
J Sign Process Syst (2018) 90:99–125
DOI 10.1007/s11265-016-1219-1

EyeLSD a Robust Approach for Eye Localization and State
Detection

Benrachou Djamel Eddine1 · Filipe Neves dos Santos2 ·Brahim Boulebtateche1 ·
Salah Bensaoula1

Received: 4 December 2015 / Revised: 18 October 2016 / Accepted: 28 December 2016 / Published online: 31 January 2017
© Springer Science+Business Media New York 2017

Abstract Improving the safety of public roads and indus-
trial factories requires more reliable and robust computer
vision-based approaches for monitoring the eye state (open
or closed) of human operators. Getting this information in
real time when humans are driving cars or using hazardous
machinery will help to prevent accidents and deaths. This
paper proposes a new framework called EyeLSD to local-
ize the eyes and detect their states without face detection
step. For EyeLSD aims, two novel descriptors are pro-
posed: enhanced Pyramidal Local Binary Pattern Histogram
(ePLBPH) and Multi-Three-Patch LBP histogram (Multi-
TPLBP). The performance of EyeLSD with ePLBPH and
Multi-TPLBP is evaluated and compared against other
approaches. For this evaluation three independent and pub-
lic datasets were used: BioID, CAS-PEAL-R1 and ZJU
datasets. The set EyeLSD, ePLBPH and Multi-TPLBP have
a greater performance when compared against the state-of-
the-art algorithms. The proposed approach is very stable
under large range of eye appearances caused by expression,
rotation, lighting, head pose, and occlusion.
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1 Introduction

Many computational vision-based application - ranging
from human-computer interfaces (HCI) to road safety sys-
tems - require more reliable and robust eye state detec-
tion task. In advanced driver assistance systems (ADAS),
eye closeness monitoring provides relevant information on
driver somnolence and lack of attention. Getting this infor-
mation in real time when humans are driving cars or using
hazardous machinery will prevent accidents and deaths.

Drowsy people often exhibit inherent visual characteris-
tics distinguishable across the face, such as eye states, eye
blinking and many other visual features [29]. So, analyzing
the eye state is crucial for drivers drowsiness detection [3,
9, 13, 29]. Driver’s fatigue strongly correlates with a PER-
CLOS measure [1]. However, knowing eye localization is
determinant to know their state.

Eye localization and eye detection are different problems.
Eye detection aims to roughly find the eye in a face image.
In contrast, eye localization accurately estimates the center
position of the eyes [33, 37].

The key challenge for eye localization and state detec-
tion (open or closed) is to find the optimal descriptor (set of
features). This descriptor has to be immune to changes of
illumination, image noise, scales, and rotations. However,
it must preserve relevant information about eye state. Scale
and rotation are the main reasons for eye localization failure.
This challenges the search of an optimal descriptor.

Using a straightforward image decomposition strategy,
such as spatial pyramid method [19], is a step towards a
descriptor invariant to resolution changes. G. Mahalingam
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and K. Ricanek Jr [25] developed a multi-resolution hierar-
chy of patch-based feature descriptors for periocular recog-
nition. Their approach combines a hierarchical pyramid-like
image and Three-Patch Local Binary Patterns (LBP) [26]
feature descriptors (TPLBP) [45]. It can accurately describe
periocular features. Also, Turtinen and Pietikinen [41] have
used spatial pyramid-like image for coding local texture
features. Their work validates this approach for processing
arbitrary spatial resolutions of the rigid-textures in challeng-
ing conditions. Mäenpää and Pietikäinen [24] and Qian et al.
[31] present approaches for rigid scene and texture classifi-
cation. The classification enhancement is due to their spatial
pyramid LBP and multi-resolution LBP approaches.

Inspired by the previous cited studies, in this paper, the
pyramidal concept is used to build a new descriptor. Also,
based on our earlier works [4, 5], we consider that LBPs
have enormous potential for ocular region description and
show remarkable results in hard localization conditions.
This descriptor, based on LBP and pyramidal concepts,
is the core of our proposed approach for eye localization
and state detection (EyeLSD). EyeLSD is an extension of
our previous works [4, 5]. The EyeLSD contains 3 main
stages: the first pre-processes the image reducing noise
and enhancing textures, the second extracts feature descrip-
tors in key-points of the input image and then the third
focus on the establishment of efficient learning strategy by
using a statistical classifiers to interpret the described image
patches.

From our test, the EyeLSD detector is more robust than
the state-of-the-art methods to a wider range of eye appearance
variations caused by occlusion and other image conditions.

The main contributions of this work are:

1. A study about the feasibility of locating eyes and recog-
nizing their states without face detection step and under
challenging conditions.

2. A study about the performance of a composition of
LBP-based descriptors to: describe local and global tex-
ture information of the eye patterns; and, be robust to
rotation and scale changes.

3. A novel LBP Pyramid-like descriptor built with multi-
ple LBP variants. It is called enhanced Pyramid LBP
histogram (ePLBPH∗).

4. A novel growing multi-resolution patch-based LBP fea-
tures descriptor. It is called growing multi-resolution
Three-Patch LBP joint to Gaussian filtering (Multi-
TPLBP) and extends the standard TPLBP [45].

5. A novel approach called EyeLSD for eye localiza-
tion and state detection. EyeLSD can accept several
LBP variants including the proposed ePLBPH∗ and
Multi-TPLBP.

6. Benchmark of eye localization accuracy, of EyeLSD
considering several configurations, under two public

Grand Challenging Face detection databases: BioID
(http://www.bioid.com/downloads/software/bioid-face-
database.html) and CAS-PEAL-R1 [10]. Benchmark
of eye states detection accuracy, of EyeLSD, under real
world ZJU eye blink database [32].

This paper is organized with six sections. Section 2
makes a review of the related work. Section 3 presents
the proposed framework, EyeLSD for eye localization and
its state detection. Section 4 presents the EyeLSD stage
to extract the feature descriptor in image key-points. It
also presents in detail the two novel descriptors proposed
(ePLBPH* and Multi-TPLBP) and its different exten-
sions used in core feature extraction. Section 5 details the
experiments realized, including the experimental setup, the
databases used, presents the results obtained and compares
these results against the state-of-the-art. Finally, Section 6
presents the main conclusions, remarks and future work.

2 Related Work

This section presents a brief review about state-of-the-art
approaches for locating the eye and detecting the eye state.

In driver safety domain, González-Ortega et al. [13],
developed a real-time vision-based approach that locates
eyes and recognizes their states. A hybrid approach is
applied for eye state detection, which combines the appear-
ance and the shape of eye features. A projection function
is built to distinguish the different eye states (open, nearly
closed, and closed). To this end, two interconnected clas-
sifiers: support vector machine (SVM) [42] and multilayer
perceptron (MLP) [49], formed to interpret each eye state.
The algorithm achieved good results under different condi-
tions. However, it may fail under poor imaging conditions
(low resolution, blur, and uneven light), that lead to ambigu-
ous appearance of the eye.

Lately, Cui Xu et al. [50], proposed an eye states detec-
tion method. They consider the detection of eye states as a
binary classification problem, this means that eyes are clas-
sified into one of the two categories: closed or open. The eye
image is first scanned with a series of scalable sub-windows,
where is extracted LBP histograms. Then, for each sub-
window, an optimal reference template is trained. Based
on reference templates, the bin-wise distances between
extracted histograms and the corresponding templates are
calculated to build the training feature set. This set and
AdaBoost-based classifier are used to locate the eyes and
to recognize their states. In theory these feature-descriptors
are built to tolerate slight texture rotation. However, they are
not invariant to high rotations. Moreover, the length of their
LBP feature sets are relatively long, which may increase the
computational cost.

http://www.bioid.com/downloads/software/bioid-face-database.html
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More recently, Fengyi Song et al. [38] proposed an
eye closeness detection approach in still face images. In
their work, face portion is firstly detected and cropped,
then enhanced pictorial structural model [39] is adopted
to find the eye locations. To define the eye state, they
combine local and global structural appearance of eyes to
build their state model. This state model uses a multi-scale
histogram of principal oriented gradients (MultiHPOG) fea-
tures. Their algorithm was validated on challenging eye
datasets. Hashem Kalbkhani1 et al. [18], proposed an algo-
rithm that estimates open and closed status of eyes in
colored images. Their framework consists to crop the facial
region first, and then retaining only 60 % of its upper area,
which will be pre-processed after. The eyes are detected in
this predefined region, using an improved version of Eye-
Map algorithm [35]. After that, a fine estimation of the pupil
center (iris) is set as the center of mass of the ocular regions.
In the last stage, the eye is set as open if the number of
white pixels inside the iris circle in a binary sub-space is
more than the number of black ones. Otherwise, the eyes
are closed. Their algorithm achieves high recognition rate,
and does not require training data. However, detecting face
step is required as prerequisite for eye localization success.
Without this step, the detection of the eyes as well as the
recognition of their state fail. Also, their framework is not
applicable if two eyes are not completely appeared in case
of extreme face rotation for example. Thus, the rotation of
the face has serious effect on eye region detection.

From these works we can state that a reliable eye state
detection requires high accuracy in eye localization. The eye
localization in the real world scenarios is challenged by eye
appearance changes due variance in scale, orientation, rota-
tion, head pose, expressions, illumination, arbitrary image
resolutions, occlusion, and even the inter-individual vari-
ability. These factors pose a great challenges to this task and
introduce significant changes to the visual aspect of eye pat-
terns. So, enormous efforts are invested in research to solve
these difficulties.

In the literature, eye localization techniques can be divided in
four categories [37]: the characteristic-based, the structure-
based, the appearance-based, and hybrid-based approaches.

The characteristic-based approaches focus on exploiting
distinct inherent characteristics of eyes. Several eye-specific
characteristics can be reliably used in practice. For exam-
ple, the particular eye shape, the intensity response and
contrast sensitivity of the eye components. However, these
approaches show limitations under uncontrolled nature set-
tings. Traditional methods that measure previous informa-
tion are Integral Projection Function (IPF) [8] and Integral
Variance Function (VPF), both of which are merged in Gen-
eral Projection Function (GPF) [55]. These methods yield a
good localization results, but most of them show a high effi-
ciency only with normalized face images (slight change in

eye scales and texture rotations). Moreover, they tend to be
less efficient under uncontrolled conditions and facing poor
image quality, which may result in great performance loss.
Li et al. [22] try to overcome a weakness of such methods,
by accumulating locally smoothed version of pixel intensity,
which tends to be more stable compared to the global one.

The structure-based approaches, place emphasis on the
study of the spatial structure of the eye intrinsic compo-
nents and the geometric regularity between eyes and other
facial features in the face context. The Active Shape Model
(ASM) is a popular method used to model the structure
information of the eye. ASM counts several extensions and
is applied in different vision-based applications [7, 17, 34,
46]. The eye structure-based approaches, infer successfully
the location of an eye by estimating the locations of its parts,
and show robustness against occlusion and large eye vari-
ations. Among existing methods, Hough-transform tech-
nique, realized good performance for eye locating recently
[20, 21]. However, this technique is computational expen-
sive. The enhanced pictorial model [39] achieved also
promising performance, and shows robustness to illumina-
tion and adaptability to eye localization in unconstrained
situations.

