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Abstract Nowadays, biometrics is considered as a promis-
ing solution in the market of security and personal verifica-
tion. Applications such as financial transactions, law
enforcement or network management security are already
benefitting from this technology. Among the different bio-
metric modalities, speaker verification represents an accu-
rate and efficient way of authenticating a person’s identity
by analyzing his/her voice. This identification method is
especially suitable in real-life scenarios or when a remote
recognition over the phone is required. The processing of a
signal of voice, in order to extract its unique features, that
allows distinguishing an individual to confirm or deny his/
her identity is, usually, a process characterized by a high
computational cost. This complexity imposes that many
systems, based on microprocessor clocked at hundreds of
MHz, are unable to process samples of voice in real-time.
This drawback has an important effect, since in general, the
response time needed by the biometric system affects its
acceptability by users. The design based on FPGA (Field
Programmable Gate Arrays) is a suited way to implement
systems that require a high computational capability and the
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resolution of algorithms in real-time. Besides, these devices
allow the design of complex digital systems with outstand-
ing performance in terms of execution time. This paper
presents the implementation of a MFCC (Mel-Frequency
Cepstrum Coefficients)}—SVM (Support Vector Machine)
speaker verification system based on a low-cost FPGA.
Experimental results show that our system is able to verify
a person’s identity as fast as a high-performance micropro-
cessor based on a Pentium IV personal computer.

Keywords Biometrics - Field programmable gate array
(FPGA) - Real-time systems - Embedded systems - Special-
purpose hardware - Speaker verification

1 Introduction

The earliest known publications on speaker recognition
appeared in the decade of 1950s [1, 2]. The speech of an
individual was examined and represented by a human ex-
pert, who makes a decision on the person’s identity by
comparing the characteristics in this representation with
others. Since then, voice technology has significantly
evolved, becoming nowadays an accepted biometric feature
that offers high levels of confidence and protection. Speaker
recognition is the preferred authentication method in com-
mercial transactions or remote personal identification pro-
cesses carried out by telephone, since it provides security
and protects against identity fraud at low-cost. For instance,
in some western countries, non-violent offenders are given
the option to be monitored using a voice recognition meth-
od; a form of confirming their current location (usually at
home) at any time by using a simple telephonic call. Speaker
recognition, as other biometric modalities such as finger-
print, iris or face, is also used for controlling the access in
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restricted areas, substituting the traditional methods based
on key or PIN numbers, as well as additional applications,
like surveillance in electronic eavesdropping or forensic
when proving the identity of a recorded voice.

Another significant advantage of speaker verification is
that samples of voice are collected by using a low-cost sensor
device. These samples are processed in order to obtain a
parametric representation of the physical structure of the indi-
vidual’s vocal tract. There are different well-known
approaches for extracting these parameters, such as Reflection
Coefficients (RCs), Linear Predictive Coding (LPC), Linear
Prediction Cepstral Coefficients (LPCC) and Mel-Frequency
Cepstrum Coefficients (MFCC). Among them, the MFCC is
the most widely used due to the improvement on the recogni-
tion accuracy and because it has been found to be more robust
in the presence of background noise compared to other algo-
rithms [3—8]. The extracted parameters are, subsequently,
matched against a previously enrolled model, using a classi-
fication algorithm especially designed to verify the user’s
identity. There are many matching speaker verification algo-
rithms published in the literature, including Hidden Markov
Models (HMM) [9], Dynamic Time Warping (DTW) [10],
Vector Quantization (VQ) [11], and Gaussian Mixture Model
(GMM)[12]. Furthermore, Support Vector Machine (SVM) is
one of the most interesting matching techniques for speaker
authentication, since it performs classification by constructing
an N-dimensional hyperplane that optimally separates the data
into two categories; in our case, accepting or denying the
identity claimed by an individual [13, 14].

Mainly due to the complexity of biometric algorithms, and
the need of working in real-time, their implementation is
carried out by means of personal computers equipped with
high performance microprocessors. These systems are ar-
ranged with floating-point units, able to carry out millions of
operations per second, working in the GHz range. Neverthe-
less, this kind of solution is less acceptable in low-cost systems,
in which the eligibility of a product is influenced by factors like
size, power consumption or price. Alternatively, the use of
Application Specific Integrated Circuits (ASIC) allows better
performances in terms of execution time than low-cost micro-
processors or DSPs devices [15]. However, since they are
designed for a specific application, only they have affordable
prices for large series associated with a massive production of
components. Another possibility for implementing these algo-
rithms is the use of FPGAs (Field Programmable Gate Array).
Unlike microprocessors, its basic structure consists of a matrix
of configurable logic blocks, interconnected with each other
through a network of programmable connections. At a reason-
able low-cost, and a reduced time-to-market, these devices
allow designing specific hardware architectures devoted to
high-speed applications that hardly could be implemented in
a different digital device. The good performance of the FPGA,
and the flexibility and easiness that provide the available
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development tools, make this device very useful in applications
for implementing algorithms with a high computational com-
plexity. Some examples can be found in the recent literature, in
which FPGAs have been successfully used. For instance, Fons
et al. [16] implemented a complete fingerprint recognition
system using a Virtex4 FPGA working at 100 MHz. This
system was able to overcome, in one order of magnitude, the
execution time achieved by a personal computer platform
based on an Intel Core2Duo microprocessor running at
1.83 GHz. Similar conclusions can be found in [17], in which
an iris recognition algorithm based on hardware-software co-
design is implemented on a low-cost Spartan 3 FPGA. The
system architecture consists of a general-purpose 32-bit micro-
processor and several slave coprocessors that accelerate the
most intensive calculations, achieving significant reduction in
execution time when compared with a conventional software-
based application.

