
An Integration of Stationary Wavelet Transform
and Nonlinear Autoregressive Neural Network
with Exogenous Input for Baseline and Future Forecasting
of Reservoir Inflow

Siriporn Supratid1 & Thannob Aribarg1,2 &

Seree Supharatid3

Received: 20 March 2017 /Accepted: 17 May 2017 /
Published online: 1 June 2017
# Springer Science+Business Media Dordrecht 2017

Abstract For effective water resources management and planning, an accurate reservoir
inflow forecast is essential not only in training and testing phases but also in particular
future periods. The objective of this study is to develop a reservoir inflow integrated
forecasting model, relying on nonlinear autoregressive neural network with exogenous
input (NARX) and stationary wavelet transform (SWT), namely SWT-NARX. Due to the
elimination of down-sampling operation, SWT provides influential reinforcement of effi-
ciently extracting the hidden significant, temporal features contained in the nonstationary
inflow time series without information loss. The decomposed SWT sub-time series are
determined as input-output for NARX forecaster; where a multi-model ensemble global
mean (MMEGM) of downscaled precipitation based on nine global climate models
(GCMs) represents as a climate-change exogenous input. Two major reservoirs in Thai-
land, Bhumibol and Sirikit ones are focused. Pearson’s correlation coefficient (r) and root
mean square error (RMSE) are employed for performance evaluation. The achieved results
indicate that the SWT-NARX explicitly outperforms the comparable forecasting ap-
proaches regarding a historical baseline period (1980–1999). Therefore, such SWT-
NARX is further employed for future projection of the reservoir inflow over near (2010–
2039) -, mid (2040–2069) - and far (2070–2099) - future periods against the inflow of the
baseline one.
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1 Introduction

Short- and long- term accurate and reliable forecasts of reservoir inflow are essential for
effective water resources management and planning. Such accurate forecasts would aid
maximizing flood protection; while saving water for drought times of the year over long-run
periods. Backpropagation neural network (BPNN) (Rumelhart et al. 1986), the most common-
ly used artificial neural network (ANN) can estimate the nonlinear input-output relationship
without the limits of traditional linear time series models. BPNN, thereby has been widely
applied as an effective approach for modeling highly nonlinear phenomenon in hydrological
forecasting (Tiwari et al. 2013; Latt 2015; Mohanty et al. 2015). Jothiprakash and Magar
(2012) employed BPNN, adaptive neuro fuzzy inference system and linear genetic program-
ming for reservoir inflow prediction.

However, BPNN is executed on a basis of static-based learning. It was indicated in El-
Shafie et al. (2012) the advantage of monthly rainfall time series forecasting accuracy based on
dynamic over static neural network model during both training and testing stages at Klang
river basin, Malaysia. The static network is inferior to the dynamic ones because the inputs of
the static network depend solely on observed data, whereas those of the dynamic networks
incorporate observed data with time delay units through recurrent connections. Nonlinear
autoregressive neural network with exogenous input (NARX) (Chen et al. 1990; Narendra and
Parthasarathy 1990), a proficiently dynamic neural forecasting tool exploits recurrent neural
architecture. As opposed to other recurrent neural networks (RNN) (Elman 1990), NARX has
limited feedback architectures that come only from the output neuron instead of from hidden
neurons. It has been reported that such learning architecture can yield more effective results in
NARX model than in other recurrent architectures with hidden states (Horne and Giles 1995).
According to Chang et al. (2014), NARX indicated the best performance on multi-step-ahead
water level forecasting for Taiwanese urban flood control, compared to the static BPNN and
Elman’s recurrent neural network, including the case where the water level is not available as
input for the network. Valipour et al. (2013) pointed the competitive performance of dynamic
nonlinear autoregressive neural network (NAR) over static BPNN, autoregressive moving
average (ARMA) and autoregressive integrated moving average (ARIMA) (Box et al. 1994)
for forecasting the inflow of Dez dam reservoir, Iran. Furthermore, Valipour (2016) demon-
strated proficient results of NARX over NAR and nonlinear input–output (NIO) with regard to
annual precipitation forecasts in Gilan, Iran. This leads to realize a particular characteristic of
the NARX model, saying that the evolution of a phenomenon can be explained by its previous
behavior as well as the effect of its related exogenous factors. Current estimation and future
projection of precipitation patterns with respect to climate changes is a significant exogenous
information, having a main impact on reservoir inflow forecasts (Wehner 2013).