The appearance-based approaches build a statistical
model of the eyes, from their photometric appearance. The
eye patterns are described through their visual appearance
by combining extracted features and statistical classifiers.
Three steps summarize these approaches; (1) pre-processing
(image noise reduction, illumination correction), (2) feature
extraction and normalization, (3) classification and building
a learning-model, which interprets the extracted features.
The advantage of these methods compared to that described
before, is that a richer and reliable information about the eye
patterns can be obtained, even with low-quality face images
[51]. Nevertheless, the appearance-based approaches count
some limitations. They can be less optimal for locating eyes
and inefficient to capture their large visual changes (vari-
ations in scale, rotation and occlusion.), although, many
existing studies on localizing eyes, these issues are not
completely solved. A fully reliable method does not yet
exist. Some of the proposed approaches are application ori-
ented or, they are constrained to several conditions, e.g.,
near frontal view angles, uniform lighting, and fully open
eyes. As well as, eye appears differently at arbitrary spa-
tial image resolutions, and facial region captured at different
depth-of-field, with different orientations, rotation and other
variations. These form a real challenge for any appearance-
based algorithm. Moreover, it is difficult to address all
variations by using a single type of feature set. The choice
of the descriptor is application-driven and depending on the
establishment of searching strategies.

To summarize, most of the aforementioned methods, are
capable of giving workable solutions to eye localization
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under restricted settings. The essence of eye localization
is mainly used to help eye detection with finer estimation
of eye location, whatever changes that faces or eyes can
undergo. Recently, Yan Ren et al. [33] proposed a learn-
ing method for precise eye localization. They combine a
two-class sparse representation classifier (SRC) and scale
invariant feature transform (SIFT) features to keep invari-
ance to arbitrary scale and rotation. The search for an eye
location is tackled by creating a heat-map with SRC out-
put and pyramid-like locating method that discriminates the
eye from a non-eye under variant resolution, while reducing
the amount of searching regions. Their method shows feasi-
ble eye localization without the assistance of face detector.
Shiming Ge et al. [11] formulates the eye localization as an
optimization problem. Their method is based on correlation
filter bank (CFB) trained with EM-like adaptive clustering
technique. The final model can find the exact eye loca-
tion under pose and illumination changes. Mingcai Zhou
et al. [54], investigate eye localization problem, by using
coarse-to-fine searching strategy and improving Supervised
Descent Method (SDM), joint to multiple nonlinear fea-
tures that enhance the accuracy, while maintaining a certain
inviance. Their approach is called coarse-to-fine multi-
feature SDM (CF-MF-SDM). The CF-MF-SDM algorithm
achieves better localization accuracy when compared to

other methods, but fails to locate eyes with large rotation
angles in-plane.

3 Eye Localization and State Detection Approach
(EyeLSD)

To locate the eye and detect its state without face detection
step, we propose the EyeLSD framework, Fig 1. EyeLSD
combines the strength of several descriptors that properly
describe the eye appearance. Their combination provides
richer and consistent information of the eye.

EyeLSD is decomposed in three main stages, as shown
in Fig. 1. The first stage consists to pre-process the origi-
nal image by reducing noise and enhancing textures (steps
a and b), the second stage extracts features in key-points of
the image (steps c,d,e, and f), and then the final stage uses
statistical classifiers to interpret collected information (step g).

In stage one, Fig. 1a, the 3-channel RGB image is con-
verted into gray-scale image ϒ , then image processing
techniques are applied in ϒ , to filter out noise and further
enhance the localization results.

After a searching map is created, with key-points that
highlights different facial traits (e.g., nose tip, mouth cor-
ners, eye centers, eyebrow, and lips). This pre-processing
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step is used as locating strategy to meet requirement of
localization, instead of using traditional sliding-window
strategy, that gradually moved over the whole image pix-
els with a fixed step (relatively small), at risk of missing
important image regions, e.g., the ocular region.

In stage one, Fig. 1b, to built the searching map with
key-points, the image ϒ is firstly blurred because, LBP
based descriptors are sensitive to noise in near-uniform
image regions. Then, local minimum regions (valleys) are
extracted from the pre-processed image, corresponding to
the lower gray-scale regions. These regions are the most
likely places to contain the true position of facial traits.
Connected-component labeling is introduced to detect con-
nected regions in valleys, while assigning them landmarks
(key-points) for the next steps.

In stage one, Fig. 1c, the spatially enhanced Pyramid-like
method, i.e., ePLBP∗, Section 4, is used to encode local fea-
tures with different scales within key-points. The ePLBP∗
descriptor reduces the influence of illumination and noise
change, while moderates the variation in scales and rotation
degrees.

The second stage consists of using the region selection
methods, to choose the most discriminated image parts that
stand for ocular regions. The spatial structure of objects in
a scene is used, besides of binary morphological operations.
In the morphology step, there are two phases, erosion and
dilation [12]. The white region (pixels) of binary image, are
expanded and the black region (pixels) are diminished by
erosion operation. Afterward, black region (pixels) of the
eye area diminished by the erosion operation is expanded
by dilation operation. This second process of sequentially
erosion and dilation is called opening process. After the
opening process applied two times, the largest blob is gen-
erated for an eye (enhanced area) and small blobs are
generated for noise then rejected.

In stage two, Fig. 1d, the measure of the structural propri-
eties of the enhanced area (retained) is applied upon binary
image to choose the widest surface, i.e., the silhouette of the
eye. The area’s center of mass (moment) is considered as an
eye center.

In stage two, Fig. 1e, a bounding-box is reported-back on
the original input image and detected regions are geomet-
rically normalized to 24 × 24 pixels. The eye candidates
are classified as true or false based on similarity value
Chi-square (Sχ2 ), which boosts the performance of the ocu-
lar detector. This post classification phase increases the
possibility to localize eyes, whatever their states as shown in
Fig. 1f.

The final stage consists of detecting the eye open and
closed status. This task is introduced as a 2-class problem
based on the eye appearance. From the located eyes, various

feature sets are extracted to feed the classifier for final deci-
sion, as shown in Fig. 1g. The descriptors used are detailed
in Section 4.

4 EyeLSD: Feature Vector Extraction
and Classification Stages

This section presents two new descriptors to help the two
stages of eye localization and eye states detection. The pro-
posed names for the two novel descriptors are: enhanced
Pyramidal Local Binary Pattern Histogram (ePLBPH) and
Multi-Three-Patch LBP histogram (Multi-TPLBP). The
classification performance is enhanced (step e of EyeLSD,
Fig. 1), by using a similarity measurement that accurately
locates the eye center.

4.1 Descriptor for Ocular Region Detection

This subsection firstly presents a feature descriptor based
on Local binary pattern (LBP) and Spatially enhanced local
binary pattern histogram (eLBPH). Then, based on this
descriptor, we propose a new extended version ePLBPH.
Both can locally and globally describe the eye shape, under
different conditions. These descriptors can be easily imple-
mented using a MATLAB source code available at http://
www.ee.oulu.fi/mvg/page/lbp matlab.

4.1.1 Feature Descriptor based on Local Binary Pattern
(LBP) and Spatially Enhanced Local Binary Pattern
Histogram (eLBPH)

The local binary pattern (LBP) is a powerful gray-level
invariant texture primitive. The non-parametric LBP opera-
tor was firstly mentioned by Harwood et al. [14], and then
introduced by Ojala et al. [26] for texture description. The
original operator works with a 3 × 3 neighborhood. The
pixel values of eight neighbors are thresholded with respect
to the center pixel, then, the so-thresholded binary values
are weighted by powers of two and summed to give the LBP
code of the center pixel.

In practical tasks, the statistic form of LBP codes, LBP
histogram (LBPH), generally is used. That is, the LBP codes
of all pixels for a given image are collected into a histogram
as a texture descriptor.

A simple extension of the LBP, denoted by LBPP,R is
to use neighborhoods of different sizes [28]. The extension
can take any radius (R) and neighbors (P ) around a cen-
ter pixel, by using a circular neighborhood and the bilinear
interpolation whenever the sampling point does not fall in
the center of a pixel.

http://www.ee.oulu.fi/mvg/page/lbp_matlab
http://www.ee.oulu.fi/mvg/page/lbp_matlab
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Another extension is the so-called uniform patterns
LBPu2

P,R . A LBP code is called uniform if it contains at most
two bitwise transitions from 0 to 1 and conversely when the
bit pattern is moved in a circular binary form [28].

For the computation of LBPH, the uniform patterns are
used such that each uniform pattern has an individual bin
and all non-uniform patterns are assigned to a separate bin.
So, with 8 neighbors, the numbers of bins for LBPH are
256 bins and 59 bins for uniform patterns LBPH (LBPHu2),
respectively. Clearly, the uniform patterns reduce the length
of feature vectors, without a significant information loss.

The ocular region is considered as dynamic and non-
rigid object, highly sensitive to imaging conditions and
environmental variations. So, by pre-processing the image
patch into several sub-region (sub-block), we can miti-
gate these large variations to a certain extent. The result-
ing texture descriptor is called enhanced LBP histogram
(eLBPH), which is chosen to describe the eye with a
LBPHu2.

The eLBPH proposed by Ahonen et al. [2], is a reference
for LBP based face recognition techniques. The eLBPH
implementation for facial area description consists of the
following procedure: first divide the facial image into d sub-
regions {R0, R1, . . . Rd−1} and from each sub-region the
LBPH is calculated individually, then the resulting d sub-
regional LBPHs are concatenated to form the eLBPH, in the
same order of the regional division applied to the image.
The eLBPH descriptor has a length of d × l, where l is
the length of the sub-regional LBPH. Figure 2 shows an

illustrative example of the sub-regional division and his-
togram concatenation strategy for eye representation.

LBPu2 is statistically stable and less sensitive to noise
[28]. All sub-regional LBPH are concatenated to form the
eLBPH of 236 bins (59 bins × 4), Fig. 2. These parameter
settings were suggested by [5] for ocular region description.
They have shown that the eye is effectively represented by
eLBPH in three different forms:

1. The labels of the local histogram contain information
about the eye at a pixel-level.

2. The labels are summed over a sub-blocks level.
3. The sub-block histograms are concatenated to build a

spatial enhanced description of the eye.

