous survey papers, with the exception of Betan-
court et al. (2015), addressed specific topics in egocentric
vision. In contrast, this paper offers a holistic overview. We
also offer a comprehensive and updated view of the current
status of egocentric vision, covering topics of localisation
(Sect. 4.1), scene understanding (Sect. 4.2), recognition
(Sect. 4.3), anticipation (Sect. 4.4), gaze understanding and
prediction (Sect. 4.5), social behaviour understanding (Sect.
4.6), full-body pose estimation (Sect. 4.7), hand and hand-
object interactions (Sect. 4.8), person identification (Sect.
4.9), summarisation (Sect. 4.10), dialogue (Sect. 4.11), and
privacy (Sect. 4.12).

The remainder of this paper is organised as follows. In
Sect. 2, we present our vision of the future of egocentric
vision through character-based stories and associated visuals.
Section 3 relates these stories to research tasks, structuring
these into familiar research questions. In Sect. 4, we sur-
vey each task with subsections dedicated to seminal works,
current state-of-the-art, dedicated datasets to these tasks and
limitations to future applications. In Sect. 5, we present gen-
eral datasets frequently used in egocentric vision beyond a
single task. Finally, in Sect. 6 we conclude by providing a
perspective to key questions that need to be unlocked soon
for a step-change in egocentric vision.

2 Imagining the Future

With the aim of performing an inspirational review of the cur-
rent status of egocentric vision, we look into how research
outputs are expected to impact our everyday life in the near
future and investigate the gap still existing towards those
results. The envisaged future takes the shape of five dis-
tinctive use cases that are grounded in either a location or
an occupation. In presenting each use case, we first sum-
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marise the existing relevant technology and thenwe introduce
future narratives in the form of brief character-based stories,
supporting the readers’ imagination through artist-drawn
sketches. The protagonists of the plots use EgoAI, a wear-
able device that enables in-situ multimodal sensing from
the wearer’s perspective and provides ego-based assistance.
We associate story ��p arts with research tasks (marked by
section number ) and later revisit the link between these use-cases
and research tasks in Sect. 3.

2.1 EGO-Home

Presently, smart home technology encompasses a range of
Internet of Things (IoT) devices. They either control specific
domestic environmental variables (e.g. light, temperature,
humidity, CO2 level, energy consumption) or manage the
operation of electrical appliances on the basis of occupants’
preferences. Surveillance cameras are increasingly being
installed both indoors and outdoors to ensure safety and
enable remote monitoring of pets, children, and the elderly.
Furthermore, there has been a recent surge in the introduc-
tion of speakers assistive devices like Amazon Echo, Google
Nest, and Apple HomePod, whichmainly rely on audio input
for interaction and event tracking. All these tools, though
empowered by machine learning techniques, are dedicated
to a few specific tasks and they are static in nature, covering
only limited areas of the home. EgoAI will replace the set of
heterogeneous sensing tools currently in operation, but also
provide much more.

Sam (Fig. 1) is finally at home after a hard-working day.
A good dinner is certainly needed. When Sam opens the
fridge, EgoAI automatically analyses present stock in view
and suggests a tomato soup as the tomatoes look perfectly
ripe. Moreover, EgoAI has kept track of Sam’s food intake
for that day and the soup sounds like the best complemen-
tary nutrition. Sam does not enjoy cooking much, but EgoAI
switches on the 3D projection of the Remy from the movie
Ratatouille to help him through the soup prep. Remy jumps
around his kitchen efficiently avoiding obstacles and appears
to hold the knife while he chops the tomato encouraging Sam
to slice his tomatoes thinner. Remy says, “this way the tomato
will cook evenly”. The audio appears to come from the direc-
tion of the chopping board, where now Remy is comfortably
sitting. Sam is continuously impressed by how fun it is to
cook with his 3D projected friend. Sam is in doubt about
the amount of spice he has added and whether more is rec-
ommended. EgoAI keeps track of ingredients, recommends
more spice to be added and reminds Sam about the bread
slice he’s nearly forgotten in the toaster.

While enjoying his warm soup, Sam asks EgoAI to take
him back to that beach he visited last summer. Sam is virtually
transformed to that same view he capturedmanymonths ago,
and relaxes by listening to the waves hitting the shore while

Fig. 1 EGO-Home. Character-based story envisaging the future of
egocentric vision at home. Illustration of the story fromSect. 2.1. EgoAI
assists Sam during dinner preparation and keeps him entertained with
interactive and immersive experiences. 4.2 3D Scene Understanding
��1 ��2 ��3 ��4 ��7 ��8 ��9 . 4.3 Object and Action Recognition ��1 ��5 ��6 ��10 .

Measuring System ��6 . 4.11 Dialogue ��6 . 4.10 Summarisation and
Retrieval ��7 ��11 . 4.7 Full-body Pose, 4.8 Hand Pose and 4.6 Social
Interaction ��9 . Medical Imaging ��10 . Messaging ��10 ��11
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eating his hot soup. He laughs at the absurdity of the soup at
the beach. Before heading to bed, Sam enjoys a group card
game with his friends who recently moved to Australia. They
are connected though their own EgoAI, which makes Sam
feel as they are all physically present with him. He can hear
the sound of the cards shuffling as his two friends appear
seated around his table. EgoAI is a great game companion
and points out a strategic move to make when he’s about to
play a suboptimal card.

While getting ready for the night, Sam feels again that
itch on the wrist that has annoyed him the whole day. EgoAI
assures him that with high probability it is just the cuff of his
new shirt that irritated the skin, but also offers to take care
of this by sending a picture to his physician for advice. As
Sam heads to bed, EgoAI proposes a short clip from his day
that could be shared on social media, but Sam thinks “not
today” and asks EgoAI to delete the post draft.

2.2 EGO-Worker

Current vision-based systems are being integrated in large
scale workshops and factories, but these mainly rely on
fixed cameras, which need to be installed in all the areas
of interest and can only perceive a limited view of the scene,
hence restricting their usefulness. Training and monitoring
of workers is mostly offline through recorded material or
over-the-shoulder advice from experienced workers. Often
the knowledge is lost as one worker changes job. Feedback
toworkers about their performance is based on heuristic auto-
matic ormanual calculations andoften does not correspond to
actual performance. This is often disconnected from training
and advice for how to improve performance. While tech-
nology is employed for workers’ safety increasingly, this is
below the levels expected with most technological advances
focusing on improved productivity. EgoAI will fill this gap
and make the lives of workers safer and more comfortable.

As with every morning, Marco (Fig. 2) begins his shift by
looking at himself in the mirror: in this way EgoAI can verify
if he is properly wearing the Personal Protection Equip-
ment (PPE) which will guarantee his safety. After this check,
Marco asks EgoAI where in the factory he is needed today.
EgoAI localises Marco and provides route instructions to
reach his workstation for the day, avoiding dangerous areas
with suspended loads and the paths reserved for the tran-
sit of vehicles. Marco trusts EgoAI navigation abilities and
always remembers that day when EgoAI swiftly guided him
to the closest fire extinguisher to avoid flames spreading.

As Marco reaches his workstation, EgoAI passes a mes-
sage from the manager about today’s goal: testing a set of
electrical boards. Since the hand-held measuring tool is a
new brand, EgoAI guides Marco through the basic function-
ality useful to correctly test the boards. Unfortunately,Marco
gets distracted and is about to probe the electrical board

Fig. 2 Character-based story envisaging the future of egocentric vision
in industrial settings. Illustration of the story from Sect. 2.2. EgoAI
assists Marco from the start of his day until its conclusion. Safety
Compliance Assessment ��1 . 4.1 Localisation and Navigation ��2 ��5 .
Messaging ��4 . 4.8 Hand-Object Interaction ��5 . 4.4 Action Antici-
pation ��6 . Skill Assessment ��7 . 4.11 Visual Question Answering ��8 ,
4.10 Summarisation ��8
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while it is still plugged in. EgoAI detects the risk and turns
off the IoT electrical socket on which the board is connected
while promptly alerting Marco.

For the rest of the day, EgoAI validates Marco’s work
making sure that all the procedures are properly and safely
completed, answering his questions in case of doubts, and
estimating his stress level to make sure that he takes breaks
when needed.

By the end of the day, EgoAI thanks Marco for his very
hard work particularly with all new procedures involved and
checks on his feedback for better training. EgoAI sends this
feedback on any misunderstandings and obstacles automati-
cally to future training sessions and planning (Fig. 3).

2.3 EGO-Tourist

Today, travelling abroad for tourism and vacations has more
than doubled in the past 20 years.2 Technology and art, both
ancient and modern, are becoming increasingly bounded,
with the former increasing the spread and the possibility of
interaction with the latter. Indeed, the use of technological
tools such as digital audio guides or virtual tours is becoming
predominant in museums and touristic sites with engage-
ment being crucial to increasing the visitor’s interest. Despite
modern tools, the visitor experience still lacks a form of per-
sonalisation and necessitates active interaction from the user.
EgoAI on the other hand, fills these gaps andmakes travelling
a fun and interactive experience.

Claire (Fig. 3) has just reached Turin as the last stop of her
Italian holidays. She is thrilled to start her visit but does not
knowmuch about the city. Luckily, EgoAI is already tuned on
Claire’s tastes and prepared her a personalised and exciting
1-day itinerary. EgoAI knows Claire is a big fan of muse-
ums so suggests half a day to visit the famous local Egyptian
one. During the visit, EgoAI activates the 3D projection of
Cleopatra to guide and interact with Claire. Cleopatra leads
Claire through the artworks and proposes her the most suited
path. While Claire is asking Cleopatra information about a
sarcophagus, she observes virtual elements being added to
the scene which bring the artwork to life. Claire feels trans-
ported to ancient Egypt where she can manipulate and use
the pieces as it was intended.

At the end of the visit, Claire decides to keep Cleopatra as
her AR guide for lunch and asks her for a good pizza place.
While enjoying her meal, Claire asks Cleopatra questions
about famous Italian monuments she visited along her tour,
augmenting her understand of the history behind them.

EgoAI has booked an afternoon at the thermal baths. As
the next bus is not due for another 20 min, EgoAI suggests
Claire a proper Italian coffee at a nearby cafè sided by a
slice of bunet, a popular Turin-based dessert. Claire would

2 https://ourworldindata.org/tourism.

Fig. 3 Character-based story envisaging the future of egocentric vision
in tourism. Illustration of the story from Sect. 2.3. EgoAI accompanies
Claire throughout her itinerary inTurin.Recommendation andPersonal-
isation ��1 ��2 ��8 ��9 ��10 ��11 . 4.2 3DSceneUnderstanding ��2 ��3 ��4 ��5 ��6 .
4.5 Gaze Prediction ��5 . 4.1 Localisation and Navigation ��3 ��4 ��8 ��12 .
Messaging ��7 . 4.11 Dialogue ��8 . 4.3 Action Recognition and
Retrieval ��11 . 4.10 Summarisation ��13
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like to learn the recipe, so EgoAI offers a first-person view
from the chef who prepared that delicacy earlier in the day.

After the thermal baths, EgoAI checks whether Claire is
interested in buying some souvenirs for her family. EgoAI
then retrieves the closest souvenir shop based on each rela-
tive’s taste and the budget set by Claire.

Claire was engaged during her 1-day itinerary and did not
worry about taking pictures. EgoAI actively saved relevant
snapshots of the day, and videos of her favourite moments.

2.4 EGO-Police

In 2023, it has been almost 10 years since the adoption of
body-worn cameras by several police departments around
the world. Practical experience showed that they have a
large potential in enhancing transparency and facilitating
investigations, besides increasing officers’ accountability
and safety. Still, cameras provide only passive support to law
enforcement, with data storage and post-processing analy-
sis requiring a consistent time and cost effort. We can easily
imagine how constables would benefit from AI-empowered
wearable vision devices.

Judy (Fig. 4) is a police officer who uses EgoAI every
day of her service. She finds it highly convenient: the
device is much lighter than the usual equipment and
serves as body camera, radio, phone and flashlight. More-
over, it makes her feel safe as she knows that EgoAI is
constantly pinpointing her position and would send an
alert to headquarters if she encounters unusual events or
dangerous situations. For instance, last month Judy was
assigned to a high-crime zone while searching for a sus-
pect. EgoAI helped Judy navigate through the shortest safe
path to several target places reported as possible hide-
outs. While patrolling the streets, one of the fellow officers
shared via EgoAI a clip from a surveillance camera one
block east: the suspect was moving in Judy’s direction.
Despite the crowds, EgoAI detected and re-identified the
man before he passed Judy. She was able to swiftly arrest
him.

Judy also appreciated the help of EgoAI when she had
to manage an abandoned backpack at the airport. EgoAI
accessed the lost-and-found database of the airport but no
match was found. Then, from thermal and multi-spectral
sensors, it calculated a low risk for explosive content and
projected a clear red circle around the backpack with the
minimal stand-off distance. EgoAI connected Judy with the
bomb squad and live-shared the observed scene: the experts
agreed with the initial evaluation and excluded any risk
that the backpack could contain an explosive. Then, EgoAI
guided Judy with exact instructions to grasp the backpack
and open it. Luckily it was only containing a pair of old ten-
nis shoes.

Fig. 4 Character-based story envisaging the future of egocentric vision
within the police force. Illustration of the story from Sect. 2.4. EgoAI
helps Judy, a police officer, during her day keeping her city safe. 4.1

Localisation and Navigation ��1 ��2 . Messaging ��1 ��3 ��11 . 4.3 Action
Recognition ��2 ��13 . 4.9 Person Re-ID ��2 ��4 . 4.3 Object Detection and
Retrieval ��7 . Measuring System ��8 ��9 . Decision Making ��9 . 4.2 3D
Scene Understanding ��10 . 4.8 Hand-Object Interaction ��12 . 4.10 Sum-
marisation ��13 . 4.12 Privacy ��14
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At the end of every working day, Judy does not need to
fill out any form or detailed reports. Thanks to EgoAI, rele-
vant events are saved and transformed into a document with
related images and video recordings. Importantly, the sensi-
tive information possibly captured by EgoAI during Judy’s
work is properly identified and secured under admin rights
to protect citizens’ privacy.

2.5 EGO-Designer

Nowadays, films are full of digital artefacts, not only sci-
fi ones but also realistic dramas. These include fantasy
environments as well as scenes that cannot simply be shot
on-site. Current technologymakes use of neon-green screens
which are then removed using video editing software in
post-production. However, this makes it difficult for the
scenographer to visualise the final effects while shooting,
and the actors must perform without having a full perception
of the 3D scene around them. A movie production crew may
largely benefit from egocentric devices for augmented real-
ity (AR), digital rendering, and 3D modelling leading to a
completely innovative way to experience the movie creation
processes.

It is another hot day in Hollywood and Stanley (Fig. 5)
has promised the movie director that the scenography will
be ready first thing tomorrow. He is at the studios wearing
EgoAI which is augmenting the surrounding environment:
the real scene he is looking at is the reconstructed hall of a
villa in New York during the 1920s. There is a fancy large
spiral staircase but besides that, it is almost empty and should
be designed to host a glamorous party.

EgoAI helps Stanley to virtually add a luxurious wallpa-
per with floral patterns and a ceiling adorned with intricate
moldings. He adjusts the position of two digital chandeliers
so that they cast a warm, golden glow across the room. EgoAI
also suggests adding velvet couches on the right and a carved
wooden table on the left with crystal decanters, champagne
flutes, and a variety of liquor bottles. As EgoAI has access to
the database of the equipment warehouse, Stanley can search
for the available pieces of furniture which are most similar
to what he has in mind so that the production assistants can
position them in the scene. EgoAI also allows Stanley to visu-
alise how the actors should move in the space around the
musicians in the middle of the hall.

The scene is promptly shared with the actors. Through
their EgoAI, actors are immersed inside the changing and
moving 3D computer-generated environment so that they can
visually engage with elements present in front of them and
rehearse. Their natural acting is enhanced by their familiar-
ity with the scene before shooting starts.

Stanley has also some suggestions for the make-up artists
about the colour palettes thatwould stand outwith the chosen
lights. It will be very easy to share information with them

Fig. 5 Character-based story envisaging the future of egocentric vision
in the entertainment industry, focusing on the perspective of scene and
makeup designers. Illustration of the story from Sect. 2.5. EgoAI helps
Stanley, the scenographer, and all the crew during movie production.
4.2 3D Scene Understanding ��1 ��2 ��3 ��4 ��5 ��6 ��7 ��8 . Recommenda-
tion ��3 . 4.3 Object Recognition and Retrieval ��3 ��4 . 4.7 Full-body
Pose Estimation ��5 ��6 . 4.6 Social Interaction ��6 . 4.5 Gaze Prediction
��6 . 4.8 Hand-Object Interaction ��7 . Messaging ��6 ��8
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as they are also using EgoAI with advanced 3D modelling
techniques to project guidelines on the actor’s face while
applying the make-up.

At the end of the day Stanley feels satisfied and he is sure
that his work will be appreciated: through EgoAI the director
will be able to preview the planned scene and light effects in
real-time while shooting the scene, without having to wait for
playback. EgoAI has saved the industry millions of dollars,
with repetitions of scenes dropping to one fourth compared
tomovies captured in the ancient era before EgoAI was intro-
duced.

3 FromNarratives to Research Tasks

Various research tasks can be identified in the above
character-based narratives/stories. While some are only part
of the future (e.g. particularly those related to augmented
reality (AR)), others are currently achieved either via remote
cameras (e.g. person identification) and Internet-of-Things
devices (e.g. scene monitoring), or via smartphones (e.g.
navigation). Despite their connectivity, local devices are
typically restricted in coverage depending on where they
are originally installed, while smartphones inevitably hin-
der interaction with the environment as they involve manual
handling. It is our vision that most of the mentioned tasks
will be seamlessly integrated into one egocentric device that
we refer to as EgoAI in our stories. It will be person-centric,
thus wearer-focused, and will also travel anywhere with the
wearer.

In this section, we provide a mapping from the narra-
tives above to research tasks as currently understood by the
research community. We also examine whether these tasks
can be performed using existing wearable devices or if new,
more advanced and powerful ones are required to overcome
the limitations of those currently available on the market.
This sets the scene for the literature survey of the research
tasks in Sect. 4.

For any task that involves AR technology, the need arises
for in-depth 4.2 3D scene understanding. This is exemplified
by the EGO-Home’s augmented reality guides for cooking,
EGO-Tourists’ immersive museum experiences, and EGO-
Designer’s creation of imaginary scenes. Our envisaged AR
is also endowed with directional audio synthesis, where
auditory feedback enhances the realism of the augmented
environment, as in the case of the mouse or the sounds of
cards being shuffled in EGO-Home. To move within the 3D
scene, 4.1 localisation and navigation emerge as recurrent
tasks, both in the case of constrained spaces such as the fac-
tory in EGO-Worker as well as in open areas, as evident
in EGO-Police’s use of city maps. The abilities of current
egocentric devices to perceive 3D scenes is continuously
evolving due to the integration of additional environment

cameras (e.g., Microsoft HoloLens 2,3 Xreal Light,4 Magic
Leap 2,5 Project Aria Glasses6). These devices can scan and
create a 3D model of the static environment to localise the
wearer and allow them to navigate more easily. Dynamic as
well as outdoor scenes still challenge these setups and this
remains an active area of research for a realistic integration
of 3D understanding in the future.

Inside the scene, high-level understanding of actions is
carried out. Tasks like 4.3 action recognition undergo a
paradigm shift with a transition in perspective from third-
person to first-person view. In EGO-Worker, the device
validates the user’s actions in a workplace setting. Particu-
larly noteworthy is 4.4 action anticipation, where the device
can promptly prevent dangerous situations. There are cur-
rently no smart glasses on the market that are able to robustly
recognise human actions in real time. Usually, data from the
RGB camera and depth sensor of the glasses are collected
and processed offline due to hardware limitations.

Equipped with 4.5 gaze prediction, EgoAI can track the
user’s eye movements and attend to objects seamlessly with
their gaze. This capability is noted in both EGO-Tourist,
where the user manipulates the artworks in the museum,
and EGO-Designer, where the user virtually re-positions the
objects in the virtual set. Nowadays, gaze tracking is a rela-
tively stable feature but requires an eye calibration step before
use and there remains the potential for drift over time. It has
been implemented in wearable devices such as Microsoft
Hololens2, Magic Leap 2, Project Aria Glasses and Apple
Vision Pro.7

Analysing the social context of the camera wearer through
4.6 social behaviour understanding is also of significant
importance. Social interactions are explored in EGO-Home,
where users engage in interactive games with others con-
nected through their devices. By employing 4.7 body pose
estimation techniques from a first-person perspective, each
user’s pose is accurately reconstructed and seamlessly inte-
grated into AR. Hands in particular are actively interacting
with the environment and other individuals. 4.3 action and
object recognition, 4.8 hand-pose estimation and hand-
object interactions are key to EgoAI. In EGO-Police, the
device intelligently comprehends user actions, providing pre-
cise instructions, like how to open the suspicious backpack.
In EGO-Worker, EgoAI helps to operate a new measuring
tool.

Recognising the user’s identity and those of the bystanders
plays a crucial role in social relationships. It has also a rel-
evant role in security, going beyond what can be done with

3 https://www.microsoft.com/en-us/hololens.
4 https://www.xreal.com/light/.
5 https://www.magicleap.com/magic-leap-2.
6 https://about.meta.com/realitylabs/projectaria/.
7 https://www.apple.com/apple-vision-pro/.
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fixed cameras as in the case of 4.9 person re-identification
described in the EGO-Police scenario. Of course, the iden-
tity, as well as users’ data, should be properly safeguarded
to ensure responsible use of the technology. As the wear-
able device can be in an “always-on” mode, it becomes
imperative to address 4.12 privacy concerns and establish
robust protection measures. Different laws regulate data pro-
tection and privacy in different countries, such as the General
Data Protection Regulation (GDPR) in Europe, the Califor-
nia Consumer Privacy Act (CCPA), and the China Cyber
Security Law (CCSL). However, the wearable glasses that
are currently available in the market do not have strategies
for compliance and it’s left to the user to regulate the device
by interactive privacy switches.

A related further issue is how to manage the ongoing and
abundant stream of captured data that would be extremely
costly to store in raw form. An efficient 4.10 summarisation
and reporting process is clearly needed in multiple applica-
tion scenarios. In both EGO-Home and EGO-Police, all the
relevant events are saved and transformed into a report with
images and video recordings. Identifying interesting events
to memorise is also noted in EGO-Tourist. Thanks to EgoAI,
it is also possible to retrieve relevant data or objects within
a database by exploiting visual cues in both EGO-Police
and EGO-Designer. In EGO-Worker, EgoAI can conduct
skill assessments by monitoring whether the user correctly
executes all the required procedures during their workday.
Support in skill training is provided by the 4.11 Visual Ques-
tion Answering application (VQA) that replies to Marco’s
questions by translating instructional videos into a step-by-
step guide in the users’ view.

By analysing the user’s past data, the egocentric device
can extract their preferences and offer personal recommen-
dations. For instance, in EGO-Home, EgoAI proposes dinner
recipes according to the user’s preferences and eating history.
Similarly, in EGO-Tourist, it suggests fitting lunch and shop-
ping destinations based on the individual’s taste.

The ability to solve several other side tasks will con-
tribute to the success of the EgoAI device that we foresee.
Messaging capability is recurrent throughout the stories. In
EGO-Home, the user can send a picture of his wrist to the
doctor, in EGO-Worker, the user received amessage from the
manager about his daily tasks, and in EGO-Police, EgoAI is
capable of sending alerts to headquarters. This hands-free
convenience is further enhanced by voice commands, allow-
ing seamless interaction, as in EGO-Tourist when the tourist
asks for additional information on the artwork. Some wear-
able glasses integrate vocal assistants such as Cortana,8 Siri,9

or Google Assistant,10 which can interact with the device to

8 https://www.microsoft.com/en-us/cortana.
9 https://www.apple.com/siri/.
10 https://assistant.google.com/.

open applications, take photos, send messages, and more,
clearly improving the user experience.

EgoAI also functions as ameasuring instrument. In EGO-
Home, EgoAI can quantify the amount of spice in the soup
by leveraging its memory of the quantity previously added to
the pan, ormeasuring the thickness of the soup from its visual
appearance. Thanks to the possibility of integrating multiple
sensors, such as thermal and multi-spectral cameras, it can
also compute the risk of explosive content in EGO-Police by
a decisionmaking process.Wearable devices can also be inte-
grated with advanced medical imaging techniques, enabling
EgoAI to assess the severity of the condition from a picture
in EGO-Home. Another assessment expected of EgoAI is
related to Safety Compliance Verification. In EGO-Worker,
EgoAI assesses whether the worker is correctly wearing a
Personal Protection Equipment (PPE) through sophisticated
recognition and identification techniques.

Currently, there are no devices in the market that can
match the advanced features and capabilities of EgoAI. They
also have strong hardware limitations that do not allow pro-
longed use. Even though some advanced wearable glasses
provide complex and highly accurate features, the battery
life is often only a few hours. This is even shorter when
videos are captured constantly, as required to enhance the
potential of summarisation techniques which also require a
lot of computational power and memory, which can quickly
drain the battery.

In this paper, we do not consider AR-specific approaches,
which have their base in the computer graphics literature,
but point the interested readers to recent surveys on the topic
(Devagiri et al., 2022; Dargan et al., 2023) as well as a struc-
tured literature survey by Cipresso et al. (2018) and a survey
of AR usability studies by Dey et al. (2018).We also exclude
tasks that require perception or synthesis of audio, indepen-
dent of the video—this includes speech and audio-only event
perception. We are not aware of a recent survey on the topic
and encourage researchers with relevant expertise to further
explore this crucial modality. Moreover, we do not review
system-based tasks such as personalised recommendations
or measuring devices, as well as tasks related to assessment,
whether for medical purposes or skill. We refer the reader to
works on action assessment (Doughty et al., 2019; Parmar
& Morris, 2019; Li et al., 2019b; Yu et al., 2021) and risk
warning (de Santana Correia & Colombini, 2022).