Global climate model (GCM) simulations archived by the coupled model intercomparison
project (CMIP) have been one of the most important sources for future quantitative climate
projection for the twenty-first century. The simulations from phase 3 of CMIP (CMIP3)
(Meehl et al. 2007) have been extensively analyzed and incorporated into the fourth assess-
ment report (AR4) of the intergovernmental panel on climate change (IPCC) (Solomon et al.
2007). The recently completed simulations for phase 5 of CMIP (CMIP5) (Taylor et al. 2012)
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are expected to be extensively featured in the upcoming IPCC fifth assessment report.
Compared to CMIP3, CMIP5 models typically have finer resolution processes, incorporation
of additional physics, and better-developed or well-integrated earth system components. Such
CMIP3 and CMIP5 data have been used to construct multi-model hydroclimate projection. A
drying trend in the twenty-first century was found over southwestern North America (Seager
et al. 2007; Karl et al. 2009) and the Mediterranean region (Mariotti et al. 2008) based on
CMIP3 simulations. Using the CMIP5 data, Hsu et al. (2012, 2013) found a slight enhance-
ment of the hydrological cycle of global monsoons; while Cook and Seager (2013) showed a
shift in the seasonality of North American monsoon to late summer under global warming.
Brands et al. (2013), Joetzjer et al. (2013), Supharatid et al. (2016), Supharatid (2016) and
Kumar et al. (2014) have performed the intercomparison between the performance of CMIP3
and CMIP5, under IPCC special report on emission scenarios (SRES) (Nakicenovic et al.
2000), e.g., A2 and B1 for CMIP3 and under representative concentration pathways (RCPs)
(Moss et al. 2010), e.g., RCP8.5 and RCP4.5 for CMIP5. Such RCP8.5 and RCP4.5 are
respectively comparable to SRES scenarios A2 and B1 (Rogelj et al. 2012). CMIP3 and
CMIP5 under A2 and RCP8.5 scenarios consecutively depict relatively fast rates of atmo-
spheric greenhouse gas accumulation, resulting high concentration; and vice versa for CMIP3
and CMIP5 under B1 and RCP4.5 successively.

However, there have been suggestions and counter-arguments about the value of using
multi-model ensemble global mean (MMEGM) versus a single-best model (Santer et al. 2009;
Sanderson and Knutti 2012; Knutti et al. 2010).). The MMEGM tends to be an improvement
over any individual model, because the bias in one model is cancelled out by another. Various
studies have shown that such an MMEGM yielded better prediction against the observations
than any single model when compared over multiple variables (Knutti et al. 2010). Supharatid
et al. (2016) and Supharatid (2016) implemented precipitation changes projection respectively
for Bangkok and Chao Phraya river basin in Thailand by applying downscaled precipitation
based on nine MMEGM pairs from CMIP3 and CMIP5 through distribution mapping (DM)
statistical downscaling (SD) (Teutschbein and Seibert 2012), under 4 emission scenarios: B1,
A2, RCP4.5 and RCP8.5.

Even if an efficient dynamic nonlinear neural forecasting model is employed with the use of
exogenous information of CMIP3- and CMIP5- based MMEGM precipitation as a represen-
tative of climate change impact, limitation in dealing with nonstationary time series should be
bore in mind. A complex nonstationary time series such as reservoir inflow has a variable
variance and mean that does not remain constant to their long-run mean over time. Such
nonstationarity possibly severely degrades the inflow forecasting performance. Discrete wave-
let transform (DWT) (Mallat 1989) was developed as a powerful tool for effectively coping
with such nonstationarity problem. To efficiently extracting hidden significant, temporal
features for an individual level of frequency resolution in the inflow time series environment,
DWT decomposes the original inflow time series into different sub-time series. The low-
frequency sub-time series or approximate components generally reflect periodicity and trends
of the original data whereas the high-frequency sub-time series or detail components uncover
sharp fluctuations (Kucuk and Oglu 2006). In the literature, there have been numbers of
applications using DWT with artificial neural network (ANN) in water resource variables
forecasting, including inflow forecasting (Okkan 2012; Krishna 2014; Sehgal et al. 2014a,
2014b). Kumar et al. (2015) performed reservoir inflow forecasting using ensemble models
based on ANN, DWT and bootstrap method. Shafaei and Kisi (2016) applied integrated DWT
and ARMA, adaptive neuro fuzzy inference system (ANFIS) (Jang et al. 1997) and support
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vector regression (SVR) (Vapnik 1995) to forecast monthly lake level fluctuations. Shenify
et al. (2016) applied artificial neural network (ANN), genetic programming (GP) (Koza 1992)
and SVR with DWT for estimating monthly precipitation. Besides, DWT was employed with
NARX for Thailand tourist arrival forecast (Kummong and Supratid 2016).

Nevertheless, a critical disadvantage of DWT is that it is not a shift-invariant transform due
to down-sampling in each subband. This causes information loss in the respective sub-time
series. The stationary wavelet transform (SWT) (Fowler 2005) was designed to overcome the
lack of such shift-invariance, regarding DWT. Since down-sampling procedure is removed,
SWT sub-time series coefficients contain many redundant information where fine details can
be preserved for thorough analysis. SWT was applied with relevance vector regression
(Tipping 2000) according to Bai et al. (2014). This work reported that the proposed approach
was capable of following the chaos pattern of daily urban water demand reasonably well.
Merely few studies have been conducted on using SWT for improving water variables
forecasts.