4.1.2 Enhanced Pyramidal Local Binary Patterns

Local binary pattern in spatial pyramid domain (PLBP) is a
powerful multi-resolution analysis method. Over the pyra-
mid transformation, each pixel in the low spatial layer of
the pyramid, is generated by down sampling the low-pass
filtered high resolution image at the pyramidal level just bel-
low as shown in Fig. 3. So, in images of low-resolution, a
pixel corresponds to a region in its high-resolutions. This
region is described by [23, 24] as an “effective area” of the
filtered pixel. Please see [31] for more details about LBPs
representation in spatial pyramid domain. The pyramid gen-
eration approach consists of low-pass filtering (LPF) and
down sampling images at the pyramid level just below.
The pyramid image is recursively constructed as follows:
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G1(x, y) = I (x, y) for pyramid level l = 1, where I (x, y)

is the original image, l = {1, . . . , L}, and L is the number
of layers in the pyramid. In a general definition of pyramid
construction process and for pyramid level l > 1:

Gl =
∑

m

∑

n

fG(m, n)Gl−1(Rxx + m,Ryy + n) (1)

where Rx and Ry are the down sampling ratios in x and
y directions, respectively. (Rx, Ry > 1) in case of down
sampling is used during the pyramid image generation. Oth-
erwise, Rx = Ry = 1 if no spatial sampling is used. x and y

are the image coordinates, whose values are expressed in a
Cartesian coordinate system, fG is a 2-D isotropic Gaussian
(circularly symmetric).

In the spatial pyramid domain, feature extraction of tex-
ture Γ are produced through a combination of texture
information of all pyramid levels. Let Γ k represent the tex-
ture information of the kth pyramid, (k = 1, . . . , N), g k

c

corresponds to the central pixel of the kth pyramid.

Γ k = t (gk
c , g

0
k , . . . , g

p−1
k )

≈ γ (s(gk
0 − gk

c ), . . . , s(g
p−1
k − gk

c )) (2)

The resulting binary code is denoted as LBPP,R,k , which
is the LBP code of a pixel at the kth spatial pyramid and
expressed as follows:

LBPP,R,k =
P−1∑

p=0

(s(g
p
k − gk

c )2
p) (3)

The final PLBP is a combination of several LBP his-
tograms for N-spatial pyramid images:

PLBPP,R = ∪kLBPP,R,k = {LBPP,R,1; . . . ; LBPP,R,N }
(4)

In our enhanced LBP spatial pyramid architecture ePLBP
(proposed for EyeLSD), the eye pattern is down-sampled
twice. The spatial pyramid is generated with 3 levels of
image sequences I = {I0, I1 . . . , IL−1}, Fig. 3 (i.e., L =
3). The pyramid images are denoted as I0, I1, and I2 for
the pyramid’s basis, first and second level of the pyramid,
respectively. The size of the nth level image has the half size
of the (n − 1)th level image, Fig. 3.

Based on Ojala et al’s rules, the enhanced PLBP∗
P,R

(ePLBPH) can be constructed, where ∗ stands for {u2, ri,

riu2} patterns.
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The original image, represents the 0th level image I0 of
the pyramid, LBPu2 is performed upon the 0th pyramid’s
image with size 24 × 24 pixels. The uniform patterns are
used because they tolerate rotation better, since they contain
fewer spatial transitions exposed to unwanted changes upon
image rotation, besides being highly descriptive. LBPu2 is
statistically stable and less sensitive to noise [28]. I0 is the
highest resolution image in our pyramid and contains more
details about the eye appearance.

To enhance the discriminative capability of the applied
descriptor, the 0th image of the pyramid is equally divided
into 4 non-overlapped sub-regions. The global spatial his-
togram is computed by concatenating all sub-regional
LBPHu2. The obtained LBPHu2 signature is denoted as Hu2

0
with a length of (59 bins × 4).

At the 1st level of the image pyramid I1 with size
12 × 12 pixels, LBPri code [27] is generated, to han-
dle the invariance to texture rotation. This pyramid image
level is pre-processed in same way as I0. The LBP his-
togram obtained is denoted as Hri

1 with a length of 36 bins
× 4. The I1 is a smoothed image of size 12 × 12 pix-
els and contains less details about the eye appearance. So,
the extracted information may not be very discriminant. To
solve this issue, we proposed to use a sub-region-division
and histogram concatenation strategy. It also improves the
discriminative power of the applied descriptors and pre-
serves the spatial relation for the eye. The full eye image
is divided into 4 sub-regions, as shown in Fig. 2. The spa-
tial relation of the four parts is basically preserved in the
concatenated histogram.

The highest level image I2 may be sparse and unsta-
ble, due to its small size of 6 × 6 pixels, and thus the
sub-region division cannot be used therein. At this level of
the pyramid, the feature descriptor used should be highly
descriptive, while generating a small length of LBPH. The
LBPriu2 [53] provides a good discrimination in comparison
to the “non-uniform” patterns, and this leads to differences
in their statistical properties [28]. However, in this pyramid
image level the spatial preservation of LBPH does not pre-
serve any spatial information of eye, due to its histogram
statistic over the whole eye image patch. The LBPriu2 is by
definition gray-scale invariant measure, ensures the invari-
ance to rotation, and considers only uniform patterns, this
is a fundamental proprieties of texture. The LBPriu2 gener-
ates a histogram denoted as Hriu2

2 with a length of 10 bins.
Finally, all histograms Hu2

0 , Hri
1 and Hriu2

2 are concate-
nated, to form the enhanced pyramidal eye signature F;
F = {Hu2

0 , H ri
1 , H riu2

2 }. After that, for each image patch,
we could estimate its corresponding features. In this work,
the performance of the ePLBPH has been compared with
LBPriu2 pyramid histogram (ePLBPriu2) of ((10 bins × 4)
+ (10 bins × 4) + 10 bins) dimensions, which processed in
the same way as ePLBPH∗.

4.2 Descriptor for Eye State Classification

A family of patch-based descriptor is adopted to encode fur-
ther types of micro- and macro-textures of the eye images.
The proposed descriptor is a Three-Patch LBP that growing
in resolutions, joint to a Gaussian filtering. Thus, enhances
the discriminative power of the original TPLBP, that basi-
cally encodes the similarities between pixels neighboring
patches of the image in different resolutions, and hence cap-
tures a complementary information to that of pixel-based
descriptor.

4.2.1 Feature Description using Growing Multi-Resolution
TPLBP Combined with Gaussian Filtering (Multi-TPLBP)

The Multi-TPLBP extends the TPLBP descriptor [45] by
calculating over different scales (multi-resolutions) of an
image. The TPLBP of a pixel is obtained by comparing the
values of three patches to provide a single bit value in the
code assigned to the pixel. TPLBP for each pixel is com-
puted by taking a window ω × ω of region centered on the
pixel and considering m sampling points in a perimeter of
radius r pixels.

The TPLBP takes m patches around m pixels in the
neighborhood, distributed uniformly on every side of the
center patch. The inter-patch comparison in TPLBP is made
by comparing the value of the center patch with a pair
of patches that are α patches apart along the neighbor-
hood circle. The value of a unique bit is set according to
the similarity d(., .), of the two patches with the center
patch. The function d(., .) is any similarity distance function
between two patches (L2 norm in our case). The resulting
code has m bits per pixel and denoted as TPLBPR,m,ω,α .
Please refer to [25, 45] for more details about TPLBP
operator.

The multi-resolution representation provides robustness
to the original TPLBP, by collecting intensity information
from a larger area, rather than the original single pixel. How-
ever, it might be noise sensitivity as sampling is made at
single pixel locations, without pre-processing.

The standard multi-scale mechanism counts some short-
comings and does not describe well the image textures due
to following reasons:

1. The sampling is done at a single pixel location, rather
than considering the effective region [23, 24].

2. The sparse sampling used by TPLBP in a large perime-
ter (radius) may not result in an adequate representation
of the two-dimensional image signal, which involves an
aliasing effect [23, 24].

3. The TPLBP is less stable by increasing the neighbor-
hood radius, due to minimal correlation of the sampling
points with the center pixel.
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To solve this issues, an exponentially growing multi-
resolution (Multi-TPLBP) is built by using low-pass filter-
ing TPLBP (TPLBPF). The sampling positions are joint to
a filtering process, to cover the neighborhood as well as
possible and minimizing redundant information that may be
collected by the operator. The Multi-TPLBP extracts both
micro- and macro-structures of the eye pattern, which is a
real need for efficient information retrieval and contributes
positively to the description of the eye open and closed
status.

The eye image is pre-processed with a low pass filter
(LPF), hence, the intensity information of a sample can be
captured from a large area than the original single pixel,
which is drawn with a solid circles in Fig. 4.

In LBPF, the mn circles are with equal sizes and tan-
gency [23, 24]. mn circles are ensured to be tangency, if their
radius is expressed as:

rn = rn−1

(
2

1 − sin(π/mn)
− 1

)
, n ∈ {2, . . . , N} (5)

where N is the number of scales and mn is the number of
neighborhood samples at scale n. The low-pass filtering is
useful only with radius larger than one for mn = 8, r1 is set
to 1.5, which is the shortest distance between the center and
the border of a 3 × 3 window.

The choice of the TPLBP radius is not randomly made,
but according to the rule that the effective areas touch each
other [24, 31], Fig. 4a. Therefore, the neighborhood radius
at scale n(n ≥ 2) illustrated with dashed circles in the
Fig. 4a is determined as follows:

Rn = rn + rn−1

2
(6)

The effective area is realized with LPFs designed, so,
that 95 % of their mass lies within the solid circle [24, 31],
Fig. 4a.

The spatial size (width and height) of the Gaussian filter
at scale n is calculated as follow:

wn = 2� rn − rn−1

2
� + 1 (7)

where Eq. 7 is the symmetric weighting function with
(2K + 1) taps, that gives the Gaussian kernel fG in terms
of the rules of separable and symmetric. In this case Eq. 7
approximates the Gaussian function. Therefore, Eq. 1 can
be reformulated as follows:

Gl =
K∑

m=−K

K∑

n=−K

w(m, n)Gl−1(Rxx + m,Ryy + n) (8)

where Rx = Ry = 1, which means no down-sampling used
during the multi-scale image generation. The standard devi-
ation of the Gaussian filter at scale n can be calculated from

σn = rn − rn−1

2
√−2ln(1 − ρ)

, ρ ∈ [0, 1] (9)

The effective areas in Multi-TPLBP, are realized with
LPFs, where ρ in Eq. 9 is the probability that the mass of the
distribution lies inside the solid circles of radius r . (usually,
ρ is set to 0.95)

To summarize, the procedure used for building the Multi-
TPLBP is very similar to that used by [28]. The only differ-
ence lies with the neighborhood samples with radii greater
than one are obtained via low-pass filtering. Furthermore,
neighborhood radii are chosen following the rules pre-
sented before. The final Multi-TPLBP signature is obtained
by concatenating the extracted TPLBP histograms at each

Figure 4 a The effective areas
of TPLBPF and LBPF of
filtered eye images in an 8 − bit

multi-resolution LBP operator.
The dashed circles are the radius
of the TPLBP rings. Sampling
points Pn equally spaced circles
with radius rn (5) and centered
on the dashed circles with a
radius Rn, which are related to
the effective region of each the
image pixels. b Different
Gaussian filter resolutions that
can be used in the 1st , 2nd and
3rd scales of the image [24, 31].