FPGAs have also been used for implementing some spe-
cific part of a speech or speaker recognition algorithm
[18-22], although, none of them integrate, jointly, the extrac-
tion and the matching stages. For example, in [21] an efficient
extractor of MFCC parameters for automatic speech recogni-
tion is proposed using a low-cost FPGA. However, the system
does not incorporate the pattern classifier, nor does it include
the delta (differential) parameters associated with the MFCC
coefficients. Similarly, in [22] authors present an FPGA im-
plementation of a GMM classifier for speaker identification,
using the 63 % of the resources available on a high perfor-
mance XC2V6000, but without considering the extraction of
parameters that represent the structure of the vocal tract.

This paper presents the implementation of a whole
MFCC-SVM speaker verification system based on dedicat-
ed hardware. The system consists of several stages devoted
to calculating the feature vectors (extraction), based on Mel-
frequency cepstral coefficients and their associated deltas, as
well as the SVM-based matching between these vectors and
the user’s model stored in an external SRAM memory.
Experimental results show the viability and the main per-
formance of the proposed hardware implementation made
on a low-cost Spartan 3 FPGA.

This paper is organized as follows. Section II reviews,
briefly, the basic theory about the feature extraction process
based on Mel-frequency cepstral coefficients and the SVM
classifier. Section III presents the internal architecture of the
whole system, remarking the main characteristics of the
implementation. Section IV shows the experimental results
and finally Section V presents the conclusions.

2 Speaker Verification System

Figure | represents the block diagram regarding the pro-
posed speaker verification system. Two different stages can
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Figure 1 Block diagram for
the speaker verification system.

Data training

Data for
speaker
verification

be distinguished: the off-line training stage, in which a
user’s model is obtained, and the verification stage, in which
the user’s identity is verified using a SVM classifier that
matches the model previously calculated with the feature
vector derived on-line from the user’s voice. Each of these
two stages is detailed in the following sections.

2.1 Off-Line PC-Based Model Training Stage

The training stage aims to obtain a user’s model consisting of a
set of support vectors and their associated parameters, which
contain the main features that represent the user’s voice
(LIBSVM or Torch are specific libraries, useful for developing
algorithms based on SVM and suitable to carry out this train-
ing, [24, 25]). The data employed to build the model include
several utterances of this user (genuine) and other utterances
belonging to different people (impostors). The model is, usu-
ally, obtained off-line, using a training algorithm that runs in a
desktop computer and, in this particular case, employing two
different databases: BANCA and BioSec [26, 27]. BANCA is
a multi-modal database intended for training and testing multi-
modal verification systems. The samples of data were acquired
using various devices (2 cameras and 2 microphones) and
under several scenarios (controlled, degraded and adverse)
and different languages (French, English, Italian and Spanish).
The database has 52 speakers (26 males and 26 females),
including the own user to be verified. BioSec is a database
created under the European FP& EU BioSec Integrated Proj-
ect. This multi-modal database comprises fingerprint, face and
iris images, along with voice utterances of 250 subjects. The
collected utterances consist of 4 repetitions of a specific key-
word of 8 digits, both in English and Spanish, pronounced
continuously and fluently.

From the collected utterances, 4,000 feature vectors
based on MFCC coefficients are obtained, for both the
genuine and the impostor users, respectively, using samples
with 12-bit of resolution. The 8,000 feature MFCC extracted
vectors are used as input data in the training algorithm
which, after a calculation process, outputs the set of support

QOff-line Training Stage PC-based

—

MFCC-based
feature
extraction

User support
vectormodel

On-line Real-time FPGA-based
Verification Stage

\V4

|
extraction classification identification

vectors and their associated parameters gamma and rho used
by the SVM classifier.

2.2 On-Line Real-Time Verification Stage

In this stage, the user pronounces an utterance on-line,
which is analyzed in real-time to verify his/her identity. This
stage is implemented on a FPGA. The proposed architecture
consists of two main blocks: the MFCC feature extraction
and the SVM classifier. The first one processes the user’s
voice in order to extract the parameters of the feature vector.
The second one, based on a SVM algorithm, compares this
feature vector with the user’s model, previously calculated
during the training stage, and as result of this comparison
his/her identity is confirmed or denied.