Instead, in Sect. 4, we focus on a subset of all the afore-
mentioned tasks—those that require visual understanding.
We order the considered computer vision tasks from themost
static to ones that respond to user engagement, primarily:
scene-level understanding tasks—localisation and3Dunder-
standing, followed by tasks at the action level—action antici-
pation,action andobject recognition andgaze understanding
and prediction. Then, we review tasks around understand-
ing people, particularly, social behaviour understanding,
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full-body pose, hand and hand-object interaction, and per-
son identification. Moreover, we note two user engagement
tasks that are recurring frequently in our narrative stories—
summarisation and dialogue. Finally, we introduce privacy
and the related approaches to preserve sensitive content cap-
tured by wearable devices. Overall, given the multi-modality
nature of these tasks, we will also discuss how vision can
be integrated with cues from other sensors. We visualise the
connections between our use cases and these tasks in Fig. 6.

4 Research Tasks and Capabilities

For each of the egocentric vision tasks identified in Sect. 3,
we now provide a structured literature review with dedicated
subsections. Rather than covering the full progress of the
field, we find it most informative to focus on seminal works
that initially defined the task or changed its course as well
as state-of-the-art methods that are currently achieving best
performance. We acknowledge there are tens of works that
paved the path from those seminal works to current methods
but opt for not including them in this paper. We encour-
age interested readers to explore these intermediate works
to understand the full progress of the field in each research
task. Additionally, we note datasets specifically designed to
advance the research in each of these tasks. We leave the
review of more general datasets to Sect. 5. We conclude each
subsection with a short reflection on the gap between current
state-of-the-art and anticipated future.

4.1 Localisation

Wedivide localisationworks into twocategories: visual place
recognition (Sect. 4.1.1) and visual localisation (Sect. 4.1.2).
Both contribute to the broader goal of positioning the cam-
era wearer within the surrounding environment using visual
data for scene understanding and navigation, but they differ in
their primaryobjectives. Place recognitiongives a coarse esti-
mate of 2D coordinates, whilst visual localisation determines
the 6-DoF (Degrees of Freedom) of the camera pose.We also
review Simultaneous Localisation and Mapping (SLAM)
techniques (Sect. 4.1.3)—simultaneously building a map of
unknown indoor or outdoor environments and tracking the
position or trajectory of the camera.

Note that this task only differs marginally between wear-
able cameras, hand-held cameras and remote cameras (third-
person). Additionally, cameras mounted on vehicles share
similarities with wearable devices that lie in the viewpoint
and perspective from which visual information is captured.
These analogies allow us to broaden the scope of existing
approaches beyond those exclusive to wearable devices.

4.1.1 Visual Place Recognition

Visual place recognition analyses visual cues, from either
a single image or a sequence of images, to determine the
place or area being observed. In egocentric vision, this relates
to “contextual awareness”, i.e., extracting knowledge of the
user’s surrounding. Themost commonly usedmetric for eval-
uation is the Recall@N , which calculates the percentage of
relevant or true positive places that are among the top N
retrieved results. In other words, it measures how many of
the correct places were successfully recognised within the
top N ranked places.
Seminal works The early investigations of the problem of
recognising the user’s location from wearable devices date
back to the late 90s, when image-based localisation has been
mostly studied as a classification problem. Starner et al.
(1998) proposed a context-aware system for assisting users
while playing the “patrol” game, by recognising the room in
which the player is operating. Aoki et al. (1998) presented an
image matching technique for the recognition of previously
visited places. Torralba et al. (2003) introduced a wearable
system capable of recognising familiar locations and cate-
gorising new environments into high-level classes such as
offices and corridors. They proposed to use that information
as priors for object recognition (e.g., tables are more likely to
exist in an office). Furnari et al. (2016) performed temporal
segmentationof egocentric videos to highlight the continuous
presence of the wearer in pre-defined personal locations. The
work uses personal locations as cues for identifying activi-
ties.

Related to visual place recognition is the problem of
visual geolocalisation—estimating the position where a
given image or frame in a video was taken by comparing
it with a large database of images from known locations.
Visual geolocalisation is commonly approached as an image
retrieval problem, with a retrieved image deemed correct
if it is within a predefined range from the query’s ground
truth position. Jégou et al. (2010) proposed VLAD (vec-
tor of locally aggregated descriptors), an image descriptor
derived from sift descriptors, bag of works and fisher ker-
nels. Gálvez-López and Tardos (2012) presented a fast and
efficient approach for place recognition using binary descrip-
tors. A few years later, Arandjelovic et al. (2016) offered the
first CNN-based approach for place recognition with weak
supervision. From that work on, all methods have been using
learned embeddings with some form of aggregation or pool-
ing.

The combinationofGPSandvisual information to localise
users in an environment has also been investigated. Capi et
al. (2014) proposed an assistive system able to guide visually
impaired people in urban environments, and Ahmetovic et
al. (2016) proposed a smartphone app which can perform
accurate and real-time localisation over large spaces.
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Fig. 6 Illustration of the connections between our narratives and the
research tasks. For each of the use cases presented in Sect. 2, we show
the corresponding research tasks, alongwith the specific part of the story

where the tasks are occurring, indicated by the numbers corresponding
to those representing sub-stories in Figs. 1, 2, 3, 4, and 5, respectively

State-of-the-art papers Current literature has shifted focus
towards developing methods specifically tailored for visual
geolocalisation.Most recentworks aim at better training time
scalability to exploit large-scale data. Berton et al. (2022)
introduced CosPlace, a method that uses a classification task
as a proxy to train the model that is used at inference to
extract discriminative descriptors for retrieval. Zhu et al.
(2023c) proposed R2Former, a place recognition architecture
that builds on the success of vision transformers and fuses
multi-level attention information to generate global and local
descriptors which are used for re-ranking. MixVPR by Ali-
bey et al. (2023), is a new feature aggregation technique that
takes in input feature maps from pretrained networks, and
iteratively combines them using a stack of multi-layer per-
ceptrons in a cascade of feature mixing.

4.1.2 Visual Localisation

Visual localisation refers to the process of determining the
pose (position and orientation) of a camera with respect to
a known 3D scene or environment, based on visual infor-
mation. Approaches for visual localisation divide into hier-
archical localisation pipelines, consisting of image retrieval,
local feature extraction and matching. These are followed by
2D-3D correspondence mapping and pose estimation, and
absolute pose regressors, that estimate the camera pose with
a single forward pass, using only the query image. A com-
monly used metric for evaluating visual localisation tasks
is the average of median position and orientation errors in
meters and degrees, respectively.
Seminal works The work of Irschara et al. (2009) explored
the transition from point cloud-based reconstruction to effi-
cient feature-based localisation via Structure-from-Motion

(SfM). After computing a representative set of 3D point frag-
ments that cover a 3D scene from arbitrary viewpoints, they
matched directly the pose of the query image. The last stage
uses the resulting 2D-3D matches for pose estimation using
Random Sample Consensus (RANSAC) algorithm. Sattler
et al. (2011) made significant contributions by introducing
an efficient and direct matching approach between 2D query
images and 3D reference data. Kendall et al. (2015) presented
a deep learning-based approach for camera localisation.
Their Convolutional Neural Network (CNN) architecture,
called PoseNet, enabled real-time and accurate estimation
of camera poses in 6-DOF, by regressing the 6-DoF cam-
era pose from a single RGB image in an end-to-end manner
with no need for additional engineering. Blanton et al. (2020)
extended pose regression tomultiple scenes by proposing the
Multi-Scene PoseNet, where the network first classifies the
particular scene related to the input image, and then uses it
to index a set of scene-specific weights for regressing the
pose. Also, the work of Sattler et al. (2016) contributed to
large-scale image-based localisation by introducing an effi-
cient and effective prioritised matching algorithm.
State-of-the-art papers Shavit et al. (2021) presented a novel
approach using transformers formulti-scene pose regression.
The approach uses encoders to focus on pose-informative
features and decoders to transform encoded scene identi-
fiers to latent pose representations. Generally, algorithms for
visual localisation mostly rely on complex 3D point clouds
that are expensive to build, store, and maintain over time.
Do et al. (2022a) trained a CNN to detect the appearance
of a sparse set of 3D scene points (scene landmarks), and
showed that those predicted landmarks can yield accurate
pose estimates, while being privacy preserving and requiring
low data storage. Panek et al. (2022) explored dense 3D scene
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models as an alternative to the sparse Structure-from-Motion
point clouds as they are more flexible than SfM-based repre-
sentations and can be rather compact. Moreover, storing the
original images and extracting features when needed takes
up less memory than storing the features.

4.1.3 Simultaneous Localisation andMapping (SLAM)

SLAMis a technique used to build amapof an unknown envi-
ronment while simultaneously estimating the camera pose
within that environment. In this section, we focus on Vision
SLAM (V-SLAM), which refers to those SLAM systems
which use cameras as the main input sensors. In general, V-
SLAM algorithms have three steps: initialisation, tracking,
and mapping. The initialisation determines the global coor-
dinates and builds an initial map. The tracking step involves
the continuous estimation of the camera pose. In general, dur-
ing this stage the algorithm extracts 2D-3D correspondences
between the current frame and the map. Finally, the mapping
step results in a sparse, semi-dense, or dense 3D reconstruc-
tion. SLAM algorithms can be mainly classified into two
categories: feature-based and direct. Feature-based methods
rely on sparse features for tracking, with the correspondences
being used to refine poses through Structure-from-Motion
techniques. Direct methods use the sensor data without pre-
processing, estimating camera poses within an expectation
maximisation framework. The most commonly used metric
is the Root Mean Square Error (RMSE), which measures the
difference between estimated and ground truth camera poses
and map points, providing an overall indication of accuracy.
Seminal works The first applications of SLAM to wear-
able cameras are from Davison (2003) and Mayol et al.
(2005). Davison (2003) proposed a general method for real-
time, single-camera V-SLAM and studied its application to
the localisation of a wearable robot with active vision. The
approach proposed byMayol et al. (2005) enables prolonged
periods of focused attention on specific areas of interest, fol-
lowed by deliberate and controlled redirection of gaze to
different parts of the scene. This reduces the need for frequent
feature initialisation, and enhances overall system robust-
ness. Castle et al. (2010) used monocular SLAM and object
recognition for AR. Badino and Kanade (2011) introduced a
head-wearable stereo system for structure andmotion estima-
tion. Alcantarilla et al. (2012) developed a wearable stereo
system that combines SLAM with dense scene flow esti-
mation to segment moving objects in the scene. Murillo et
al. (2012) proposed to use wearable omnidirectional vision
systems to augment people’s navigation and recognition
capabilities. Their approach involves accurate ego-motion
estimation and topological/semantic localisation, enabling
precise user guidance.

One problem of monocular SLAM is scale drift. It occurs
during the initialisation ofmonocular SLAM,where the scale

is initially set to a real or arbitrary value. However, as the
camera moves and old landmarks are lost while new ones
are initialised, the scale of the scene changes continuously.
To address this issue in large environments,Gutierrez-Gomez
andGuerrero (2016) proposed an approach that computes the
true scale dynamically using visual odometry estimates from
wearable single cameras. Their method relies on the char-
acteristic oscillatory movement of the human body during
walking to extract scale information, making it particularly
suitable for wearable systems.

The nature of egocentric videos, characterised by sharp
head rotations and predominantly forward motion, leads to
rapid changes in the camera view, resulting in short and
noisy feature tracks. Additionally, the dominant 3D rotation
caused by natural headmotion further reduces parallax, lead-
ing to triangulation errors. To address these issues, Patra et
al. (2017) proposed a fast and robust egomotion estimation
method for egocentric videos, using a local loop closure tech-
nique aligned with the wearer’s head motion.

Suveges and McKenna (2021) proposed a semantic, non-
geometric, human-centred form of SLAM, by constructing
a representation of a user’s everyday environment in terms
of locations that they frequent and their patterns of transition
between, and their behaviours within those locations.
State-of-the-art papers With the rise of AR applications,
achieving precise alignment of virtual content with the user’s
physical surroundings has become crucial. To accomplish
this, modern devices are equipped with a range of sensors.
One notable example is the HoloLens, which incorporates
four tracking cameras and a time-of-flight range camera. One
of its key features is spatial mapping, which allows the device
to create a detailedmap of its surrounding environment (Hüb-
ner et al., 2020). Using spatial mapping, the HoloLens scans
the area within a 70-degree cone, capturing depth informa-
tion from distances between 0.8 and 3.3m. Based on the data,
it reconstructs a mesh representation of the observed scene,
which serves as a foundation for accurately placing virtual
objects within the real world. Meta’s Aria glasses have been
also recently released with multiple sensors such as stereo
cameras, dual inertial measurement units, spatialised micro-
phones, eye tracking cameras and more. They make use of
localisation and mapping techniques to build “LiveMaps”, a
virtual 3D representation of the world.

The combination of neural radiance fields (NeRF,Milden-
hall et al. (2021)) and SLAM has also emerged as a recent
trend. By utilising the capabilities of SLAMfor accurate pose
estimation and dense depth maps, together with the power of
NeRF, it is possible to generate real-time neural scene repre-
sentations (Rosinol et al., 2023). Haitz et al. (2023) proposed
an acquisition pipeline that enables real-time image and pose
streaming through a TCP client-server application, allow-
ing simultaneous training of Instant-NeRF. The HoloLens
acts as the image and pose server, while the client applica-
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tion receives the images and writes them into a GPU image
buffer. Instant-NeRFmodel is incrementally trained using the
incoming image stream.Additionally, a fast geometric recon-
struction of the scene is performed by querying the trained
network based on sample rays from the training poses.
Datasets For visual place recognition, Furnari et al. (2016)
collected a dataset of egocentric videos containing 10 per-
sonal locations of interest.More recently,Milotta et al. (2019)
collected and publicly released a dataset of egocentric videos
asking 12 subjects to freely visit a natural site with a total of
6 h of recording. Ragusa et al. (2020a) proposed a dataset
of egocentric videos for visitor behaviour understanding,
including 27 h of video acquired by 70 subjects, with labels
for 26 environments which allow room-level localisation.

In visual geo-localisation, all previous datasets capture an
autonomous driving viewpoint which is very different from
that of a wearable camera or are collected using hand-held
devices. This lacks characteristic head-mounted motion pat-
terns. Up to our knowledge, no dataset is available for visual
geo-localisation from a body-worn camera.

For visual localisation, Sarlin et al. (2023) created a
dataset using Meta’s Aria glasses at 3 locations in Seattle
(Downtown, Pike Place Market, Westlake). In each location,
they recorded 3 to 5 sequences following the same trajecto-
ries, for a duration of 5 to 25 min varying by location, and a
total of 3 h of recordings. Each device is equippedwith aGPS
sensor, IMUs, grayscale SLAM cameras, and a front-facing
RGB camera.

Suveges and McKenna (2021) proposed the first dataset
specifically designed for SLAM applications on egocentric
vision. Five videos were recorded using a head-mounted
GoPro Hero 4, for a total of 4 h of videos including tran-
sition segments between locations, repeated visits by a user
to multiple distinct locations, and unique labels for all visited
locations.

Multiple sensors data, such as depth images, hand and
eye tracking data, are essential for accurate spatial mapping
and scene understanding for XR applications. Chandio et al.
(2022) proposed HoloSet, a dataset captured usingMicrosoft
Hololens 2, that contains the raw synchronised data streams
from the following sensors: depth, RGB, four grayscale vis-
ible light tracking (VLC) cameras, and an IMU, along with
the ground truth pose trajectory. It contains 29 sequences
and 78.5k samples that cover more than 6200 m. Sarlin
et al. (2022) introduced a large-scale dataset of over 100
h and covering 45’000 square meters of multi-sensor data
streams (images, depth, tracking, IMU, BT, WiFi) captured
using HoloLens 2 and iPhone/iPad devices in diverse envi-
ronments, including a historical building, a multi-story office
building, and part of a city center. Data include indoor and
outdoor imageswith varying illumination, semantic changes,
and dynamic objects.

Importantly, all previous datasets were collected specif-
ically for localisation purposes. In these recordings, the
camera wearer is only navigating the scene to capture these
sequences and is not carrying out any of their daily tasks
necessarily. It is acknowledged to be challenging to per-
form visual localisation from unscripted egocentric footage
of actual activities (Suveges & McKenna, 2021). Recently,
Tschernezki et al. (2023) provided 6 DoF camera positions
for 99 h of the EPIC-KITCHENS dataset (Damen et al.,
2022) in 45 home kitchens. Camera estimates are achieved
through intelligent sampling without any additional sensors
or sequences specific for localisation. However, no ground
truth is available for this dataset and these camera estimates
are only qualitatively evaluated.
For the future Despite progress made in recent localisation
techniques for robotics and autonomous vehicles applica-
tions (Kazerouni et al., 2022; Cheng et al., 2022), the
robustness of these algorithms in dynamic and changing envi-
ronments as the ones captured by wearable devices require
further development. For visual place recognition, current
state-of-the-art performance are 64.0% recall on the Mapil-
lary challenge. On LaMAR (Sarlin et al., 2022), the recent
benchmark for localisation and mapping in the context of
AR, results on single-frame localisation only achieve 45.6% /
61.3% recall at (1◦, 10 cm)/(5◦, 1 m). Additionally, wearable
devices often have limited computational resources, which
can limit the complexity and accuracy of localisation algo-
rithms. The most attractive application for localisation in
head-mounted devices is AR, where the objective is to place
virtual content in the physical 3D world, persisting it over
time, and sharing it with other users.

Common benchmarks over the last years often rely on
limited datasets with minimal scene diversity and sensors.
These datasets also are typically collected specifically for
localisation, through navigation-only sequences rather than
capturing individuals engaged in actual activities. However,
ongoing research efforts and advancements in computer
vision, sensor technologies, and wearable computing such
as Meta’s Project Aria glasses and Microsoft HoloLens are
paving the way for future applications of localisation on
wearable devices, enabling promising use cases such as
indoor navigation and AR experiences.

4.2 3D Scene Understanding

The goal of 3D scene understanding is to build an AI agent
able to interpret the surrounding environment and explore
possible interactions with it. This also involves identifying
relevant objects in the scene and reasoning on their locations.
The complexity of the field has attracted attention over the
last few years, leading to the proposal of numerous sub-tasks
and datasets. Their diversity underscores the multifaceted
nature of 3D scene understanding, prompting researchers to
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explore various evaluationmeasures tailored to specific chal-
lenges.
Seminal worksThe first work to explore task-relevant objects
in 3D is that of Damen et al. (2014). Given amapped environ-
ment, gaze estimation is used to cluster interaction regions
into task-relevant objects and their modes of interaction. For
studying human-centric interactions with the environment,
Bertasius et al. (2015) proposed to utilise egocentric stereo
cameras to establish an egocentric object prior within a first-
person viewRGBD frame, which could then be employed for
3D saliency detection. Through observations, it was discov-
ered that humans possess a fixed size prior to salient objects,
indicating that salient objects in 3D undergo consistent trans-
formations, enabling people’s visual system to perceive them
with an approximately constant size. This insight led to the
identification of a consistent egocentric object prior that can
be characterised by its shape, size, depth, and location within
the first-person view. Rhinehart and Kitani (2016) focused
on learning and predicting “Action Maps” that encode the
user’s ability to perform activities at various locations. By
mapping actions to specific regions within a scene, this tech-
nique enables the understanding and prediction of human
activities in a given environment. Li et al. (2022) focused on
anticipating as early as possible the target location of a per-
son’s object manipulation action in a 3D workspace. While
this is a special case of trajectory forecasting, the latter is
infeasible in manipulation scenarios and the hands often are
located outside the field of view. Therefore, focusing on pre-
dicting the 3D target location gives a better understanding
of possible interactions with objects, useful for applications
such as robot planning and control. Recently, Grauman et al.
(2022) proposed the task of Visual Queries with 3D Locali-
sation (VQ3D), which focuses on retrieving the relative 3D
localisation of a query object with respect to a current query
frame. Another interesting problem has been proposed by
Majumder et al. (2023): building the map of a previously
unseen 3D environment by exploiting shared information in
the egocentric audio-visual observations of participants in a
natural conversation. Finally, Pan et al. (2023a) introduced
the task of collision prediction and localisation from unposed
egocentric videos, which aims at predicting when and where
a collision with the environment might occur.
State-of-the-art papersNagarajan andGrauman (2020) intro-
duced a reinforcement learning approachwhere an embodied
agent autonomously discovers the affordance landscape
in new, unmapped, 3D environments, enabling interaction
exploration. They rewarded the agent for quickly interacting
with all objects in an environment and trained an affordance
model online to segment images according to the likeli-
hood of each of the agent’s actions succeeding. Do et al.
(2022b) focused on predicting depths and surface normals of
the surrounding environment from a single view egocentric
image. They addressed challenges derived from the use of

wearable devices such as tilted images and the presence of
dynamic foreground objects by proposing an image stabili-
sation method which transforms titled images to a canonical
orientation for better learning. Nagarajan et al. (2023) pro-
posed learning environment-aware video representations that
encode the surrounding physical space, facilitating the pre-
diction of local environment states at different time-steps.
These states are used to train a transformer-based video
encoder model, which gathers visual information from the
entire video and constructs an environment memory. This
memory can then be accessed to predict the local state at any
specific point in the video.

Liu et al. (2022a) proposed the task of jointly recognising
and localising actions of a user on a known 3D map from
egocentric videos. They proposed a novel deep probabilistic
model that utilised a Hierarchical Volumetric Representa-
tion (HVR) of the 3D environment and an egocentric video to
infer the 3D action location and recognise the action based on
contextual cues. Other works focused on object visual query
localisation in the 3D space. Xu et al. (2023a) proposed a
transformer-based module that incorporates object-proposal
set context while considering query information. Mai et al.
(2023) formalised a pipeline that better integrates 3D mul-
tiview geometry with 2D object retrieval from egocentric
videos, leading to improved camera pose estimation and
substantially improved VQ3D performance. The process
involves three main steps: first, a sparse 3D reconstruction
is performed using Structure from Motion (SfM) to estimate
3D poses and create a sparse 3D map. Second, the frames
of an egocentric video and a visual crop of a query object
are fed into a model that retrieves response frames and their
corresponding 2D bounding boxes. Third, for each response
frame, the depth is estimated and the object centroid is back-
projected to 3D using the corresponding camera pose. Qian
and Fouhey (2023) addressed the task of predicting the 3D
location, physical properties and affordance of objects from
single images.Given a set of query points, the output includes
the potential 3D interaction, in terms of movable, location,
rigidity, articulation, action and affordance. They achieve that
using a transformer-based model which builds on a detection
backbone.
DatasetsGeneral-purpose egocentric datasets such as EPIC-
KITCHENS (Damen et al., 2022) and Ego4D (Grauman
et al., 2022), which are reviewed in Sect. 5, can be used
for scene understanding. Additionally, other task-specific
datasets have been proposed. TheEgocentricDepth on every-
day INdoor Activities (EDINA) dataset by Do et al. (2022b)
has the goal of facilitating learning the visual representation
of dynamic egocentric scenes. It comprises more than 500K
synchronised RGBD frames and gravity directions captured
from an egocentric viewpoint with diverse daily activities,
for a total of 16 h RGBD recording. EgoPAT3D (Li et al.,
2022) is a large multimodality dataset of more than a mil-
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lion frames of RGB-D and IMU streams, which has been
designed for the task of anticipating the target location of a
person’s object manipulation action in a 3D workspace. The
total collection contains 150 recordings, 15 household scene
point clouds, 15,000 hand-object actions, 600 min of raw
RGB-D/IMU data, 0.9 million hand-object action frames,
and 1 million RGB-D frames for the entire dataset. Qian and
Fouhey (2023) introduced the 3D Object Interaction Dataset
(3DOI), with Internet videos, egocentric videos and indoor
images. For the egocentric part, they sampled 2K images
from EPIC-KITCHENS (Damen et al., 2022). Images come
with 3D ground truth, including depth and surface normals,
and 5 interactable query points, including both large and
small objects. For each of them, they annotated whether the
object is movable, its location, its rigidity, its articulation, the
potential action that can be done with it, and its affordance
(where it is possible to interact with the object).