(b)(a)
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scale. The Multi-TPLBP maps the eye image into R
N×d

representation, where d is the length of a single TPLBP code
histogram at a scale n.

4.3 Similarity Measurement for Precise Eye localization

In this section similarity measure is introduced as a means
of boosting the performance of our ocular detector. The
problem of estimating the similarity distance between two
histograms is quite relevant in several vision-based appli-
cations. As a distance measure on the eye localization
efficiency, we use the Sχ2 distance for matching similar-
ity between a pair of histograms that supposed representing
the eyes in different states, i.e., given a detected eye patch
I ′ and a template of reference T , which are encoded using
LBP descriptor, the LBP riu2

16,2 histogram is used in our case.
The pairs are considered to match if d(LBP (I ′), T ) < τ ,
where d is a distance function and τ is threshold (set by user
through experiments).

Sχ2(H, T ) =
n∑

i=1

(H(i) − T (i))2

H(i) + T (i)
(10)

where H and T are defined as discrete sample and model
distributions, respectively. They correspond to the probabil-
ity of bin i in the sample and model distributions. n is the
number of bins in the distributions, n = 18 bins in our case.
A small corpus of left and right eye images, were used with
a size of 24 × 24 pixels for each eye state (open or closed),
which are selected randomly among different people in the
databases. These templates can separate the 2-class using
Sχ2 distance.

Our objective is to detect eyes whatever the state, and
reject the most probable non-eye according to τ value. It
should be point out, that Sχ2 values vary greatly under
hard imaging conditions (e.g, variability in terms of scale
change and uneven light). This may lead to ambiguous eye
state detection. One possible explanation is LBP features,
give a detailed account of the appearance of eye regions
while being invariant to rotation and insensitive to the light-
ing changes. However, it is difficult to make a decision on
whether eyes are open or closed with a local representa-
tion of the eye appearance by using LBP riu2

16,2 . Nevertheless,
we aim to detect the precise eye position, while rejecting
images that do not sufficiently represent the eye appearance.
Also, the right eye state detection problem, is addressed by
our eye state detector in the next step.

5 Experimental Results

This section evaluates the performance of EyeLSD frame-
work, ePLBP∗ and Multi-TPLBP descriptors to: localize

the eye center, and recognize its state (open and closed).
It should be remembered that EyeLSD does not require a
face detection step. Three datasets were used for this eval-
uation BioID (http://www.bioid.com/downloads/software/
bioid-face-database.html), CAS-PEAL [10], and ZJU [48].

To prove the EyeLSD generalization capability, a new
dataset was acquired with people from our laboratory with
a normal laptop web-camera. This allows to assess general-
ization capability of the detection and localization approach
in an unseen images/people (images of people not present
in the training datasets). Five experiment sets were realized
to validate the performance of ePLBPH∗ and Multi-TPLBP
against other descriptors. Table 1 summarizes the conducted
experiments, classifiers employed and type of application.
LTP and the Gabor descriptors were implemented accord-
ing [38], to make a better benchmark of our proposed
descriptors against the state-of-the-art.

5.1 Classifiers and Parameters Settings

Two state-of-the-art classifiers were selected, SVM [42] and
MLP [49]. They were selected because their implementa-
tions are open-source, modular, accessible and computa-
tionally efficient.

In EyeLSD, the eye location and state detection, are for-
mulated as a 2-class classification problem. In this paper,
we use linear and nonlinear kernels for SVM to find the
hyper-plane that maximizes the separation gap between
the two classes, while minimizing the number of errors
for the training set. The hyper-parameters C and σ of
the radial basis function (RBF) kernel are optimized by
using grid search technique and the cross-validation group
(CV ). The best values over the CV group were used to
build the learning model. The SVM implementation is done
with LIBSVM 3.18 [6]. For the MLPs, to find the best
neural network topology or architecture, we have trained
and tested several configurations, where the number of

Table 1 Table of EyeLSD configurations used (descriptors and clas-
sifiers) for the realized experiment sets.

Descriptor Classifier Application

LBPHu2 [26] Eye localization

Gabor [30, 52] SVM (linear) [42]

LTP [40]

eLBPHu2 [4, 5] SVM (polynomial) [42]

eLBPHriu2

ePLBPHriu2 SVM (RBF) [42]

TPLBP [45] MLP [49] Eye state detection

Multi-LBPu2 [24]

Multi-LBPriu2

http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.bioid.com/downloads/software/bioid-face-database.html
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hidden neurons was changed according to feature descriptor
size. We keep the number of maximum iterations con-
stant of 10000 and the mean squared error (MSE). Sigmoid
functions were selected as transfer functions. The MLP
classifier is fully connected and designed with a number
of input neurons, equal to the length of each descriptor,
i.e., 1440, 3776, 59, 40,90,236 and 390 input neurons for
Gabor, LTP, LBPHu2, eLBPHriu2, ePLBPHriu2, eLBPHu2

and ePLBPH∗, respectively. For the eye detector assessed on
BioID dataset (http://www.bioid.com/downloads/software/
bioid-face-database.html) and CAS-PEAL-R1 dataset [10],
we used 1-hidden layer for each of Gabor, LTP, LBPHu2,
eLBPHriu2, ePLBPHriu2, eLBPHu2 and ePLBPH∗, embed-
ded with 120, 200, 20, 15, 15, 50, and 22 hidden units,
respectively.

Regarding, the neural configurations used to build the eye
state models by using ZJU eyeblink image gallery [32], each
neural model has 1-hidden layer with 12, 25, 100, and 160
hidden units, for Multi-LBPriu2, Multi-LBPu2, TPLBP, and
Multi-TPLBP, respectively.

The output vector for positive samples is Yi = (1, 0)T

and output vector for negative samples is Yi = (0, 1)T .
The Softmax function is employed in the output layer and
the number of output units is equally related to the num-
ber of classes. Regularization terms are used to improve
the convergence velocity and avoid to settle down in an
over-fitting problem. The connecting weights ω are ran-
domly initialized in a range of (−0.1, 0.1), momentum
and learning rate are assigned as α and ξ , respectively.
During the experiments, the exposed neural architectures
are optimized and were found to be a good compromise
between MSE minimization and architecture complexity.
These neural structures provide a good generalization per-
formance for new data and are valid for the various feature
sets.

5.2 Dataset Descriptions

To analyze the eye localization accuracy of our proposed
approach, two datasets were used:

– BioID Face database (http://www.bioid.com/download/
software/bioid-face-database.html), the BioID dataset
contains images in real scenarios with a various illu-
mination, background, and face sizes with and without
accessories. The dataset contains 1521 images (384 ×
286 pixels, gray level).

– CAS-PEAL-R1 database [10], contains 30900 images
(360 × 480 pixels, gray level). This dataset has images
acquired in realistic conditions. In our experiments,
1521 face images are selected, 464 subjects with open
eyes: frontal slight rotated view; normal and expres-
sions. 330 subjects with accessories, 101 subjects in
different background, 302 subjects with eye closed and
324 subjects in different distances from the camera.

We have built datasets composed of images from BioID
and CAS-PEAL-R1 datasets, each of which has 3042 eye
images and 3419 non-eye images that are manually cropped.
4523 eye and not-eye images are rearranged into a train-
ing subset, and the remainder 1938 images with positive
and negative samples are confounded and equally divided
between test and validation subsets. These images are geo-
metrically normalized into a size of 24 × 24 pixels.

To analyze the eye state detection accuracy of our pro-
posed approaches, a dataset was selected:

– ZJU Eyeblink dataset [32], contains 80 video clips in
the blinking video record of 20 individuals, four clips
per individual, one clip in frontal view without glasses,
one clip with frontal view and wearing myopia glasses,
one clip in frontal view and black frame glasses, and

Figure 5 The pre-processed
ZJU eye open and closed image
gallery: patches in the top row
are images of closed eyes, and
patches in the bottom row are
images of open eyes.

http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.bioid.com/downloads/software/bioid-face-database.html
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the last clip with an upward view without glasses.
The used dataset in our experiments is rearranged by
[38], which expands the variety of the image samples,
by adding various transformations, such as rotation,
blurring, contrast, and Gaussian white noise.

The ZJU Eyeblink dataset [38], contains in the training
subset 1574 closed eyes and 5770 open eyes, and in the test-
ing subset 410 closed eyes and 1230 open eyes. Illustration
of eye open and closed images in this dataset can be seen in
Fig. 5.

5.2.1 Models Assessment Protocol

The performance validation of the detector and the final
results are presented, including calculation of True Positive
(TP), False Positive (FP), True Negative (TN) and False

Negative (FN). The final accuracy (Acc) for each descriptor
is reported in Tables 2, 3 and 5. The measures used to assess
the quality of the learning algorithms are the Receiver Oper-
ating characteristic (ROC) curves and the Area Under Curve
(AUC), measured to show the probability of correct discrim-
ination between different classes. Figure 6 shows the AUC
of each approach’s ROC graph tested on used databases.
AUC is calculated using the 10-fold cross validation tech-
nique. Precision (Prec) and recall (Rec) are computed.
Thanks to these two metrics, we compute the F-Score inter-
preted as a harmonic mean of the precision and recall for
further comparison of the results. If the trained classifier is
predicting a positive class, we mostly have a high Rec and
a low Prec, otherwise, if the trained model predicts a nega-
tive class, a high Prec against a very low Rec. Thus, model
achieves the highest Prec and Rec simultaneously is often
desirable.

Table 2 Eye detection:
statistical results on BioID
database.

Method TP (%) FP (%) TN (%) FN (%) Prec Rec F1Score Acc (%) AUC (%)

SVM(Linear)

LTP 45.25 3.04 49.84 1.86 0,93 0.96 0.95 95.10 99.00

LBPHu2 45.20 11.30 41.60 1.90 0.80 0.96 0.87 86.79 94.00

Gabor 44.37 2.94 49.95 2.73 0.94 0.94 0.94 94.32 98.26

ePLBPH∗ 45.49 2.62 50.28 1.59 0.95 0.97 0.95 95.78 99.09

eLBPHu2 45.73 3.79 49.10 1.36 0.92 0.97 0.95 94.84 98.91

eLBPHriu2 39.02 9.61 43.29 8.06 0.80 0.83 0.81 82.32 90.53

ePLBPHriu2 41.42 6.14 46.76 5.68 0.87 0.88 0.87 88.18 94.95

SVM(Poly)

Gabor 43.91 4.54 48.35 3.20 0.91 0.93 0.92 92.26 97.00

ePLBPH∗ 27.39 1.45 51.40 19.74 0.95 0.58 0.72 78.80 95.81

eLBPHu2 7.17 0.42 52.53 39.86 0.94 0.15 0.26 59.71 94.91

eLBPHriu2 30.48 11.25 41.65 16.55 0.73 0.65 0.68 72.14 81.42

ePLBPHriu2 39.35 10.18 42.73 7.74 0.79 0.83 0.81 82.08 90.03

SVM(RBF)

LTP 45.30 2.89 50.00 1.80 0.94 0.96 0.95 95.30 99.00

LBPHu2 43.75 3.82 49.07 3.35 0.92 0.92 0.92 92.83 98.00

Gabor 42.10 0.31 52.58 5.00 0.99 0.89 0.94 94.69 99.00

ePLBPH∗ 45.59 1.78 51.12 1.50 0.96 0.97 0.96 96.72 99.58

eLBPHu2 46.15 1.59 51.31 0.93 0.96 0.98 0.97 97.47 99.81

eLBPHriu2 44.69 8.25 44.69 7.97 0.84 0.85 0.85 83.77 91.84

ePLBPHriu2 43.43 4.45 48.5 3.66 0.90 0.92 0.91 91.93 97.76

MLP

LTP 45.61 1.18 51.75 1.44 0.97 0.97 0.97 97.37 99.00

LBPHu2 44.27 3.50 49.43 2.78 0.92 0.94 0.93 93.70 98.00

Gabor 46.18 1.23 51.70 0.98 0.97 0.98 0.97 97.78 99.00

ePLBPH∗ 46.38 1.12 51.73 0.75 0.97 0.98 0.98 98.12 99.06

eLBPHu2 45,87 1.17 51.78 1.17 0.97 0.97 0.97 97.65 99.31

eLBPHriu2 41.42 7.08 45.87 5.63 0.85 0.88 0.86 87.29 93.33

ePLBPHriu2 n 4.27 48.64 1.92 0.91 0.96 0.93 93.81 97.64
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Table 3 Eye detection: statistical results on CAS-PEAL database.