2.2.1 MFCC-Based Feature Extraction Block

During the feature extraction process, the speech signal of a
specific user is segmented in frames of 25 ms (200 samples),
a period of time in which the voice signal is considered
pseudo-stationary, using a frame advance of 10 ms (80
samples) with an overlapping of 15 ms (120 samples). The
goal of the feature extraction is to obtain, from each frame,
the coefficients of a multi-dimensional vector that represents
the most distinguished characteristics of an individual in a
particular segment of voice. In our case, the feature vector
consists of 26 parameters or coefficients: the first one is the
Naperian logarithm of the energy localized in the temporal
window; the following 12 are based on the Mel-frequency
cepstrum coefficients [3, 7, 8], which represent the spectral
envelope of the signal voice; and the last 13, named differ-
ential parameters (delta or velocity parameters), that can be
obtained by processing 2M+1 (M=2) adjacent feature vec-
tors. Figure 2 shows the complete sequence of operations
involved in the calculation of these coefficients.

The first operation is a pre-processing stage that includes
a signal normalization that removes the actual average value
of frame m:
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Figure 2 MFCC-based feature
extraction block diagram.
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(1)

where the total number of samples is N=200. Once the
normalized frame is obtained, the first coefficient can be
calculated applying the Naperian logarithm to the energy of
samples 5(n):

1
N

Il
<)

n

N—-1
Co(m) =InY & (n) (2)
n=0

Afterwards, a pre-emphasis filter H(z)=1-az ' is applied
on the normalized frame that compensates the lower ampli-
tude of high frequency components. In the temporal domain,
the pre-emphasis output filter signal y(n) is given by:

y(n)=5n)—a-s(n—1) with 0<n<N-1

(N =200, a = 0.97)

(3)

After this pre-processing, the frame is filtered with a
Hamming window that smooths the typical effects related
to a rectangular windowing. The filter is defined as:

] 054 - 0.46cos(§,’i’i), 0<n<N-1
win) = { 0 , otherwise (4)
obtaining, as result, the following signal x(n):
x(n) = y(n) - w(n) (5)

A zero padding is applied on x(n), extending the signal
with zeros to obtain a frame of 256 samples. Then, x(n) is
processed with a discrete Fourier Transform (in fact, as x(n)
has 256 samples, the calculation is speeded-up by using a
Fast Fourier Transform):

_2mkn

x(n) e/ T, 0<k<L-1

X (k)

(L=256) (6)
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The following step applies over the module of the DFT a
bank of Mel filters [7], which consists of 26 triangular
shaped band-pass filters that simulate the response of the
basilar membrane of the human ear. The output signal to k"
Mel filter is denoted as S(k) (k=1...K). The final procedure
for the 12 Mel-frequency cepstrum coefficients consists in
performing the inverse DFT on the logarithm of the magni-
tude of the filter bank output S(k):

C,(m) = \/% : kz: (InS(k)) cos [n(k ~0.5) g , (7)

K=26 and 1<n<12

Note that since the log power spectrum is real and sym-
metric then the inverse DFT reduces to a Discrete Cosine
Transform (DCT).

Finally, the last 13 vector coefficients, known as differ-
ential or delta parameters, provide information about the
dynamic behavior of the speech signal. These parameters
are given by:

=M
t-Cy(m+1)
AC,(m) == with 0<n<12and M =2
> P
t=—M
(8)

where Cy(m) is the energy coefficient associated with frame
m, C;(m),...,C;>(m) are the MFCC of frame m and Cy(m+
k),..., C;x(m+k) are the same MFCC coefficients but
corresponding with the adjacent frame m+k used for calcu-
lating the delta coefficients.

2.2.2 SVM-Based Classification Block

The SVM classifier is applied iteratively over each feature
vector extracted in the previous phase. This is, by far, the
most time-consuming process that involves the most inten-
sive computational operations. Basically, the comparison is
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carried out between the set of support vectors related to the
user’s model and the MFCC feature vector by evaluating the
following expression:

25

1 (mli)—50)" Ci(m)
= (1) = {ACFB(W!)

0<i<12
13<1<25

©)

where QO is the number of support vectors for each user’s
model, z;(i) are the coefficients i of the support vector j, x,,(i)
is the coefficient 7 of the feature vector of frame m, P; are the
Lagrange coefficients related to the support vector j, and vy is
a constant that adjusts the training process to the particular
features of data used to build the model. Once the value of G
(m) is obtained, it is compared with a decision threshold
rho derived in the training stage. The feature vector of
frame m is said to belong to the user’s model if G(m)-
rho=<0:

[
Pe
=1

J

G(m) =

| 1, if G(m) —rho < 0 (positive match)
Score(m) = {O, otherwise(negative match)

(10)

Finally, after analyzing all the frames in the utterance, if
the percentage (denoted as Matching Score) of feature vec-
tors belonging to the user’s model overcomes a threshold
fixed in the training stage the identity claimed by the user is
confirmed as genuine.