This paper focuses on inflow forecasts into the two major reservoirs in Thailand, Bhumibol
and Sirikit ones using an integrated model of the SWTand NARX, namely SWT-NARX.With
respect to the proposed method, SWT is executed to achieve efficient feature extraction for an
individual level of frequency resolution in the inflow time series environment. Then, the
extracted feature set or sub-time series at a particular frequency resolution level along with
related exogenous input factor are fed into NARX for further forecasting. The related
exogenous input factors here refer to downscaled monthly precipitation around the
reservoirs’near-by rainfall gauge stations, based on nine multi-model ensemble global mean
(MMEGM) pairs from CMIP3 under B1, A2 scenarios and CMIP5 under RCP4.5, RCP8.5.
Such exogenous input factor, MMEGM represents an impact of climate changes on the
reservoir inflow. At last, the NARX forecasting outputs from all the resolution levels are
reconstructed. Forecasting performance measures rely on Pearson’s correlation coefficient (r)
and root mean square error (RMSE). Here, not only the historical baseline period (1980–1999)
is examined, but also near (2010–2039) -, mid (2040–2069) – and far (2070–2099) -future
projection are investigated.

2 Materials and Methods

2.1 Study Areas

Two study areas, Bhumibol and Sirikit reservoirs are respectively described in section 2.1.1
and 2.1.2.

2.1.1 Bhumibol Reservoir

Bhumibol reservoir, originally called Yanhee reservoir is located at Tak province. The reservoir
was constructed across Ping River in 1951 with the purposes of water storage and irrigation for
agricultures, flood control, fisheries, saltwater intrusion management as well as hydroelectric
power generation. The Bhumibol hydropower plant, situated at the reservoir has a total
installed capacity of 743.8 MW from 8 turbines. Fig. 1 demonstrates that the reservoir is
located at 17.24 North latitude and 98.97 East longitude. The reservoir having a capacity of
13.5 billion m3. The monthly mean temperature over Bhumibol reservoir ranges from 22.55 °C
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to 31.55 °C with average annual rainfall of 83.15 mm, most of which occurs in months from
September to October. There are 3 near-by rainfall gauge stations, including Bhumibol Dam,
Maejo and Chiang Mai affecting the inflow of Bhumibol reservoir.

2.1.2 Sirikit Reservoir

Sirikit reservoir is located across Nan river, about 60 km upstream from the city of
Uttaradit province. The reservoir, constructed in 1968 is Thailand’s largest earthfilled
with crest elevation of 169 m above mean sea level. Like Bhumibol reservoir, Sirikit
reservoir has been built for multi-purpose. The maximum water storage capacity of the
impounded reservoir is 9.51 billion m3. The reservoir power station contains 4 turbines for
an installed capacity of 500 MW. The monthly mean temperature over the Sirikit reservoir

Fig. 1 Location map of Bhumibol reservoir and the near-by rainfall gauge stations
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ranges from 23.37 °C to 30.87 °C with average annual rainfall of 114.98 mm, most of
which occurs in months from August to September. The location of the Sirikit reservoir is
17.76 North latitude and 100.56 East longitude as shown in Fig. 2 As seen in the figure, a
rainfall over Nan rainfall station flows from upstream to Sirikit reservoir; also a rainfall
over Uttaradit rainfall station may flow into the reservoir.

2.2 Datasets Used in the Study

In this study, monthly reservoir inflows were collected from electricity generating authority
of Thailand (EGAT) during 1980–1999, referred as historical baseline time series data.
From such available baseline dataset, the inflow from January, 1984 to December, 1999
and from January, 1980 to December, 1983 are considered for training and testing data.

Fig. 2 Location map of Sirikit reservoir and the near-by rainfall gauge stations
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Besides, the future-period (2010–2099) reservoir inflow, divided into near (2010–2039) -,
mid (2040–2069) - and far (2070–2099) -future ones are also to be investigated in this
study. The exogenous input factors, used for enhancing the inflow forecasting performance
are represented by multi-model ensemble global mean (MMEGM) monthly precipitation
downscaled around rainfall gauge stations, near by the reservoirs. Such MMEGM have
been extracted and averaged with equal weights from nine climate model pairs based on
IPCC CMIP3 and CMIP5 GCMs. Table 1 demonstrates a list of the nine climate model
pairs. These models have been selected based on data availability and horizontal grid
resolution (Supharatid et al. 2016; Supharatid 2016).

Such CMIP3-CMIP5 MMEGM precipitation of the near-by gauge stations are employed
for baseline period forecast as well as for near -, mid - and far-future period forecasts. All
monthly MMEGM precipitation in the near (2010–2039) -, mid (2040–2069) - and far (2070–
2099) -future periods have been taken from comparable greenhouse warming scenarios, SRES
B1 and A2 from CMIP3, and RCP4.5 and RCP8.5 from CMIP5 models (Rogelj et al. 2012;
Stocker et al. 2013). All such nine CMIP3 and CMIP5 models were regridded to a 0.5o with
720 longitude × 278 latitude as shown in Fig. 3; bi-linear interpolation is also applied to the
locations of 3 (Bhumibol dam, Chiangmai and Maejo) and 2 (Nan and Uttaradit) near-by
rainfall gauge stations regarding Bhumibol and Sirikit reservoirs respectively. The nine CMIP3
and CMIP5 GCMs models are downscaled through distribution mapping (DM) statistical
downscaling.