Method TP (%) FP (%) TN (%) FN (%) Prec Rec F1Score Acc (%) AUC (%)

SVM(Linear)

LTP 44.53 3.61 42.27 2.57 0.92 0.94 0.93 96.49 98.49

LBPHu2 42.67 21.31 31.58 4.43 0.67 0.91 0.77 74.25 79.03

Gabor 45.51 2.47 50.41 1.60 0.95 0.96 0.96 95.92 99.20

ePLBPH∗ 45.26 2.20 50.70 1.82 0.95 0.96 0.96 95.97 99.19

eLBPHu2 44.55 5.15 47.74 2.53 0.90 0.95 0.92 92.31 99.51

eLBPHriu2 34.00 15.71 37.24 13.04 0.68 0.72 0.70 71.24 78.60

ePLBPHriu2 43.62 6.29 46.62 3.47 0.87 0.93 0.90 90.24 96.94

SVM(Poly)

Gabor 44.42 3.15 49.74 2.68 0.93 0.94 0.94 94.17 98.76

ePLBPH∗ 17.68 1.82 51.07 29.31 0.91 0.38 0.53 68.76 91.44

eLBPHu2 0.93 0.79 52.11 46.15 0.54 0.019 0.04 53.05 83.20

eLBPHriu2 21.95 13.27 39.63 25.14 0.62 0.47 0.53 61.58 71.27

ePLBPHriu2 42.26 12.43 40.48 4.83 0.77 0.9 0.83 82.74 90.96

SVM(RBF)

LTP 45.66 2.11 50.77 1.44 0.95 0.96 0.96 96.44 99.51

LBPHu2 42.05 14.18 38.69 5.05 0.74 0.89 0.81 80.75 88.92

Gabor 42.20 0.41 52.47 4.90 0.99 0.89 0.94 94.68 99.56

ePLBPH∗ 46.06 1.17 51.73 1.03 0.98 0.98 0.98 97.80 99.70

eLBPHu2 45.82 2.48 50.42 1,26 0,95 0,97 0,96 96.25 99.39

eLBPHriu2 39.63 9.95 42.96 7.45 0.80 0.84 0.82 82.60 91.17

ePLBPHriu2 44.28 2.86 50.09 2.76 0.94 0.94 0.94 94.37 98.53

MLP

LTP 45.04 2.22 50.72 2.01 0.95 0.96 0.95 96.65 97.65

LBPHu2 42.31 5.46 47.47 4.74 0.88 0.89 0.89 89.78 95.55

Gabor 46.38 0.82 52.06 0.72 0.98 0.98 0.98 98.45 99.37

ePLBPH∗ 45.77 1.31 51.64 1.26 0.97 0.97 0.97 97.42 97.97

eLBPHu2 44.93 2.48 50.46 2.11 0.95 0.95 0.95 95.40 99.39

eLBPHriu2 38.98 8.2 44.74 8.06 0.83 0.83 0.83 83.72 90.65

ePLBPHriu2 42.26 2.62 50.28 1.83 0.95 0.96 0.95 95.54 98.11

5.3 Experimental Results and Discussions

This section presents a performance comparison between
different eye descriptors, Tables 2–3. The objective is to
show that the enhanced pyramid LBP with high number
of bins improves the discriminative power for eye repre-
sentation. The first experiment 5.3.1 compares performance
between eLBPHriu2 and ePLBPHriu2 to classify the eye
presence. The second experiment 5.3.2 compares the per-
formance between eLBPHu2 and the ePLBPH∗. In the
third experiment 5.3.3 the categorization capability of the
ePLBPHriu2 is compared against the proposed ePLBPH∗.
The last experiment 5.3.4 analyzes the benefits of ePLBPH∗
by comparing its performance against those realized by
LBPHu2, LTP, and Gabor feature descriptors.

5.3.1 Experiment # 1: Comparison Between eLBPHriu2

and ePLBPHriu2

This experiment intends to highlight performance gained
if more than a single resolution of descriptors are used in
the pyramid image generation. Table 2 shows the descrip-
tors performance on BioID dataset. The best classifica-
tion accuracies generated by eLBPHriu2 are 83.78 % and
87.29 % for SVM(RBF) and MLP classifiers, respectively.
By adapting an extension of LBPriu2 in a pyramid transform
domain(ePLBPHriu2), the approach realized improvements
of 8.16 % and 6.52 % with SVM(RBF) and MLP, respec-
tively. Table 3 shows the performance of ePLBPHriu2 and
eLBPHriu2 assessed on CAS-PEAL-R1 image set. The
best classification accuracy of eLBPHriu2 are 82.6 % and
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Figure 6 ROC curves of various features using the SVM classifier; a BioID database, b CAS-PEAL database. ROC curves of various features
using the MLP classifier; c BioID and CAS-PEAL databases.

83.72 % with SVM solver(RBF) and MLP, respectively.
The ePLBPHriu2 realized improvements of 11.77 % and
11.82 % with SVM(RBF) and MLP classifiers, respectively.

From the Tables 2 and 3, we conclude that the per-
formance gain of ePLBPH is better than those obtained
with eLBPH, by considering descriptors uniquely based on
LBPHriu2. The number of ePLBPHriu2 pyramid levels is set
to 3. The histogram dimension of ePLBPHriu2 is (10 bins ×
4) + (10 bins × 4) + 10 bins = 90 bins, that is more than 2
times of the eLBPHriu2 of size 40 bins (10 bins × 4). The
ePLBPH accounts the eye in 3 different resolutions, which
increase the information content extracted and the classifi-
cation rate. Although, the eLBPH describes micro- (edges,
corners, spots, etc) and macro-textures (global shape) of the
eye pattern, but only at a single resolution.

5.3.2 Experiment # 2: This Experiment Compares
Discriminative Performance of eLBPHu2

and ePLBPH∗(Proposed)

Table 2 shows the performance comparison of eLBPHu2 and
ePLBPH∗ on BioID dataset. The ePLBPH∗ is built accord-
ing to the Eq. 4, ePLBPH∗ = {eLBPH∗, eLBPH∗, LBP∗},
∗ ∈ {u2, ri, riu2}. The average performance assessment
of eLBPHu2 features, yields a best scores of 97.46 % with
SVM(RBF) and 97.65 % with MLP classifiers. The perfor-
mance gained by adopting several LBP variants in spatial
pyramid domain (ePLBPH∗) are 0.469 % with MLP clas-
sifier. Table 3 shows the statistical assessment of eLBPHu2

and ePLBPH∗ on CAS-PEAL-R1 dataset. The eLBPHu2

achieves a best scores of 96.24 % and 95.40 % with
the SVM(RBF)and MLP, respectively. Among these two
configurations, a performance improvement of ePLBPH∗
over eLBPHu2 are 1.54 % and 2.01 %, with SVM(RBF)

and MLP, respectively. As shown in Tables 2 and 3, the
ePLBPH∗ performance increases comparing to those of
eLBPHu2. So, there shows that the major discriminant prop-
erties of ePLBPH∗ are got from the image into the pyramid
basis. This level of the pyramid is pre-processed in the
same way as eLBPHu2 descriptor. It is noteworthy that
applying region division method to form eLBPH is some-
what arbitrary. The division approach spatially enhances the
LBP histogram, but also causes both aliasing effect due
to the direct sampling and loss of resolution information.
The ePLBPH solves these drawbacks, by applying the LPF
on the images before pre-processing and LBP histogram
calculation, in the 0th and the 1st pyramid image levels.
Results show that the proposed method (ePLBPH) achieves
a good generalization performance on unseen image set.
Hence, the LBP features of a 3-level image pyramid are
efficient.

5.3.3 Experiment # 3: Comparison of the Pyramid
Descriptor Performance, Between ePLBPHriu2

and ePLBPH∗

This experience intends to verify whether performance is
further improved, in case of more than a unique LBP
mapping scheme are used in ePLBPH. Tables 2 and 3
show the performance comparison of ePLBPHriu2 and
ePLBPH∗, both are realized with 3-level of image pyra-
mid. Table 2 shows improvement realized by ePLBPH∗
over those of ePLBPHriu2 on BioID dataset, which are
about 4.78 % and 4.31 % by using SVM(RBF) and
MLP, respectively. In Table 3 the classification performance
of ePLBPHriu2 assessed on CAS-PEAL-R1 dataset, are
enhanced by ePLBPH∗ about 1.87 % and 1.875 % with
SVM(RBF)and MLP, respectively.
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The ePLBPH∗ feature vector length is (59 bins × 4) +
(36 bins×4)+10 bins = 390 bins, that is more than 4 times
of the ePLBPriu2 histogram of (10 bins × 4) + (10 bins ×
4) + 10 bins = 90 bins. The multi-mapping pyramid image
ePLBPH∗, achieves a higher enhancement and outperforms
the three descriptors of comparison; eLBPHriu2, eLBPHu2

and ePLBPHriu2. This improvement of the pyramid-like
image decomposition with three LBP variants, is statis-
tically significant and observed through the present and
the precedent experiment. The ePLBPH∗ feature sets com-
pensate the information losses during the spatial down-
sampling. Also, down-sampling process does not affect the
discriminative performance of the descriptor very much.
Even so, the enhanced multiple mapping scheme improves
significantly the discriminative power of the descriptor, by
comparing to that of ePLBPHriu2. This is shown through
the experience #1 5.3.1.

