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Abstract
In this paper, we consider the power allocation problem for 5 G wireless networks using massive multiple input multiple

output technologies. Two non-linear optimization models are considered to maximize the worst user signal-to-interference

noise ratio and the total capacity of the network subject to power constraints. In particular, we transform the first one into a

geometric programming (GP) problem. Whereas the second one leads to a signomial programming formulation. The main

contributions of the paper are first to propose novel formulations for power allocation in wireless networks while using

stochastic, geometric, and signomial programming frameworks altogether. We derive stochastic formulations for each GP

model to deal with the uncertainty of wireless channels. Secondly, since solving optimally the stochastic models represents

a challenging task, we obtain tight bounds using approximation solution methods. In particular, the piece-wise linear

programming and the sequential approximation methods allow us to obtain tight intervals for the objective function values

of the stochastic models. Notice that these intervals contain the optimal solutions. In particular, we propose an approxi-

mated GP model that allows obtaining lower bounds for the signomial problem. This is achieved by using the arithmetic–

geometric mean inequality. Finally, we compare the deterministic and stochastic models and prove the robustness of the

stochastic models. Notice that we solve all the instances and obtain near-optimal solutions for most of them.

Keywords Geometric and signomial programming � Sequential and piece-wise linear approximations � Wireless networks �
Power allocation

1 Introduction

The fifth-generation (5G) of wireless communications

brought increased attention from both academia and

industry communities as it offers the potential development

of unprecedented future network applications. It is expec-

ted that these networks will impact the operation of many

industries and society. Example applications include

mobile health, autonomous vehicles, smart cities and

homes, manufacturing and entertainment, education, smart

grid, data analytics, and networks to be developed under

the Internet of Things (IoT) paradigm, just to name a few

[1–7]. Notice that 5 G technology, as a revolutionary

approach, is envisioned to eliminate access bounds to

wireless networks, limitations of bandwidth capacity and

latency on connectivity [7]. Unfortunately, current network

infrastructures cannot be adapted straightforwardly to 5 G

technology. Thus, it is mandatorily required to update

previous ones. These new updates will play a critical role

since novel components of 5 G networks will handle the

huge increased data usage, coverage, security, and with low

latency. In this paper, we consider the problem of optimal

power allocation on these networks by using Massive

Multiple Input Multiple Output (MaMIMO) technologies.

Notice that MaMIMO appears as an extension of a tradi-

tional MIMO system. The main advantage of MaMIMO is

that we can use a significantly larger number of antennas

than in a classical MIMO system. It has been shown that

MaMIMO allows one to achieve better performance in
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terms of signal paths, link reliability, coverage, and secu-

rity. As such, it emerges as a serious candidate for future

5 G based-networks.

Our main contributions in this paper can be enumerated

as follows. First, we propose novel formulations for power

allocation in wireless networks while using stochastic,

geometric, and signomial programming frameworks alto-

gether. Secondly, since solving optimally the stochastic

models represents a challenging task, we obtain tight

bounds (intervals) using approximation solution methods.

In particular, the piece-wise linear programming and the

sequential approximation methods allow us to obtain tight

intervals for the objective function values of the stochastic

models. Notice that these intervals contain the optimal

solutions. Next, we propose an approximated GP model to

obtain lower bounds for the signomial model. For this

purpose, we use the arithmetic–geometric mean inequality.

Finally, we compare the deterministic and stochastic

models and prove the robustness of the stochastic models.

Notice that we solve all the instances and obtain near-

optimal solutions for most of the instances. More precisely,

we consider two non-linear programming optimization

problems for the optimal power allocation where the aim is

to maximize the worst user signal-to-interference noise

ratio (SINR) and the total capacity of the network subject

to power constraints. In particular, we transform the first

one into equivalent geometric programming (GP) problem.

Whereas the second one leads to an equivalent signomial

programming (SP) formulation. Notice that a GP model is a

non-convex problem. However, it can be transformed into

a convex one by using standard logarithmic transforma-

tions leading to sum-log-exp convex functions. Conse-

quently, all GPs can be solved to global optimality by using

interior point algorithms in polynomial time complexity

[8]. Unlike a GP problem, an SP problem cannot be

transformed into an equivalent convex one. Thus it is

significantly harder to solve optimally. However, in this

case, we also derive an approximated GP formulation that

allows obtaining lower bounds for the original SP problem.