2.3 Nonlinear Autoregressive Neural Network with Exogenous Factors (NARX)

NARX forecasting neural network has been applied for modeling discrete-time nonlinear
dynamical systems (Leontaritis and Billings 1985; Norgaard et al. 2000). In this network,
the next value of the dependent output signal at time t + 1, namely as l(t + 1) is regressed on
previous values of the output signal and exogenous input signal at time t, namely as l(t) . Thus,
the NARX model can be mathematically represented as (1).

l t þ 1ð Þ ¼ f l tð Þ; l t−1ð Þ;…; l t−drð Þ; pi tð Þ; pi t−1ð Þ;…; pi t−dpi
� �� � ð1Þ

According to (1), the input of the NARX network is formed by two types of regressors,
one is the exogenous input regressor pi(t)∈ R, here represented by MMEGM precipitation

Table 1 List of IPCC CMIP3 and CMIP5 GCMs used in this study

CMIP3 Resolution CMIP5 Resolution Center

CNRM-CM3 128 × 64 CNRM-CM5 256 × 128 Centre National de Recherches
Meteorologiques, France

CSIRO-Mk3.0 192 × 96 CSIRO-Mk3.6 192 × 96 CSIRO, Australia
GFDL-CM2.0 144 × 90 GFDL-CM3 144 × 90 Geophysical Fluid Dynamics Laboratory,

NOAA
GFDL-CM2.1 144 × 90 GFDL-ESM2M 144 × 90 Geophysical Fluid Dynamics Laboratory,

NOAA
GISS-ER 72 × 46 GISS-E2-H 144 × 90 Goddard Institute for Space Studies, USA
IN-CM3.0 72 × 45 INM-CM4 180 × 120 Institute of Numerical Mathematics, Russia
IPSL-CM4 96 × 72 IPSL-CM5A-LR 96 × 96 Institut Pierre Simon Laplace, France
MIROC3.2 128 × 64 MIROC5 256 × 128 CCSR/NIRS/FRCGC, Japan
MRI-CGCM2.3.2 192 × 96 MRI-CGCM3 320 × 160 Meteorological Research Institute, Japan
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at a particular station i; the precipitation at more than one station may be involved. The
other one is the output regressor l(t)∈ R, here referred as reservoir inflow at time t. dpi∈ Z
and dl∈Z consecutively are the lags of the exogenous input i and output regressors of the
system, where dl ≥dpi ≥1. The nonlinear mapping f(⋅) is generally an unknown smooth
function; and can be approximated by a standard multilayer perceptron network. The
output of the NARX network, represented by the reservoir inflow is basically estimated
under one of the following two modes. The first one is a series-parallel (SP) mode, where
the output’s regressor is formed by actual values of the system’s output during both training
and testing phases, as shown in (2):

l̂ t þ 1ð Þ ¼ f̂ l tð Þ; l t−1ð Þ;…; l t−drð Þ; p̂i tð Þ; p̂i t−1ð Þ;…; p̂i t−dp
� �h i

ð2Þ

where l̂ t þ 1ð Þ, p̂i tð Þ and f̂ ⋅ð Þare an estimators ofl(t + 1), pi(t) and f(⋅) respectively. NARX
using SP-mode, thereby is utilized for the historical baseline forecast due to data availability.
The other mode refers to a parallel (P) mode, where actual values of the reservoir inflow which
is a system’s output are available during only the training of the network. During the testing

Fig. 3 Climate model grid boxes for Thailand

4030 Supratid S. et al.



one, estimated outputs are fed back and included in the output’s regressor mainly due to lack of
complete data, as shown in (3). By this reason, NARX using P-mode should be applied for
future projection.

l̂ t þ 1ð Þ ¼ f̂ l̂ tð Þ; l̂ t−1ð Þ;…; l̂ t−drð Þ; p̂i tð Þ; p̂i t−1ð Þ;…; p̂i t−dp
� �h i

ð3Þ

2.4 Stationary Wavelet Transform (SWT)

To enhance NARX forecasting capability, stationary wavelet transform (SWT) (Fowler
2005) is adopted here. Stationary wavelet transform (SWT) was designed to overcome the
lack of translation-invariance of the discrete wavelet transform (DWT) by removing the
down-sampling in the DWTand up-sampling the filter coefficients by a factor of 2j − 1 in the
j th level of the decomposition algorithm (Shensa 1992). The up-sampling procedure is
carried out before performing convolution at each scale. The redundancy of this type of
transform facilitates the identification of salient, fine detail features in the reservoir inflow
time series data. Similar to DWT, the SWT decomposes the inflow time series l(t)by
applying recursively a succession of the low and high -pass filters based on wavelet
filtering basis functions to l(t), which allows separating its high frequency components
from the low frequency ones. The decomposition can be illustrated as a form of dyadic tree.
Fig. 4 delineates a dyadic tree of 3-level discrete stationary wavelet decomposition.