5.3.4 Experiment # 4: Comparison Performance ePLBPH∗
Among Gabor Wavelets, LTP and LBPH(LBPHu2) feature
sets

We extend the performance evaluation of ePLBPH∗, by
introducing a series of comparison with other feature sets,
that describe the local shape, the global shape, and the local
texture information under difficult conditions. Current fea-
ture sets offer quite good performance under illumination
variations and many other variations of the real world.

Tables 2 and 3 give the results of LBPH, LTP and
Gabor feature sets on BioID and CAS-PEAL-R1 datasets.
Please note that the SVM (polynomial) tends to overfit by
using LBPH and LTP. For this reason we omitted these
results.

In BioID dataset, we can observe that LTP realized a best
accuracies of 95.3 % and 97.37 % with SVM(RBF) and
MLP with highest AUC value, while Gabor has a slightly
worst accuracy of 94.69 % and a competitive performance
of 97.78 % with the same settings (dataset and classi-
fiers). The same observations are valid with experiments
conducted on CAS-PEAL-R1 dataset.

In this study, we reproduced the LTP code implementa-
tion realized by [38]. The threshold value of the LTP code
is set to 5 computed from eye and non-eye images of size
24 × 24 pixels, which are divided into 3 × 6 sub-region
and each sub-region is represented in an LTP histogram
of 59 bins. The resulting LTP feature vector has a 3776-
dimensional (32 × 59 × 2). The LTP feature set improves
generalization of LBP features, and has a good discrimina-
tive capability, while being tolerant to lighting changes and
less sensitive to noise in uniform regions.

Gabor filter bank realized competitive results with those
of the ePLBPH∗, by using polynomial kernel of the SVMs,
Gabor outperforms ePLBPH∗ in terms of classification

accuracy. MLP performs well with Gabor parameterization.
We observe that in CAS-PEAL-R1 dataset, MLP classifier
performs better than SVM(RBF), where 98.45 % of cor-
rect classification was obtained for Gabor parameterization,
whereas for BioID, Gabor features achieve 96.72 % and
97.78 % with the SVM(RBF) and MLP network classifier,
respectively.

This classification enhancement of Gabor features, can
be made clear by that CAS-PEAL-R1 dataset contains varia-
tion in illumination and pose, but not blurred images, which
enhances significantly classification results, since Gabor is
a powerful feature descriptor especially for non-rigid tex-
ture such face [3] and eyes, whereas BioID databset presents
addition variations than previously mentioned, images are
blurred. This parameter decreases the efficiency of Gabor
method in BioID dataset, but not of our method. The
proposed ePLBPH∗ handles well resolution variations and
blurred images. This is proven by the best accuracy achieved
in BioID dataset of 98.12 % with MPL network.

Gabor features is implemented with 40 filters [3, 38] (8
orientations and 5 scales) applied on 24 × 24 pixels eye and
non-eye patches, then down-sampling the resulting vector
by 16. So, instead of (5 × 8 × 24 × 24) that yields 23040-
dimensional, it is reduced to a 1440-dimensional vector.

The LBPHu2 obtains the lowest accuracies of 93.7 % and
89.78 % with MLP classifier and AUC values of 98 and
95.55 on BioID and CAS-PEAL-R1 datasets. LBPH is not
quite appropriate for ocular region description, LBP features
are more effective when the eye patterns are pre-processed
upstream (sub-region division method). LBPH is sensitive
to noise and can slightly tolerate texture rotation but not
invariant to that. So, a holistic representation of LBPs can
not preserve image local structures in presence of noise,
blur, and extreme rotation because the small pixel differ-
ences of the eye patterns, make the descriptor vulnerable to
noise. Even by using LBP uniform to describe the eyes, we
can limit the effect of noise, because most of image local
structures can be represented by uniform codes and noise
patterns fall into the non-uniform codes. LBPH can only
capture small appearance details of the eye patterns.

From precedent experiences, it can be noticed that
Gabor, LTP and eLBPHu2 feature sets achieved a bet-
ter performance than those obtained with eLBPHriu2 and
ePLBPHriu2. The eLBPHu2 descriptor is compactly repre-
sented in a histogram signature of 236 bins. The eLBPH
feature vector requires a sub-region division method as pre-
processing stage. It can be observed that effectiveness of
eLBPH is not limited on the adopted image decomposition
strategy, but related also to the LBP variant used to construct
descriptor.

We observe that the LBPH is unfavorable for repre-
senting the eye, due to large variations of eye pattern. By
contrast, if the whole eye image is divided into sub-regions
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and the LBPH is individually calculated in each region, as
shown in Fig. 2, then variations within-region are less than
ones of the whole eye image, in other terms, textures within-
region relatively tend to uniform, and thus each regional
histogram becomes less fluctuant; with the divided regions,
each regional histogram progressively becomes more sta-
ble. Hence, the so-concatenated histogram is less-fluctuant
and more reliable for eye representation. The eLBPH is
less variational, and more reliable to extract the ocular
information.

1. The Gabor features extract the eye features in different
orientations and different scales, but they give a coarse
account of the global shape information (global tex-
ture representation), and not local texture information.
Moreover, Gabor feature vector is slightly long even
after down-sampling.

2. The LTP realizes a good results in current datasets.
This is due to that LTP features give a detailed account

of the appearance of ocular regions while resisting to
the lighting variations and overcome the image noise.
However, unlike LBP an effective pre-processing chain
is used to greatly reduce the influence of different vari-
ations (illumination). We observe also that the LTP
histogram dimensionality is very large, and through
our experiments LTP is far to be efficient without
pre-processing.

From conducted experiences, either ePLBPH∗ or
eLBPHu2 achieved a good performance for eye localization.
However, eLBPHu2 proves to be insufficient for describ-
ing the eye textures in different resolutions, since textures
in low resolution are coarsely represented by the LBPs
because, they contain fewer texture details of the eye pat-
tern while textures in high resolution are more detailed.
The eye textures are comparatively easy to be discrimi-
nated at specific resolution than others. So, combining the
texture information of various resolutions, contributes for
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Figure 7 Some eye localization in challenging cases with hard variations in pose, facial expression.
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Figure 8 Example of some
successful eye localization of
our method (BioID database):
variations in pose, facial
expression, subject is wearing
glasses.
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their discrimination and enhances the effectiveness of the
used features descriptor. The proposed ePLBPH∗ fulfills
this requirement and shows excellent results for detecting
and locating eyes under hard nature settings. Figures 6a
and b give the ROC curves of considered features on BioID
and CAS-PEAL-R1 datasets for eye localization. In most
cases it can be seen that the ePLBPH∗ features realized one
of the best performance in terms of AUC values with SVM
and MLP models, with the previous discussed results. We
can observe that the ePLBPH∗ is beneficial for detecting
and locating the eyes.

The used datasets contain facial images with variation
in expression, head pose, illumination and views (resolu-
tion changes). The visual inspection is used as an evaluation
measure for demonstrating the robustness of our methods
against these variations.

The results listed in Tables 2 and 3 demonstrate that our
method gives excellent detection accuracy on the BioID and
the CAS-PEAL datasets. More stringent evaluation tests are

shown by examples of successful location of eyes on cur-
rent datasets Figs. 7, 8, and 9. The obtained eye location is
the green cross and the ground-truth of the real eye loca-
tions is the red circle, within the pupil radius (provided from
the BioID and manually annotated in CAS-PEAL datasets).
The different bounding-box colors correspond to various
matching objects, detection results cover the right location
of the eye and false alarms are the missed positive; the blue
rectangle is an eye open, the red rectangle means an eye
closed, these results from the Sχ2 measure, which is used
to verify the presence of eyes and not their state. The yel-
low rectangles are the classifier false positive, rejected by
the Sχ2 measure (considered an insignificant information by
the algorithm) (Figs. 10 and 11).

5.3.5 Comparison of EyeLSD with Recent Works

By the lack of common benchmark datasets and accepted
assessment protocol, making a fair comparison between
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Figure 9 Eye localization in CAS-PEAL database: the green cross corresponds to the output of our system and the red circularly form is the
ground truth of the real eye coordinates, this needs to be marked manually in CAS-PEAL-R1 database.
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Figure 10 Snapshots illustrate some successful detection on pictures captured within the laboratory.

EyeLSD approach and existing ones in the literature, is not
a simple issue.

In spite of this, Table 4 shows most recent eye local-
ization methods we are aware, beside of the proposed one.
Withal, corresponding experimental settings are presented
such as, image dataset, beside of its characteristics (number
of test images with their corresponding size) and the final
performance realized by each algorithm.

The overall performance of the proposed eye location
estimation scheme is similar, and in some cases better than
algorithms of comparison.

The common points between our eye detector and the
listed methods (Table 4) is that the presented approaches
depend on the appearance and image patch based methods,
either by using supervised (SVM and MLP) or unsupervised
learning methods (Boltzmann machine model and Indepen-
dent Component Analysis (ICA)). As well as, these methods
are using the same benchmark image gallery, that challenge
the real-world conditions.

In [15], authors investigate the problem of eye localiza-
tion for subjects wearing glasses under different constraints.
This method is based on Variance Filter (VF) that measures
the gray intensity change of the eyes and ICA applies to
recognize the right eye location. The eye center is searched
within detected ocular regions, by calculating the entropy
of intensity change. Hassaballah et al. [15] method realized
a detection rate of 97.1 % with 600 test images of BioID
dataset. Nonetheless, the detection fails if the light reflec-
tion on glasses is too strong and occlusions occult the facial
region.

In contrast, the proposed framework surpasses afore-
mentioned methods, realized excellent results and capable

of discriminating the ocular region under real challenging
conditions.

In [44], they are proposing an eye detection framework
able to estimate the eye region location with precision. The
input image is pre-processed to highlight the eye structure,
that is used after the localization step. So, the eye pair is
extracted by using binary template matching and SVM clas-
sifier. The next step consists to accurately detect the eyes
by using VF. This algorithm is trained with 800 images col-
lected from BioID database, and yielded a detection rate of
95.6 % . However, the detector fails under hard illumina-
tion conditions, strong light reflection and closed eyes. This
occurs mostly because the template matching step fails to
find the right eye pair location. In [47], authors proposed a
deep-learning algorithm for detecting the eyes under uncon-
trolled conditions. The robustness of the detection scheme
is tested on different datasets and in different conditions
(facial expression, low-resolution, pose, and illumination).
The potential of [47] approach to handle the resolution
variations, is assessed on BioID dataset. The eye images
are evaluated with their original size and with images
down-sampled to 50 %. So, two resolutions of eye image
patches are generated and used to show ability of the deep
features trained model, to recognize the right eye location
despite low-resolution images.

Boltzmann-deep features learner is tested on 956 images
of BioID dataset, and achieves a competitive results to
those of the LBP features with Viola-Jones eye detector.
The main advantage of Viola-Jones approach is its com-
putational effectiveness. However, the performance of that
method depends on the amount and diversity of the training
data. So, it may not give a right eye location. Meanwhile,
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Figure 11 Snapshots from captured pictures illustrating some typical failures of our method: individuals with different head rotation angles,
facial expressions and with accessories (myopia glasses, beard, expressions).
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Table 4 Comparison of EyeLSD with existing methods.