The Aria Digital Twin (Pan et al., 2023b) is an egocen-
tric dataset captured using the Aria glasses that contains 200
sequences of real-world activities conducted by Aria wear-
ers in two real indoor scenes with 398 object instances (324
stationary and 74 dynamic). Each sequence includes raw
data of two monochrome camera streams, one RGB cam-
era stream, two IMU streams, complete sensor calibration,
ground truth data including continuous 6-degree-of-freedom
(6DoF) poses of the Aria devices, object 6DoF poses, 3D
eye gaze vectors, 3D human poses, 2D image segmentations,
image depth maps and photo-realistic synthetic renderings.
Ravi et al. (2023) proposed ODIN (the OmniDirectional
INdoor dataset), a large-scale dataset of more than 300K
omnidirectional images capturing a diverse range of activities
of daily living. This includes scans of the recording environ-
ments from a 3D scanner and camera-frame 3D human pose
estimates, enabling its use for scene understanding purposes.
Recently, Tschernezki et al. (2023) released EPIC Fields, an
augmentation of EPIC-KITCHENS with 3D camera poses.
It reconstructs 96% of videos in EPIC-KITCHENS, register-
ing 19M frames in 99 h recorded in 45 kitchens, creating an
opportunity to bring 3D geometry and video understanding
closer together. Mur-Labadia et al. (2023) built a dataset on
affordances based on the EPIC-KITCHENS dataset, EPIC-
Aff,which provides interaction-grounded,multi label,metric
and spatial affordance annotations. Finally, Shapovalov et al.
(2023) introduced Replay, a collection of multi-view, multi-
modal videos of humans interacting socially. It contains long
scenes in an indoor environment, each captured in 4K resolu-
tion using 8 staticDSLR cameras and 3 head-mountedGoPro
cameras, along with a comprehensive microphone array. In
total, it contains 66 h of footage. It is suitable for a series
of tasks, such as novel-view audio/visual synthesis and 3D
reconstruction.
For the future Egocentric videos provide a natural connec-
tion between the activities of the camera wearer and the

surrounding 3D spatial context. Although this is an intrinsic
characteristic of egocentric vision, However, motion blur,
and unusual viewpoints caused by how egocentric videos
are captured introduce overwhelming challenges, causing 3D
reconstruction to struggle with dynamic content. As a result,
much work remains before we can have a 3D understand-
ing of dynamic phenomena, such as actions and activities.
Another promising future direction is working with both
egocentric and exocentric views. By combining the insights
gained from both perspectives, researchers could potentially
unlock a more comprehensive understanding of complex
scenes and human interactions. This approach however is
limited in its applicability for our anticipated EgoAI future,
where exo views are unlikely to be part of our everyday lives.

4.3 Recognition

Recognition in egocentric vision is crucial as it involves
understanding interactions as well as the objects the wearer
interacts with and their actions. This dual focus on both
actions and objects enables a comprehensive understand-
ing of the wearer’s environment and activities. We divide
the works into action (Sect. 4.3.1) and object (Sect. 4.3.2)
respectively.

4.3.1 Action Recognition

The goal of egocentric action recognition is to classify human
actions from the egocentric point of view, i.e., the person
wearing the camera is carrying out the action. In areas such
as robotics and AR, egocentric action recognition is critical
to enable downstream applications, such as contextual rec-
ommendations or reminders. The egocentric point of view
and a wearable, hence moving in dynamic and often unpre-
dictable ways, camera presents an higher level of complexity
when compared to standard action recognition from a fixed
and remote cameras. Moreover, as the camera wearer them-
selves are largely out of the field of view, several challenges
come from the partial observability of the main actor.

One possible way to address this is to leverage comple-
mentary cues to support the visual modality. Audio, gaze and
temporal dynamics via optical flow are examples of informa-
tion that play a relevant role in understanding the performed
actions. As managing multiple modalities may be costly,
recent advancements are focusing on low-energy consump-
tion architectures and higher-level action understanding. The
task is formalised as a classification problem and generally
evaluated with top-1 and top-5 accuracy.
Seminal works Early works considered the egocentric per-
spective to improve action recognition for robots (Johnson
&Demiris, 2005) and humans (Surie et al., 2007). Spriggs et
al. (2009) explored action recognition for egocentric vision
with Inertial Measurement Units (IMUs) used for tempo-
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rally identifying the actions. Kitani et al. (2011) authored
a pioneering work about tackling action recognition from
egocentric sports videos in an unsupervised manner. The
research field gained large momentum after the introduction
of the dataset collecting activities of daily living (ADL) (Pir-
siavash & Ramanan, 2012), particularly thanks to its large
set of annotations on activities, object tracks, hand positions,
and interaction events. To deal with complex object interac-
tions and long-range temporal activity structures, the authors
also introduced tailored representations that included tempo-
ral pyramids and composite object models.

The work by Fathi et al. (2012b) was the first to high-
light the utility of gaze: it presented a probabilistic generative
model for simultaneously recognising daily actions and pre-
dicting gaze locations from egocentric videos. Li et al. (2015)
proposed to combine features encoding hand pose, head
motion and gaze direction together with motion and object
features coming from local descriptors.

In the last years, deep learning has alleviated the burden of
manually defining features. Singh et al. (2016b) was the first
work to use CNNs for end-to-end learning and classification
of the wearer’s actions. Since then, the attention moved to
learning architectures with novel poolingmechanisms (Ryoo
et al., 2015) or temporal convolutions on motion fields for
long-term activity recognition (Poleg et al., 2016).

Techniques that use recurrent neural networks such as
Long Short-TermMemory (LSTM) (Cao et al., 2017; Verma
et al., 2018) and Convolutional Long Short-Term Memory
(ConvLSTM) (Sudhakaran & Lanz, 2017, 2018) have been
proposed to better encode temporal information. Sudhakaran
et al. (2019) proposed a new recurrent neural unit that aug-
ments LSTM with built-in spatial attention and a revised
output gating. This allows to focus on features from rele-
vant spatial parts while attention is being tracked smoothly
across the video sequence. Tang et al. (2017) added an addi-
tional stream to take as input depth maps enabling the model
to encode 3D information present in the scene. Kazakos et
al. (2019) proposed an end-to-end trainable mid-level fusion
Temporal Binding Network (TBN) on top of a convolutional
network to asynchronously fuse audio, RGB and optical flow
across multiple temporal windows.

The success of the transformer architecture has also given
rise to a new line of works that employ transformers as a
backbone for processing videos, with the most popular ones
being those by Patrick et al. (2021) and Arnab et al. (2021).
Theseworks extend the vision transformer to operate onmul-
tiple frameswithin videos.However, theywere not developed
specifically for egocentric videos, and report results on both
third-person and egocentric videos using the same architec-
ture.

Still, training a deep model is data and energy inten-
sive and several works have been focusing on reducing the
related costs. Possas et al. (2018) defined a reinforcement

learning based technique for understanding actions using
less energy. Sigurdsson et al. (2018) proposed to jointly
learn from first- and third-person videos using weak super-
vision. Similarly, Li et al. (2021b) introduced an approach
for pretraining egocentric video models using large-scale
third-person video datasets. Min and Corso (2021) presented
a probabilistic approach to estimate the gaze and utilise it
for action recognition, avoiding the need for expensive gaze
recording equipment. Plizzari et al. (2022) showed that the
visual information collected by event cameras is suited for
egocentric action recognition thanks to the lack of motion
blur, high temporal resolution, and reduced power consump-
tion.

Aiming to reduce the burden and uncertainty involved in
the annotations of temporal bounds, a different line of works
considered the problem of recognising actions using a single
timestamp originating from narrations as supervision rather
than temporal bounds (Moltisanti et al., 2019).

Another approach to egocentric action recognition is to
consider it as a procedural problem and learn the key steps
required to perform a task upon observing multiple egocen-
tric videos as done in Bansal et al. (2022). This work is
restricted to procedural tasks but is a venue for exploration
as opposed to recognising isolated actions.
State-of-the-art papers Kazakos et al. (2021) developed
an approach specific to egocentric videos using an audio-
visual transformer with the visual features from Patrick et
al. (2021). Importantly, in this work, the action is not seen
in isolation: the untrimmed video and context are explored
along with a language model providing action sequencing
to enhance the predictions. This approach reported signifi-
cant performance improvement over prior works, with action
recognition reaching 49.6% on the validation set of EPIC-
KITCHENS-100.

Following the trend of Transformers, Wu et al. (2022a)
proposed a memory-based approach for efficient long-term
video understanding. It uses the “keys” and “values” of a
transformer as memory. The queries attend to an extended
set of keys and values, which come from both the current
time and the past. Each layer attends further down into the
past, resulting in a significantly longer receptive field. They
achieve 48.4% of action recognition accuracy on the EPIC-
KITCHENS-100 dataset with much less model parameters
(0.5× the parameters of Patrick et al. (2021)).

Recent works focused on designing new multi-modal
integration strategies, in order to build models that work
well across modalities, instead of being over-optimised for
each modality. Girdhar et al. (2022) proposed a transformer-
based model which, leveraging the flexibility of transform-
ers, is trained jointly on classification tasks from differ-
ent modalities—2D images, 3D images and videos. They
achieve an impressive top-1 performance of 47.4% on EPIC-
KITCHENS-100 validation set using their largest Swin-B
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transformer model. Yan et al. (2022) adapted a multi-view
transformer tomulti-modal inputs: they createdmultiple rep-
resentations or “views” by tokenising spectrogram, optical
flow, and RGB using tubelets of different sizes. These tokens
are fed into separate encoders and further fused through a
fusion module, and aggregated by a global encoder. Using
both modalities, the approach achieves action recognition of
47.2% on EPIC-KITCHENS-100 validation set. They out-
perform the approach from Yan et al. (2022) by 1% but are
still below other approaches previously published such as
Girdhar et al. (2022); Kazakos et al. (2021). All the prior
work, except Kazakos et al. (2021) have been developed for
general action recognition and the architectures are not opti-
mised for egocentric vision specifically.

Gong et al. (2023) studied the problem of generalisation
when data from certain modalities is limited or even com-
pletely missing during inference. They proposed a method
for multi-modal generalisation based on a fusion module
with modality dropout training, a cross-modal contrastive
alignment loss, and a cross-modal prototypical loss for bet-
ter few-shot performance. To further improve the efficiency,
they jointly trained amemory compressionmodule for reduc-
ing the memory footprint. Radevski et al. (2023) proposed
to distill knowledge from a high-performing but impractical
multimodal ensemble into a light-weight RGB-based model.
Tan et al. (2023) achieved efficient recognition by combining
RGB with the head motion information from IMUs.

Wang et al. (2023c) addressed the task of unpaired multi-
view video learning. To this purpose, they introduced a
method that aligns multi-view pseudo-pairs with high simi-
larities in a semantics-aware manner. They allow first-person
videos to gain insights from samples of varying views or
modalities. Similarly, Xue and Grauman (2023) learn fine-
grained frame-wise video features that are invariant to both
the ego and exo views fromunpaired data. They achieved that
through a self-supervised contrastive-based temporal align-
ment objective.

Another recent trend is to leverage over Large Language
Models (LLMs), to obtain stronger representations. Zhao
et al. (2023c) used LLMs to automatically generate text
pairing for videos, by densely annotating rich textual descrip-
tions. When using those to learn video-text embeddings
contrastively, and then evaluating on action recognition as
a downstream task, results outperformed previous state-of-
the-art on EPIC-KITCHENS-100, with 51.0% accuracy on
action recognition. This sets the current state-of-the-art per-
formance on the validation set of this dataset. Language has
also been used in Plizzari et al. (2023) as a robust modality
for improving domain generalisation to multiple domains.
Starting from the rich diversity of Ego4D in terms of both
scenarios and geographical locations, they proposed to repre-
sent each video as a cross-instance reconstruction of videos
from other domains. Reconstructions are paired with text

narrations to guide the learning of a domain generalisable
representation.

Shah et al. (2023) considers learning keysetps for pro-
cedural problem using multiple modalities. To enable AR
applications, Shah et al. (2023) utilise optical flow, depth, or
gaze and propose the BMC2 loss to force modalities from
multiple datasets to be close in the representation space. The
work improves the F1 Score on the EgoProceL dataset by
14% and achieves state-of-the-art results.

Before concluding this section, we note the relevant tasks
of action segmentation and action detection. The latter is
distinct from action recognition as it aims to detect the start
and end of action instances in long untrimmed videos as
well as predicting the action categories. Previous works on
action segmentation considered graph-based temporal rea-
soning (Huang et al., 2020b) and segmentation from single
timestamps (Li et al., 2021c), while, up to our knowledge,
Wang et al. (2023a) offer the first approach to action detection
specifically for the egocentric domainwithout exocentric pre-
training. This topic requires further exploration in untrimmed
egocentric videos. We refer those interested in exploring
action detection to Vahdani and Tian (2023) for up-to-date
methods.
Datasets The most popular datasets for action recognition,
EPIC-KITCHENS-100, Ego4D and EGTEA are detailed in
Sect. 5. Additionally, several specialised datasets have been
proposed to explore different aspects of action recognition
in egocentric videos. Kitani et al. (2011) proposed a dataset
made of videos both recorded in-house and sourced from
YouTube. The first video, recorded on a QUAD, consists of
124 video splices (a video splice contains 60 frames) and
contains 11 ego-actions. The second video, recorded in a
park, is a 25 min workout video which contains 766 video
splices and contains 29 different ego-action categories. Six
egocentric YouTube sports videos have also been annotated
to understand actions in outdoor sports videos.

DataEgo (Possas et al., 2018) and Multimodal Egocen-
tric Activity (Song et al., 2016) datasets have been used for
evaluating methods that focus on activity recognition with
limited resources or on a budget. In DataEgo (Possas et al.,
2018), Images from the camera have been synchronised with
readings from the accelerometer and gyroscope. In total, it
contains approximately 4 h of continuous activity while its
multi-modal subset has only 50 min of separate activities.
The Multimodal Egocentric Activity dataset (Song et al.,
2016) contains 20 distinct life-logging activities, which are
recorded both indoor and outdoor with significant changes in
the illumination conditions. The dataset has 200 sequences in
total and each activity category has 10 sequences of 15 sec-
onds each. It also includes other synchronised sensor data:
accelerometer, gravity, gyroscope, linear acceleration, mag-
netic field and rotation vector. Charades-Ego (Sigurdsson et
al., 2018) aims to bridge the gap between egocentric and
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third-person videos, providing a dataset with paired first-
person and third-person videos involving 112 individuals
and 4000 paired videos. Bock et al. (2023) recently intro-
duced WEAR, an outdoor sports dataset for both vision-
and inertial-based human activity recognition. The dataset
comprises data from 18 participants performing a total of 18
different workout activities with untrimmed inertial (accel-
eration) and camera (egocentric video) data recorded at 10
outdoor locations totalling 15 h.

4.3.2 Recognising Objects

Object recognition in egocentric vision is pivotal for appli-
cations in augmented reality and robotics but remains a
challenging task. Videos recorded from the first-person point
of view capture spontaneous, unscripted scenes, in densely
packed environments, where objects of various scales are
closely packed and often occluded.
SeminalworksRenandGu (2010) introduced afigure-ground
segmentation system for egocentric object manipulation
videos captured from a wearable camera, in order to sep-
arate the moving hands and the objects in-hand from the
background. Kang et al. (2011) tackled the problem of object
instance discovery, defining amethod for finding new objects
that a person can encounter in their daily living. Fathi et
al. (2011) addressed the problem of learning object models
from egocentric videos of household activities, using weak
supervision. For each activity sequence, themethod ismerely
supervised by the names of the objects which are present
within it. They propose a segmentation method to partition
each frame into hand, object, and background categories.
Bolaños and Radeva (2015) attempted object discovery—
that is detecting new object instances or concepts, and
assigning them a label without prior training. Damen et al.
(2016) proposed a fully unsupervised approach to discover
objects and their usage from multiple users in a common
environment. It consists of discovering task relevant objects,
building an appearance model for each, distinguishing dif-
ferent ways in which each discovered object has been used
and discovering the spatio-temporal dependencies between
object interactions.

Combined with tracking, Bertasius et al. (2017) formu-
lated the object detection task as an interaction between the
segmentation and recognition agents. Initially, the segmenta-
tion agent generates a candidate object mask for each image,
and relays this mask to the recognition agent, which then
tries to learn a classifier using visual semantics and spatial
cues. Other works addressed the problem of object tracking.
Alletto et al. (2015b) developed an approach based on visual
odometry and 3D localisation for tracking objects moving
around a person.

With the release of the Ego4D dataset (Grauman et al.,
2022), new benchmarks involving object understanding have

been proposed. The visual Queries Localisation (VQL) task
aims to retrieve given query objects from an egocentric video.
The hands and objects benchmark captures how the camera-
wearer changes the state of anobject byusingormanipulating
it—particularly capturingobject state change.Yuet al. (2023)
proposed a new benchmark for segmenting state-changing
objects in each frame of the video, given the first frame mask
as reference. Zhao et al. (2023b) proposed a new benchmark
for studying instance tracking in 3D scenes from egocentric
videos. Finally, Herzig et al. (2022) used object knowledge
to achieve action recognition, as objects can be essential
for recognising actions. They presented an object-centric
approach that extends video transformer layers with a block
that directly incorporates object representations.

In Darkhalil et al. (2022), semi-supervised video object
segmentation is evaluated on egocentric videos, focusing on
active objects using a newly annotated dataset of object seg-
mentations.
State-of-the-art papers Akiva et al. (2023) proposed a self-
supervised object detection model from egocentric videos.
It uses two patch-wise objectives: an objective function
operates in the temporal space, enforcing similarity of
multi-temporal patches, and a function in the scale space,
enforcing similarity of multi-scale patches. The former cap-
tures appearance variations in time such as viewing angles
and illumination conditions, and the latter captures appear-
ance variations in scale. Wu et al. (2023) examined the
problemof continual object detection in egocentric streaming
videos, by a plug-and-play module inspired from the com-
plementary learning systems theory.

On tracking, Huang et al. (2023b) proposed DETracker, a
method that jointly detects and tracks deformable objects in
egocentric videos. DETracker consists of three key compo-
nents: themotiondisentanglement network (MDN), the patch
association network (PAN), and the patch memory network
(PMN). MDN plays a crucial role in efficiently estimating
the motion flow between successive frames, where it dis-
tinguishes between global camera motion and local object
motion. This separation ensures the algorithm’s robustness
in the presence of significant ego motion. PAN is responsi-
ble for tracking deformable objects by breaking them down
into patches and locating corresponding patches in future
frames for each individual patch. PANmaintains and contin-
ually updates feature embeddings of tracked objects over an
extended time window.

In the VQL setting (Grauman et al., 2022), due to ran-
dom viewpoints and the large number of possible object
classes that are exhibited in egocentric recordings, the
target object is hard to discover and confused with high-
confidence false positives. To tackle this issue, Xu et al.
(2023a) proposed the CocoFormer, a detection model that
incorporates a conditional projection layer. This layer is
responsible for generating a transformation matrix based
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on the query. Subsequently, this transformation is applied
to the proposal features, resulting in query-conditioned pro-
posal embeddings. These query-aware proposal embeddings
are then inputted into a set-transformer, enabling the model
to effectively leverage the global context of the associated
frame. Jiang et al. (2023) proposed VQLoC, a single-stage
framework. The method jointly models the query-to-frame
relationship and frame-to-frame relationships across nearby
video frames, and uses that information for end-to-end train-
ing. Xue et al. (2023) achieved state-of-the-art performance
on the Object State Change Classification benchmark, by
means of EgoTask Translation (EgoT2), a framework that
takes a collection of models optimised on separate tasks and
learns to translate their outputs for improved performance on
all tasks jointly. Recently, several works have been proposed
that make use of 3D information. Tschernezki et al. (2021)
proposed a three-stream neural rendering architecture, where
the streams model respectively the static background, the
dynamic foreground objects, and the actor. Mai et al. (2023)
formalised a pipeline that better entangles 3D multi-view
geometry with 2D object retrieval from egocentric videos.

Recent state-of-the-art action recognition benchmarks
make use of object-related information for better classify-
ing actions. Zhou et al. (2023) proposed an object-guided
token sampling strategy that allows to retain a small frac-
tion of the input tokens with minimal impact on accuracy.
Moreover, they introduced an object-aware attention module
that enriches our feature representation with object infor-
mation and improves overall accuracy. Zhang et al. (2023a)
tasked themodel to predict object bounding boxes and names
of objects during training in order to learn grounded and
fine-grained correspondence between vision and language
modalities.
Datasets Several egocentric datasets focused on objects have
been built. TEgO (Lee & Kacorri, 2019) contains egocentric
images of 19 distinct objects for training object recognisers.
HOI4D (Liu et al., 2022b) captures videos of human-object
interaction with 800 object instances from 16 categories.
TREK-150 (Dunnhofer et al., 2023) annotated 150 videos
from EPIC-KITCHENS (Damen et al., 2022) for track-
ing objects from 34 categories. VISOR (Darkhalil et al.,
2022) annotated 272K manual semantic masks of 257 object
classes, 9.9M interpolated dense masks, 67K hand-object
relations, covering 36 h from EPIC-KITCHENS (Damen et
al., 2022). EgoObjects (Zhu et al., 2023a) is a large-scale
egocentric dataset for fine-grained object understanding. It
contains over 9,200 videos of over 30 h collected by 250
participants, 654K object annotations from 368 object cate-
gories and 14K unique object instances. EgoTracks (Tang et
al., 2023a) is a new dataset for long-term egocentric visual
object tracking, with more than 22,028 tracks from 5708
average 6-min videos from Ego4D (Grauman et al., 2022).
PACO (Ramanathan et al., 2023b) goes beyond traditional

object masks and provide richer annotations such as part
masks and attributes. It captures both egocentric and non-
egocentric views. The PACO-Ego4D subset of egocentric
images has 140K part masks annotated in 26.3K images
across 75 object classes and 456 object-specific part classes.
Kurita et al. (2023) introduced RefEgo, which is also anno-
tations of Ego4D videos, with more than 12k video clips and
41 h for video-based object referring expression annotations.
For the futureDespite the growing interest in action recogni-
tion for egocentric videos, there are several areas that warrant
attention from the computer vision community. Firstly, there
are only limited approaches developed specifically for ego-
centric vision. Most architectures are re-purposed from
third-person videos and not optimised specifically for the
ego viewpoint or the camera motion. For instance, the main
evident consequence of relying on third-person video pre-
training is that the ability to recognise fine-grained actions
in egocentric videos is still significantly lower than the cor-
responding performance in third-person. Secondly, even by
exploiting transformer architectures andmultiple modalities,
state-of-the-art methods currently achieve only 51.0% activ-
ity classification accuracy (obtained byZhao et al. (2023c) on
EPIC-KITCHENS-100). It is not clear whether approaches
are lacking due to the size of datasets, ambiguity (or fine-
grained nature) of labels, or the need for new architectures.
With multiple possible explanations and avenues for explo-
ration, the field is only progressing slowly. Sequences of
papers tend to improve performance by small margins (0.5-
1%).

Thirdly, egocentric vision introduces further challenges,
such as the need for modelling long temporal dependencies
and learn from long-tail and class imbalanced data. Perrett et
al. (2023) recently introduced a new benchmark for long-tail
recognition in video, including egocentric video.

Fourthly, despite the early success of integrating gaze for
egocentric action recognition, subsequent datasets do not
capture the rich, though expensive, egocentric gaze. A few
sequences in Ego4D (Grauman et al., 2022) include gaze but
these are not labelled specifically with fine-grained actions.
Gaze offers the ability to focus the attention on areas of the
image and prime for the next actions. However, with the
absence of large scale egocentric action recognition datasets
that include gaze, this avenue of research is currently under
explored.

Fifthly, the recent introduction of the EPIC-SOUNDS
dataset (Huh et al., 2023) showcased the need for modality-
specific annotations of action classes and temporal extents.
Thework showcased the disadvantage of training onemodal-
ity with labels from a different modality. This perspective
on multi-modalities in egocentric video can unlock new
approaches for developing multi-modal architectures.

Lastly, the heavy reliance on labeled datasets for training
limits the capabilities of models. Not only is labelled data
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expensive to acquire, but the choice of the closed vocabu-
lary of action classes and the granularity of actions remains
subjective. Progressing from a closed subset to open labels
remains an open question in most machine learning tasks
including egocentric action recognition. With the advent of
LLMs, this surely is the future of recognising actions, despite
the lack of metrics to assess success and monitor progress.

In parallel, understanding object affordances-how objects
can be used or interacted with-goes beyond basic recognition
and it is crucial for applications like assistive robotics, aug-
mented reality, and personal assistance. Such understanding
will allow systems to interact more intuitively and effectively
with their environment, a key advancement for EgoAI.

4.4 Anticipation

Anticipation tasks aim to predict the future state of the scene
from the observation of the present. These tasks are par-
ticularly relevant in egocentric vision as they capture an
uninterrupted picture of the camera wearer’s interaction with
the environment and objects, hence providing the opportu-
nity to model their behaviour and understand their goals
and intentions. Following Rodin et al. (2021), we divide
the works focusing on anticipation tasks into three cate-
gories, depending on the target of future prediction, namely,
actions (Sect. 4.4.1), objects (Sect. 4.4.2), and trajectories
(Sect. 4.4.3). We would like to note that, while we refer to
these works with “anticipation”, the term “forecasting” has
also been used in the literature to refer to these tasks.

4.4.1 Anticipating Actions

Action anticipation is the task of semantically predicting the
next action to take place in a video. Systems able to tackle
this task can provide proactive assistance to the users and
improve their safety by understanding the camera wearer’s
goals and future interactions. Current approaches formalise
action anticipation as a video classification task which aims
to predict a future action from the observation of a video
segment of the past. Due to the stochastic nature of the task,
methods are required to produce a ranked list of outputs and
they are considered successful when the ground truth future
action is in the top-k predictions.
Seminal works Action anticipation has been studied both in
egocentric and third-person vision with similar approaches.
The problem has been introduced by Pei et al. (2011), who
considered a goal-oriented scenario and used and-or-graphs
to represent the different actions which might be performed
by a human actor at any given point in an observed video.
The feasibility of the task is demonstrated by comparing the
proposed solutionwith human performance. Lan et al. (2014)
subsequently standardised the task, evaluating it at different
prediction horizons on videos from TV shows.

Koppula and Saxena (2015) showed the benefits of pre-
dicting future human poses, future human and object trajec-
tories and future interacted objects for robotics applications.
On the side of methodological advancements, Vondrick et al.
(2016) first explored the idea of predicting future actions by
training deep neural networks to anticipate future representa-
tions on unlabeled videos. A similar concept has been further
explored byGao et al. (2017) andGers et al. (2000), who also
leveraged Long-Short-Term Memory (LSTM) networks and
a reinforcement learning criterion to anticipate future actions
at different prediction horizons.