First l(t)is decomposed into the trend or the approximate, low frequency components at
the 1-level scale decomposition, A1(t)and the deviations from the trend or the detail, high
frequency components at the same scale decomposition level, D1(t). A1(t) is successively
decomposed into low and high frequency components at the 2-level, denoted as A2(t) and
D2(t) consecutively, and so on. Based on this dyadic tree, the reservoir inflow time series
l(t) can be reconstructed by combining A3(t), D3(t), D2(t) and D1(t), that refers to the
inverse wavelet transform.

A3(t), D3(t), D2(t) and D1(t), appeared in Fig. 4 represent the hidden features extracted by
SWT. A3(t) is the low-frequency approximate components; whereas D3(t), D2(t) and D1(t) are

Fig. 4 3-level discrete stationary
wavelet decomposition dyadic tree
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the high-frequency detail components, ordered from coarsest to finest. Based on SWT
algorithm, A3(t) as well as D3(t), D2(t) and D1(t) are extracted respectively by (4) and (5):

A3 tð Þ ¼ ∑
∀n
a3;nϕ3;n tð Þ ð4Þ

Dj tð Þ ¼ ∑
∀n
d j;nψ j;n tð Þ ð5Þ

where j = 1, 2, 3 and n ≥ 0 refers to time interval which is an integer type. From (4), one can
say that A3(t), an approximate sub-time series is a linear combination of the wavelet low-pass
filtering basis function, ϕ(t). In a similar manner, from (5) D3(t), D2(t) and D1(t), called detail
sub-time series are linear combination of the wavelet high-pass filtering basis function, ψ(t).
SWT finds the coefficients a3,n and dj,n by projecting the reservoir inflow time series l(t) onto
the wavelet low and high -pass filtering functions consecutively at different time interval and
particular frequency resolution levels. The number of coefficients for each level is about half
that of the preceding level in the DWT; whereas the number of coefficients is the same for each
level in the SWT. Such retention of redundant makes the SWT translation invariant, which
provides powerful support to analyze each given reservoir inflow sub-time series at various
frequency fluctuation levels.

2.5 The Proposed Method

The proposed forecasting approach, SWT-NARX serves as a combination of SWT and NARX
neural network. To enhance the forecasting capability, the reservoir inflow forecast is performed
with the use of the climate-change exogenous factors, which refers to MMEGM monthly
precipitation downscaled to the near-by rainfall gauge stations i = 1,…, N, represented as
p̂ tð Þ ¼ p̂1 tð Þ…p̂N tð Þf g, as seen in Fig. 5. Such MMEGM monthly precipitation or p̂ tð Þ relies
on B1 and A2 scenarios of CMIP3-based and RCP4.5 and RCP8.5 of CMIP5-based GCMs. An
overall framework of the proposed SWT-NARX for a 3-level wavelet decomposition, for instance
is presented in Fig. 5. It can be explained in terms of training and testing phases as follows:

1) Training phase:

& 1.1 The original reservoir inflow time-series with respect to the training baseline
period (January, 1984 to December 1999), is decomposed by SWT into an approx-
imate, A3(t) and details, D3(t), D2(t) and D1(t) sub-time series.

& 1.2 Each sub-time series of both approximate and details is separately fed along with
the corresponding exogenous input, MMEGM monthly precipitation, p̂ tð Þ to an
individual NARX using series-parallel (SP) mode for model training purpose.

& 1.3. At the end of this learning phase, the wavelet as well as NARX trained parameters
related to each sub-time series are obtained for further using in the testing phase.

2) Testing phase:

This phase relates to two main sets of time series data. The first one refers to the time series
with respect to the baseline-period (January, 1980 to December 1983) validation-testing data;
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whereas the second one relies on the future-period (January, 2010 to December, 2099) unseen-
testing data.

& 2.1) For the baseline-period validation-testing data, the original reservoir inflow time-
series is decomposed into A3(t), D3(t), D2(t) and D1(t) based on SWT parameters
obtained from the training phase; whilst for the future-period unseen-testing data, only
the starting seed, the inflow in January and February 2010 is decomposed in the same
manner.

& 2.2) Each sub-time series of both approximate and details is separately fed along with the
corresponding exogenous input, MMEGM monthly precipitation p̂ tð Þ to an individual
NARX for forecasting purpose by using the NARX trained parameters obtained from the
training phase.

& 2.2.1) For the baseline-period validation-testing data, NARX with series-parallel (SP)
mode is executed, where the sub-time series of the system’s output actual values, repre-
sented by the reservoir inflow are employed as output regressor.

& 2.2.2) For the future-periods unseen-testing data, NARX with parallel (P) mode is
employed, where the actual values of the future-period starting seed is provided as
input for the first step of forecasting process; for further forecasting steps, calculated or
estimated outputs are fed back to the output regressor due to lack of inflow
information.