Method Database challenge patch size (pixels) # Test images Acc. (%)

EyeLSD with
BioID Variation in distance (multi-resolution)

ePLBPH∗(Proposed)+ MLP [4]

Illumination condition, occlusion, 24 × 24 969 98.12

gender, aging, expression, hard rotation

EyeLSD with ePLBPH∗+ SVM(RBF) BioID Variation in distance (multi-resolution)

Illumination condition, occlusion, 36 × 36 969 98.86

gender, aging, expression, hard rotation

VF + ICA [15] BioID Variations in views,

lighting conditions, 60 × 30 600 97.1

occlusions

aging, expressions

Learning the Boltzmann [47] BioID Expression, illumination,

Machine model pose, low resolution 36 × 36 956 98.12

LBP [47], Viola-Jones [43] 956 98.64

Learning the Boltzmann [47] BioID Expression, illumination,

Machine model pose, low resolution 18 × 18 956 98.12

LBP [47], Viola-Jones [43] 956 98.01

VF + SVM [44] BioID Dynamic background, moderate rotation,

glasses wearing and 25 × 8 95.6

face occlusions

SIFT features + BioID Slight variation in pose

SRC [33] illumination changes 60 × 60 1000 91.5

various background

face sizes

image rotations

expressions

building a classifier that learns the variability of eyes might
meet with problems, and even if a large set of training image
is used.

By using a descriptor window enlarged to 36 × 36 pix-
els, we are able to surpass performance realized by LBP
[47] and Viola-Jones [43] methods. Intuitively, a larger eye
patch of 36 × 36 pixels has more discriminative informa-
tion, and thus, reduces the false positive rate but it will be
at the cost of losing generalization ability for locating eyes,
and the extracted features will be less likely to be good
representative of eyes [37].

Furthermore, our method shows robustness against the
rotation of face area and extreme pose, while that most
errors occurred in the Viola Jones eye detector, are related
to the facial textures rotations and head pose variations.

From Table 4, the results of the proposed approach are
comparable with those obtained by Boltzmann machine
model and LBP features with Viola-Jones methods for eye
localization.

In [33] authors proposed a learning method for eye
localization in arbitrary rotation settings. They examine the

feasibility of localizing eyes without prior face detecting.
A pyramid-like eye locating strategy is used for coding
local-features, ensured with SIFT descriptor and the sparse
representation classifier (SRC), classifies the image patches
through input image. Then, a searching map called (Heat-
Map) is generated from the adjusted classifier’s outputs, and
the potential positions of eyes are highlighted. (The Heat-
Map highlights eye centers by superposing the adjusted
classifier’s output values through Pyramid-like method). To
locate the eye center, while reducing noise effect and influ-
ence of complex backgrounds, the skin color algorithm is
applied in HSV color space, that improves skin detecting
and isolates the facial region from the background. The false
positives detected around the real center of eye positions are
rejected by using similarity function and the center of eyes
are retained if a maximal similarity score is reached. Their
method are assessed on several datasets. For a fair compar-
ison with our approach, we consider only tests performed
on BioID database, which achieve an accuracy of 91.5 %
on 1000 image patches of size 60 × 60. We observe that the
accuracy of the proposed method is better than the method
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of [33], tested on 969 images of same dataset. Among
all the the listed methods, our ePLBPH∗ achieves the
highest classification score on BioID dataset. This enhance-
ment is attributed to the combination of multiple LBP-
mapping schemes and the application of spatial enhanced
pyramid-like image decomposition strategy. The ePLBPH∗
tolerates several changes, illumination, image blur, perspec-
tive and rotation. So, the proposed eye detector is robust
against the multiple variations, that the presented works
shown their distinctiveness performance limitations, Figs. 7,
8, and 9.

5.4 Eye State Detection Experiments

In this section, we first introduce a real-world dataset for
algorithm verification. The performance of different feature
descriptors on precedent datasets described in Section 5.2,
under the proposed framework (eye state detection) pre-
sented in Section 3. Then, a detailed investigation about the
performance realized by our method is conducted. Finally,
to verify the effectiveness of the proposed multi-scale exten-
sion of TPLBP, we describe and compare most recent meth-
ods with the newly proposed one. In this part, we consider
two types of feature descriptors (patch-based and pixel-
based LBP features), which can capture local and global
texture information even under challenging conditions. In
particular, we use the proposed extension of TPLBP his-
tograms (Multi-TPLBP) described in Section 4.2.1 and
multi-scale extension of two pixel-based LBP feature sets.
The obtained results are given in Table 5.

In this experiment uniform pixel-based LBPs are
extended to the multi-resolution representation and com-
pared against performance realized by the patch-based LBP

descriptors. In the proposed TPLBP extended to the hier-
archical multi-scale sampling (Multi-TPLBP), the radius of
the TPLBP rings is enlarged twice as well as joint to the
LPF. During the multi-resolution image generation (Rx =
Ry = 1), that means no down-sampling is made. Several
constraints should be respected during descriptor construc-
tion as described in Section 4.2.1. The 3-scale patch- and
pixel-based descriptors are built with eight sampling points,
and a radius values of R ∈ {1.0, 2.4, 5.4}.

Table 5 gives a comprehensive classification perfor-
mance comparison of precedent feature sets in terms of
detection accuracy (Acc), TP(resp. TN), FP(resp. FN) and
AUC. In this experience, TP (resp. TN) is the percentage
of instances of eye open class (resp. eye closed class) well
classified, while FP(resp. FN) is the percentage of instances
of eye open class (resp. eye closed class) miss-classified.
Several observations are made from this table (Table 6).

1. we can see that the Multi-LBPu2 realized an enhance-
ment over the performance of Multi-LBPriu2, which is
about 10.07 %, 10.8 % and 9.82 % with SMV(linear),
SVM(RBF) and MLP, respectively. At the first sight,
a reasonable improvement of Multi-LBPu2 is realized,
compared to the Multi-scale LBPriu2.

One difference can, however, arise between these
two pixel-based feature sets, that is attributed to the
feature vector length. Also, despite being invariant to
rotation (the operator is tolerant to the texture rotation),
Multi-LBPriu2 captures the uniform texture information
even if rotation happens, and supports the major part
of the texture information. However, the descriptor is
too short and maybe the eye texture can be not reliably
represented.

Table 5 Eye state: statistical
results on ZJU database. Method TP (%) FP (%) TN (%) FN (%) Prec Rec F1Score Acc (%) AUC (%)

SVM(Linear)

TPLBP 96.50 51.70 48.29 3.49 0.85 0.96 0.90 84.45 85.92

Multi-TPLBP 96.09 8.29 91.70 3.90 0.97 0.96 0.97 95.00 97.85

Multi-LBPu2 96.09 18.29 81.70 3.90 0.94 0.96 0.95 92.50 97.45

Multi-LBPriu2 96.74 60.48 39.51 3.25 0.83 0.97 0.89 82.43 86.94

SVM(RBF)

TPLBP 96.01 49.51 50.48 3.98 0.85 0.96 0.90 84.63 86.82

Multi-TPLBP 96.34 8.29 91.70 3.65 0.97 0.96 0.97 95.18 97.83

Multi-LBPu2 95.04 10.97 89.02 4.95 0.96 0.95 0.96 93.54 97.73

Multi-LBPriu2 95.44 55.36 44.63 4.55 0.84 0.95 0.89 82.74 87.00

MLP

TPLBP 96.01 47.80 52.19 3.98 0.86 0.96 0.91 85.06 87.63

Multi-TPLBP 96.17 8.53 91.46 3.82 0.97 0.96 0.97 95.00 98.12

Multi-LBPu2 94.30 11.95 88.04 5.69 0.96 0.94 0.95 92.74 97.40

Multi-LBPriu2 94.47 51.70 48.29 5.52 0.85 0.94 0.89 82.92 86.59
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Table 6 Examples of some typical success our eye open/closed approach, tested on different conditions (Pose, lighting, resolution, facial
expression, occlusion).

Challenge Detection results

Eye closed CAS-PEAL

Eye open BioID

Eye open CAS-PEAL

Pose

Illumination

Resolution accessory

The 3-scale LBPriu2 (Multi-LBPriu2) generates a
histogram of 10 bins × 3 = 30 bins, which is less
than six times the length of the Multi-LBPu2 histogram

of 177 bins. In addition, uniform LBP can represent
the most local structures of the eye image which are
represented by uniform codes, while the noise patterns
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Figure 12 ROC curves of various features using the SVM and MLP
classifiers on ZJU Eyeblink dataset.

most likely fall into the non-uniform codes. The exten-
sion of this descriptor in the multi-resolution domain
allows the descriptor to capture additional information
than the basic representation. In that way Multi-LBPu2

extracts the local information about the eye state, the
global shape of the eyes, and the deformation of their
textures. However, some image patterns such as lines
are not captured in uniform codes [32]. These line pat-
terns may appear less frequently than uniform codes,
but they represent a set of important local primitives for
pattern recognition.

2. The Multi-TPLBP generates a performances gained
over those of TPLBP of 10.55 %, 10.55 % and 9.94 %
with SMV(linear), SVM(RBF) and MLP, respectively.
The poor imaging conditions, such as low-resolution,
blur, Gaussian noise, and uneven light are leading to
ambiguous appearance of the eyes and specifically dif-
ficult to differentiate an eye state from another, as

shown in Fig. 5. The obtained performance proves that
TPLBP cannot handle well all these variations. So,
TPLBP realized a low accuracy of 85.06 %. TPLBP
describes well the eyes in open state with 96.01 %
of open eyes correctly classified, but only 52.19 % of
closed eyes are classified well. One possible explana-
tion, when the eyes are screwed up, it is difficult to
TPLBP to describe the appearance of closed eyes with
a coarse account of the global shape information.

3. The Multi-LBPu2 outperforms the TPLBP descriptor
with classification score 93.54 %. LBPu2 shows an
improved performance for the eye state description
and the 3-resolution fusion approach compared to the
TPLBP. One reasoning can be, the pixel-based com-
putation of LBP captures texture variations minimally
when compared with the TPLBP descriptor.

4. Over the precedent comparison, we can observe that
the proposed Multi-TPLBP improves the performance
upon its original version. In ZJU dataset, the Multi-
TPLBP clearly outperforms precedent descriptors, with
a best accuracy of 95.18 % with SVM(RBF) and an
AUC value of 97.83 %. Figure 12 gives the ROC curves
of those features. It can be seen that the Multi-TPLBP
feature realized best performance in terms of AUC
values with SVM and MLP models, followed by Multi-
LBPu2, which further verifies that our patch-based LBP
extensions is beneficial to eye state detection task.