While the aforementioned works mainly considered the
problemof anticipating the next action appearing in the video
(short-term action anticipation), Abu Farha et al. (2018) pro-
posed the task of predicting a longer sequence of future
actions in the case of goal-driven, structured procedures
(long-term action anticipation). Recently, the problem of
action anticipation has been studied also in the context of
egocentric videos. In particular, Damen et al. (2018) first pro-
posed an action anticipation challenge on egocentric videos,
and Furnari and Farinella (2019) systematically tackled the
anticipation problem exploring the importance of egocentric
cues such as object-based features.
State-of-the-art papers Girdhar and Grauman (2021) pro-
posed Anticipative Video Transformer (AVT), an end-to-end
attention-based video modelling architecture that attends
to the previously observed video in order to anticipate
future actions. Gu et al. (2021) leveraged transformer-based
attention to aggregate features across temporal dimension,
modalities, and symbiotic branches (verb/noun branches)
respectively. Zhong et al. (2023) extended the transformer
architecture to operate on multiple modalities, by unifying
multi-modal data through mid-level fusion and using the
obtained representations for anticipating next actions. Roy
and Fernando (2022) proposed an approach that uses learned
latent goals to anticipate the next action. Latent goals are
accompanied by goal closeness and goal consistency losses,
aiming to produce a visual representation that is closer to the
latent goal and consistent throughout consecutive actions.
At the moment of writing, Roy et al. (2024) achieve state-
of-the-art performance on the EPIC-KITCHENS Action
Anticipation challenge, by refining video representations
using a transformer model computing the change in the
appearance of objects and human hands due to the execu-
tion of the actions. Recently, Zhao et al. (2023a) achieved
state-of-the-art long term action anticipation performance
on the Ego4D dataset with a hybrid architecture integrating
vision-based action recognition to infer high level, symbolic
video representations and large language models for proce-
dure planning.
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4.4.2 Anticipating Objects

To provide assistance to the user at a more granular level it
is useful to make future predictions of attended or manip-
ulated physical regions appearing in the egocentric video,
such as objects, scene parts, or object parts. In this way it
is possible to issue alerts when specific parts of a poten-
tially dangerous object are going to be touched or when the
camera wearer is about to interact with the wrong object
in a known workflow. Current approaches formulate future
region prediction as object detection, heat-map prediction,
or semantic mask prediction tasks. Algorithms are usually
evaluated using spatial overlapping retrieval metrics such as
mean Average Precision.
Seminal works Furnari et al. (2017) first introduced the prob-
lem of predicting which objects will be interacted with next.
Zhang et al. (2017) proposed to predict future gaze, i.e.,
the spatial location which will be attended to by the user in
the future. Nagarajan et al. (2019) investigated the anticipa-
tion of object affordances by predicting interaction hotspots
in videos. Liu et al. (2020b) showed how predicting inter-
action hotspots and future hands trajectories can support
more abstract tasks such as action anticipation. Notably,
these works have addressed their own versions of object
anticipation tasks.Grauman et al. (2022)worked toward stan-
dardisation of this task, termed short-term object-interaction
anticipation. This predicts which of the objects in the scene
will be interacted with by the camera wearer (noun of the
future object), how the interactionwill take place (verb denot-
ing the interaction), and when the interaction will begin
(time-to-contact in seconds).
State-of-the-art papers Among the anticipation algorithms
based on regions, most state-of-the-art approaches mainly
focus on the prediction of future interacted objects and in
particular on the short-term object interaction anticipation
task as defined in Grauman et al. (2022). Pasca et al. (2023)
currently achieve state-of-the-art performance on the task
with TransFusion, a multimodal transformer-based archi-
tecture that exploits language. In particular, TransFusion
leverages pretrained image captioning and vision-language
models to extract the action context from past video frames.
This, together with the next video frame, is processed by the
multi-modal fusion module to forecast the next object inter-
action. Recently, Lai et al. (2023a) proposed a state-of-the-art
approach to future gaze prediction in social scenes based on
the analysis of audio and video. It models audio-video cor-
relations with a spatial fusion and a temporal fusion branch,
guided by a multi-modal contrastive loss. Fused embeddings
are decoded jointly to predict future gaze.

4.4.3 Anticipating Trajectories

Systems able to make future predictions in the form of trajec-
tories will know in advance where the user may go, how the
observed objects will move in the scene, and how the camera
wearer’s hands are going to move in the near future. Such
information is crucial for all those applications that need to
plan in advance, e.g., to suggest alternate routes (to avoid
passing through dangerous zones) or detect unsafe opera-
tions involving the interaction between hands and objects.
The metric most commonly used in trajectory prediction is
the final displacement error (FDE), defined as the L2 distance
between the predicted location and the ground truth.
Seminal works Park et al. (2016) first proposed the task of
predicting the possible trajectories that the camera wearer
may follow from egocentric video. In a complementary way,
Yagi et al. (2018) studied the problem of predicting the future
trajectory of other persons observed from the egocentric point
of view. Liu et al. (2020b) investigated how predicting hands
trajectories can be beneficial for action anticipation. Jia et
al. (2022b) proposed the task of anticipating a time series of
future handmasks from an egocentric video. Bao et al. (2023)
explored the problem of predicting future hand trajectories
in 3D with the aim to support the understanding of human
intention and behaviour in AR/VR applications. While tra-
jectory prediction tasks have not been systematically studied
in the egocentric perspective, a first attempt to propose stan-
dard tasks has been done by Grauman et al. (2022), where
two tasks related to the prediction of future locomotion and
hands trajectories are formulated.
State-of-the-art papersAlikadic et al. (2022) presented a new
method that leverages transformers to forecast future tra-
jectories of pedestrians from egocentric views. The model
predicts the trajectories by relying on previous locations
and scales, dynamics poses, and ego-motions of the camera
wearer. Kai et al. (2023) designed a multi-channel tensor to
represent social interaction, including pedestrian pose, depth
and their relative locations. They fed this input to a novel end-
to-end fully convolutional transformer (Conv-Transformer)
network. Hatano et al. (2023) recently proposed an approach
that uses semantic information to connect bird’s-eye coor-
dinates to the egocentric viewpoint. This allows to utilise
existing third-person view methods on the egocentric view,
without the need to re-train.
Datasets Action anticipation and future region prediction
works have often relied on action recognition datasets,
namelyADL(Pirsiavash&Ramanan, 2012),EPIC-KITCHENS
(Damen et al., 2022), EGTEA Gaze+ (Li et al., 2021a),
and Ego4D (Grauman et al., 2022). These general-purpose
datasets are described in Sect. 5. Since most action recogni-
tion datasets, such as ADL, EPIC-KITCHENS and EGTEA,
do not contain significant human locomotion, early trajec-
tory predictionworks have performed evaluations on specific
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datasets collected on purpose. In particular, Park et al. (2016)
collected the EgoMotion dataset, a set of egocentric videos
acquired in various indoor and outdoor scenes using first-
person GoPro Hero 3 stereo cameras. The dataset comprises
26 scenes, 65.5k frames and 9.1 h of video covering various
activities such as walking, shopping, and social interactions.
The First-Person LocomotionDataset proposed byYagi et al.
(2018) comprises about 4.5 h of egocentric videos recorded
by people wearing a chest-mounted camera and walking
around in diverse environments. The Ego4D (Grauman et
al., 2022) is the first to offer videos suitable for anticipating
actions, objects and trajectories. Limited annotations on this
massive-scale dataset enable works on anticipating actions,
forecasting hand and full-body trajectories.
For the future Despite the progress of research in this field,
at the moment of writing, future anticipation approaches
achieve limited performance. For example, the current state-
of-the-art approach for action anticipation by Roy et al.
(2024) only achieves a mean top-5 per class recall of 18.1%
on the test set of the EPIC-KITCHENS-100 dataset. Sim-
ilarly, the best performing approach to short-term object
interaction anticipation (Pasca et al., 2023) achieves a top-
5 mAP of 24.7% in next-active object prediction and 3.4%
when also predicting the interaction verb and time-to-contact
on the test set ofEgo4D.These results highlight the very com-
plex nature of anticipation tasks and the need for advances
in this area. Current anticipation approaches also suffer from
major limitations which prevent their widespread adoption.
Most approaches assume that a “trimmed” video is sampled
at a fixed time before the beginning of the action and fed to
the model, which constitutes an unrealistic scenario, given
that the occurrence of future actions is unknown at test time.
Despite some recentwork towards an untrimmed anticipation
scenario (Rodin et al., 2022), the trimmed setting remains the
most common one.

4.5 Gaze Understanding and Prediction

Understanding and predicting which areas of the scene the
camera wearer is attending is critical for AR, assistive tech-
nologies, and human behaviour analysis. This task involves
developing sophisticated algorithms that can accurately esti-
mate the direction of a person’s gaze based on the visual
information captured by an eye-mounted egocentric camera.
Gaze understanding enables more accurate modelling of the
camerawearer’s visual attention, which offers useful insights
for downstream tasks including predicting which object(s)
the camera wearer is focused on at a time. Methods are eval-
uated by their ability to produce attentionmaps coherent with
ground truth gaze measurements. We will focus on methods
estimating gaze from the perspective of the beholder. For
approaches that utilise remote eye trackers to process frames

containing the wearer’s face, we refer to the work by Cazzato
et al. (2020).
Seminal works Predicting gaze is inherently challenging,
leading initial works to explore different cues to under-
stand the wearer’s focus of attention. For instance, Yamada
et al. (2011) highlighted the challenges associated with
using visual saliency maps based on colour, intensity, and
orientation in egocentric vision, especially when there is
significant egomotion. To address this issue, Yamada et al.
(2012) combined visual saliency maps with rotation- and
translation-based attention maps obtained through egomo-
tion estimation. By doing so, they aimed for more robust and
accurate egocentric visual attention predictions.

The first approach for predicting gaze from egocentric
videos was presented by Fathi et al. (2012b) who simultane-
ously tackled daily activities recognition and gaze location
prediction using a common probabilistic generative model.
Li et al. (2013) leveraged implicit cues in egocentric videos,
such as hand location, pose, and motion, to predict gaze.
Additionally, they modelled gaze behaviour to enhance pre-
diction performance. Building on this work, Huang et al.
(2018) modelled patterns in the temporal shift of gaze fix-
ation. Their work is based on the assumption that during
fixation, the gaze tends to be located on the same object, and
patterns of gaze shift depend on the high-level task, which
can be learned.

A more recent study by Al-Naser et al. (2019) predicted
gaze based on the objects framed in the video. They used
features and bounding boxes from an object detection model
and combined both classic gaze point regression formulation
and classification for prediction. In parallel, Tavakoli et al.
(2019) analysed both top-down and bottom-up factors influ-
encing egocentric gaze prediction. Their work confirmed the
relevance of themanipulation point over hand regions and the
importance of hand-object interaction for gaze prediction.

An innovative approach was introduced by Thakur et al.
(2021), where the information from the video stream was
combined with head movement obtained from IMU (Inertial
Measurement Unit) data to improve gaze estimation. On a
slightly different note, Su and Grauman (2016) focused on
understanding when engagement with the environment hap-
pens instead ofwhat thewearer is looking at. This perspective
aimed to detect moments of interaction from egocentric
videos.
State-of-the-art papers The current state-of-the-art method
for gaze estimation on both the EGTEA Gaze+ dataset (Li et
al., 2021a) and Ego4D dataset (Grauman et al., 2022) is the
approach proposed by Lai et al. (2022). The authors tackled
the challenge of integrating different gaze cues, such as the
likelihood of scene objects to be targets, their location, and
the head motion pattern related to gaze shifts, into a com-
prehensive analysis of visual attention. To achieve this, they
developed a transformer-based model that captures the con-
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nection between the global scene context and local visual
cues using a Global-Local Correlation module. By combin-
ing these various gaze cues and context information, their
method achieves state-of-the-art performance in predicting
gaze in egocentric videos on both datasets.

Recent devices such as the Meta Aria glasses have an
onboard estimation of gaze through sensors embedded with
eye-tracking. Their modern eye trackers use corneal reflec-
tion, a method involving near-infrared light to illuminate the
eyes, causing a reflection that is detected by a high resolution
camera.
DatasetsMost of the datasets used in this section are general
datasets described in Sect. 5 with gaze tracking data to serve
as ground truth—GTEAGaze dataset by Fathi et al. (2012b),
EGTEA Gaze+ by Li et al. (2021a), GTEA-sub by Huang et
al. (2018) and Ego4D by Grauman et al. (2022). In addi-
tion, other datasets have been used in research for specific
purposes, but are not publicly available. Among the lim-
ited public datasets, the Object Search Tasks (OST) Dataset
by Zhang et al. (2017) includes 57 sequences of search and
retrieval tasks performed by 55 subjects provided with eye-
tracking data.
For the future The future of gaze prediction in wearable
devices holds immense potential to revolutionise human-
computer interaction and user experience. As wearable
technology becomes more advanced and pervasive, integrat-
ing accurate and real-time gaze tracking capabilities will
enable seamless interactions with digital content. Wearable
devices with built-in gaze prediction algorithms could offer
intuitive and hands-free control, improving accessibility and
usability across applications. With precise gaze tracking,
wearable devices can adapt their interfaces dynamically,
presenting relevant information based on the user’s visual
focus. Despite the advances in this area, gaze analysis still
poses various challenges, including the need for large anno-
tated datasets, subjective bias due to individual differences,
handling eye blinks and data attributes like occlusion and
illumination (Ghosh et al., 2023; Pathirana et al., 2022).
Nonetheless, even with the application of state-of-the-art
techniques (Lai et al., 2022), results are not ideal, as evi-
denced by the F1 scores of 44.8 and 43.1 on EGTEA Gaze+
(Li et al., 2021a) and Ego4D (Grauman et al., 2022), respec-
tively.

4.6 Social Behaviour Understanding

The wearable devices of the future will be able to support
users in a variety of scenarios related to their daily lives.
As humans are by nature social animals, we expect wear-
able systems to be able to understand the social behaviours
of the camera wearers and of others they engage with. The
research community has investigated this area with different
topics. We organise our literature overview by considering

the works related to understanding the relationship with
the speaker (Sect. 4.6.1), detecting/modelling social interac-
tions (Sect. 4.6.2), estimating attention towards the camera
wearer (Sect. 4.6.3) and joint attention (Sect. 4.6.4). We dis-
cuss the relevant publications in each sub-area and provide
insights into what future directions may benefit the commu-
nity with respect to this topic. It should be noted that the
approaches discussed in this section aim to analyse social
behaviour from the point of view of the camerawearer, which
involves specific challenges and opportunities as compared to
approaches based on fixed cameras. Indeed, analysing social
interactions from egocentric vision gives a privileged views
into behaviours directed towards the camera wearer such as
facial expressions, speaking acts, and eye contact. Estimating
visual attention through two synchronised wearable cameras
further enables the study of joint attention which can have
useful applications, including in diagnosing and monitoring
social-related health conditions.

4.6.1 Modelling the Relationships with the Speakers

This area focuses on modelling the relationship between the
camera wearer and speaking subjects appearing in the ego-
centric field of view. Previousworks have addressed different
objectives that improve the camera wearer’s audio-visual
interactions, including improving speech quality in a noisy
environment, determining auditory attention towards one of
a set of speakers, determining which subjects are talking to
the camera wearer, and detecting speakers and transcribing
their speech. Existing approaches have considered an array
of similar, yet distinct, tasks related to this area, generally
proposing approaches based on the processing of both audio
and video. Segmentation maps or bounding boxes are usu-
ally produced to spatially detect the speaker. The evaluation
is carried out by comparing the predicted areas with ground
truth annotations.
Seminal works Kumano et al. (2015) first considered the use
of egocentric vision to perform automatic conversation anal-
ysis. Thework targeted amulti-party conversational scenario,
where participants were equipped with in- and out-cameras
with microphones and the gaze behaviour of each interlocu-
tor was hence estimated via self-calibration. Donley et al.
(2021) proposed the task of enhancing a target speech source
and speech intelligibility in conversations held in noisy envi-
ronments and recorded through egocentric devices.
State-of-the-art papers Lu and Brimijoin (2022) presented
a study to assess whether head angle estimated via egocen-
tric devices is predictive for sound source selection. Jiang
et al. (2022) tackled the problem of active speaker detec-
tion by using both video andmulti-channelmicrophone array
audio. Grauman et al. (2022) presented the “Social Interac-
tions” benchmark, which includes tasks aimed at identifying
communicative acts directed towards the camera-wearer. The
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most relevant for this section is the “Talking To Me” task,
which focuses on classifyingwhether each visible face, based
on a video and audio segment with tracked faces, is talking to
the camera-wearer. Additionally, the researchers introduced
the AV diarisation benchmark, to understand the camera-
wearer’s ongoing interactions with people starting from
speech. Those are: localisation and tracking of the partici-
pants, active speaker detection, diarisation of each speaker’s
speech activity, and transcription of each speaker’s speech
content. For the latter, Gabeur et al. (2022) recently proposed
a new model for audio-visual automatic speech recogni-
tion based on amulti-modal audio-visual transformer trained
end-to-end from spectrograms and RGB frames. Ryan et al.
(2023) proposed a novel task of egocentric auditory attention
localisation, which identifies the person the camera wearer is
talking to in a multi-people multi-conversation scenario. The
task is carried out by considering audio-visual signals. The
auditory signals are given by a directional array of micro-
phones, while the visual signals are given by egocentric
video.

4.6.2 Detecting andModelling Social Interactions

Works in this area detect the presence of social relationships
from egocentric images or video and potentially characterise
such relationships, by highlighting the engaged subjects and
classifying the behaviour (dialogue, monologue, discussion,
etc.). Being able to detect and characterise social relation-
ships can allow wearable systems to gain an understanding
of the social context of the camerawearer, consider video seg-
ments relevant for later recollection (e.g., record important
conversations), and track the camera wearer’s social rela-
tionship for monitoring and diagnosis of potential disorders.
The approaches discussed below did not follow a common
task definition, instead they analysed related problems which
were tackled with disparate techniques.
Seminal works Fathi et al. (2012a) proposed the first work to
detect and categorise social interactions in egocentric video
among a group of individuals. The location and orientation
of each subject’s face were used to compute a line of sight
and obtain a location in space indicating the focus of atten-
tion. Head movements of egocentric cameras were also used
for a better understanding of attentional focus. Narayan et
al. (2014) evaluated the performances of dense trajectories
to recognise social interactions performed by the camera
wearer and other subjects acquired from the egocentric point
of view. Alletto et al. (2015a) addressed the problem of parti-
tioning people in an egocentric video sequence into socially
related groups. Interactions are then detected with clustering
and structural learning. Bambach et al. (2015) focused on
hands to detect interactions, and investigated the tasks of hand
detection, disambiguation, and segmentation from videos of
interacting people using appearance models based on CNNs.

Yonetani et al. (2016) considered the problem of modelling
dyadic interactions (interactions between two people) from
paired videos, where micro-level actions and reactions such
as slight shifts in attention, subtle nodding or small hand
actions are detected. Yang et al. (2016) proposed the con-
cept of “wearable social camera”, a camera that summarises
the video of the user’s social activities. To achieve this goal,
common features among different social interactions, called
interaction features, are extracted and processed.

Su et al. (2016) presented a method to predict future
movements of basketball players based on the analysis of
social behaviours. 3D reconstruction of multiple first-person
cameras and gaze information were used to automatically
annotate each player’s video the visual semantics. A Siamese
neural network was later trained to retrieve future trajec-
tories based on group movements. Aghaei et al. (2017)
considered the problem of social style characterisation from
egocentric photostreams. This is done by detecting tempo-
ral segments characterised by social interactions, detecting
faces, extracting social signals and classifying the social
interaction into formal or informal. Duarte et al. (2018)
investigated the non-verbal visual cues to “read the inten-
tion” of other humans in social interactions from egocentric
videos. Other works focused on robot-centric activity recog-
nition (Ryoo & Matthies, 2013; Xia et al., 2015; Gori et
al., 2016), where the goal is to enable an observer (e.g., a
robot or a wearable camera) to understand what activity oth-
ers are performing towards it. Xia et al. (2015) proposed to
extract features from an ego-motion region and an indepen-
dent motion region separately and combine the descriptors
using multiple kernels. Gori et al. (2016) proposed a uni-
fied mid-level descriptor capable of discriminating between
different types of activities. They called it Relation History
Image (RHI), and it is built as the variation over time of rela-
tional information between every pair of local regions (joints
or image patches) belonging to one or a pair of subjects.

More recently, Bertasius and Shi (2017) proposed to pre-
dict cooperation patterns in the near future without requiring
manually labelled intention labels. To do that, they mod-
ified the output of a pretrained pose estimation network
to represent the camera wearer’s internal state, including
visual attention and intentions. They then employed this
transformed output as a supervisory signal to train another
network for the cooperative basketball intention task.
State-of-the-art papers Due to limited datasets on the topic,
there are only a handful of recent works proposing meth-
ods that could be deemed state-of-the-art on this task. Li
et al. (2019a) addressed the problem of modelling dyadic
interactions by explicitly modelling the relations between
the interacting subject and the camera wearer using a dual
recurrent network. That incorporates two interconnected sub-
tasks, namely individual action representation learning and
dual relation modelling. Lai et al. (2023b) recently proposed
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the task of modelling persuasive behaviours during multi-
player social deduction games leveraging language models.
Given an utterance and its corresponding video segment,
they seek to predict the persuasion strategies adopted in the
utterance. They first leverage a pretrained language model
as the text encoder to obtain the utterance embedding, and
a vision transformer to obtain the visual embedding. They
then concatenate the textual and visual features to predict the
persuasion strategy.

4.6.3 Estimating Attention Towards the Camera Wearer

This line of work focuses on understanding when a subject
appearing in the egocentric field of view is attending to (e.g.,
by looking at or talking to) the camera wearer. This ability
can allow egocentric vision systems to facilitate social inter-
actions (e.g., by notifying the camerawearerwhen a person is
trying tomake contact), improving diagnosis of potential dis-
orders of the observed subjects by studying their attentional
pattern towards the camera wearer (e.g., Autism Spectrum
Disorder when the camera wearer is a doctor), and logging
conversations with the camera wearer for later recollection.
Current approaches have analysed different tasks, ranging
from detecting eye contact to detecting people looking at or
talking to the camera wearer.

Methods are evaluated by validating predictions against
manually annotated ground truth or comparing algorithms’
performance to human performance. Similar to other tasks,
the evaluation has not yet been investigated in a systematic
way.
Seminal works Ye et al. (2012) developed the first system
capable of recognising eye contact between the wearer and
a person in front of the camera. The system aimed to detect
atypical patterns of gaze and eye contact in children to under-
stand early signs of autism. The approach used face detection
to find the child’s face and then estimated its gaze in 3D
space to determine whether it pointed towards the wearer.
Another autism diagnosis system was developed by Pet-
ric et al. (2014), leveraging the idea that autistic children
tend to interact more with technological devices than with
humans. They utilised robots equipped with frontal cameras
to understand joint attention patterns. Subsequently, Smith
et al. (2013) focused simply on capturing whether people in
imageswere looking towards thewearer or not, tacklingwhat
they called “gaze locking”. By discretising the problem and
avoiding continuous tracking of the observer, they simpli-
fied the task. To address the challenges of strong appearance
diversity in human eyes, Ye et al. (2015) proposed a model
that couples eye appearance with head pose for improving
eye contact detection.
State-of-the-art papers The current state-of-the-art approach
in eye contact detection, as proposed by Chong et al. (2020),
scales the training dataset to 4.7 million human-annotated

eye contact images and leverages large-scale datasets from
other tasks like face recognition to build initial representa-
tions that understand the relationship between head pose and
gaze direction.

Recently, Grauman et al. (2022) introduced the “Look-
ing At Me” task, which involves classifying whether each
visible face in a video, with localised and identified social
partners, is looking at the camera-wearer. Xue et al. (2023)
takes a unified approach by building on the idea that various
video understanding tasks are related. They propose EgoT2,
a framework that combines different task-specific models to
improve performance. They also integrate tasks like “Talking
To Me” and “Active Speaker Detection” to understand if a
specific person is talking to the wearer and who is speaking,
respectively.

4.6.4 Estimating Joint Attention

Works in this area focus on modelling the joint attention of
multiple subjects towards scene regions, objects, or people.
The ability to estimate joint attention can allow egocentric
systems to monitor and improve social interactions (e.g.,
by monitoring the joint focus of attention and notifying
the camera wearer when it changes), improve diagnosis of
potential disorders, and enhancing video curation and sum-
marisation by detecting the most popular scenes from a set
of synchronised egocentric video streams. Modelling is usu-
ally performed by predicting social saliency maps, detecting
jointly attended objects, or determining a subset of subjects
with coherent attention patterns. Approaches are evaluated
by comparing predictions againstmanually annotated ground
truth labels or assessing how the estimated joint attention is
predictive of other subjects’ attention. Previous works have
considered different but related task formulations.
Seminal works Perceiving joint attention of wearers towards
a common scene was introduced by Park et al. (2012). They
constructed a 3D social saliency field, and located gaze con-
currences by localisingwearable cameras via structure-from-
motion in a common coordinate system and triangulating the
attention of each wearer. Subsequently, Park et al. (2013)
introduced the concept of “social charges” as latent quanti-
ties driving the attention of people in a social group, defining
the relationships between these charges and the primary gaze
of each member. They estimated time-variant social saliency
fields from observed primary gaze, enabling the prediction
of gaze direction at any proximal location or time. Building
on previous works, Park and Shi (2015) proposed a method
to estimate the likelihood of joint attention as a function of a
social formation, without relying on the gaze of group mem-
bers. Using the dataset from Park et al. (2012), where the
locations of group members and their joint attention were
measured, their learned representation demonstrated the abil-
ity to predict the social saliency of real-world scenes.
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Another line of work explores the multiple wearable cam-
era setting to automatically edit footage in a smart manner.
For example, Arev et al. (2014) used the centre of atten-
tion of different cameras as an indicator of what is important
in the videos and combined it with cinematographic guide-
lines to produce effective summaries of the original footage.
Hoshen et al. (2014) estimated the cameras looking at the
same region, without reconstructing the scene in 3D.