& 2.3) All the forecasted components are supplied to inverse wavelet transform process for
finally reconstructing the forecasted reservoir inflow.

Fig. 5 An overall framework of the proposed SWT-NARX for a 3-level wavelet decomposition
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2.6 Evaluation Criteria

To evaluate the performance of the SWT-NARX, NARX, BPNN and Elman’s RNN, Pearson’s
correlation coefficient (r) and root mean square error (RMSE) are used as follows:

r ¼
∑
n

i¼1
loð Þi−lo

� �
lp
� �

i−lp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
loð Þi−lo

� �2
∑
n

i¼1
lp
� �

i−lp
� �2

r ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
lp
� �

i− loð Þi
� �2

n

vuuut ð7Þ

where l is the reservoir inflow; and the subscripts o and p denote the observed and predicted
values, respectively.

3 Results and Discussion

First of all the experiment considers historical baseline time series, that is divided into 192
training (80%) and 48 testing data (20%), which respectively refer to January 1984 to
December 1999 and January 1980 to December 1983. The comparison tests involve the
proposed SWT-NARX as well as some other related forecasters, including NARX alone,
BPNN and Elman’s RNN. Necessary parameters used in SWT-NARX for historical baseline
forecasting relying on CMIP3 – and CMIP5 –based MMEGM monthly precipitation are
declared in Table 2. The parameters are selected for SWT-NARX so as to achieve the effective
testing results. The same numbers of input lag as well as hidden neurons are utilized for other
related forecasting methods. Wavelet parameters, chosen for SWT-NARX depends on a
competency to evaluate local and global behavior of the time series. Such wavelet parameters
selection relies on popular, effective wavelet low and high –pass filtering functions:
Daubechies (db), Coiflet (coif), Symlet (sym) as well as Haar using one to five scale
decomposition levels. Numbers of input lag that yield the best performance for NARX is
applied to all other forecasting methods.

The SWT-NARX model that yields the best performance in the testing phase, based on the
historical baseline data is then employed for the near (2010–2039) -, mid (2040–2059) - and far
(2060–2099) -future inflow projection under CMIP3- and CMIP5 –based precipitation

Table 2 SWT-NARX parameters used for historical baseline forecasting

Bhumibol Sirikit

CMIP3 CMIP5 CMIP3 CMIP5
3-input lag, 3-hidden

neuron, coif4 using 4
decomposition level

2-input lag, 10-hidden
neuron, sym4 using 4
decomposition level

3-input lag, 5-hidden
neuron, db2 using 4 de-
composition level

4-hidden neuron,
haar using 1
decomposition
level
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scenarios. Moreover, gamma probability density function (pdf) (Wilks 1990) is also employed
here to estimate probability of different amount of inflow for the historical baseline and the
particular future time intervals. Such gamma pdf is frequently used to represent hydrological
time series such as precipitation and reservoir inflow (Vu et al. 2016; Campos et al. 2014). This
is because it provides a flexible representation of a variety of distribution shapes with significant
statistical variables such as a mode value, while utilizing only two parameters, shape and scale.

The experimental results, relating to Bhumibol and Sirikit reservoir inflows are separately
described in the following two sub-sections.

3.1 Bhumibol Reservoir Inflow Forecast

Relying on historical baseline period (January 1980–December 1999) under CMIP3 - and
CMIP5 –based precipitation scenarios, experimental results for testing cases with respect to the
comparative forecasting methods using series-parallel mode are shown in Table 3. SWT-
NARX generates the best performance in terms of Pearson’s correlation coefficient (r) as well
as root mean square error (RMSE) for all cases as seen in such Table 3.

From Table 3, relying on CMIP3 - and CMIP5 –based precipitation scenarios, 17.19% and
16.79% of r improvements based on SWT-NARX over the traditional NARX are respectively
yielded. In addition for CMIP3 and CMIP5, tremendous RMSE improvements of 56.37% and
64.22% based on SWT-NARX over NARX are respectively produced. Such improvements
point remarkable benefits of exploiting SWT as feature extraction analysis with NARX
forecaster, in comparison to using NARX alone. On the other hand, NARX indicates better
forecasting performance over BPNN and Elman’s RNN for all the testing cases.

As a result, the SWT-NARXmodel using the best-performance parameters defined in Table 3 is
further employed for future projection. Fig. 6 shows the historical baseline observations against
future projection of averaged monthly inflow as well as MMEGM precipitation at the near-by
staions under CMIP3-based B1 and A2 scenarios and CMIP5–based RCP4.5 and RCP8.5 scenar-
ios. Such near-by stations include Bhumibol dam (BB), Chiangmai (CM) andMaejo (MJ) stations.