ER: Score(m)

Matching Score = % - 100

R = total number of frames

3 Real-Time FPGA System Design
3.1 Variable Precision Fixed-Point

Regarding the extraction of parameters and classification
processes, all the operations have been carried out in
fixed-point. The main advantages of this format, versus the
floating-point one, are the reduction of both the execution
time and the number of hardware resources needed in the
FPGA. For instance, the area needed to implement a simple
adder in floating-point using a Spartan 3E FPGA is approx-
imately 240 CLB slices with latency of 13 clock cycles.
However, an adder of two integer inputs codified with 32
bits occupies just 16 CLB slides and takes 1 clock cycle to
carry out the sum.

On the other hand, the utilization of fixed-point format is
not free of inconvenience, including the lower dynamic

margin and the lost of precision due to the rounding error.
In order to minimize the effect of these drawbacks, the
hardware operations are resolved in fixed-point format with
variable precision, in which operands consist of an integer
and a fractional part of M and N bit-length, respectively. The
value of M should be chosen to avoid the overflow error,
whereas, N determines the miscalculation. A high value of
N allows the miscalculation error to be reduced, but signif-
icantly increases the area and resources needed to imple-
ment the design and, usually, the time needed to solve the
operation. Hence it is important, when designing the hard-
ware, to balance the trade-off between low error, reduced
area and latency. Following this criterion, we have selected a
different value of N for each operation involved in the
speaker verification algorithm. The optimal value for N
has been deduced by programming an iterative process in
Matlab that employs utterances consisting of 1,398 frames
and a user’s model of 3,634 support vectors. Figure 3 shows
the adjusting procedure for N that is applied over the K
operations involved in the whole algorithm. The procedure
is divided into the following steps:

1. The number of bits in the k" operation is initiated to 0
(N = Obits). All preceding operations (/,.., K"-1)
maintain the precision found in previous steps and the
subsequent ones (k”'+1,.....K) are adjusted to a floating-
point equivalent precision.

2. The speaker verification algorithm is programmed twice
using different definitions for the variables involved in
the operations: the first one in fixed-point, substituting
the values found in previous step, and the second one in
floating-point format. The average relative error

Algorithm using
floating point
(double precision)

Algorithm using
fixed point
(variable precision)

Comparison of
results

Relative and
classification error

No [N, =N, +1;

j=ith

K" =k"+1;N, =0
j=0

Figure 3 Matlab-based process to adjust the bit-length of parameter N
in fixed-point format.
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between both results is obtained by applying the follow-
ing formula:

Mean relative error (%)

(G;,ow(m) — rho) — <ij-ixed(m) - rho)

where R is the total number of frames processed and j is
the iteration index.

3. The classification error is calculated. This error is de-
fined as the percentage of speaker vectors whose clas-
sification is different when using the fixed-point or the

| R
R ’; szom (m) — rho - 100 floating-point algorithms:
(12)
asificati o IS ol A ,
Clasification error(%) = ? 2;15 [1 — szgn( o (M) — 7 o) .szgn( vea (M) — 7 o)} -100 (13)

4. If the classification error is null, and the increment of
the relative error against the value obtained adjusting
the operation k”-1 is less than 0.2 %, the adjusting
process regarding the k™ operation is considered fin-
ished. The procedure returns to Step 1 and the adjust-
ment of operation k”+ 1 is initiated. On the contrary, the
number of bits and the iteration index ;j are increased in
one unit (Nyw = Npw+1,j=j+ 1) and the adjusting
process returns to Step 2.

5. The whole process finishes when the bits of the last
operation K have been adjusted.

Tables 1 and 2 show the values selected for M (integer
part) and N (fractional part) adjusted for each operation of
the whole algorithm (feature extraction and classification).

3.2 System Architecture

The system architecture used to implement the complete
speaker verification algorithm has been developed using
the Xilinx XC3S2000 FPGA of Avnet electronics. The
system is composed, basically, of seven devices:

Table 1 Selected values for M and N to carry out the operations
involved in the feature extraction process.

Function M (bits integer part) N (bits fractional part)
Pre-processing 15 8

Hamming window 15 9

DFT. Coeff. (DFT) 23 9

(Re*+Im?) (DFT) 42 8

Module DFT 21 10

Mel filter bank 21 2

Logarithm 6 14

DCT 6 18

Delta coefficients 6 14

* 50 MHz clock oscillator, which is the system reference
clock.

*  Voltage regulator, responsible for supplying the power
to all the electronic components of the system.

» Platform Flash, which provides easy-to-use non-volatile
storage for the bit-stream configuration file to be down-
loaded into the FPGA at power up.

*  Two 64 MB memory Flash devices, 4MBx16bit, make
up the 32-bit Flash data bus. The devices have an oper-
ating voltage of 3.3 V and provide 16 MB total of Flash
memory for storing the user’s model.