A slightly different approach is presented by Lin et al.
(2015), where the goal is to locate the person who draws
attention from most wearers in a multi-camera setting. They
used motion patterns to correlate people across videos to
avoid appearance-related challenges, such as groups of peo-
ple dressed similarly.

Kera et al. (2016) authored one of the pioneering works
on discovering joint attention based on visual appearance.
They proposed to locate objects that are attended by multiple
camera wearers. They used multiscale spatiotemporal tubes
around points of gaze as potential objects of interest and
performed unsupervised clustering on them.
State-of-the-art papers The estimation of joint attention is
an emerging topic, and it has mostly seen pioneering works
proposing various variations on the task. More recently,
Huang et al. (2020a) improved on the approach of Kera et
al. (2016) on locating objects that are attended by multi-
ple camera wearers. They tackled the challenges of cluttered
scenes and noisy gaze by first temporally locating joint atten-
tion periods and then spatially segmenting the object of joint
interest. Those contribute to a more reliable spatial segmen-
tation than simply using regions in proximity to the points of
gaze, which might be noisy. They achieve that by means of
a hierarchical graphical model composed of multiple linear
chain conditional random fields.
Datasets Numerous public datasets are now available to
evaluate model performance in social behaviour understand-
ing tasks. Among the most widely used is the First Person
Social Interaction Dataset (FPSI) (Fathi et al., 2012a) dataset
described in Sect. 5. The JPL First-Person Interaction dataset
(Ryoo&Matthies, 2013) stands out as thefirst one to annotate
actions performed by a robot. It includes 7 actions, com-
prising 4 friendly interactions, 1 neutral interaction, and 2
hostile interactions, aiming to study robot-centric activity
recognition. Similarly, the datasets from Xia et al. (2015)
also address robot-centric activity recognition, leveraging the
depth modality in addition to other features. For dyadic inter-
actions, thePairedEgocentricVideodataset byYonetani et al.
(2016) contains over 1000 pairs of egocentric videos captur-
ing micro-action and reaction patterns from the perspectives
of both interacting individuals. The EGO-GROUP and EGO-
HPE datasets (Alletto et al., 2015a) offer videos featuring
groups of people, enabling testing of group detection in ego-
centric vision and head pose estimation of the participants.
The Focused Interaction dataset (Bano et al., 2018) provides

multimodal representations of individuals interacting, sup-
porting the development of automatic interaction detection.
Park et al. (2012) proposed a dataset for evaluating joint atten-
tion. Three video sequences were recorded: a meeting with
two groups, a musical with alternating performances, and a
party with multiple activities. The UTJA-M dataset (Huang
et al., 2020a) captures moments of joint attention among
individuals and releases the tracked gaze for all participants.
Targeting the development of conversationalAI, theEgoCom
(Northcutt et al., 2020) and EasyCom (Donley et al., 2021)
datasets offer multimodal recordings, with a primary focus
on audio. While EgoCom contains nearly 40 h of recordings,
EasyCom provides synchronised audio from different partic-
ipants, incorporating realistic acoustic noise into the setting.
Lai et al. (2023b) proposed a multi-modal dataset for study-
ing persuasive behaviours during social games. Videos are
sourced from both YouTube and the Ego4D social dataset
and include text, video, and audio signals. In total, it con-
tains 5,815 utterances from Ego4D and 20,832 utterances
from YouTube.
For the future As discussed in the previous sections, the
literature on social behaviour understanding is less strati-
fied as compared to the other tasks considered in this paper.
The current state-of-the-art performance varies significantly
depending on the task. For the “Talking To Me” task in the
Ego4D benchmark (Grauman et al., 2022), the results show
53.9%mAP and 54.3% accuracy on the test set, which is still
far from human-level performance. Conversely, in the task of
eye contact detection has reached acceptable performance—
the state-of-the-art achieves an overall precision of 0.936 and
a recall of 0.943 across 18 validation subjects. This perfor-
mance is comparable to that of 10 trained human coders.
While several datasets have been collected, the focus has
been on diagnostic and summarisation tasks. The potential
for understanding social behaviour can be a game changer
in strategic interactions—whether gaming or even offer-
ing advice in live negotiations and group meetings. Such
potential requires interdisciplinary research, beyond com-
puter vision expertise and is currently at its infancy.

4.7 Full-Body Pose Estimation

The reconstruction of the wearer’s body pose is crucial to
enable applications such as daily life monitoring and AR.
Consequently, the research community has devoted increas-
ing attention to this field in recent years. Human pose
estimation aims to create representations of the human body
either in the local egocentric camera space or in a world
coordinate system. Two main approaches are employed for
constructing body representations: kinematic models, which
utilise joint positions and limb orientationswithout capturing
detailed texture and shapes, and volumetric models, which
provide more realistic representations and capture deforma-
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tions. Methods are assessed by their Mean Per Joint Position
Error (MPJPE) measuring the average distance between the
predicted joints and the ground truth joints.Works addressing
this problem in egocentric vision tend to differ from works
focusing on fixed cameras due to the limited field of view of
wearable cameras, which rarely captures the full view of the
human body.
Seminal works Wearable cameras, with their limited field
of view primarily focused on the wearer’s attention, only
capture a partial view of the wearer’s body. As a result,
significant efforts in egocentric 3D pose estimation have
been dedicated to designing systems that can overcome this
limitation. One pioneering study conducted by Shiratori et
al. (2011) tackled this challenge by employing a Structure-
from-Motion technique. They utilised 16 outward-looking
body-mounted cameras to reconstruct both the relative and
global joint motion of a person in outdoor environments. The
objective of their work was to develop a motion capture sys-
tem that could operate effectively “in the wild”.

Drawing inspiration from the concept of overcoming the
wearer’s body invisibility, subsequent works in the field have
explored the use of cameras positioned to face downwards
towards the body. One notable approach in this regard is the
development of EgoCap by Rhodin et al. (2016). It involves
a specially designed head-mounted stereo rig setup with
downward-facing cameras. Expanding on the downward-
facing camera setup, Xu et al. (2019) proposed the first
real-time motion capture system utilising a single monocu-
lar fisheye camera mounted on a cap. Finally, addressing the
specific setting of head-mounted displays in AR/VR, Tome
et al. (2019) positioned the camera on the rim of a VR head-
set and generated a photorealistic dataset which served as a
valuable resource for research.

In the study conducted byWang et al. (2021a), a significant
focus was placed on addressing the limitations associated
with adopting a local egocentric camera reference system,
particularly in applications such as animating body locomo-
tion in a virtual environment. Recognising this restriction,
the researchers proposed a novel framework that combines
the local pose estimation with the world coordinate system
obtained through SLAM. The aim was to achieve a tempo-
rally stable integration of both perspectives, enabling more
robust and accurate results.

In parallel, chest- and head-mounted outward-looking
cameras have also been employed to infer the pose of the
wearer inmore challenging scenarios wheremost of the body
is out of the camera’s field of view. In particular, Rogez et al.
(2015b) extended the estimation of human body part joints
fromhands to the entire upper limb using synthetic depth data
training. Jiang and Grauman (2017) went further by attempt-
ing to estimate the full-body of the camera wearer from a
single outward-looking camera, leveraging dynamic motion

signatures and static scene structure to infer the “invisible”
human body pose.

Unlike previous approaches focused solely on smooth and
accurate poses, Yuan and Kitani (2018) introduced a method
that formulates body pose estimation as a Markov deci-
sion process adopting a dynamics-based perspective. They
leveraged a physics simulator to train a policy that gener-
ates physically plausible poses. In a subsequent study, Yuan
and Kitani (2019) improved upon this approach by adopt-
ing a control-based methodology that not only estimates
poses but also forecasts valid future poses, going beyond
pure estimation. In a similar vein, Luo et al. (2021) employ a
combination of kinematics- and dynamics-based modelling
to achieve the first-ever estimation of physically plausible 3D
human-object interactions. The authors collected their own
dataset, which include 6 degrees of freedom (DoF) object
poses. These object poses are factorised within the scene and
subsequently utilised by their method to estimate realistic
3D human-object interactions, accounting for the physical
constraints and dynamics involved.

In embodied AI, understanding social interactions holds
great significance, leading to a focus on pose estimation
tasks during social interactions. Ng et al. (2020) introduced
a method called “You2Me” that utilises the action-reaction
social interaction dynamics between the wearer and a sec-
ond person as prior to estimate the wearer’s pose. This work
emphasises the influence of inherent synchronisation dur-
ing interactions. On the other hand, Liu et al. (2021b) made
a significant contribution by being the first to attempt the
estimation of a second person’s pose from an egocentric per-
spective while simultaneously grounding it in the given 3D
environment.
State-of-the-art papers The current state-of-the-art perfor-
mance for downward-looking fisheye datasets, such as
Mo2Cap2 (Xu et al., 2019) and the dataset introduced by
Wang et al. (2022), is achieved by the method proposed in
Wang et al. (2023b). It integrates scene constraints into pose
prediction to avoid obtaining physically unrealistic poses
like body floating or penetration with the environment. The
approach consists of two primary steps. Firstly, the depth
modality is inferred to capture the spatial information of the
scene. Secondly, the inferred depth is inpainted in areas of
the image where the body occludes the scene. The inpainted
depth is then combined with 2D pose features in a shared 3D
voxel space. Integrating scene constraints in this common
3D voxel space allows for pose estimation while enforcing
adherence to the physical constraints imposed by the scene.

At the same time, the work presented in Li et al.
(2023) achieves the best performance on a set of egocen-
tric datasets (Luo et al., 2021; Zheng et al., 2022) captured
from outward-looking camera perspective, including their
proposed synthetic egocentric dataset. Given that directly
matching egocentric videowith full-body pose is challenging
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due to the frequent absence of visible body parts, the authors
address the task by introducing an intermediate step of head
motion estimation. This approach eliminates the require-
ment for a training dataset of paired egocentric video and
3D human motion, while accurately predicting head motion
using SLAM and a transformer-based model. Subsequently,
a diffusion model conditioned on the estimated head pose
is employed to derive the full-body pose. However, in this
work, evaluation sequences only contain people navigating
a virtual scene, and are not undergoing any activities.

Recent research has also placed significant emphasis on
the task of estimating the complete body pose of individu-
als within the recorder’s field of view. In the study by Ye
et al. (2023a), the focus is on simultaneous localisation and
humanmesh recovery to reconstruct the global poses of indi-
viduals featured in egocentric videos, all without relying on
dense 3D reconstructions of the surroundings. The proposed
method, SLAHMR, firstly predicts relative camera motions,
identifies individuals, and determines their local 3D poses.
Leveraging this information, the model initialises trajecto-
ries for both humans and cameras within a common world
reference system, optimising them for consistency across 2D
observations in the video and learned human motion priors.
Zhang et al. (2023c) takes a different approach by incorpo-
rating the 3D scene and conditioning a diffusion model for
human pose generation on it. The authors combine human-
centric scene regions with a physics-based collision score
to guide the generation of plausible human poses that avoid
environment penetration. To further enhance the accuracy
and diversity of poses, they employ a visibility-aware graph
convolution model, enabling the learning of precise body
poses for visible joints while encouraging diversity in trun-
cated parts.
DatasetsCurrent datasets for pose estimation fromdownward-
facing camera systems range from simulated (Tome et al.,
2019) to real-world datasets (Rhodin et al., 2016; Xu et al.,
2019; Wang et al., 2021a). These datasets provide ground
truth in the form of 3D poses of the camera wearer. Recently,
there has been a growing interest in generating large-scale
real-world datasets, such as EgoPW (Wang et al., 2022), as
well as simulated datasets with a diverse range of motions,
such as UnrealEgo (Akada et al., 2022).

In the context of outward-looking camera setups, interest
has also been increasing. In addition to the previously men-
tioned works (Luo et al., 2021; Li et al., 2023; Ng et al.,
2020), datasets with orthogonal characteristics continue to
be released. For example, the EgoBody dataset by (Zhang
et al., 2022c) plays a crucial role in modelling interactions,
as it encompasses multi-modal egocentric data streams and
provides 3D ground truth for multiple individuals in com-
plex 3D scenes. Furthermore, Zheng et al. (2022) recently
introduced a large-scale dataset for human motion predic-
tion that includes gaze information. They argue that accurate

motion prediction depends on understanding human inten-
tions, which can be studied using gaze in the egocentric
setting. Additionally, the EgoHumans benchmark by Khi-
rodkar et al. (2023) captures multiple subjects in realistic
outdoor environments from multiple egocentric viewpoints,
serving as a valuable resource for multi-view multi-human
analysis.
For the future Although some works (Yuan & Kitani, 2019;
Xu et al., 2019) have prototyped real-time egocentric body
pose estimation, performance is significantly below that of
third-person (or remote) cameras. Body-oriented camera
methods (Wang et al., 2023b) perform slightly better than
those with outward-looking camera (Li et al., 2023) obtain-
ing a MPJPE of 118.5 mm (mm) against MPJPEs ranging
from 121.1 to 152.1 mm despite being tested on different
datasets. Both still exhibit MPJPE values which are far from
recent ones (Tang et al., 2023b) obtained on theHumans3.6M
third-personbenchmark (Ionescu et al., 2013) ranging around
20mm. Even in the context of estimating the poses of other
individuals within the camera wearer’s field of view, the cur-
rent state-of-the-art (Ye et al., 2023a) achieves a World PA
First - MPJPE, i.e. an MPJPE obtained by aligning the first
frame of the prediction with the ground truth—of 141.1 mm
onEgoBody (Zhang et al., 2022c). This performance remains
notably distant from the results achieved with third-person
perspectives. The recent release of more realistic datasets
(Zheng et al., 2022; Khirodkar et al., 2023) can assist in
bridging the gap between research and practical solutions.

Importantly, full-body estimation during natural activi-
ties, beyond navigation and full-body motion like jumping
and squatting, is yet to be explored. For example, consider a
person knealing to retrieve an object from a cupboard, where
their hand is occluded by the cupboard itself. Such poses are
not available in any full-body datasets currently available. To
date, the task of full-body estimation is not integrated with
other tasks such as action understanding, trajectory forecast-
ing, and hand-object estimation. It is thus difficult to assess
the usefulness of current techniques in isolation.

4.8 Hand and Hand-Object Interactions

The significant presence of hands in egocentric videos
and their primary importance in understanding humans’
behaviour in an environment have lead to a proliferation
of research on hands and their interaction with objects.
While other research lines focus on human-object under-
standing from fixed cameras, egocentric vision provides a
more fine-grained view into object interactions in which
hands are central. As a result, methods for hand-object inter-
action understanding from egocentric vision greatly differ
from human-object interaction detection from fixed cam-
eras. In the next sections, we review works that focus on
estimating hand pose (Sect. 4.8.1) and classifying hand ges-
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tures (Sect. 4.8.2). Additionally, we analyse works that deal
with hand-object interaction aiming at understanding how
the camera wearer engages with the surrounding environ-
ment and the objects present therein. We divide hand-object
interaction methods into those that estimate 2D information
(Sect. 4.8.3) vs others which exploit 3Dmeshes of hands and
objects (Sect. 4.8.4).

4.8.1 Hand Pose Estimation

Predicting the pose of hands from an egocentric viewpoint,
especially during human activities, is a challenging task due
to severe occlusions caused by object manipulations, limited
field of view and head motion. The goal of hand pose estima-
tion approaches is to efficiently regress 3D hand keypoints
fromvarious input signals such asRGB images, videos, depth
maps, or 3D meshes. To evaluate the quality of the predicted
hand pose, evaluation measures focus on the mean error for
each hand joint or re-projection errors in meshes.
Seminal works First works on hand pose estimation exploited
both RGB and depth signals, thanks to the availability of
RGB-D sensors like Kinect. Oikonomidis et al. (2011) were
the first to study the problemwithout requiring special mark-
ers and a complex hardware setup. Rogez et al. (2015a) anal-
ysed hands performing daily activities from the egocentric
point of view, predicting their poses through a tracking-by-
detection framework. Qian et al. (2014) introduced the first
real-time system capable of accurately tracking a fully artic-
ulated hand. Keskin et al. (2012) used the depth sensors to
address two tasks simultaneously: hand pose estimation and
hand shape classification. Sabater et al. (2021) proposed a
novel skeleton-based approach which is robust for predicting
hand actions in different domains. Pose features are estimated
using a temporal convolutional network, and aggregated to
predict hand actions. Tang et al. (2013) were the first to
explore the use of synthetic data to address the articulated
hand pose estimation problem in a semi-supervised manner.
They aimed at minimising the synthetic-to-real domain shift
by leveraging a large synthetic dataset and a small amount
of labeled real data. Synthetic data have been also used to
predict the 3D pose of hands by Liu et al. (2021c). They pro-
posed a unified approach which uses labelled synthetic and
unlabelled real videos for joint 3D hand and object pose esti-
mation. Similarly, Mueller et al. (2017) used synthetic data
for real-time 3D hand tracking for estimating hand poses.
State-of-the-art papers Recently, different works focused on
the optimisation and refinement of 3D hand pose estimation
methods. Cheng et al. (2021) introduced HandFoldingNet, a
network designed for estimating 3D hand joint coordinates
from an input hand point cloud. The optimisation process is
achieved through a guided folding step, which computes the
3D pose by leveraging a 2D hand skeleton. The folding step
is further guided by multiscale features, representing both

global and local information. Yang et al. (2022) presented a
shallow deep neural network that incorporates specific lay-
ers capable of iteratively refining the predicted hand pose.
Hand pose estimation has expanded beyond the use of depth
maps and RGB signals. Rudnev et al. (2021) were the first to
address this task using an event-based camera. Theyproposed
EventHands, an approach which regresses 3D hand poses
exploiting locally-normalised event surfaces, which is a new
way of accumulating events over temporalwindows.Of these
works, onlyYang et al. (2022) evaluated theirmethod on ego-
centric hand pose, though the method was tested for general
views.

Several works have leveraged hand pose estimation to per-
form action classification (Wen et al., 2023a) and hand recon-
struction through neural representation (Karunratanakul et
al., 2023; Lee et al., 2023). Wen et al. (2023a) built a frame-
work which exploits the relationship between frames and
the hand poses in an end-to-end manner. Given an egocen-
tric video, a feature extractor encodes spatial information for
each frame. Sequences of per-frame features are then fed to a
hierarchical temporal transformer to capture temporal infor-
mation. This transformer is composed of two parts, one for
predicting the 3D hand pose and the other one for estimating
the action.

Karunratanakul et al. (2023) presented an approach named
HARP (HAnd Reconstruction and Personalisation) designed
to create personalised hand avatars from short monocular
RGB videos. They proposed a method to estimate a coarse
hand pose and shape and then optimise the hand mesh, the
albedo and the normal map using an analysis-by-synthesis
strategy that compares the input image to the reconstructed
ones. TheHARP representation not only enhances the quality
of 3D hand pose estimation but also allows for synthe-
sising hand poses from new viewpoints. Lee et al. (2023)
proposed the first neural implicit representation of two inter-
acting hands, called Im2Hands. This approach enables the
reconstruction of two interacting hands regardless of their
resolution and geometry. It achieves this through two novel
attention-based modules: one for initial occupancy estima-
tion and the other for context-aware occupancy refinement.

Recently, Tse et al. (2023) presented a novel transformer-
based approach that exploits multi-view RGB images to
reconstruct two hands meshes directly. In particular, the pro-
posed approach is able to reconstruct hands avoiding the
use of deep network to regress hand model parameters. A
larger dataset was used in Pavlakos et al. (2024) allowing
an improved transformer learning for 3D hand mesh estima-
tion. Their annotations include 5.3K egocentric images from
EPIC-KITCHENSVISOR (Darkhalil et al., 2022) and 23.2K
images from Ego4D (Grauman et al., 2022).

123



International Journal of Computer Vision (2024) 132:4880–4936 4909

4.8.2 Hand Gestures

Hand gestures provide key information to enable human-
computer interaction for AR/VR helmets, glasses and robots.
Hands can be conveniently captured by wearable devices
which are equipped with cameras able to observe the scene
from the first-person view. While hand pose estimation and
gesture recognition have been traditionally treated as sep-
arate tasks, they are inherently related. Recognising hand
gestures can be seen as a discrete version of hand pose esti-
mation focusing on understanding the semantics of gestures.
Methods are usually evaluated with standard classification
measures.
Seminal works The interpretation of hand gestures for
human-computer interaction has been a topic of research for
a while (Pavlovic et al., 1997). A pioneer work on hand ges-
ture recognition in the context of egocentric vision has been
presented by Baraldi et al. (2014). Inspired by dense tra-
jectories approaches introduced for action recognition, they
proposed to extract dense features around regions selected
by a designed hand segmentation method, enhancing tempo-
ral and spatial coherence. In addition to RGB, other signals
have been also used such as depth, skeleton information or
stereo-IR. De Smedt et al. (2016) exploited time series of 3D
hand skeleton to extract an informative descriptor for gesture
classification, which is commonly employed for interact-
ing with devices, such as pinch, swipe right, swipe left and
tap. Molchanov et al. (2016) classified hand gestures con-
sidering depth, RGB and stereo-IR data streams through a
recurrent 3D-CNN. 3D features have been also exploited
by Cao et al. (2017). They proposed a novel spatiotemporal
transformer module to classify gestures from RGB videos
without explicitly detecting hands (e.g., hand detection or
segmentation) and estimating head motion to rectify defor-
mations. In the context of human-computer interaction with
wearable glasses, Huang et al. (2016) proposed to study
pointing gestures focusing on fingers, based on the obser-
vation that pointing gesture and its fingertip trajectory are
crucial to recognise hand gestures like pointing, selecting
and writing.
State-of-the-art papers Several works addressed the hand
gesture recognition task from the egocentric point of view
to enable human-device interaction, especially for AR/VR
devices (e.g., smart glasses). Chalasani et al. (2018) pro-
posed a deep network comprising an encoder responsible for
extracting hand features, which are then fed into an LSTM
to capture temporal patterns. RGB input sequences can be
of an arbitrary length and repetitive gestures. Bai and Qi
(2018) proposed a method to recognise hand gestures from
a single depth camera, which can be integrated into VR/AR
applications. They presented a two-stage method. First, they
used a CNN to estimate the hand pose from bone lengths and
joint locations. Then, they classified the gesture by leveraging

hand language. The latter is composed of four basic predi-
cates (pointing direction, relative location, fingertip touching
and finger flexion) which are applied to the six most impor-
tant areas of the hand, the 5 fingertips and the palm.

In addition to human-computer interaction, the concept
has also been extended to human-robot interaction. Papana-
giotou et al. (2021) proposed amulti-task approach including
gesture recognition to enable human-robot collaboration on
an industrial assembly line. The main component is repre-
sented by a gesture recognition module which is based on
3D CNN trained on egocentric data acquired with a GoPro
camera.

Some works proposed to use multiple signals to extract
richer information. Chan et al. (2016) used HandCams (i.e.,
a wrist-mounted camera) togetherwith aHeadCam.By using
HandCams, it is not necessary to detect hands and infer
manipulation regions as in classic egocentric approaches due
to the fact that hands are always in the foreground. Consider-
ing this camera setting, the authors proposed a two-streams
deep CNN, with one stream dedicated to the head and the
other to the hands, respectively. Extracted features from both
streams are then fused through concatenation and used to pre-
dict hand states (free vs. active), object categories and hand
gestures. Abavisani et al. (2019) proposed a multimodal-
training/unimodal-testing scheme, which involves sharing
the knowledge between individual modality networks (e.g.,
RGB, Depth and Optical Flow) in the training phase in order
to derive a common representation of hand gestures. To do
this, a new spatio-temporal semantic alignment loss has been
proposed which is similar to the covariance matrix alignment
of the source and target features maps in domain adapta-
tion methods. At inference time, each network has learned to
recognise hand gestures from its specific modality but it also
gained the common knowledge from the other networks.

Based on the idea that the background is not relevant for
recognising hand gestures in AR/VR applications, Chalasani
and Smolic (2019) focused on hand segmentation to improve
gesture recognition accuracy. They proposed a new encoder-
decoder architecture capable of generating embeddings from
RGBimages.These embeddingswere thenused for hand seg-
mentation and gesture recognition simultaneously through
multiple LSTMs.