According to Fig. 6, in general, trends of the inflow along with the MMEGM precip-
itation at each near-by station in the future periods still follow the trend of the observations
in the historical baseline one, with regard to all CMIP3 – and CMIP5 –based senarios.
Although there exist double peaks MMEGM precipitation in May and September–October
at all the near-by stations for both CMIP3 and CMIP5, there exist only one peak reservoir
inflow in September. This implies that only the peak precipitation over 6 mm/day,
occurred in September–October possibly has an important impact on the reservoir inflow.
In September which refers to the peak-inflow month, the inflow under CMIP3-based A2

Table 3 Performance measures in terms of r and RMSE

Forecasting methods r RMSE

CMIP3 CMIP5 CMIP3 CMIP5

SWT-NARX 0.9662 0.9803 4.3184 3.3274
NARX 0.8245 0.8394 9.8971 9.2998
BPNN 0.7233 0.8217 12.4272 9.6822
RNN 0.3813 0.3751 19.3640 19.7230

Bold entries refers to the best values of r and RMSE
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and CMIP5-based RCP8.5 scenarios is respectively higher than those under CMIP3-based
B1 and CMIP5-based RCP4.5 scenarios due to the faster rates of atmospheric greenhouse
gas accumulation; in addition, successive increase of inflow amount follows sequential
increase of precipitation at all the near-by stations from the near -, mid – and far -future
periods for the whole CMIP3 – and CMIP5 –based scenarios. In such peak-inflow month,
it indicates extreme 11.70% inflow increase in average during the far-future period
regarding RCP8.5 over the historical baseline period. On the other side, the severely
lowest amount of inflow 13 mcm in average comes up in February during the far-future
under A2 based on CMIP3, represented as 59.38% decrease in average compared to the
lowest 32 mcm in March during the historical baseline period.

Furthermore, gamma probability distribution of reservoir inflow with regard to wet (May–
October) and dry (November –March) seasons in the historical baseline and future periods for
CMIP3 - and CMIP5 –based scenarios are illustrated in Fig. 7. In the wet season, the future
periods belong to more shape-dominated regime than the historical baseline one. This implies
that fewer extreme events exist in the future periods with higher probability than in the historical
baseline one; while more variations of inflow amounts occur in the baseline period. In the dry
season, a few variation from the mode value is illustrated with respect to the historical baseline
and all scenarios of the future periods. The mode value about 571 mcm and 148 mcm are
denoted in the wet and dry season during the historical baseline period. However, A2 scenario
based on CMIP3 shows extreme cases of around 709 and 115 mcm mode values of inflow for
the wet and dry seasons in the far-future period. One can say, for the extreme cases, the modes
of inflow amount approximately increases by 24.17% and decreases by 22.30% with a few
probabilities lesser than 0.003 and 0.007 respectively in the wet and dry seasons.

Fig. 6 Historical baseline observations against future projection of averaged monthly inflow as well as
MMEGM precipitation at the near-by stations regarding Bhumibol reservoir under (a) CMIP3-based B1 and
A2 scenarios and (xb) CMIP5–based RCP4.5 and RCP8.5 scenarios
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3.2 Sirikit Reservoir Inflow Forecast

Table 4 illustrates experimental results for testing cases with respect to the comparative forecast-
ing methods using series-parallel mode. Such results relies on historical baseline period (January

Fig. 7 Gamma probability distribution of Bhumibol reservoir inflow with regard to wet (May–October) and dry
(November –March) seasons for CMIP3 - and CMIP5 –based scenarios. a wet season for CMIP3, b wet season
for CMIP5, c dry season for CMIP3, d dry season for CMIP5
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1980–December 1999) under CMIP3 - and CMIP5 –based precipitation scenarios. Once again,
SWT-NARX yields the best performance in terms of r as well as RMSE for all cases.

From Table 4, similar to Bhumibol reservoir inflow forecast, relying on CMIP3 and
CMIP5, 13.75% and 34.90% of r improvements based on SWT-NARX over NARX alone
are respectively yielded. In addition for CMIP3 and CMIP5, tremendous RMSE improvements
of 39.07% and 43.90% based on SWT-NARX over NARX respectively are produced. Based
on such performance improvements, remarkable benefits of exploiting SWT as feature extrac-
tion analysis with NARX forecaster are denoted once again, in comparison to using NARX
alone. Like Bhumibol reservoir inflow forecasting results, NARX yields better forecasting
performance than BPNN and Elman’s RNN for all testing cases.

As a consequence, future projection is further performed relying on the SWT-NARX model
using the best-performance parameters defined in Table 3. Fig. 8 illustrates the historical baseline
observations against future projection results of averaged monthly inflow as well as MMEGM
precipitation at the near-by stations under CMIP3-based B1 and A2 scenarios and CMIP5–based
RCP4.5 and RCP8.5 scenarios. Such near-by stations include Nan and Uttaradit (UT) stations.