* 2 MB of SRAM memory on a single device organized as
512kB x32-bit, used to store, after the system initialization,
the user’s model in order to speed-up the execution time.

e RS-232 transceiver, to establish a serial communication
link between the system and the external world (ex. PC).

e 12-bit resolution microphone module by Digilent Inc.,
responsible for capturing, as input, the user utterances.

Figure 4 shows the block diagram of this architecture.
The FPGA is the main component that consists of: the
feature extraction block, which contains all the elements
necessary to carry out the operations shown in Fig. 2; the
SVM classifier that assesses expression (9) and determines
if the vector belongs, or not, to the user’s model; and finally,

Table 2 Selected values for M and N to carry out the operations
involved in the classification process.

Function M (bits integer part) N (bits integer part)
Coefficient subtraction 7 22
(exponent)
Square (exponent) 13 14
Accumulation (exponent) 18 14
Exponential 0 18
Multiplication x Lagrange 6 31
Exponential accumulation 18 31

@ Springer
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Figure 4 System architecture P T P
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an 8-bit CPU microprocessor implemented by means of a
PicoBlaze soft-core processor. The CPU has access to
FLASH and RAM memories through a shared bus that
generates the management signals that control the blocks
“MFCC feature extraction” and “SVM matching”. Besides,
the system is designed with an input port that reads the result
of the classification process for each vector. The CPU car-
ries out three basic functions:

1. Managing the process to downloading the support vec-
tors (obtained during the training stage) from a desktop
computer to the external FLASH memory through a RS-
232 port.

2. Transferring the user’s model stored in the FLASH
memory to the SRAM. This transferring is done at the
beginning of the verification process to speed-up the
execution time of the classification stage.

3. Generating the signals used to manage the registers located
within the “MFCC feature extraction” and “SVM match-
ing” blocks. Additionally, these signals are used to start the
process for acquiring and processing the user frames.

3.2.1 MFCC Feature Extraction Block Architecture

The first component of the feature extraction block is the
“Data Acquisition System” (DAS). This component controls
the microphone module and has been designed to work with a
sample frequency of 8kS/s. The acquired samples are stored in
an internal BRAM memory of 18kB. By means of two coun-
ters of modulo 200 and 120, respectively, this memory is
addressed to store 200 samples with an overlapping of 120
samples (only 80 new samples are acquired by each frame,
which corresponds to a frame advance of 10 ms).

Figure 5 Hardware structure
for different blocks: mean
removal, energy and pre-
emphasis.

/ Dataframe
s(n)

Mean removal
dataframe

N e

Mean removal data frame Mean removal data frame

5(n) T

Ln
1L
N-1 .
_2 Pre-Emphasis
N-l Energy ln[Z s (")] Y@)=5(1)—a-5n—1)
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PORTA | PORTB
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Figure 6 Hardware structure
for windowing, DFT module / \
and Mel filter output.

BRAM
Pre- | Hamming
Emphasis | coefficients
PORTA | PORTB
y(n) w(n)

- <7
A
MULT

x(n)=y(n)-w(n)
Windowing

-/

The “MFCC feature extraction” block aims to acquire
and to process frames of voice provided by the DAS, as
well as to execute all the operations needed to obtain the
vector of coefficients. The architecture of this block is
mainly composed of modules appearing in Fig. 2: mean
removal, pre-emphasis, windowing, module FFT, energy,
Mel filter bank, logarithm function, DCT transform and
delta computation. Likewise, each of these modules in-
clude, for their implementation, components based on
combinational and sequential logic, BRAM memories
and control units. Besides, the LogiCore tool of Xilinx
has been used to design the DFT module. The combina-
tional logic components include elements to carry out
basic arithmetic operations such as accumulators, adders,
multipliers or multiplexors. The registers associated with
these operations have properly been arranged to avoid
overflow errors and to achieve the precision indicated in
Tables 1 and 2. On the other hand, the sequential logic
includes counters, used to dividle BRAM memories in
several sections, and shift registers employed to process
the root square and the logarithm functions.

Besides, BRAM memories are used to store the par-
tial results obtained after applying the operations de-
scribed in Expressions (1) to (8), along with storing
the constant coefficients involved in these operations:
Hamming window coefficients, Mel filter coefficients,
values needed for evaluating the DCT transform and
the pre-computed values used in the calculation of the
logarithmic algorithm.

The delta coefficients defined in Expression (8) are cal-
culated by taking into account the static coefficients, previ-
ously computed in earlier frames and stored in BRAM
memory. Once the 13 delta coefficients are calculated they
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are stored in the same BRAM memory, being available to be
processed by the SVM-matching block.

Figures 5, 6 and 7 show the internal architecture of those
modules that form the “MFCC feature extraction block™.
Each of these modules also incorporates a control unit,
whose aim is to generate the signals that control the rest of
components embedded in the module (for the sake of sim-
plicity, this unit has been omitted in the figures).