Figure 13, illustrates different failure of the proposed
approach. It can be noticed that Multi-TPLBP fails on
extracting the eye features under hard angles of head rota-
tion, in case of the eye is not detected at all, or the per-
spective changes even when the eye is well localized. One
possible explanation, the Euclidean distance score used to
build TPLBP [45], fails under the precedent circumstances
(variations in depth scales), and hence, detecting the cor-
rect eye state may also fail. Figures 6 and 13 show the eye
state estimation results and false alarms generated by the
algorithm. It can be noticed that the change in facial expres-
sion results in degradation of the recognition performance of
patch-based LBP descriptor. In the real-world applications

x:104y:248x:104y:248
x:159y:245x:159y:245

x:149y:289x:149y:289x:216y:290x:216y:290
x:140y:283x:140y:283 x:219y:281x:219y:281

Figure 13 Snapshots illustrating some typical failures of our eye state detection method: it includes individuals with different head rotation
angles, illumination variation.
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such as the detection of the driver drowsiness and the weak
attention paid to the road, facial images are not always cap-
tured in frontal view. This introduces a pose variation with
the ocular region variations and occlusions depending of the
head-pose.

We can observe, that by lowering eyebrows while exhibit-
ing expression changes the ocular region. In Fig. 6, it is
noticed that there is no performance degradation of the eye
state estimation for smiling scenario tests. In Fig. 6 and 13 it
can be seen that large variations in pose significantly affect
performance of the eye state estimation. When the face
is turned, out-of-plane rotation, parts of the ocular region
towards the direction of the rotation becomes hidden while
to other side of the face undergoes skew and sometimes a
degradation of the eye texture due to the light variations.

Figure 6 clearly shows that the Multi-TPLBP descriptor
handles well perspective variations and correctly recognizes
the eye states, without employing any face frontalization
algorithm [16]. From Fig. 6 we can notice that the algo-
rithm detects well the location of the eyes, but the state
of the eye is not correctly estimated under different light-
ing conditions. This is due to the image regions captured in
different modality, with a very different pixel intensity val-
ues. The description of these regions implies mismatches
of the similarities between neighboring patches of pixels
(self-similarity calculation to generate the TPLBP code),
and hence our algorithm detects an eye closed instead
of open.

5.4.1 Comparison of the State Model with Other Methods

Table 7 compares the proposed EyeLSD and recent works
we are aware tested on ZJU dataset, with corresponding
experimental settings (number of eye open (+) and eye

closed (-), the number and the size of the eye images used
during tests, and challenges faced), and the performance
realized by each approach is listed beside ours.

Pan et al. present in [32] an appearance-based eye blink
detection application, the ZJU Eye blink dataset is used to
carry on tests. The performance realized by their frame-
work is 93.3 %. The proposed Multi-TPLBP outperforms
this approach with an accuracy of 95.18 %.

Multi-TPLBP captures more texture information comple-
mentary to those of the LBP-based pixels. This is reflected
through the performance gain. In addition, it is invariant to
scales and that forms a great need to build a robust eye state
model that resists well to the real-world constraints. In such
scenarios the eyes may undergo various poses and scales
and not really obvious for some local shape descriptors, to
neutralize the effects involved by those variations.

Fengyi Song et al. present in [38] two methods to extract
the eye features under real-world conditions. Their eye state
approach is tested with a first method called Histograms
of principal Oriented Gradients (HPOG) and a second one
called Multi-scale Histograms of principal Oriented Gra-
dients (MultiHPOG). Their approaches were assessed on
ZJU eye blink database, under different variations of facial
expression, lighting, individual identity, and image noise.
Their system architecture includes geometric alignment,
which is considered as a key point of the algorithm. In
Table 7 the performance realized by the Histograms of
HPOG without alignment are shown, including geomet-
ric normalization of the eye image patches. In case of no
alignment used, HPOG achieved a recognition accuracy of
94.04 %. However, when the alignment is used, recognition
performance is enhanced with 1.87 %. The performance
enhancement realized by Multi-TPLBP, is partly owed to
the additional local information captured from the enlarged

Table 7 Comparison of the eye state model with existing methods.

Method Data challenge patch size (pixel) # Test (+) open, (-)closed Acc (%)

Multi-TPLBP(Proposed)+ MLP ZJU Varying in 24 × 24 1230(+), 410(−) 95.18

distance, Illumination

condition, occlusion,

gender, aging,

expression, hard rotations

LBP + SVM [32] ZJU varying pose, lighting, 0.74 × 0.37 Rear clips 90.37

accessory. (ratio to (clip #3, clip#4)

eyes distance) 84.37

HPOG (without alignment) + SVM [38] ZJU Variations in pose, 24 × 24 1230(+), 410(−) 94.04

lighting, accessory

HPOG (alignment) +SVM [38] 95.91

MultiHPOG +SVM [38] 95.60

MultiHPOG/LTP/Gabor 96.83

+ SVM [38]
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feature extraction area of the eye pattern and the texture
perimeter that the descriptor can reach with its enlarged
TPLBP radius. In addition, applying Gaussian low-pass fil-
ters to construct the multi-resolution descriptor, attenuates
the image noise effect and increases the contextual infor-
mation amount captured. EyeLSD outperforms the HPOG
(without alignment) approach and realized a slightly worse
accuracy in case of aligned eye image patches.

Fengyi Song et al. [38] investigate the enhancement of
feature fusion to describe images under uncontrolled con-
ditions. They combine Haar-like feature approach, Multi-
HPOG, LTP, and Gabor wavelets to extract salient eye
feature map. These methods can complement each others
in terms of information capturing and imaging conditions
resistance. At the first sight, Gabor feature sets are an
optimal tool used for the purposed of local feature extrac-
tion. Salient visual proprieties of the eyes including spatial
localization, orientation selectivity and spatial frequency
selectivity are quit described. However, Gabor wavelets is
far too computationally expensive. The multi-scale HPOG
is instead able to represent the eye image patch in varying
scales. Thus, captures the eye appearance at different scales
and further information that is normally missed by local
descriptors.

The fusion of feature sets can enhance the overall sys-
tem accuracy, that realized 96.83 % on ZJU database. These
results are slightly better than those realized by Multi-
TPLBP, tested on the same image gallery. Nonetheless,
fusion of feature sets involves a high calculation complex-
ity with a small improvement realized compared to use of
Multi-HPOG only.

To further verify the effectiveness of the proposed
method and besides performance evaluation on ZJU dataset.
The most recent related states-of-the-art eye state detection
methods, are presented but not directly compared with our
approach. Either the approaches or the used datasets for
validation are different from ours. So, a fair and direct com-
parison is not possible. The generalization capability of the
Multi-TPLBP is demonstrated on tests conducted on BioID
and CAS-PEAL-R1 datasets. Even since we did not train
the eye state models on those image sets, but only run-
ning our algorithm on them, obtained results are illustrated
on Fig. 6.

It should be noticed that, by combining into the ePLBPH
structure the strength of pixel-based LBP approaches (for

local description) with that of histogram concatenation
(global information encoding), and multi-level pyramidal
architecture (multi-scale information captured under vari-
ous depth), the performance of the eye detection algorithm
is significantly enhanced. Furthermore, Multi-TPLBP may
fail to detect eyes displayed at different depth scales and
even if a pyramidal structure is applied to the TPLBP
descriptor, the increase in complexity may hinder further
the operator performance. As shown in [25] the TPLBP
extended to pyramidal architecture is sensitive to facial
expression and head pose, which may result in lower perfor-
mance for the eye detection step. However, compared to the
LBP variants, the proposed Multi-TPLBP framework pro-
vides good results in the eye state detection problem, where
the challenges are less restrictive.

5.5 Runtime Performance Evaluation

The overall run-time of our MATLAB implementation is
performed on an Intel Core i7-4790 Processor with 3.6 GHz
and 8.0 GB Ram. We run the EyeLSD on an image of
360 × 480 pixels. The average computation costs of the
principal EyeLSD stages are listed in Table 8, that reports
the average elapsed time at each processing step. These
steps must run sequentially in each key-point of the pre-
processed image. From Table 8, we can observe that the
pre-processing step represents an embarrassingly parallel
workload, since each key-point and neighborhood pixels are
scanned, which span the entire local minimum regions of
the input image. The table reveals that the feature extrac-
tion and classification steps take about 30 % of the total
time, while 70 % of the time is due to the pre-processing
step. In practice, the pre-processing step can be replaced
with a facial landmark localization algorithm [36], that pre-
cisely locates different facial traits and highlights them as a
landmarks (e.g., the nose tip, mouth corners, eye centers) in
the input image. So, instead of searching for an eye in the
entire image over key-points. we can only scan the facial
landmarks to locate the eye positions and recognize whether
open or closed. This process can save the time spent on the
steps of pre-processing, and exploits more the potential of
the proposed feature extractors. Moreover, by using other
low-level programming language such as C++ and beside
of code optimization strategies, the algorithm computation
time can be further enhanced.

Table 8 Computation time of each step of EyeLSD approach.

Pre-processing
(ms)

Eye localization
(ePLBPH∗)(ms)

Eye localization
(Prediction)(ms)

Sχ2 (ms) Eye state (Multi-
TPLBP)(ms)

Eye state (Pre-
diction) (ms)

Total (ms)

112.89 14.9 9.20 0.41 20.7 3.0 161.1
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6 Conclusion

Eye localization and state estimation is required in a wide
range of vision-based applications. Including driver drowsi-
ness detection and disabled person assistance systems, but
those problems are far from being solved, especially in
uncontrolled environments. As a contribution to this prob-
lem, in this paper we have proposed the EyeLSD for eye
localization and its state estimation (open or closed). The
EyeLSD performance was compared against existing state-
of-the-art approaches.

The EyeLSD (with ePLBPH∗) has achieved an accuracy
of 98.12 % for eye localization on BioID dataset. Compar-
ing this accuracy against the reported by other approaches,
it is possible to conclude that our approach is ranked on the
top two with higher accuracy. This accuracy is reached due
to ePLBPH∗, which has higher tolerance to illumination,
image blur and perspective changes. This makes EyeLSD
robust against multiple variations where other approaches
fail, Figs. 7, 8, and 9.

In contrast to eye localization problem, the eye state
detection problem has very few works evaluated under a
common public dataset. However, our evaluation of Eye-
LSD accuracy to detect eye state shows promising results.
The proposed Multi-TPLBP has so far the best recognition
accuracy for eye state estimation on ZJU database. Indeed
Pan et al. present in [32], an appearance-based eye blink
detection application, which was evaluated under the ZJU
dataset. Comparing the accuracy under this dataset, their
approach got 93.3 % and EyeLSD with Multi-TPLBP got
95.18 % which outperforms their approach. This high accu-
racy is obtained, because Multi-TPLBP captures more tex-
ture information complementary to those of the LBP-based
pixels and it is invariant to scales. In summary, the proposed
Multi-TPLBP can solve those drawbacks by enlarging the
perimeter of information capturing, while reducing noise
and redundant information with filtering process.

As future work we intend to implement EyeLSD in a low
cost computational platform for real time safety applications
and explore its implementation in a Graphical Processing
Unity (GPU) or FPGA.
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