According to Fig. 8, in general, trends of the inflow along with theMMEGMprecipitation in the
future periods still follow the trend of the observations in the historical baseline one, with regard to
all CMIP3 – and CMIP5 –based scenarios. Although there exist double peaks MMEGM precip-
itation in May as well as August–September at such couple near-by stations for both CMIP3 and
CMIP5, there exist only one peak reservoir inflow in August–September. This implies that only the
peak precipitation over 8 mm/day, occurred in August–September possibly has an important impact
on the reservoir inflow. In September, which is the same peak-inflow month as Bhumibol reservoir
case, the inflow amount under CMIP3-based A2 and CMIP5-based RCP8.5 scenarios is respec-
tively greater than those under CMIP3-based B1 and CMIP5-based RCP4.5 scenarios for most
circumstances due to the faster rates of atmospheric greenhouse gas accumulation; in addition,
successive increase of inflow amount follows sequential increase of precipitation at Nan as well as
UT stations from the near -, mid – and far -future periods for all CMIP3 – and CMIP5 –based
scenarios. In such peak-inflow month, it indicates the extreme 11.82% inflow increase in average
during the far-future period under CMIP5-based RCP8.5 scenario over the baseline period. On the
other side, the severely lowest amount of inflow 43mcm in average appears inMarch during the far-
future under RCP8.5 based on CMIP5, represented as 42.67% decrease in average compared to the
lowest 75 mcm in March during the historical baseline period.

Like Bhumibol reservoir case, gamma probability distribution of Sirikit reservoir inflow
with regard to wet and dry seasons in historical and future periods for CMIP3 - and CMIP5 –
based scenarios are illustrated in Fig. 9. For the dry season, a sharp shape-dominated
characteristic belonging to the historical baseline period is explicit; in contrast, solid scale-

Table 4 Performance measures in terms of r and RMSE

Forecasting methods r RMSE

CMIP3 CMIP5 CMIP3 CMIP5

SWT-NARX 0.9304 0.8882 8.8653 9.9322
NARX 0.8179 0.6584 13.8065 16.9268
BPNN 0.7686 0.6568 14.5509 17.7040
RNN 0.4839 0.4574 22.2620 21.1311

Bold entries refers to the best values of r and RMSE

4038 Supratid S. et al.



dominated regimes are mostly manifested in the far-future period. This implies very few
extreme events exist in the historical baseline period; whereas rather solid variations of inflow
amount mostly occur in the far-future. In the wet season, fewer extreme events exist in the
future periods than in the historical baseline, especially shown in CMIP5-based scenarios. In
the wet and dry seasons during historical baseline period, the inflow amounts of about 658 and
115 mcm mode values of inflow consecutively appears. With respect to the far-future period
under CMIP3-based B1 scenario, an extreme case in wet season shows approximate 746 mcm
mode value of inflow amount; while a severe drought demonstrate around 12 mcmmode value
of inflow amount. One can say, for the most serious cases, the modes of inflow approximately
increases by 13.37% and decreases by 89.57% respectively in wet and dry seasons. However,
the severe latter case may come up with only a few probability, lesser than 0.004.

4 Conclusions

Within the scope of the historical baseline period (1980–1999), for both Bhumibol and Sirikit
reservoirs, SWT-NARX yields the best performances in terms of Pearson’s correlation coefficient

Fig. 8 Historical baseline observations against future projection of averaged monthly inflow as well as
MMEGM precipitation at the near-by stations regarding Sirikit reservoir under (a) CMIP3-based B1 and A2
scenarios and (b) CMIP5–based RCP4.5 and RCP8.5 scenarios
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(r) as well as root mean square error (RMSE) for all testing cases under CMIP3 - and CMIP5 -
based models, compared to other related traditional models. Therefore, such SWT-NARX is
further employed for the near (2010–2039) -, mid (2040–2069) - and far (2070–2099) -future
inflow projections, relying on MMEGM monthly precipitation under CMIP3-based B1, A2
scenarios and CMIP5-based RCP4.5, RCP8.5 ones. The projection results indicate that trends
of monthly inflow as well as the MMEGM monthly precipitation at the stations, near by the

Fig. 9 Gamma probability distribution of reservoir inflow with regard to annual, wet (May–October) and dry
(November –March) seasons for CMIP3 - and CMIP5 –based scenarios. a wet season for CMIP3, b wet season
for CMIP5, c dry season for CMIP3, d dry season for CMIP5
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mentioned reservoirs during the near -, mid – and far –future periods still follow those in the
historical baseline period for all CMIP3 – and CMIP5 –based scenarios. The most extreme cases
of peak and lowest inflow amount are usually found respectively in September and February/
March during the far-future periods for both Bhumibol and Sirikit reservoirs. The severe inflow
decrease in the dry season may happen with a few probability during such far-future period at
Sirikit reservoir. Nevertheless, one may also realize some amount of inflow decrease in average,
possibly happened in the near-future at both reservoirs.

The findings with regard to this work will be useful to water resource policy makers in
pondering whether the current drainage system is appropriate to meet the inflow changes in
short – and long –term periods. However, this study still has some limitations that the results,
presented here are average values with respect to short – and long -term projections. Such
projection values represent large-time-scale changes; thus, face difficulties in translation to a
local-time-scale. In addition, significant changes in land use or urbanization around the
reservoirs as well as the near-by rainfall gauge stations affect the hydrological process; and
in turn, affect the inflow behaviors.
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