4.8.3 2D Hand-Object Interaction

2D hand-object interaction methods aim to associate each
hand with one or more objects present in the scene, thereby
determining their relationship (e.g., the hand is holding a
plate). Formally, this task involves detecting and recognis-
ing the hands of the user, along with the objects involved
in the interaction. To do so, methods have been developed
to predict hand-object interactions by estimating informa-
tion such as 2D bounding boxes or hand-states (i.e., contact
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or no-contact). The performance of hand-object approaches
is assessed by evaluating their classification and regression
abilities. 2D object interaction methods also predict object
state changes and object transformations.
Seminal works Relations between objects and tasks are
important for critical modelling activities and behaviour.
Damen et al. (2014) defined and discovered Task Relevant
Object (TRO) which refers to an object or a part of it that a
human interacts with while performing a specific task, in an
unsupervised approach. Crucially, they also aimed to distin-
guish and classify the different Modes of Interaction (MOI)
with these TROs. Cai et al. (2016) explored the relations
between hands and objects to detect the grasped part of an
object during human manipulation. They extracted object
attributes such as the thick or long shape of a bottle, and
observed how these attributes influenced the type of grasp
used. Their unified model combines the prediction of the
object, its attributes, the grasp type, and the action performed.
Rogez et al. (2015c) formalised the problem of classifying
handled objects using both RGB and depth signals. Depth
provides additional information on the exact touch/contact
between the hand and the objects present in the environ-
ment. Liu et al. (2017) focused on the effect of interactions
on objects (e.g., a mug can be empty or full).
State-of-the-art papers Shan et al. (2020) proposed a method
to detect and localise hands in the scene, distinguishing
between left and right hands.Additionally, they aimed to clas-
sify objects into two classes: active or passive. In particular,
if an object present in the scene is in contact with at least one
hand, it is considered as active object, otherwise, it is consid-
ered passive object. They also considered 5 different contact
states: no contact, self contact, other person contact, portable
object contact and stationary object contact (e.g., furniture).
While originally designed for YouTube videos, a modified
model with additional annotations was successfully used
to automatically annotate EPIC-KITCHENS-100 (Damen
et al., 2022) with hands and active objects. Grauman et al.
(2022) introduced the task of object state change detection
and classification. The task involves distinguishing transfor-
mative interactions from those that are purely translational.
Detecting the temporal moment at which an object changes
state during transformation is introduced with manual anno-
tations.

A related task to object transformations is tracking objects
in egocentric views.Dunnhofer et al. (2023) analysed the per-
formance of state-of-the-art visual trackers in the egocentric
domain highlighting challenges in the ego domain.

Although the analysis of hand-object interactions mostly
involves boundingbox annotations, a fewworks have focused
on studying hand-object relations using semantic segmenta-
tion mask annotations (González-Sosa et al., 2021; Zhang
et al., 2022a; Darkhalil et al., 2022; Tokmakov et al., 2023).
These works focus on hands and active objects semantic seg-

mentation considering egocentric images (González-Sosa et
al., 2021; Zhang et al., 2022a) or videos (Darkhalil et al.,
2022; Tokmakov et al., 2023). Darkhalil et al. (2022) defined
and predicted hand-object relations, including cases where
the on-hand glove is in contact with an object in the environ-
ment. After segmenting active objects, a binary classifier is
used to predict the state of each hand as well as the object-
in-contact in each case.

Linking 2D to potential 3D information, by predicting 2D
hand-object relations, Qian and Fouhey (2023) addressed the
task of understanding what a user is able to do (i.e., how can I
manipulate the objects in an image?) considering the environ-
ment where the user is. They introduced a transformer-based
encoder-decoder which takes in input an image and a set of
2D query points to predict the potential interaction. In par-
ticular, for each query point, the transformer head predicts
an interaction represented by depth, surface normal of the
objects, physical properties and affordance.

4.8.4 3D Hand-Object Interaction

The task of 3D hand-object interaction predicts 3D infor-
mation about the hands and objects involved in observed
interactions through 3D bounding boxes, 3D meshes as well
as 6 DoF hands and objects poses. Performance is measured
by metrics such as 3D mean joint position error for hands,
symmetric Chamfer distance for objects, differences in 6
DoF pose including translation and rotation errors as well
as re-projection errors including IoU metrics of the 2D re-
projections.
Seminal works Tekin et al. (2019) proposed an end-to-
end framework to understand 3D human-object interactions
from still RGB images. The model takes as input a single
RGB image and estimates hand and object poses, recognises
objects andpredicts the class of the activity.Garcia-Hernando
et al. (2017) used 3Dhandposes, 6Dobject poses andRGB-D
images to classify hand actions. InChen et al. (2019) hotspots
from hand touch are automatically detected and associated
with actions from egocentric videos capturing the camera
wearer using a sewing machine. Hasson et al. (2019) stud-
ied the problem of reconstructing hands and objects during
manipulation, in the case the latter is affected by occlusions.
They proposed a newarchitecture composed of twobranches,
one for the object shape and the secondone for the handmesh.
Differently from previous works which focused on instance-
level human-object interactions where 3D models and sizes
of objects are known beforehand, Liu et al. (2022c) studied
human-object interactions considering the vast diversity of
objects in our daily life. They addressed this task by exploit-
ing 4 dimensions of input data: the scene point clouds and
object meshes (3D) along the time interval (1D).
State-of-the-art papers Few works have recently addressed
the 3D hand-object interaction task. Chen et al. (2023) intro-
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duced a geometry-driven signed distance function (gSDF)
method that incorporates robust pose priors, leading to
improved hand-object reconstruction by disentangling pose
and shape estimation. Fan et al. (2023) proposed two novel
tasks based on hand-object interactions: consistent motion
reconstruction and interaction field estimation. They also
presented two novel approaches to address these tasks. Arc-
ticNet is an encoder-decoder architecture able to reconstruct
the motions of both hands and the articulated object, while
InterField estimates, for each hand vertex, the distance to the
closest object mesh.

Temporal information has also been considered to esti-
mate 3D hand poses and actions (Wen et al., 2023a), and it
has a relevant role even in the work of Hampali et al. (2023)
which proposed a novel method based on UNISURF (Oech-
sle et al., 2021) to reconstruct 3D objects during hand-object
manipulation. Given a sequence of RGB frames in which a
hand is manipulating an unknown object, the method cap-
tures both geometrical and appearance features of the object
by constructing a neural implicit representation. The latter
is then used to reconstruct the object. Differently from other
NERF-based methods, the proposed approach assumes that
the camera pose is not available.
Datasets For hand pose estimation, Yuan et al. (2017)
acquired a large scale dataset named BigHand2.2M, which
covers a wide and dense range of hand poses. The dataset
contains 2.2 million depth maps annotated with hand joints,
utilising six 6D magnetic sensors and inverse kinematics.
Since hand poses become more complicated when involv-
ing object interactions, Ohkawa et al. (2023) published
the AssemblyHands dataset which includes synchronised
egocentric and exocentric images sampled from the Assem-
bly101 dataset (Sener et al., 2022) in which users assemble
toy vehicles. The dataset is composed of 3.0 million images
and has been labelled with high-quality 3D hand poses, using
a proposed automatic annotation model that exploits the exo-
centric view.

Tacklingbothhandposes andgesture recognition,Vakunov
et al. (2020) acquired a dataset composedof real and synthetic
images. The data collection has three sets created to address
different aspects of the problem: 1) capturing “hands in the
wild” with geographical diversity, varying lighting condi-
tions, and diverse hand appearances, 2) covering awide range
of angles representing all physically possible hand gestures,
and 3) incorporating synthetic data to enhance the study of
hand poses and gestures.

Among the large datasets specifically focusing on hand
gestures Huang et al. (2016) proposed EgoFinger which is
composed of egocentric videos of different pointing gestures
acquired in multiple scenarios. The dataset contains 93.729
RGB frames and it has been collected by 24 subjects in 24
indoor/outdoor scenes. To scale up research on hand ges-
tures, Zhang et al. (2018) introduced the EgoGesture dataset,

which comprises 24,000 gesture samples (RGB and depth)
acquired by 50 different subjects. The dataset contains 83
classes of static and dynamic gestures, designed specifically
for interaction with wearable devices.

To study hand-object interactions many datasets of real
images and videos have been proposed. Shan et al. (2020)
collected the 100 Days of Hands (100DOH) Internet scale
dataset to enhance size and diversity in hand-object research.
It consists of 100K frames acquired over 131 days in which
humanswere involved in 11 categories of interactions labeled
with bounding boxes around the hands and the active object,
hand side and hand contact state (indicating if there is a
contact between the hand and an object or not). Lu and
Mayol-Cuevas (2021) introduced a dataset to study hand
poses during manipulation with objects. The dataset has
been captured in a multi-cam setting using two HD cam-
eras and an iPhone 12. The authors collected 2000 pairs
of hand-object interactions performed with a single right
hand. GUN-71 is composed of 12K frames annotatedwith 71
action classes and 28 object classes. THU-READ (González-
Sosa et al., 2021) is an egocentric dataset composed of 960
RGB-D videos captured from people performing 40 differ-
ent daily-life interactions. The data is labeledwith pixel-wise
annotations of egocentric objects and hands.

Liu et al. (2022c) presented a large-scale dataset named
HOI4D. It is composed of 2.4 million RGBD egocentric
video frames acquired in indoor environments where peo-
ple interact with 800 object instances. It has been labeled
with a rich set of 2D and 3D annotations. In particular, hands
are annotated with their pose, while objects have labeled
segmentation masks, 3D poses and also their CAD models
have been released. The MECCANO dataset by Ragusa et
al. (2021, 2023b) focuses on human-object interactions in
an industrial environment where 20 subjects assemble a toy
model of a motorbike. It is composed of 20 videos with aver-
age duration of 20.79 min and it is multi-modal, comprising
synchronised gaze signals, depth maps and RGB videos.

Unlike other datasets that primarily focusedon rigid object
manipulation, Fan et al. (2023) introduced the ARCTIC
dataset,which is specifically designed for interactions involv-
ing hands manipulating articulated objects, such as scissors
or laptops. This dataset is unique as it includes paired 3D
hand and object meshes along with detailed dynamic contact
information.

Only a few works have specifically focused on hand-
object interactions with fine-grained information. Zhang et
al. (2022a) annotated 11K egocentric hand-object interac-
tions with semantic segmentation masks and contact bound-
aries. These images have been collected from three existing
datasets: Ego4D (Grauman et al., 2022), EPIC-KITCHENS
(Damen et al., 2018) and THU-READ (González-Sosa et al.,
2021). Darkhalil et al. (2022) extended EPIC-KITCHENS-
100 dataset with pixel-level annotations, obtaining 272K
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semantic masks interpolated to 9.9M dense masks. As a
result, they captured long-term object segmentations of the
same instance which is subject to a series of transformations
during hand-object interactions. Recently, Tokmakov et al.
(2023) presented VOST, a dataset composed of 713 videos in
which 51 different object transformations (i.e., objects which
dramatically change their appearance), have been annotated
with segmentation masks. Videos have been annotated at 5
fps obtaining 76K annotated frames.

Recent works investigated the use of egocentric synthetic
data to mitigate the need of annotating real domain-specific
data for model training in hand-object interaction. Real data
with ground truth labels are difficult to obtain. Acquiring
egocentric images/videos of hand-object interactions as well
as manually annotating hands and objects with keypoints, 2D
and 3Dbounding boxes, semanticmasks, relations and action
descriptions are a time consuming and expensive task. Rogez
et al. (2014) is a pioneer work, in which synthetic images
have been generated to demonstrate their potential for the 3D
hand pose detection task. They focused on hand pose estima-
tion while humans perform object manipulation, proposing
a photorealistic synthetic model of egocentric scenes to gen-
erate training data for learning depth-based pose classifiers.
Hasson et al. (2019) proposed ObMan, a large scale syn-
thetic dataset made of images of hands grasping objects.
By randomising the background and selecting images from
the LSUN (Yu et al., 2015) and ImageNet (Russakovsky et
al., 2015) datasets, they successfully generated 20K diverse
hand-object interactions.

In the pursuit of synthetic data generation and annotation,
various studies have directed their attention towards creating
photorealistic datasets and tackling the domain-shift problem
that emerges when transitioning between real and synthetic
domains. Leonardi et al. (2023) presented a comprehensive
pipeline and framework for automatically generating egocen-
tric hand-object interactions, including annotations such as
depth maps, semantic segmentation masks, bounding boxes
for objects and hands, as well as attributes and their respec-
tive 3D distances. In the work of Ye et al. (2023b), diffusion
models have been used to generate complex hand-object
interactions, allowing reasoning about where to interact and
how to interact. Tendulkar et al. (2023) proposed FLEX, a
framework capable of generating full-body and hands grasp-
ing poses for everyday objects. FLEX is able to synthesise a
wide range of natural grasping poses, ensuring diversity and
generalisation, while considering 3D geometrical constraints
in complex scenes. Recently, Xu et al. (2023b) utilised tactile
sensing for in-handobject reconstruction.Given the difficulty
of obtaining ground truth data for object deformation, they
addressed this challenge by synthesising images using the
proposed simulator. Despite the significant progress towards
narrowing the gap between synthetic and real domains, the

problem has not been solved and there is space for future
investigations.
For the future Even though there has been advancement
across various research areas related to hand analysis, cur-
rent approaches still come with their own set of limitations.
State-of-the-art works in hand pose focus on the analysis
of the posture considering different signals (Rudnev et al.,
2021; Yang et al., 2022) or challenging scenarios in which
both hands interact simultaneously (Lee et al., 2023). At this
stage, methods are able to predict hand pose in a large vari-
ety of domains thanks to the availability of large datasets
acquired and labelled explicitly for these domains. However,
they typically fail in predicting the hands pose when hands
are involved in the interaction with objects and in complex
scenarios. The state-of-the-art approach for 3D hand pose
estimation (Ohkawa et al., 2023) achieves a MPJPE of 23.46
mmon the test set ofAssemblyHands dataset.Although these
results are promising, there is still room for further research
and advancements in this field.

Gestures have been studied to allow humans to interact
with devices such as AR/VR glasses (Bai & Qi, 2018) or
robots (Papanagiotou et al., 2021). The current state-of-the-
art performance on the gesture recognition task (Chalasani et
al., 2018) achieves a high accuracy of 96.9% on the test set
of the EgoGesture dataset. These results confirm that the per-
formance of gesture recognitionmodels is comparable to that
of humans when considering a discrete number of gestures.
However, there is still room for explorationwhen larger num-
bers of gestures are considered. Nowadays, AR/VR devices
have a gesture recognition system able to recognise simple
gestures like push, pinch, point, air tap useful to interact with
the system andwith virtual objects placed in the environment
(i.e., holograms). Furthermore, devices such as Xreal, imple-
mented custom gestures to interact with the device such as
victory or open hand as well as HoloLens2 and Apple Vision
Pro allow to use gestures using both hands and gaze. How-
ever, the total number of gestures that can be recognised is
small, even though users can usually implement custom ges-
tures specifically for their devices.

For hand-object interaction, specific sets of interactions
in constrained environments, such as kitchens (Darkhalil et
al., 2022) and industrial workplaces (Ragusa et al., 2023b;
Leonardi et al., 2022), are starting to be analysed. Despite a
few initial efforts to develop approaches capable of under-
standing generic interactions (e.g. Shan et al. (2020)), we are
still far fromhaving robustmethods that can generalise across
objects and environments, for example industrial environ-
ments where hands are in contact with both largemachines as
well as small tools and objects (e.g. screws). One of the main
problems lies in the availability of datasets explicitly labelled
with human-object interactions, as it requires a significant
amount of effort to acquire and manually label such data.
A promising direction is to leverage automatically labelled
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synthetic data, as it enables the acquisition of large-scale
hand-object interactions acrossmultiple domains and diverse
sets of objects (Tendulkar et al., 2023; Leonardi et al., 2022).
However, synthetic images often lack the level of photo real-
ism of real-world images. Additionally, dealing with object
transformations under manipulations is a very challenging
task that has stated to be studied only recently (Darkhalil et
al., 2022; Fan et al., 2023).

Actually, the state-of-the-art performance on the Hand-
Object Interaction Segmentation task (Darkhalil et al., 2022)
achieves a Hand Mask Average Precision of 95.6% and an
Active Object Average Precision of 25.7% on the test set of
the EPIC-KITCHENS VISOR dataset. On the other hand,
performance on the object state change task on the test set
of Ego4D (Grauman et al., 2022) reached an accuracy of
67.6% and an Average Precision of 15.5%. These results
highlight the difficulty in bridging the gap between action
perception and the relations between actions, objects, and
the environment.

4.9 Person Identification

Person identification is very relevant for surveillance and
security applications and has been extensively studied in
third-person literaturewhile it has been less investigated from
the egocentric point of view.While person identification from
first person cameras can leverage some algorithms already
investigated from remote cameras. Particularly, in egocentric
vision, person identification includes two distinct sub-tasks:
recognising people in the field of view of the camera, and
identifying the camera wearer. Both rely on the definition of
a robust representation of faces as well as other body parts
and their movement. The goal of the former is recognising
whether two images depict the same person, or searching
for a person within a gallery given a reference image query.
More precisely, in face recognition the focus is only on faces
and the gallery contains a pre-defined set of identities. Per-
son re-identification considers instead the whole body, and
the gallery contains many distractors without specific identi-
ties. Different from remote cameras, the observed individual
is often truncated or highly occluded due to the camera
being at human head height, compared to remote cameras
which are elevated, decreasing the amount of occlusions.
The performance is assessed either in terms of accuracy by
considering image pairs and their prediction (each pair with
positive/negative label), or by counting howmany of the true
match appears at the top of the ranked gallery.

The identification of the person who wears the camera
can be formalised as classification in a closed-set scenario,
ormatching in an open-set one. It involves thewearer’s hands
and gait, with applications in theft prevention and personal-
isation.

Seminal works Initial efforts to address person identification
on wearable devices primarily focused on facial recognition.
For instance, Farringdon and Oni (2000) were pioneers in
developing a wearable application that automatically identi-
fied and stored faces to enhance the camerawearer’smemory.
This approach was further expanded to various ending goals.
Krishna et al. (2005) developed iCare, an interaction assis-
tant for the visually impaired. It recognises individuals in
the scene and notified the wearer through audio signals.
Wang et al. (2013) targeted prosopagnostics patients, i.e. peo-
ple who cannot distinguish faces, proposing a system that
displayed the identity of people in the scene directly on a
screenmounted on thewearable device. Thomaz et al. (2013)
explored the use of face detection, image cropping, location-
andmotion-based filtering to remove privacy-sensitive infor-
mation from collections of egocentric images while still
allowing to carry out the downstream task of eating behaviour
recognition.Additionally, Sajjad et al. (2020) proposed a sys-
tem for enhanced law enforcement that collects data from
wearable devices to identify suspects or missing individuals.

Some works proposed to explore external sources of
knowledge for specific objectives.Kurze andRoselius (2011)
coupled the face recognition system with data from social
networks in order to automatically link the person retrieved
with the corresponding online information. Chakraborty et
al. (2016) considered a face recognition model running
on a network of wearable cameras, extending the sys-
tem developed on Google Glasses (Mandal et al., 2015)
for face re-identification. Fergnani et al. (2016) proposed
a method for full-body person re-identification: a metric
learning approach that evaluates instance similarity by divid-
ing images into meaningful body parts and considering a
part-related weight defined from human-gaze information.
Basaran et al. (2018) exploited additional metadata collected
by mobile phones to reduce the search space. Their approach
predicts the next moving camera where the target may appear
and aggregates temporal information within sequences of
body parts to re-identify individuals.

Three cross-view works are at the interface between
recognising the camera wearer and recognising bystanders.
Yonetani et al. (2015) considered a scenario where multi-
ple people are wearing a camera and recording each other.
In such cases, the work proposes to use motion correla-
tion between the target person’s video and the observer’s
video to uniquely identify instances of oneself, which can
be useful for privacy filtering. Poleg et al. (2015a) leveraged
head motion patterns to identify the camera wearer in other
videos recorded simultaneously, both from third-person and
egocentric perspectives. The head-motion signature allows
the wearers to recognise themselves in videos and decide
whether to keep or delete them. Fan et al. (2017) proposed to
use both a third-person camera capturing the scene and mul-
tiple subjects recording from an egocentric view. The goal
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is to match people across different views and identify the
source of the egocentric video in the third-person one.

The identity of the camera wearer from the single egocen-
tric perspective is challenging to discover due to the limited
field of view often obscuring the wearer’s body. Shiraga et al.
(2012) attempted to recover this information using a complex
system of stereo cameras on the user’s backpack to analyse
motion during walking. On the other hand, Hoshen and Peleg
(2016) proposed an approach based solely on a front cam-
era and the head motion signature present in the egocentric
video. This approach tries to match the identity of the camera
wearer across different videos, with potential applications in
theft prevention. In a different setting, Ardeshir and Borji
(2016) utilised both egocentric and top-view camera record-
ings to match each camera wearer with their corresponding
top-view identity. Furthermore, Thapar et al. (2020b) demon-
strated that even using hand motion, captured in the form
of dense optical flow, can reveal the identity of the camera
wearer across various activities and subjects.
State-of-the-art papers For person re-identification, Choud-
hary et al. (2020) recently proposed to leverage third-person
large-scale datasets in the egocentric domain. They employed
Neural Style Transfer (NST) to generate high-quality images
with a fixed camera style from the egocentric ones. A content
loss ensures that the architecture maintains coherent predic-
tions despite style differences, and a style loss is adopted
to improve the transfer capabilities of the model. The most
recent work combining top-view and egocentric videos is the
one presented by Ardeshir and Borji (2018). It proposes a
learning method that matches corresponding pairs of bound-
ing boxes from egocentric and top-view surveillance videos,
combining also some geometrical and spatiotemporal rea-
soning. The former evaluates the probability of each identity
being present in the field of view of the camera holder on the
basis of the output of a multiple object tracking algorithm.
The latter defines a cost for assigning the same identity label
to a pair of bounding boxes depending on whether they are
present in the same frame and if they overlap in temporally
nearby frames. This approach achieves state-of-the-art per-
formance in both self-identification and re-identification.

In the context of identifying thewearer from the egocentric
perspective, Thapar et al. (2020a) introduced EgoGaitNet, a
model capable of extracting thewearer’s gait from the optical
flow of an egocentric video, enabling the matching of videos
from the same wearer. Additionally, they propose a Hybrid
Symmetrical Siamese Network that can match third-person
views of a subject with their egocentric videos recorded at
different times, raising important privacy concerns. Tsutsui
et al. (2021) explore various sources of information related
to the wearer’s hands to investigate the feasibility of wearer
identification across different videos. They experiment with
both RGB modality containing the texture of the hands and
the depth modality providing information about their shape.

Furthermore, they extract the silhouette of the hands from the
depth information and get a multi-modal robust representa-
tion for their experiments.
Datasets EgoSurf, is a small-scale dataset introduced by
Yonetani et al. (2015). It consists of egocentric videos
recorded by individuals engaged in face-to-face communi-
cations, captured in eight different scenes (four indoors and
four outdoors) by two or three people. Its purpose is to match
the camera wearer of a video with their third-person view
from another person’s egocentric recording. The Ego2Top
dataset was introduced by Ardeshir and Borji (2016) and
allows both self-identification and re-identification. It com-
prises 50 top-view and 188 egocentric videos, amounting to
approximately 225 thousand frames. However, the number
of distinct identities in this dataset is relatively limited.

The Egocentric Video Photographer Recognition (EVPR)
dataset by Hoshen and Peleg (2016) includes videos featur-
ing 32 subjects: it was created with two distinct types of
cameras and primarily used for egocentric camera wearer
identification. Thapar et al. (2020a) additionally created the
IITMD-WFP and IITMD-WTP datasets to investigate poten-
tial biometric signature leakage in egocentric videos. The
IITMD-WFP dataset encompasses 3 h of videos recorded by
31 different subjects, while the IITMD-WTP dataset serves
as the third-person counterpart.
For the future Third-person face recognition and person re-
identification research has recently took great advantage of
the development of transformer modules able to produce
robust feature representations (Liao & Shao, 2021; Zhang et
al., 2023b), andof self-supervisedpretraining (Fu et al., 2021;
Zhu et al., 2022; Fu et al., 2022a). However egocentric per-
son identification is still lagging behind. The mean Average
Precision (mAP) of state of the art approaches (Wieczorek
et al., 2021) over fixed camera benchmarks (Zheng et al.,
2015) is close to 98% while egocentric models (Choudhary
et al., 2020) barely reach 65% on small scaled egocentric
datasets. In the identification of the camera wearer, the low
mAP results by Fan et al. (2017) indicate that current research
is still in the proof of concept phase. In particular, future
developments should focus on producing larger and more
diverse egocentric person Re-ID benchmarks in order to train
reliable models directly from egocentric data.

4.10 Summarisation

The increasing prevalence of wearable cameras has led to a
proliferation of long and unstructured video recordings docu-
menting people’s lives. However, users may not revisit much
of this recorded content, and important events can be hidden
among repetitive or uninteresting segments. Video summari-
sation is a valuable task that aims to produce a concise
summary of the input recording. Current methods produced
summaries in different forms. Keyframe-based summaries
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involve the selection of a sequence of relevant frames to rep-
resent the most critical events or information in the video.
Video skimming approaches segment the video into relevant
portions and then collect them to produce a reduced version
of the initial recording. Finally, fast forwarding techniques
prioritise significant sections while reducing the reproduc-
tion speed of less important segments without necessarily
trimming any section. The most commonly used metric for
evaluating video summarisation is the F1-score.
Seminal works Traditionally, determining the most pertinent
segments of a video for summarisation was achieved through
heuristic criteria such as visual saliency (Itti et al., 1998),
motion (Wolf, 1996), or high-dimensional curve simplifica-
tion (DeMenthon et al., 1998).

Egocentric video summarisation was first introduced in
Aizawa et al. (2001), which starts by segmenting the long
egocentric recording based on visual motion features and
then adopts brainwave signals to determine the subjective
interest of the camera wearer throughout the subshots. This
innovative approach, which optimises the summarisation
based on the viewer’s brain response has not been explored
further.

In Lee et al. (2012), the approach relied on RGB data
alongwith higher-level features to produce object-driven sto-
ryboards across multiple environments. In contrast, Lu and
Grauman (2013) generated the summary as a coherent set of
subshots in a story-like manner. The use of web images as
a prior to skip uninformative views of objects caused by the
motion of a hand-held camera was proposed in Khosla et al.
(2013). Zhao and Xing (2014) were the first to consider the
online aspect of summarisation, allowing the processing of
arbitrarily long videos in real-time.