The latter is achieved by using the arithmetic–geometric

mean inequality [8, 9]. Subsequently, we derive stochastic

formulations for each GP model to deal with the uncer-

tainty of wireless channels. In particular, we propose

individual and joint chance constraints for each GP model.

Finally, we obtain lower and upper bounds with piece-wise

tangent linear and sequential convex approximation

methods. We conduct substantial numerical experiments to

compare all the proposed models and algorithms.

A GP model is a type of mathematical optimization

problem characterized by objective and constraint func-

tions that have a special form [8]. In general, a GP model

can be written as

min
fx2Rm

þþg

X

i2I0
ci
Ym

j¼1

x
dij
j ð1Þ

s.t.
X

i2Ik
ci
Ym

j¼1

x
dij
j � 1; k 2 f1; . . .;Kg ð2Þ

where the set fIk; k 2 K ¼ f0; 1; . . .;Kgg is the disjoint

index sets of f1; . . .;Qg. Usually, the term ci
Qm

j¼1 x
dij
j for

each i 2 Ik is called a monomial function where each term

ci for all i 2 Ik must be a nonnegative real number. If at

least one of them is negative, then the problem (1)-(2) is no

longer a GP model, but an SP problem. The exponent

parameters dij for all i 2 Ik, k 2 K and j 2 M ¼ f1; . . .;mg
can be real numbers. Finally, each variable xj for j 2 M

must be strictly positive. Hereafter, we denote by Rm
þþ the

set of positive real numbers of dimension m. A sum of

monomials is called a posynomial function. Constraints

where a monomial is strictly equal to one, are also allowed

in a GP model. However, constraints involving a posyno-

mial function strictly equal to one also lead to a non-GP

problem. We will see that the arising power allocation

problems considered in this paper can be written as

equivalent GP or SP problems. As far as we know, indi-

vidual and joint chance constraints for GP and SP problems

have not been investigated in the literature for power

allocation in wireless networks. Individual and joint chance

constraints for the constraints in (2) can be formulated

respectively as [11]

Pn

X

i2Ik
ciðnÞ

Ym

j¼1

x
dij
j � 1

( )
� 1� a; k 2 f1; . . .;Kg ð3Þ

and

Pn

X

i2Ik
ciðnÞ

Ym

j¼1

x
dij
j � 1; k 2 f1; . . .;Kg

( )
� 1� a ð4Þ

where we assume that each input parameter ðciðnÞÞ for all
i 2 Ik, k 2 K behaves as a random variable which is dis-

tributed according to a certain probability distribution

function. Notice that each chance constraint (3), for each

k 2 K, ensures that at least ð1� aÞ percentage of the

uncertain constraints must be satisfied separately where a is
an input parameter chosen arbitrarily from the interval

[0; 0.5). Whereas the joint chance constraint (4) ensures

that ð1� aÞ percentage of the constraints must be satisfied

according to a joint probability distribution function.

This paper is organized as follows. In Sect. 2, we pre-

sent and discuss some related works which are closer to our

power allocation problem. We also discuss a few relevant

works related to probabilistic individual and joint chance

constraints when applied to GP problems. Next, in Sect. 3,

we present two non-linear optimization problems for power
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allocation in 5 G wireless networks and explain how they

can be transformed into equivalent GP models. Subse-

quently, we propose individual and joint chance constraints

for each GP model and derive its equivalent deterministic

formulation. Next, in Sect. 4, we present and explain the

sequential approximation methods used to solve the GP

models involving joint probabilistic constraints and also for

solving the approximated GP models that allow computing

lower bounds for the SP problem. In this section, we also

present GP models using tangent piece-wise linear func-

tions that we use to calculate lower and upper bounds for

the two non-linear optimization problems. Subsequently, in

Sect. 5, we conduct substantial numerical experiments and

compare all the proposed models and algorithms. Finally,

Sect. 6 concludes the paper.