Figure 8 shows the designed hardware to implement the
Naperian logarithm of X. We used a recurrent radix-2 algo-
rithm for computing /n(x), x € [1/2,1), with an absolute error
of 2", where n is the number of bits that defines the accuracy of
the result [23]. Before the execution of this algorithm, datum X
must be normalized to a value x that satisfies 0.5<x</. This
aim is achieved by rigth-shifting X & positions, in such a way
that its binary point should be located just before the MSB bit
equal to 1, leading to a value of x=X/2". If s is the logarithm of
x, then S =k -In(2) + sis the logarithm of X. Once the
normalized value of x is obtained, the algorithm for calculat-
ing s is carried out in three steps:

1. Initialize: y(0) = 0; w(0) =1 —x
2. Recurrence:

forj=0,..,n

A
s; =SEL w[]] ;

w[j+1]<—2(w[/']—sj +5; a)[j]Z_j)

yli+1]e«»lil-L,

end for
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Figure 7 Hardware structure
for computing static and
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3. Result: y[n + 1] = In(x)

SEL is the continued-product digit selection function,
defined by:

) 1 ol > o
@:ﬂMGWO= 0 if—1<w[j]<0 (14)
1 el < -

A
where [j] is an estimate of the residual w/j] with 2

fractional bits. The constants L; are stored in a BRAM and
they are defined as:

In(1+27) ifsj=1andj<n/2
(1 =27) ifsj=—landj<n/2
b= 0 if5=0 "
527 if j> n/2

s, <PEL@G} T /)

k

Addr BRAM Addr

L kin(2)

]
]
]
]
] 1

v
MUX
1!
Iy

In(X)

Figure 8 Hardware structure for computing the logarithm function.

The result y[n + 1] & In(x) is added to k-In(2) to obtained
the final value of In(X).

Figure 9 shows the hardware architecture used for imple-
menting the root square needed for calculating the DFT
module. Again we use a radix-2 algorithm for computing
s = v/x, $ <x1, } < s1 with a resolution of 32-bit. In order
to apply thlS algorithm the input datum X must be normal-
ized to x, a value that satisfies the previous inequality. This
is done by shifting-left X m positions, in such a way that
x=X-2".1f s is the root square of x, then S=s-2 " is the root
square of X. The value of 527" is obtained by shifting-
right 5. The algorithm for calculating the root square of x is
carried out in three steps:

1. Initialize: S(0) = 0; w(0) = x;
2. Recurrence:
forj=0,...,
s ja = SEL(FL/])
olj+1]<2o[j]+ F()
Sl +1]eS[i]+s,,27
F(]) A _(2'S(j)'sj+l + 2_(j+1) ) ’Sj+l
end for
3. Result: S[n+ 1]~ /x
SEL is defined by:
1 if0<y<3
§=SELGL) =4 0 if 5= (16)
-l f-5<y<-2

where ¥ is an estimate of 2w/j] with 0 fractional bits.
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Figure 9 Hardware structure
for computing the square root.
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3.2.2 SVM Matching Block Architecture

The matching block has direct acces to the external SRAM
memory where the user support vectors are stored. The expo-
nent of expression (9) is obtained by means of a 24-bit sub-
stractor, that carries out the operation x,,(i)—z;(i);, a 32
multiplier used to calculate the square diference and the prod-
uct by gamma; and finally, an accumulator of 32x32-bit used

to add the partial results. Once the exponent X = —y "
(xm (i) — zj(i))2 is obtained, we used a recurrent radix-2 algo-
rithm for computinge/ ") = £7 where 7 and fare defined as:

I = integer[X - log,(e)]

f = fractional[X - log,(e)], with—1 <f <1

Before executing the algorithm, datum X must be pro-

cessed to find the values of /, f'and f/n(2). Using a 22x15-bit
multiplier, the products X log,(e) can be calculated and

BRAM SRAM
User vector ||Model vectors|
DATA DATA

X

z
i Ji

G(m)—rho
Clasification result

m
Shifter CZIE

aS
VX

used to obtain the values of 7, £, and f/n(2). Afterwards the
algorithm is executed to compute the exponential &/™? that
allows finding the result y[n + 1] ~ e/ ") [23]. The value y
[n+1] is then multiplied by 2' to obtain ¢*. The whole
algorithm, with a precision of 18-bit, can be summarized
as follows:

1. Initialize: y(0) = e %%;w(0) = x + 0.5 con x = f In(2)
2. Recurrence:

forj=20,..,n
A
s; =SEL a)[j] ;

olj+1)<2e[j]-L,27)
yli+1]eylil-yliks,; 27

end for
X 1 logale) (2)
N
X

o

ADD/SUB
y

1y
co(j+1)

init e "

Figure 10 Hardware structure for computing G-rho and exponential function.
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Figure 11 Scheduling in the calculation of a exponent and b exponential function.