Concurrently, there has been a focus on developing fast-
forward video summarization techniques, primarily aimed at
generating hyperlapse videos. The intent here is twofold—to
stabilise the captured footage and simultaneously highlight
the most salient sections. Specifically, the method presented
by Kopf et al. (2014) achieves this by rebuilding the three-
dimensional spatial geometries within the environment and
then sampling a virtual camera path from which the output
video is reconstructed. Okamoto and Yanai (2014) advance
this approach by incorporating semantic considerations into
the video content. This method prioritises certain segments
of the footage, such as crosswalks, which bear a greater sig-
nificance in navigational guidance videos.

Additional input modalities were used for personalising
summarisation, such as feeding textual concepts of inter-
est in Sharghi et al. (2016), adopting the gaze modality to
understand the wearer’s attention in Xu et al. (2015), or
using sound in the form of psychoacoustic metrics to dis-
card moments with unpleasant noises in Bajcsy et al. (2018).
Aesthetic aspects of keyframes were explored in Xiong and
Grauman (2014), which used web photos as a prior to iden-

tify video frames that resemble intentional snapshots, defined
as snap points, and demonstrated improved performance in
downstream summarisation tasks. Bettadapura et al. (2016)
used quality measures together with GPS data to extract pic-
turesque highlights from large amounts of egocentric video.
Social networks were used by Ramos et al. (2020) to mine
topics of interest and fast-forward the video in a semantically-
coherent manner.

Egocentric touristic recordings are the main target for
video summarisation. Xiong et al. (2015) experimented on
egocentric sequences collected at Disneyland and proposed
a storyline representation with actors, events, locations, and
objects, allowing story-based queries across different tracks.
Similarly, Varini et al. (2017) focused on providing a touris-
tic summary more dependent on user preferences. This was
achieved by adopting metrics based on the wearer’s atten-
tion, semantic coherence with preferences, and a narrativity
grade to effectively extract sub-shots of interest.

Finally, with the advent of deep learning, video summari-
sation began to adopt two-stream CNNmodels that consider
motion and appearance as two complementary aspects in
understanding the highlight score of a video segment (Yao
et al., 2016). LSTMs were also used by Zhang et al. (2016)
in a supervised video summarisation setting. By modelling
variable-range dependencies among frames, the approach
captures some high-level temporal understanding which is
necessary to avoid relying solely on visual cues.
State-of-the-art papers The general video summarisation lit-
eraturemainly trains and/or evaluates using two benchmarks:
SumMe (Gygli et al., 2014) or TVSum (Song et al., 2015),
where respectively just 4 out of 25 and 5 out of 50 videos are
taken from an egocentric perspective. The current state-of-
the-art in this setting is achieved by He et al. (2023) using a
multimodal summarisationmethod that adopts a transformer-
based architecture and an alignment-guided self-attention
module to exploit the time correspondence between video
and text modalities, and inter- and intra-sample contrastive
losses.

However, egocentric videos pose unique challenges due
to the significant head motion and long ordinary portions,
with the camera wearer moving through a variety of scenes
in order to perform daily activities. Consequently, the noted
state-of-the-art above is not particularly designed to handle
these challenges, though direct evaluation of this model on
egocentric benchmarks has not been carried out.

The latest approach for personalised egocentric video
summarisation is proposed in Nagar et al. (2021). The
approach is customisable to adjust both the length and
summary content and uses a reinforcement learning (RL)
approach on top of C3D features. The RL action involves
either selecting or discarding the sub-shot, and the approach
uses basic rewards (distinctiveness, indicativeness, and over-
all length) as well as customisable ones (social interaction,
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face identity, and customised target length).While developed
for egocentric videos, the approach uses outdated features
and using more recent architectures and/or features is yet to
be assessed.

Recently, a novel query-focused approach was introduced
by Wu et al. (2022b) to provide an interactive method for
video summarisation. The authors developed a framework
called IntentVizor, which enables the formulation of generic
multi-modal queries and facilitates interactive editing of
video summaries. Although the authors experimented just
with textual and image queries, its underlying principle is
centered around the notion of intent, referring to the high-
level requirements of the user, irrespective of the modality
of the input query. The intent is determined based on a
learned distribution of users’ needs, which takes into account
various query inputs. Furthermore, the proposed Granular-
ity Scalable Ego-Graph Convolutional Network (GSE-GCN)
establishes correlations between the video features and the
generic intent, thereby facilitating the extraction of notewor-
thy sections within the video.

Finally, Elfeki et al. (2022) is the first work on egocentric
multi-stream summarisation, which summarises the videos
of multiple wearable cameras intermittently sharing the field
of view. The authors proposed a multi-view extension of
the Determinantal Point Process, processing all the cam-
era recordings in parallel and selecting inter-stream diverse
events and the best ego-camera viewpoint for each event.
Datasets The progress in egocentric video summarisation is
significantly hindered by the fact that many datasets used in
previous studies have not been publicly released and remain
confined to specific research projects. As a result, despite
having just roughly 15%of egocentric videos, SumMe (Gygli
et al., 2014) and TVSum (Song et al., 2015) are the most
commonly used benchmarks. These benchmarks provide
frame-level interestingness scores, enabling automatic eval-
uation of summarisation results without the need for user
studies.

The FPVSum dataset by Ho et al. (2018) is a more recent
contribution which tries to mitigate this issue. Indeed, it is
composed just of egocentric videos, but only partially anno-
tated. The authors also incorporated unlabelled egocentric
data to develop a summarisation model capable of better
generalisation to the egocentric domain in a semi-supervised
manner.

In fast-forward summarisation methods, the Dataset of
Multimodal Semantic Egocentric Videos (Silva et al., 2018)
stands out as an extensive dataset. Spanning 80 h, this dataset
provides valuable information about the activities being per-
formed, the attention of the recorder, and the presence of
interactions. By incorporating the recorder’s interest scores
across a wide range of object categories, it gives the pos-
sibility to evaluate both the smoothness and the semantic
highlights of the summary.

For the future Despite Nagar et al. (2021) having devel-
oped an approach capable of handling day-long recordings
using sliding windows, thus avoiding the need to feed the
entire video as input to the model, this task still remains
far from being considered solved. In fact, on the TVSum and
SumMe datasets, the current state-of-the-art (He et al., 2023)
achieves F1-scores of 63.4 and 55.0 respectively, while even
the more intriguing query-focused egocentric summarisation
presented inWu et al. (2022b) only manages to achieve a F1-
score of 50.9 on the egocentric query-based dataset presented
in Sharghi et al. (2017). This limited performance is due to
the restricted number of test query-concepts, which still falls
short of reflecting the real-life scenarios depicted in the envi-
sioned EgoAI scenarios.

4.11 Dialogue

Fostering the integration of vision and language has great
potential in advancing human-machine interaction, allowing
artificial agents to dialogue as they can see and communicate
in a naturalway.To this end, the research community has been
working mainly in two directions: visual question answering
(Sect. 4.11.1), and more general ego-language models (Sect.
4.11.2).

4.11.1 Visual Question Answering (VQA)

Visual Question Answering (VQA) consists of developing
systems able to answer questions related to the semantic con-
tent of images and videos. Thus, the system takes a visual and
a language input and produces a language output, or a referral
to a part of the image or video. This is a crucial task for the
development of EgoAI able to support users and skills train-
ing. VQA is also considered an effective way to investigate
the reasoning capabilities of deep models as the questions
can be designed to obtain not only descriptive answers but
also complex predictive and explanatory outputs.

The adopted settings for VQA are mainly two: multiple-
choice VQA and open-ended VQA. The first one is for-
malised as a classification problem and evaluated on the basis
of prediction accuracy. The latter is more challenging and
realistic as it requires either identifying the correct answers in
a large pool of candidates or generating a free-form response.
In these cases, model assessment is performed by measur-
ing how often the ground-truth answer is selected in the top
predicted choices (recall@k) or via language metrics (e.g.
ROUGE) and user studies.
Seminal works Gurari et al. (2018) were the first to high-
light the need for egocentric views in real VQA applications
to support blind people. The task poses interesting peculiar
challenges as some of the images do not contain enough
information, so the associated question is not answerable.
When dealing with videos, the perspective of VQA has ini-
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tially shifted from third- to first-person to support the training
of navigational agents in indoor environments, solving a task
originally referred to as embodied question answering (Das et
al., 2018; Yu et al., 2019). After having observed a sequence
of egocentric visual frames of a synthetic scene, the agent
is interrogated on the position of single or multiple target
objects, or asked to plan a series of actions conditioned on
the questions (Gordon et al., 2018). Wijmans et al. (2019)
and Anderson et al. (2018) studied the same task in photo-
realistic scenes obtained by involving point cloud perception
and 3D simulators.

In all the referred works, each VQA episode is consid-
ered in isolation, with no memory or information persistence
among the episodes. To address this limitation, Gao et al.
(2021) proposed a method that decomposes long videos into
separate events and exploits multi-step temporal attention.
Fan (2019) moved the focus from synthetic to real-world
scenarios with a human egocentric view, aiming for a bet-
ter understanding of the footage of wearable cameras. This
work discussed the shortages of third-person VQA methods
when applied in the egocentric setting and pointed out the
need for simultaneous estimation of ego-motion and third-
person motion, while disentangling attention for first and
third-person activities to find out relevant visual content.
State-of-the-art papers In the VQA literature for visually
impaired people, Chen et al. (2022) have investigated how to
ground the answers by segmenting the relevant image region.
The work byDancette et al. (2023) focused instead on how to
avoid answeringwhen the visual information is not sufficient.
They proposed to train multimodal selection functions that
indicate for which samples themodel can be generalised, and
which samples are too hard and should be abstained on.

Among the embodied question answeringworkswith ego-
centric videos recorded by robotic agents, Zhu et al. (2023b)
recently proposed a new reinforcement learning framework
involving multiple phases of environment exploration and
reasoning. Ma et al. (2023a) discussed the challenges of sit-
uated VQA in 3D scenes. Several publications have also
presented novel solutions to answer questions related to
long real-world videos. In particular, the approach proposed
by Gao et al. (2023) decomposes traditional dense spatial-
temporal self-attention into cascaded segment and region
selection modules that adaptively select frames and image
regions closely relevant to the question.

Another sub-part of the state-of-the-art egocentric VQA
literature targets episodic memory to search for the temporal
window that shows a frame relevant to the question, comple-
mented by informative language answers. Starting from the
Ego4D challenge on Episodic Memory—Natural Language
Query, Bärmann and Waibel (2022) defined the QAEGO4D
dataset with textual answers from human annotators. The
authors have also benchmarked several baseline methods on
the newly introduced testbed, using a temporal sequence of

feature vectors rather than on rawvideodata to limit themem-
ory and computational burden. Datta et al. (2022) studied the
same problem from a stream of RGB-D images and proposed
a method that combines the semantic features extracted from
egocentric observations into a single top-down feature map
of the scene. This helps to create a consolidated spatiotempo-
ral memorywhich is provided as input to an encoder-decoder
architecture that grounds answers to questions.

Ego4D (Grauman et al., 2022) proposes the episodic
memory challenges towards querying long-term videos with
natural language questions. As an example, Ramakrishnan
et al. (2023) adopted also Ego4D narrations to overcome the
scarcity of query-response pairs.

Themost recent research trend is on goal-orientedVQA to
improve reasoning models and get a deeper task understand-
ing from egocentric videos. Jia et al. (2022a) introduced the
EgoTaskQA benchmark with questions designed to investi-
gate actions that imply world state transitions, agents’ intents
in task execution, and their belief about others in collab-
oration. The same work presented an extensive analysis
of several VQA methods highlighting the effective sup-
port provided by large language models. Wong et al. (2022)
defined the affordance-centric VQA problem where the AI
assistant should learn from instructional videos to provide
step-by-step help in the user’s view. The authors introduced
a new dataset and developed a novel question-to-action
model based on an encoder-decoder architecture. More pre-
cisely, the encoder is composed of multiple modules that
extract features from video, script, question, and answers.
The decoder performs cross-attention among the informa-
tion obtained from the different modalities and produces
operational localised answers (text and bounding boxes) in
multiple ordered steps.
Datasets The research on Egocentric VQA is still in its
infancy and rapidly evolving with many publications propos-
ing specific subtasks and dedicated datasets. Indeed most of
the references mentioned above came with a novel data col-
lection.

The VizWiz dataset introduced by Gurari et al. (2018)
consists of over 31K visual questions originating from
blind people who took pictures using a mobile phone and
recorded a spoken question about it, together with 10 crowd-
sourced answers per visual question. This collectionwas also
recently exploited for an international VQA challenge both
on answerability evaluation and answer prediction (Massiceti
et al., 2022).

The Env-QA dataset by Gao et al. (2021) was the first col-
lection of egocentric videos covering several events, designed
for the analysis of the whole trajectory of state changes.
The events include interactions with the environment (e.g.
move the pot, turn on the faucet), thus more skills beyond an
understanding of the scene composition are needed to solve
the task. It contains 23K egocentric videos with an average
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length of 20 seconds, along with 85K questions querying
object number, attributes and states as well as events number
and their temporal order. The annotations make the dataset
suitable for free-form open-ended questions. Fan (2019)
introduced the EgoVQA dataset with questions related to
actions (of the camera wearer and third persons), interactions
and relative positions, counting, and colours. More precisely,
it contains 600 question-answer pairs with visual content
across 5K frames from16first-personvideos,with eachvideo
clip lasting from 20 to 100 seconds. This dataset has been
mainly used for multiple-choice QA with (five-way classifi-
cation). Bärmann andWaibel (2022) defined the QAEGO4D
dataset that contains 1325 egocentric videos, each of 8 min
on average, and 4837 unique answers. The authors provided
both target moment annotations as well as answer confidence
estimations, which can both serve as an additional source of
(weak) supervision. The task on this data is cast as open-
ended generative QA.

Datta et al. (2022) introduced the Episodic Memory
EMQA dataset built by exploiting a 3D simulator to create
egocentric RGB-D maps covering indoor paths. It contains
9.7K spatial and spatio-temporal localization questions about
12 object categories and the ground truth is provided as a
binary segmentation map (“answer” vs “background” pix-
els). The EgoTaskQA benchmark proposed by Jia et al.
(2022a) contains 40K questions balanced with a 1:2 ratio
of binary and open-answer. They were procedurally gener-
ated within four types of questions (descriptive, predictive,
explanatory and counterfactual) to systematically test mod-
els’ capabilities over spatial, temporal and causal domains of
goal-oriented task understanding. The corresponding videos
are reasonably long with an average of five actions per clip to
cover sufficient information for action dependency inference
and future prediction. The QA task is formulated as a clas-
sification problem over the whole answer vocabulary. The
AQTC benchmark proposed by Wong et al. (2022) was cre-
ated with a close focus on task completion and affordances.
It contains 100 instructional videos with an average duration
of 115 seconds and involves 25 common household appli-
ances, with 531 multiple-choice question-answer samples.
The task associated with the dataset is particularly challeng-
ing as most of the answers require a sequence of more than
two multi-modal steps to guide the user in operating the
observed device.
For the future Egocentric VQA is a key enabler for a wide
range of assistive applications in daily life and in work-
ing environments, but the state-of-the-art is in the early
proof-of-concept phase and several challenges still need to
be tackled. Starting from the data, all the existing ego-
centric VQA testbeds focus on indoor scenes which limits
the model’s applicability. Moving to outdoor environments
impliesmanaging a shift in the video features and in the ques-
tions’ semantics. Multi-modality is one crucial aspect of the

task, but questions and answers are interpreted as text while
speech, and more in general sound, are important cues that
are currently less investigated.

Regarding the emergence of powerful vision-language
models, their potential for application in egocentric VQA
has only begun to be explored.

Recently LLaVA (Liu et al., 2023b) extended VQA to
in-the-wild conditions where the answers require exten-
sive knowledge coverage and multilingual understanding
capabilities. The obtained results showed the limitations of
existing models in grasping complex semantics. A relevant
aspect to consider is also the length of the required video
to answer the question: Mangalam et al. (2023) introduced
EgoSchema, a very long-form video question-answering
dataset that can serve as a valuable probe to assess the under-
standing capabilities ofmodern vision and language systems.
When benchmarking several methods, the authors showed
that even models with several billions of parameters achieve
QA accuracy of less than 33% on the EgoSchema multi-
choice question answering task, while humans achieve about
76% accuracy. Jia et al. (2022a) indicated that for the most
challenging reasoning questions, the performance of large
pretrained vision-language models may show a drop and that
the development of tailored prompting strategies for those
cases is an interesting problem to be solved. In this work the
best accuracy in predicting the correct answer in the open-
ended setting is 30%, while humans get 82%.

4.11.2 Ego-Language Models

To engage in a dialogue with EgoAI, it should be endowed
with language abilities that go beyond that of answer-
ing visual questions. A general conversation may include
descriptions, explanations, and instructions as well as narra-
tives, summaries, and comparisons. Themost recent research
products in this context are Large LanguageModels (LLMs),
trained with a huge amount of textual data and capable of
chattingwith a user (Touvron et al., 2023;Brown et al., 2020).
The computer vision research community is now focusing on
the development of large multi-modal models that integrate
vision and language by building on LLMs. In particular, this
topic has gained momentum in the egocentric literature. We
discuss these advances in this section
Seminal works An essential skill to unlock linguistic inter-
actions based on visual information is that of translating
semantic content seamlessly between the two modalities:
from video to text and from text to video. One approach to
achieving that is to learning a representation space shared by
the two modalities. Once trained, these embeddings may be
fine-tuned for a range of downstream tasks.Motivated by this,
Lin et al. (2022) explored approaches for Video-Language
Pretraning (VLP) and proposed a novel video-text contrastive
objective, EgoNCE for egocentric videos. It adjusts the
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InfoNCE objective (Oord et al., 2018) by performing action-
aware positive sampling and scene-aware negative sampling.
ThismakesNCE specific to long egocentric videos withmul-
tiple actions.

In Surís et al. (2020), the task of relating novel words,
outside the learnt vocabulary, to visual objects is explored.
The authors created an episode of examples consisting of
video-text pairs and the model is tasked with completing the
masked word from the target example using the reference
set from the episode. However, the model is only allowed to
fill in the masked word by copying and pasting words from
within the episode. This is how the framework learns a policy
for word acquisition.

Other techniques have been developed to leverage LLMs
without creating new embeddings. Lavila (Zhao et al., 2023c)
focuses on automatic video narration and utilises two LLMs:
a narrator and a rephraser. The narrator is a visually
conditioned auto-regressive language model that provides
pseudo labels for existing and new clips with narrations. The
rephraser, on the other hand, paraphrases the output of the
narrator by changing word order or replacing common nouns
and verbs. The results are reliable and diverse captions, pro-
viding temporally synced dense coverage for long videos.
State-of-the-art papers For Video-Language Pre-training,
Pramanick et al. (2023) proposed EgoVLPv2 that incorpo-
rates cross-modal fusion directly into the video and language
backbones. The network design keeps the encoders of the two
modalities separated but the cross-modal attention modules
combine their information and can be reused for downstream
tasks with an advantage both in performance and efficiency.
In particular, the EgoVLPv2 pre-trained encoders can be
leveraged both for fast retrieval and grounding tasks, which
require dual and fusion encoders, respectively.
DatasetsTwoof the largest egocentric videos datasets, EPIC-
KITCHENS
(Damen et al., 2022) and Ego4D (Grauman et al., 2022)
provide dense free-form text descriptions, also known as
narrations. They were collected through a stop-and-narrate
approach where the subject watches their video and notes
about what is happening there. For EPIC-KITCHENS, the
authors record audio narrations from the camera wearers
themselves, in their native language. They then transcribe
and translate these timestamped narrations. For Ego4D, the
authors hire annotators who watch the videos and write free-
form descriptions of what is happening roughly every four
seconds. For each video, two descriptions are collected from
different annotators. Lin et al. (2022) utilises Ego4D to curate
the EgoCLIP dataset for pre-training models on video-text
pairs from egocentric videos. EgoCLIP consists of 3.8M
clean egocentric clip-text pairs. For selecting the clips, videos
with missing narrations from Ego4D are filtered, validation
and test videos are excluded, and narrations from both runs
in Ego4D are used to maintain the diversity. As EgoCLIP

is derived from Ego4D, the dataset contains diverse human
activities. Lin et al. (2022) further propose the EgoMCQ
benchmark that aims to evaluate video-text alignment and
consists of 39K questions.
For the future Due to the inherent complexity posed by ego-
centric videos like head motion, occlusion, and limited field
of view, standard VLP methods based on CLIP (Radford et
al., 2021) fall short in generalising well. So future works
should improve the adaptation of existing VLMs to egocen-
tric data and might also introduce new tailored tasks to pave
the way towards EgoAI sustaining dialogues with the user.

For instance, Wang et al. (2023e) target the development
of an interactive AI assistant that can perceive, reason, and
collaborate with humans in the real world. The proposed
HoloAssist dataset consists of 166 h of data captured by 222
participants. While capturing the data, there is a performer
and an instructor. The performer works on the task while
wearing the AR headset and the instructor watches the per-
former in real-time and verbally guides the performer. This
data collection procedure allows to ground the mistakes and
correct the action towards task completion.

4.12 Privacy

Since the appearance of the first mass consumer wearable
cameras in the late 2000s, the research community has been
aware of the increased privacy risks related to their use. Such
risks are primarily due to the intrinsic mobility of wear-
able cameras, which allows users to operate them in an
“always on” mode, thus potentially capturing, transferring
and processing sensitive information about themselves and
bystanders. Hence, addressing privacy issues in egocentric
vision brings specific challenges, as compared to fixed cam-
eras.

While the community has a general understanding of the
aforementioned risks, privacy in egocentric vision has not
been systematically investigated, which is probably due to
the fact that wearable devices equipped with cameras are
not yet mainstream technology. Rather, a range of semi-
nal and exploratory works have been proposed in the last
decade. In this section, we provide a comprehensive dis-
cussion of the most relevant investigations on the topic. In
particular, previous research has explored privacy consid-
erations related to wearable cameras through three distinct
perspectives: studies aimed to assess the degree to which
the use of wearable cameras can affect individuals’ pri-
vacy (Sect. 4.12.1), endeavours to redact sensitive content
captured by wearable devices (Sect. 4.12.2), and advance-
ments in privacy-preserving computer vision techniques
(Sect. 4.12.3).
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4.12.1 Users’ Studies on Individual Privacy

A line of works has studied how people perceive their privacy
and that of bystanders while operating wearable cameras. In
particular, Hoyle et al. (2014) performed a user study of 36
peoplewearing a life-logging camera for 1week, discovering
that subjects prefer to be given the option to remove sensi-
tive images in-situ, during the image collection. Moreover,
factors such as time, location, objects and people appearing
in a photo determine its sensitivity, and camera wearers are
generally concerned about the privacy of bystanders. Similar
findings are reported in the work of Price et al. (2017), which
studied the perception of privacy by different groups of life-
loggers. Complementarily, Denning et al. (2014) investigated
the reactions of bystanders to users wearing AR devices. The
study highlights that AR devices change the bystander expe-
rience due to subtlety and ease of recording by the camera
wearer, with recordings considered more or less acceptable
depending on when and where they are being taken. Hoyle et
al. (2015) analyses photos taken during life-logging sessions,
asking camera wearers to provide motivations on whether a
given image should be shared or not: impression manage-
ment and respect for others’ privacy were the main reasons
for keeping images private.

Other works have studied the privacy implications of sys-
tems exploiting egocentric images and videos. Roesner et al.
(2014) analysed the security and privacy risks of AR applica-
tions in mobile and wearable devices. The study emphasised
the necessity of dedicated protocols for wearable applica-
tions to ensure the safe usage of sensitive user information
such as location data from visual signals or an accurate 3D
model of an indoor environment (Templeman et al., 2012). In
turn, someworks have investigated how egocentric video can
contain subtle information which may disclose the identity
of the camera wearer, as discussed in Sect. 4.9.

4.12.2 Redacting Sensitive Information

Based on the findings of previous studies (Hoyle et al., 2014;
Roesner et al., 2014; Hoyle et al., 2015), some works sug-
gested to prevent sharing of egocentric images based on the
presence of specific objects or persons. For instance, Tem-
pleman et al. (2014) proposed PlaceAvoider, a system able
to recognise whether a given egocentric image has been
acquired in a sensitive location specified by the user, such
as a bathroom or one’s bedroom, in order to prevent sharing
of such images. Korayem et al. (2016) proposed to prevent
sharing egocentric images based on the presence of detected
screens (e.g., the ones of smartphones or laptops) which
are likely to include personal information such as credit
card numbers or addresses. Hasan et al. (2020) investigated
approaches to detect bystanders in egocentric images based
on cues such as intentionally posing for a photo. Images with

detected bystanders can then be submitted for review to the
camera wearer before proceeding to share them.

Other works investigated how egocentric images and
videos can be transformed to protect privacy, while still
allowing for downstream tasks to be performed. In particular,
Hassan et al. (2017) proposed a “cartoon transform” which
alters the low-level properties of the image and replaces
objects with aligned clip art. Dimiccoli et al. (2018) studied
how intentionally degrading image quality by blurring can
improve bystanders’ perception of privacy, while still allow-
ing to perform downstream tasks such as activity recognition.
Finally, Thapar et al. (2021) proposed to add subtle perturba-
tions to egocentric video that do not affect tasks like object
detection or action/activity recognition but are strong enough
to prevent the identification of the camera wearer from head
motion analysis.