2 Related work

Interference is a major problem in wireless networks

affecting the broadcast nature of radio transmission chan-

nels. It affects data rate metrics including user signal-to-

interference noise ratio as well as the maximum achievable

capacity of the networks. In particular, in communication

systems where users transmit in frequency bands that are

non-orthogonal, it is significantly harder to deal with the

interference problem. A common strategy that allows

minimizing it consists of handling efficiently the amount of

power to be assigned to different users. Unfortunately,

several service metrics related to the interference are non-

linear functions of SINR which is a non-linear and non-

convex function of power. As a consequence, the arising

power control optimization problems are difficult to solve

optimally since they belong to the complexity class of NP-

hard problems. However, some of these problems can be

transformed into GP problems, and hence they can be

convexified.

Some recently published papers dealing with power

allocation problems in wireless networks where the geo-

metric programming approach is utilized can be consulted

for instance in [10, 12–17]. More general works can be

found in references [18–23]. For the sake of brevity, we

describe a few of them where the GP approach was taken

into account for power allocation problems in wireless

networks. In [10], the authors consider a resource alloca-

tion problem which is formulated as a non-convex problem

that allows connecting a set of users to a cloud radio access

network structure. To solve the problem, the authors pro-

pose an iterative algorithm that requires applying different

transformations and convexification techniques and solving

a sequence of GP problems with a sequential convex

approximation method. By simulation results, they show

that their proposed algorithm allows for increasing the total

throughput of the network. Similarly in [12], the authors

propose a novel framework for 5 G and beyond (5 G?)

heterogeneous wireless networks which require the access

of a technology referred to in the literature as power

domain non-orthogonal multiple access (PD-NOMA). The

main goal of their work is to maximize the total network

profit under some practical technological network con-

straints in addition to power maximum limits, and isolation

of the virtualized wireless network. They formulate the

problem as a mixed integer non-linear optimization prob-

lem. To solve the model, they propose a practical approach

with reduced computational complexity that consists of

solving an alternating method where the optimization

problem is broken down into three sub-problems. The latter

is achieved by using the sequential convex approximation

method, the GP approach, and a mesh adaptive direct

search method. Their numerical experiments reveal that the

proposed approach can improve the overall network profit.

Also, in [15] the authors consider a resource allocation

problem for uplink non-orthogonal multiple access net-

works for health and public safety applications. The

authors apply a chance-constrained robust optimization

approach leading to a joint resource allocation problem that

allows minimizing user transmit power subject to rate and

outage constraints. Since their resulting non-linear problem

is non-convex, they apply variable relaxation and com-

plementary geometric programming approaches and

develop a two-step iterative algorithm based on successive

convex approximations. By simulation results, the authors

demonstrate that their proposed algorithm outperforms the

traditional orthogonal multiple access transmission

schemes in terms of user transmit power and overall system

density using fewer sub-carriers. Finally, we mention the

work proposed by [24] where the authors present several

power allocation models that can be equivalently written as

GP problems. Their examples include maximizing the total

system throughput or the worst user throughput, subject to

the quality of service constraints, delay constraints on data

rates, and outage probabilities.

As can be observed from the literature, several relevant

problems related to future wireless networks utilized the

GP approach to solve specialized resource allocation

problems. However, we notice that there have been no

attempts yet to include stochastic individual or joint chance

constraints in these types of problems to handle efficiently

the uncertainty of the input parameters. The chance-con-

strained approach allows imposing a probability of occur-

rence for some or all of the constraints of a mathematical

programming problem. This means that some of the con-

straints will be satisfied, at least for a given percentage of

the occurrences of each random variable. Probabilistic

constraints can be considered either separately or jointly.