3. Result: y[n + 1] ~ e/

SEL is the continued-product digit selection function
defined by:

. 1 wfj] >0.5
sj = SEL (w [j]) =9 0 if-05< wfj] 0.5 (17)

-1 if o[j]<-05
A
where o[j] is an estimate of the residual w/j] with 2
fractional bits. The constants L; are defined in (15) and
implemented in a BRAM memory. Figure 10 shows the
hardware diagram for the calculation of this function as well
as the subtraction G-rho.

In order to speedup the execution time in the classification
process, the calculation of the exponent and the exponential
function expressed in (9) have been parallelized. The calcula-
tion of the exponent is done in 60 clock cycles, whereas the

Table 3 Device utilization summary for Spartan XC3S2000.

Resources Available Total Feature =~ Matching Glue
Spartan 3 used extraction stage logic
resources
Number slices 20,480 4,095 2,983 813 299
1-bit flip-flop 40,960 5,353 3,974 1,145 234
4-input LUT 40,960 5,846 4,218 1,296 332
I0B 489 78 0 0 78
18-kbit RAM 40 15 12 1 2
Multipliers18x18s 40 21 15 6 0
GCLKs 8 4 0 4
DCM 4 1 0 1
BSCAN 1 1 0 1

exponential, the multiplication by coefficient Pj and the accu-
mulation is carried out in 53 clock cycles. Therefore, the total
time needed to execute the decision process is given by:

Execution time = Q - 60Tcrx + 53 - Terk (18)

where Q is the number of support vectors related to the user’s
model. Figure 11 shows the scheduling of the operations in-
volved in the calculation of the exponent and exponential
function.

4 Experimental Results

The speaker verification system presented in Section 3 was
implemented on a XC3S2000 FPGA of Xilinx operating at a
frequency of 50 MHz. This section presents the experimen-
tal results regarding the resources used in the implementa-
tion, relative error in the classification and feature extraction
processes, and execution time.

4.1 Implementation Resources

The results of the synthesis, in terms of area for feature
extraction and matching, are presented in Table 3 (about
24 % of the total size of the FPGA). Note that, almost all the

FPGA resources are consumed by the feature extraction

Table 4 Relative error statistical analysis.

Relative Average standard variance median mode
error (%) error deviation

Absolute without  0.8020  2.1204  4.4961 0.2487 2.2196e¢-4
inconsistent data
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Figure 12 Histogram representing the absolute relative error.

hardware which occupies about the 15 % of the CLB slices
and the 37.5 % of the internal multipliers.

4.2 Computation Accuracy

To assess the accuracy of the proposed implementation
several utterances have been processed. The average num-
ber of frames by utterance is 1,394 and the number of
support vectors used in the classification process is about
3,634. The absolute relative error is defined as:

Figure 13 ROC curves for
BANCA database.

1-False Non-Match Rate

0 0.1 0.2
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(19)

Absolute relative error (%)

_ (Goar (j) — rho) — (Gpvea(j) — rho) .
= Gﬂgm(]’) o <100, 1<;<L

where L=1,394. Note that, as this error is calculated
taking into account the result obtained after the execution
of the complete speaker verification algorithm in fixed-point
and floating-point formats.

Table 4 shows the most significant statistics data regarding
the relative error of the accuracy after analyzing the utterances.
The average error value and the standard deviation obtained
are 0.8020 % and 2.1204 %, respectively. Only the 3.3 %
(2.6 % without inconsistent data) of the feature vectors pro-
cessed gave an error higher than 5 %. The exact value of these
vectors is close to zero which, theoretically, involves a relative
error tending toward infinity. Moreover, it is important to
point out that for all the utterances tested, none of the errors
produced in the verification algorithm function lead to an error
in the classification process (the error was produced in the
magnitude of the value, but not in the sign), due to the proper
selection of the number of bits in V. Figure 12 shows the
histogram obtained applying Expression (19).

Figures 13 and 14 show the ROC (Receiver Operating
Characteristic) curves (False Match versus False Non-Match
Rate) obtained using the proposed hardware architecture for
BANCA and BioSec databases. Figure 13 plots 6 curves for
different trials in BANCA database that combine gender,
female (F) or male (M), and environmental conditions, con-
trolled (C), adverse (A) and degraded (D) under which the
utterances have been acquired. The ROC curves shown in

—— BancaFA
—— Banca FC
—— BancaFD
—— Banca MA
—— Banca MC
Banca MD

0,3 0.4 0,5 0.6 0.7 0,8 0.9 1
False Match Rate
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Figure 14 ROC curves for 1

BioSec database.
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Fig. 14 stand for BioSec database and represent various trials
combining gender, male (VO) or female (VW), and language,
Spanish (ES) or English (EN). As can be seen, the perfor-
mance obtained in terms of EER (Equal Error Rate) in both
databases is very similar.

4.3 Speed Processing

The verification process was executed on four different
platforms as an example of high and medium performance
microprocessors: Intel Pentium IV at 1.5 GHz, Microblaze
soft-core at 40 MHz, Texas DSP at 225 MHz and ARM
Cortex-A8 at 600 MHz, respectively.