4.12.3 Privacy Preserving by Design

This line of work investigates systems and algorithms to
tackle egocentric computer vision tasks while guarantee-
ing that privacy-sensitive content is correctly processed,
by avoiding to collect it, store it, or make it available to
untrusted applications. Jana et al. (2013b) introduced the
idea of “recognisers” as a software layer to provide AR
applications with only the necessary high-level, anonymous
information, rather than giving direct access to raw sensor
data such asRGB images,whichmay contain private content.
A similar concept is explored in Jana et al. (2013a), where a
privacy protection layer based on OpenCV is used tomediate
sensor input (e.g., applying sketching transform) beforemak-
ing it available to possibly untrusted AR applications. Ryoo
et al. (2016) proposed a privacy-conscious approach which
learns how to extremely subsample egocentric video resolu-
tion to preserve privacy while still allowing to perform the
downstream task of activity recognition. Following Pittaluga
et al. (2019), who showed how scenes can be revealed invert-
ing structure from motion reconstructions, a line of research
has investigated approaches for 6-DoF localisation that safe-
guards against reconstructing the original image from the
information stored to support localisation (Speciale et al.,
2019; Pietrantoni et al., 2023; Chelani et al., 2023, 2021;
Dusmanu et al., 2021; Ng et al., 2022). Steil et al. (2019)
presented a system which shuts off the video stream when
sensitive visual content is detected, only to reactivate it based
on the analysis of eye movements recorded by additional eye
tracking cameras. Along the same lines, Khan et al. (2021)
proposed a deep learning based device which detects user-
customised privacy-sensitive content such as objects and
faces of specific people in order to serve as a privacy filter,
blocking images which do not satisfy the established privacy
constraints. Qiu et al. (2023) investigated how converting
images into rich text descriptions can serve as an effec-
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tive privacy-preserving approach for passive dietary intake
monitoring from egocentric images, as compared to directly
storing the input images.
Datasets A significant portion of the studies on privacy
involves the collection of in-situ data and the administra-
tion of surveys to participants (Denning et al., 2014; Hoyle
et al., 2014; Price et al., 2017; Korayem et al., 2016). These
works primarily focus on examining participants’ attitudes
towards lifelogging through the utilisation of AR glasses.
In addition to analysing the gathered survey data, Hoyle et
al. (2015) also examines the images generated during the
data collection process. Another group of studies employs
custom hardware setups to capture images in an in-situ con-
text (Thomaz et al., 2013; Templeman et al., 2014; Speciale
et al., 2019).

The First Person Social Interaction Dataset (FPSI) by
Fathi et al. (2012a), described in Sect. 5, has been used for pri-
vacy analysis. Together with other data collections originally
created for person identification (IITMD already covered by
Sect. 4.9), it has been adopted to investigate potential bio-
metric signature leakage in egocentric videos.
For the future The discussed seminal works exemplify the
efforts of the community in pursuing privacy-aware tech-
nologies. However, the investigations are not yet systematic
mainly due to the limited adoption of wearable cameras by
the general public.

Previous works mainly surveyed individuals but it is
important to identify issues with existing datasets, as the
covered demographic and number of subjects (< 50) are
generally limited. As devices are rapidly evolving, it will
be crucial to evaluate the effect on privacy when moving
from mobile phones and GoPros to wearable devices. This
appears particularly important considering that the majority
of the studies in the current literature used custom devices
instead of commercially available ones (Thomaz et al., 2013;
Templeman et al., 2014; Yonetani et al., 2015; Speciale et al.,
2019).

Finally, several works focused on analysing recorded data
to assess privacy breaches, but only a few proposed solu-
tions for privacy preservation or privacy-aware processing
and more tailored strategies are needed.

4.13 Beyond Individual Tasks

The previous sections revised 12 distinct computer vision
research tasks, which are fundamental for the future of ego-
centric vision. Few efforts have attempted to combine these
tasks to get close to the abilities of our futuristic EgoAI. For
example, an approach that combines action recognition with
a dynamic memory, so as to remind Sam about the bread
in the toaster is beyond the reach of current methods. Sim-
ilarly, combining person Re-ID with trajectory forecasting
towards assisting Judy in locating a suspect along her path

has also not been explored before. Assessing performance in
daily tasks, whether to advise Sam about the amount of spice
in his soup or qualitatively and quantitatively assess Marco’s
daily performance are still futuristic tasks not yet explored in
egocentric vision. The understanding of one’s surroundings,
actions and intentions, both independently as well as jointly
with others, is key to the integration of EgoAI in our daily
lives. We hope more works will expand beyond the individ-
ual research tasks to get an effective assistive device for the
wearer.

We next review general datasets, suitable for multiple
tasks, which can pave the way to such holistic understanding
in egocentric vision.

5 General Datasets

Datasets have become the fuel of computer vision research.
They offer the starting point for studying new research
problems and developing artificial intelligence that can suc-
cessfully support humans. The more realistic a dataset is,
the higher its value in transforming our future and often the
higher its challenge. Such datasets usually require increased
research efforts to achieve good performance on their various
metrics.

In particular, the availability of these datasets has crucially
contributed to advancements in egocentric vision research. In
fact, as wearable cameras are still relatively new, the videos
available online are not taken from the egocentric perspec-
tive. In the previous sections, we reported datasets that were
designed for one task. In this section, we review general
datasets that are suitable for a variety of tasks, and present
their characteristics.We compare in Table 1 the most popular
publicly available egocentric datasets in terms of domains,
size and modalities. We then detail available annotations to
date in Table 2 and in Table 3 we relate these datasets to the
tasks reviewed in Sect. 4. Next, we provide a narrative for
these general datasets.

Activity ofDailyLiving (ADL)byPirsiavash andRamanan
(2012) was one of the first egocentric datasets. It consists of
one million frames captured in people’s homes. The dataset
is only scripted at a high-level by asking the camera wear-
ers to carry out specific tasks such as watching TV or doing
laundry. It is annotatedwith object tracks, hand positions, and
interaction events. ADL has found its use in various tasks like
action (Vondrick et al., 2016) and region anticipation (Furnari
et al., 2017), action recognition (Pirsiavash & Ramanan,
2012) and video summarisation (Lu&Grauman, 2013). Sim-
ilarly, the UTE dataset (Lee et al., 2012) is composed by
videos of 4 participants involved in various activities such as
eating, shopping, attending a lecture, driving and cooking.
One notable difference with respect to ADL is in the video
length: the average duration of a video in UTE is 3.7 h (222
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Table 1 General egocentric datasets—collection characteristics

Dataset Settings Signals Hours Sequences AVG. video
duration (min)

Participants

MECCANO (Ragusa et al., 2023b) Industrial RGB, depth, gaze 6.9 20 20.79 20

ADL (Pirsiavash & Ramanan, 2012) Daily activities RGB 10.0 20 30.00 20

HOI4D (Liu et al., 2022c) Table-top RGB, depth 22.2 4000 0.33 9

EGTEA Gaze+† (Li et al., 2021a) Kitchen RGB, gaze 27.9 86 19.53 32

UTE (Lee et al., 2012) Daily activities RGB 37.0 10 222.00 4

EGO-CH (Ragusa et al., 2020a) Cultural sites RGB 37.1 180 12.37 70

FPSI (Fathi et al., 2012a) Recreational site RGB 42.0 8 315.00 8

KrishnaCam (Singh et al., 2016a) Daily routine RGB, GPS, acc 69.9 460 9.13 1

EPIC-KITCHENS-100 (Damen et al., 2022) Kitchens RGB, audio 100.0 700 8.57 37

Assembly101 (Sener et al., 2022) Industrial RGB, multi-view 167.0 1425 7.10 53

Ego4D� (Grauman et al., 2022) Multi domain RGB, Audio, 3D,
gaze, IMU, multi

3670.0 9650 24.11 931

†: For EGTEA, Audio was collected but not made public. �: For Ego4D, apart from RGB, the other modalities are present for subsets of the data

Table 2 General egocentric datasets—current set of annotations

Dataset Annotations

MECCANO (Ragusa et al., 2023b) Temporal action segments, hand & object bounding boxes, hand-object interactions, next-active
object

ADL (Pirsiavash & Ramanan, 2012) Temporal action segments, objects bounding boxes, hand-object interactions

HOI4D (Liu et al., 2022c) Temporal action segments, 3D hand poses and object poses, panoptic and motion segmentation,
object meshes, scene point clouds

EGTEA Gaze+ (Li et al., 2021a) Temporal action segments, hand masks, gaze

UTE (Lee et al., 2012) Text descriptions, object segmentations

EGO-CH (Ragusa et al., 2020a) Temporal locations, object bounding boxes, surveys, object masks

FPSI (Fathi et al., 2012a) Temporal social interaction segments

KrishnaCam (Singh et al., 2016a) Motion classes, virtual webcams, popular locations

EPIC-KITCHENS-100 (Damen et al., 2022) Temporal action video segments, Temporal audio segments, narrations, hand and objects masks,
hand-object interactions, camera poses

Assembly101 (Sener et al., 2022) Temporal action segments, 3D hand poses

Ego4D� (Grauman et al., 2022) Narrations, Temporal action segments, moment queries, speaker labels, diarisation, hand bounding
boxes, time to contact, active objects bounding boxes, trajectories, next-active objects bounding
boxes

�: For Ego4D, apart from narrations, the remaining annotations are only available for subsets of the dataset depending on the benchmark

mins) compared to 30 mins for ADL. Regarding the annota-
tions, the UTE dataset provides a paragraph summary of the
videos and polygon annotations around the subjects based on
the summary,whichmakes it suitable for studyingvideo sum-
marisation (Lee et al., 2012; Lu & Grauman, 2013). Further
expanding the covered time range, the KrishnaCam dataset
by Singh et al. (2016a) includes nine months of one student’s
daily activities. It consists of 7.6 million frames, spanning 70
h of video, accompanied by GPS position, acceleration, and
body orientation data. Thanks to its time evolution capture
of nine months, KrishnaCam can be used to study tasks such
as trajectory prediction, detecting popular places and scene
changes. The dataset has been also used to address online

object detection (Wang et al., 2021b) and for self-supervised
representation learning (Purushwalkam et al., 2022).

Different in terms of domains and captured signals, the
GTEA Gaze dataset (Fathi et al., 2012b) and its extension
EGTEA Gaze+ (Li et al., 2021a) cover recipe preparation
with the gaze signal in a single kitchen. The GTEA Gaze
dataset by Fathi et al. (2012b) focuses on action recogni-
tion and gaze prediction and involves the use of eye-tracking
glasses equipped with an infrared inward-facing gaze sens-
ing camera to track the 2D location of the subjects’ eye gaze
during meal preparation activities. The dataset includes 17
sequences performed by 14 subjects making pre-specified
meal recipes. It has been annotated with 25 frequently occur-
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Table 3 General egocentric datasets—current set of tasks: 4.1 Locali-
sation, 4.2 3D Scene Understanding, 4.3Recognition, 4.4Anticipation,
4.5 Gaze Understanding and Prediction, 4.6 Social Behaviour Under-

standing, 4.7 Full-body Pose Estimation, 4.8 Hand and Hand-Object
Interactions, 4.9 Person Identification, 4.10 Summarisation, 4.11 Dia-
logue, 4.12 Privacy

Dataset Task

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12

MECCANO (Ragusa et al., 2023b) � � � �
ADL (Pirsiavash & Ramanan, 2012) � � �
HOI4D (Liu et al., 2022c) �
EGTEA Gaze+ (Li et al., 2021a) � � � �
UTE (Lee et al., 2012) � �
EGO-CH (Ragusa et al., 2020a) �
FPSI (Fathi et al., 2012a) � � �
KrishnaCam (Singh et al., 2016a) �
EPIC-KITCHENS-100 (Damen et al., 2022) � � � � � �
Assembly101 (Sener et al., 2022) � �
Ego4D (Grauman et al., 2022) � � � � � � �

ring actions, such as “take”, “pour”, and “spread” indicating
their starting and ending frames. This dataset was later
extended as EGTEA Gaze+ by Li et al. (2021a) with 28 h
of cooking activities, including video, gaze tracking data,
and action annotations of 106 actions, along with pixel-level
hand masks. The dataset has been used to address differ-
ent tasks such as anticipation (Furnari & Farinella, 2019;
Girdhar &Grauman, 2021; Zhong et al., 2023), action recog-
nition (Kazakos et al., 2021; Fathi et al., 2012b), procedural
learning (Bansal et al., 2022), and future hand masks predic-
tion (Jia et al., 2022b).

A few datasets targeted multi-person egocentric social
interactions. The First Person Social Interaction (FPSI)
dataset by Fathi et al. (2012a) was collected over 3 days,
by a group of 8 individuals that visited Disney theme
parks, recording over 42 h of multi-person videos using
head-mounted cameras. The group often splits into smaller
sub-groups during the day, resulting in unique experiences
in each video. The dataset consists of over two million
images, manually labelled for six types of social interactions:
dialogue, discussion, monologue, walk dialogue, walk dis-
cussion, and background activities. The dataset has proven
useful for video summarisation (Nagar et al., 2021;Rathore et
al., 2019; Poleg et al., 2015b) and privacy preservation (Fathi
et al., 2012a; Thapar et al., 2020a).

Ragusa et al. (2020a) proposed the EGO-CH dataset to
study visits to cultural heritage sites. It includes 27 h of video
recorded from 70 subjects. Annotations are provided for 26
environments and over 200 Points of Interest (POIs), featur-
ing temporal labels indicating the environment in which the
visitor is located and the currently observed PoI with bound-
ing box annotations. It has been used by the authors to tackle
room-based localisation, PoI recognition, image retrieval and

surveygeneration—i.e. predicting the responses in the survey
from the egocentric video. Furthermore, the dataset has been
used to address object detection (Pasqualino et al., 2022b, a),
image-based localisation (Orlando et al., 2020) and semantic
object segmentation (Ragusa et al., 2020b).

While these datasets explore various aspects of egocentric
vision, their small scale and focus on a single environment
or a handful of individuals poses challenges when training
deep learning models or attempting to generalise to other
locations or subjects. To this end, the EPIC-KITCHENS
dataset byDamenet al. (2018)was proposed as a significantly
larger egocentric video dataset introduced in 2018 and subse-
quently extended with the latest version EPIC-KITCHENS-
100 by Damen et al. (2022). The dataset comprises 100 h of
unscripted video recordings captured by 37 participants from
4 countries in their own kitchens. It is unique in its instruc-
tions to participants, so as to start recording before entering
the kitchen and only to pause when stepping out. This offered
the first unscripted nature where participants go around
their environments unhindered forming their own goals. The
dataset has been annotated temporally with action segments.
It consists of 90K action segments, 20Kunique narrations, 97
verb classes, and 300 noun classes. It has since been extended
with three additional annotations. First, EPIC-KITCHENS
Video Object Segmentations and Relations (VISOR) (Dark-
halil et al., 2022) provided pixel-level annotations focusing
on hands, objects and hand-object interaction labels. VISOR
offers 272K manual semantic masks of 257 object classes,
9.9M interpolated dense masks, 67K hand-object relations.
Second, EPIC-SOUNDS (Huh et al., 2023) annotates the
temporally distinguishable audio segments, purely from the
audio stream of videos in EPIC-KITCHENS. It includes
78.4k categorised segments of audible events and actions,
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distributed across 44 classes as well as 39.2k non-categorised
segments. Third, EPIC Fields (Tschernezki et al., 2023) suc-
cessfully registered and provided camera poses for 99 out of
the 100 h of EPIC-KITCHENS. This is achieved through a
proposed pipeline of frame filtering so as to attend to transi-
tions betweenhotspots. The camera poses offer the chance for
combining all aforementioned annotations with 3D under-
standing and are likely to unlock newpotential on this dataset.

Since its introduction, EPIC-KITCHENS has become the
de facto dataset for egocentric action recognition (Kazakos
et al., 2019; Xiong et al., 2022; Yan et al., 2022; Girdhar
et al., 2022), privacy (Thapar et al., 2020b), and anticipa-
tion (Furnari & Farinella, 2019; Girdhar & Grauman, 2021;
Gu et al., 2021; Roy & Fernando, 2022; Liu et al., 2020b;
Jia et al., 2022b; Pasca et al., 2023; Zhong et al., 2023). New
tasks have also been defined around EPIC-KITCHENS, par-
ticularly related to domain adaptations with its capture in
multiple locations and over time (Munro & Damen, 2020;
Kim et al., 2021; Sahoo et al., 2021), video retrieval (Zhao et
al., 2023c; Lin et al., 2022),manipulations (Shawet al., 2022)
as well as niche topics like object-level reasoning (Baradel et
al., 2018) and learning words in other languages from visual
representations (Surís et al., 2020).

A couple of datasets focus on industry-like setting. MEC-
CANO by Ragusa et al. (2021, 2023b) is an egocentric
procedural dataset capturing subjects building a toy motor-
bike model. The dataset includes synchronised gaze, depth
and RGB. Its 20 object classes cover components, tools,
instructions booklet. It has been used to address tasks like
action recognition (Deng et al., 2023), active object detec-
tion (Fu et al., 2022b), hand-object interactions (Tango et
al., 2022) and procedural learning (Bansal et al., 2022).
Similarly, Assembly101 (Sener et al., 2022) is a procedural
activity dataset with 4321 videos of individuals assembling
and disassembling 101 “take-apart” toy vehicles. The dataset
showcases diverse variations in action orders, mistakes, and
corrections. It contains over 100K coarse and 1M fine-
grained action segments, along with 18M 3D hand poses.
This dataset has found its use in action recognition (Wen et
al., 2023b), anticipation (Zatsarynna & Gall, 2023) and hand
pose estimation (Zheng et al., 2023b; Ohkawa et al., 2023).
Additionally, HOI4D dataset by Liu et al. (2022c) consists
of 2.4MRGB-D video frames and 4000 sequences, featuring
9 participants interacting with 800 object instances from 16
categories. The dataset provides annotations for panoptic and
motion segmentation, 3D hand pose, category-level object
pose and includes reconstructed object meshes and scene
point clouds. This dataset has proven useful for object seg-
mentation and shape reconstruction (Liu et al., 2023c; Zhang
et al., 2023d; Wen et al., 2022), action segmentation (Reza
et al., 2023; Zhang et al., 2023d), hand-object manipulation
synthesis (Zheng et al., 2023a; Ye et al., 2023b), hand action

detection (Hung-Cuong et al., 2023) and 3D hand pose esti-
mation (Ye et al., 2023b).

The most impressive and massive-scale dataset to date is
Ego4D by Grauman et al. (2022), with 3670 h of daily-life
activity videos spanning hundreds of unscripted scenarios
(household, outdoor, workplace, leisure, etc.) captured by
931 unique camera wearers from 74 worldwide locations
and 9 countries. It primarily comprises videos, with subsets
of the dataset containing audio, eye gaze, and 3D meshes
of the environment. The dataset was released with a set of
benchmarks and train/val/test split annotations that focus on
the past (querying an episodic memory), the present (hand-
object manipulation, audio-visual conversation, and social
interactions), as well as the future (forecasting activities and
trajectories).

Due to the massive-scale and unconstrained nature of
Ego4D, it has proved to be useful for various tasks includ-
ing action recognition (Liu et al., 2022a; Lange et al.,
2023), action detection (Wang et al., 2023a), visual question
answering (Bärmann &Waibel, 2022), active speaker detec-
tion (Wang et al., 2023d), natural language localisation (Liu
et al., 2023a), natural language queries (Ramakrishnan et al.,
2023), gaze estimation (Lai et al., 2022), persuasion mod-
elling for conversational agents (Lai et al., 2023b), audio
visual object localisation (Huang et al., 2023a), hand-object
segmentation (Zhang et al., 2022b) and action anticipa-
tion (Ragusa et al., 2023a; Pasca et al., 2023; Mascaró
et al., 2023). New tasks have also been introduced thanks
to the diversity of Ego4D, e.g. modality binding (Girdhar
et al., 2023), part-based segmentation (Ramanathan et al.,
2023a), long-term object tracking (Tang et al., 2023a), rela-
tional queries (Yang et al., 2023) and action generalisation
over scenarios (Plizzari et al., 2023). Additionally, due to
its unprecedented scale, it has broken grounds in training
robot models with a series of publications (Nair et al., 2022;
Radosavovic et al., 2022; Ma et al., 2023b), transforming the
field of learning from demonstrations. The potential for the
Ego4D dataset is yet to be fully explored.

As noted at the start of this section, egocentric datasets
have a key role in research advancement. By reviewing
our initial forecast of the future in Sect. 2, some scenarios
received more attention than others in producing large-scale
datasets. EGO-Home (Sect. 2.1) is partially overlapping with
datasets such as EPIC-KITCHENS-100, Ego4D andEGTEA
Gaze+. However, these datasets mostly focus on the home
activities of cooking, cleaning and playing games. They do
not cover parts related to down time (i.e. rest), or grooming
or personal health, mostly due to privacy concerns. EGO-
Worker (Sect. 2.2) is related to datasets such as MECCANO,
Assembly-101 and HOI4D. However, these do not cover
the holistic aspects of a worker’s daily activities and are
yet to explore the critical aspects of safety and feedback.
EGO-Tourist (Sect. 2.3) is related to the EGO-CH dataset
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of visitors in heritage sites. However, the scale remains very
small despite the presence of large-scale touring videos on
YouTube that could be utilise for city-wide touring.

EGO-Police (Sect. 2.4) does not correspond to any pub-
licly available datasets. Despite the wide usage of chest-
mounted cameras within the police forces worldwide, such
data is very sensitive, particularly across boarders. Relevant
datasets currently are far from being utilised for advanc-
ing research in egocentric vision. Finally, we call for more
datasets in egocentric understanding from the entertain-
ment industry, given the huge potential of transforming this
domain as noted by the Ego-Designer scenario we presented
(Sect. 2.5).

6 Conclusion

This paper aimed to provide a future-to-present perspec-
tive into egocentric vision. Looking ahead, we envisage a
wearable device that we call EgoAI, holding the potential
to redefine our daily lives. We showcased its seamless inte-
gration into our everyday existence through character-based
futuristic scenarios, indoors and outdoors, at work, at home
and even during holidays.

We demonstrated the need for this device to be multi-
sensored andmulti-tasked.While our focus is on cameras and
visual cues, the future clearly requires it to be multimodal in
its capabilities, whether for perceiving the surroundings and
understanding what is happening in the observed scene, or
interactingwith the camerawearer. At the same time,without
the ability to solve multiple fundamental vision tasks it will
not be possible to get a competent egocentric assistant.

Additionally, we believe that further developing genera-
tive tasks in egocentric vision will play a pivotal role towards
building EgoAI. Consider, for instance, scenarios where
Marco could benefit from a device guiding him through his
work procedure by illustrating the sequential steps within his
environment. Similarly, EgoAI could spark Stanley’s creativ-
ity by proposing diverse scenographies projected onto his
current surroundings. Current egocentric methods employ
generative approaches in limited contexts, ranging from pre-
dicting future head motion (Jia et al., 2022b) to anticipating
gaze (Zhang et al., 2017) and modelling hand-object inter-
actions (Ye et al., 2023b). Only a handful of works explore
cross-view third-to-first-person image (Liu et al., 2020a) and
video (Liu et al., 2021a) synthesis. One recent work that
closely aligns with our use cases is from Yang et al. (2024).
They introduced a universal video generator that predicts
future frames based on both low- and high-level textual
action prompts. When run sequentially it can also effectively
simulates long-horizon interactions. This quality makes it
well-suited for generating a visual representation of work
procedures tailored to Marco’s needs.

In this paper, we reviewed 12 research tasks in egocen-
tric vision: localisation, 3D scene understanding, recog-
nition, anticipation, gaze understanding and prediction,
social behaviour understanding, full-body pose estimation,
hand and hand-object interactions, person identification,
summarisation, dialogue and privacy. For each task, we pre-
sented an overview considering appreciated seminal works
that set the research path, and we provided an insight into the
current state-of-the-art methods, publicly available datasets
and directions for future innovations. While the literature
builds on previous research based on fixed cameras, each of
these tasks present challenges which are unique to egocen-
tric vision, and in particular to the mobile nature of wearable
cameras and the need for a user-specific understanding of
the scene. On the other hand, egocentric vision brings new
opportunities for human-centric applications as discussed at
large in this paper. We anticipate that future research will
focus on bridging the gap between egocentric approaches
and those based on third-person vision in the spirit of con-
vergence towards a unified technology. Towards achieving
this goal, the newly introduced Ego-Exo4D dataset recorded
using both egocentric and up to 4 exocentric cameras has
recently been introduced (Grauman et al., 2023).

Wehighlight that these tasks cannot exist independently—
i.e. it is infeasible that wewill be learning one deepmodel per
task. This is not only because a model-per-task is extremely
inefficient, but because these tasks are co-dependent and the
prediction of one task would inform plausible predictions of
another. We encourage researchers to explore the taxonomy
of research tasks in egocentric vision.Moreover, futureworks
should also consider open set settings so that each task is able
to manage novelty to avoid relying too much on pre-defined
label sets and enhance model trustworthiness.

Regarding efficiency, this survey stopped short of explor-
ing the need for real-time sensing and learning, although it
is evident that we need to build models capable of perform-
ing all the mentioned tasks in real-time or with very minimal
latency. Ideally, future egocentric devices should be always
connected online, while respecting all privacy and protection
concerns. We encourage other researchers to analyse these
aspects as without efficient sensing, efficient computing and
real-time interactions, the future would remain a dream in
fiction novels and sci-fi films. At the same time, without
privacy-awaremodels, sensors and systems, the future would
fail to deliver on its users expectations.

We hope this paper offers a stepping stone for researchers
to make the future of egocentric vision a reality. We are
seeking input from researchers in the field to strengthen and
complete this survey, so it can serve as a useful reference to
incoming researchers who wish to explore and contribute to
egocentric vision.
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