T = — — e
----- BiosecVOEN
BiosecVOES
Biosec VWEN
Biosec VWES
0.3 0.4 0.5 0.6 0,7 0,8 0.9 1
False Match Rate

The DSP is included in a development board of Digital
Spectrum that contains a TMS320C6713 with a processor
clocked at 225 MHz and external SDRAM of 16 MB. The
ARM Cortex-A8 RISC core is part of the OMAP 3 family of
multimedia applications processors developed by Texas
Instruments. This integrated system is very useful for manu-
facturers of Smartphone and Mobile Internet Devices due to
its inherent characteristics in terms of speed and low-power
consumption. The last benchmark was obtained using Micro-
blaze at 40 MHz, a soft-core microprocessor developed by
Xilinx suitable for designing embedded systems, allowing
easy connection of custom coprocessors.

Table 5 shows the execution times. These results are pre-
sented by frame, so that the whole execution time can be

Table 5 Execution speeds for feature extraction and matching stages by frame on different platforms and in dedicated hardware (FPGA).

Function Execution time on Execution time on Execution time on Execution time on Execution time on
Intel Pentium IV at microblaze at DSP at 225 MHz CORTEX A8 dedicated FPGA
1.5 GHz 40 MHz 600 MHz hardware at 50 MHz

Pre-processing 14.12 ps 3.13 ms 1.6 ms 35 pus 31.96 ps

Hamming window 3.13 ps 151 ps 0.0357 ms 285 us 24 us

Fast-fourier transf. 63.36 us 8.83 ms 7.52 ms 163 ps 30.22 ps

Filter channels 45.45 ps 6.75 ms 1.12 ms 45 us 116.48 us

Logarithm 8.41 ps 17.30 ms 0.0873 ms 15 ps 53.78 us

DCT 102.57 ps 216.32 ms 0.906 ms 25 us 26.46 pus

Delta coefficients 1.73 ps 620 ps 0.04 ms 5 us 2.54 us

Frame execution time for feature extraction 238.77 ps 253.1 ms 12 ms 573 us 285.44 ps

Frame matching 4370.15 ps 2,304 ms 274.9 ms 9,642 us 4,362 pus

Total frame execution time 4608.92 ps 2557.1 ms 286.9 ms 10,215 ps 4647.44 us
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straightforwardly obtained, considering the total number of
frames analyzed in each utterance. The sixth column of this
table shows the execution time when the whole system is
implemented on the dedicated hardware proposed in this paper.
As can be seen, the Intel Pentium IV takes about 4.6 ms to
process one frame; Microblaze carries out the same processing
in 2,557 ms; Texas DSP takes 287 ms and the Cortex-AS8 takes
10.2 ms. On the other hand, the execution time per frame
obtained in dedicated hardware is lower than 10 ms (the ad-
vance frame time). The feature vector is processed in 285.44 us
and the matching between this vector and the model stored in
an external SRAM memory is carried out in 4,362 us (each
frame is processed in 4647.44 ps). Clearly, the dedicated hard-
ware and the Pentium IV are the fastest implementations,
processing the feature extraction and classification (matching)
processes in a similar time, but our hardware implementation is
clocked at a frequency 30 times lower than the Pentium
Microprocessor.

Since the system shown in Fig. 1 initiates a new frame each
10 ms, only the Intel high-performance microprocessor and
the dedicated hardware are able to carry out the feature ex-
traction and matching in real-time. A drawback of executing
this processing in the Texas DSP or in the ARM Cortex-A8
and, probably, in any embedded medium-performance micro-
processor, is that it would be necessary to store the complete
utterance in memory. Afterwards, the microprocessor has to
begin to read and to process frames according to its computa-
tional capability, which leads to an additional increasing of the
execution time. Thus, the total response time, which consists
in storing the utterance plus its subsequent processing, might
affect the acceptability of the biometric system by users.

5 Conclusions

In biometrics, the time needed by a system to confirm or deny
the user’s identity is an important factor to be considered in the
evaluation of its performance. This time depends strongly on
the characteristics of the hardware platform that captures the
biometric feature and executes the processing algorithm. In
speaker recognition, in which utterances longer than 10s are
used in the identification process, it is important that the system
gives an answer immediately after the user finishes his/her
speech. This paper presents the implementation on a FPGA
of a speaker recognition system based on MFCC, featuring a
SVM matching. The system was implemented on a low-cost
Spartan 3 FPGA clocked at 50 MHz, obtaining similar per-
formances, in terms of execution time, to those achieved with a
Pentium IV PC. The proposed system carries out the feature
vector extraction and its matching in 285 ps and 4,362 us,
respectively. As a new frame is ready each 10 ms, the system is
able to work in real-time, since it only needs, approximately,
half the time to process a complete frame. Thus, the designed
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hardware shows a high degree of acceptability in terms of
response time, since the system confirms or denies an identity
just 4,647 us after the pronunciation of an utterance is finished.
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