Notice that the stochastic programming framework is a
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relevant approach in the literature and is frequently con-

sidered in optimization problems. It allows for obtaining

optimal solutions while taking into account the uncertainty

of the input parameters of a mathematical programming

problem [25–33]. In particular, the authors in [34, 35] show

that the probabilistic constraint (3) can be equivalently

written employing two deterministic constraints involving

posynomials and slack variables. To the best of our

knowledge, there are only a few works in the literature

including stochastic GP problems subject to joint proba-

bilistic constraints. In [11], the authors impose joint prob-

abilistic constraints on a generic GP problem and assume

that the input stochastic parameters are normally dis-

tributed and independent of each other. They approximate

the problem by using piece-wise linear functions which

allow transforming the resulting problem into an equivalent

convex geometric program. They also prove that their

approximation model allows obtaining lower bounds for

the original problem. Finally, they design a sequential

convex optimization algorithm that allows obtaining upper

bounds for the original problem too. Similarly, the authors

in [36] discuss joint rectangular probabilistic constrained

GPs. For this purpose, they assume that the input random

parameters are elliptically distributed and pairwise inde-

pendent. The authors obtain a non-convex reformulation of

the joint rectangular chance-constrained problem and pro-

pose convex approximations using variable transformation

and piece-wise linear functions. Finally, they provide a

theoretical bound for the number of segments in the worst-

case scenario and show by numerical experiments that their

approximations are asymptotically tight.

A few other recently published works dealing with

resource allocation of power in wireless networks where

the approaches proposed in this paper could be applied as

part of future research can be briefly described as follows.

In [43], the authors propose a dynamic optimization model

to maximize the total uplink and/or downlink energy effi-

ciency while satisfying quality of service constraints using

as a viable solution the Mobile Edge Computing (MEC)

paradigm to satisfy the growing demand for broadband for

the next generation heterogeneous systems. The authors

divide the optimization problem into two separate sub-

problems, a computational carrier scheduling one, and a

resource allocation problem. In particular, they propose a

sub-gradient method for the computational resource allo-

cation and a successive convex approximation together

with a dual decomposition method. Their simulation results

show considerable improvements for various traffic models

guaranteeing fairness requirements. It also improved the

total throughput for mobile computing services. Similarly,

in [44] the authors present a deep learning-based mobility

robustness optimization solution that learns the required

parameter values for the mobility pattern for self-

organizing networks. Their simulation experiments show

that the function of mobility robustness optimization not

only learns to optimize its performance but also it learns

how to distribute the excess load of the network. Finally,

they prove that the solution minimizes the number of

unsatisfied users guaranteeing a more balanced network.

Finally, in reference [45], the authors consider a dynamic

optimization model to minimize the total energy con-

sumption of fifth-generation (5 G) heterogeneous networks

while providing the required coverage and capacity. This is

achieved by optimizing carrier allocation and power uti-

lization. They do also propose a multi-hop back-hauling

strategy to effectively use the existing infrastructure of

small-cell networks for simultaneous transmissions. Their

numerical results demonstrated considerable power savings

for different traffic models. They further show that energy

efficiency and system data rates can be significantly

improved.

3 Mathematical formulations

In this section, first, we present the two non-linear opti-

mization problems. Then, for each one of them, we derive

equivalent GP formulations. In particular, for the second

one, we obtain an equivalent SP formulation. Thus, we

derive an approximated GP model that allows obtaining

lower bounds for it. Subsequently, we impose individual

and joint chance constraints on each GP model obtained

and derive for each one of them an equivalent deterministic

GP formulation.

3.1 Maximizing the worst user signal
to interference noise ratio

The first model we consider allows maximizing the worst

user signal-to-interference noise ratio for a MaMIMO

system where each receiver has perfect channel state

information [37]. Hereafter, we assume that the MaMIMO

network is located inside a single cell area and it is com-

posed of a set of K ¼ f1; . . .;Kg users and a unique base

station (BS). We also assume that each user is using only

one antenna to receive the data from the BS which is

equipped with a predefined number of antennas T. We

formulate the optimization problem as

ðM1Þ : max
fp2RK

þþg
min
fi2Kg

pi j gHi gi j2P
j2K;ðj6¼iÞ pj j gHi gj j2 þ j ri j2

( )

ð5Þ

s.t. Pmin � pi �Pmax; 8i 2 K ð6Þ
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where p ¼ ðpiÞ denotes the amount of power to be assigned

for each user i 2 K. The input parameters gi 2 CT�1, gHi 2
C1�T and ri denotes the beam domain channel vector

associated to user i 2 K, its Hermitian transpose and

Additive White Gaussian Noise (AWGN), respectively.

The AWGN is assumed to behave according to an inde-

pendent complex Gaussian distribution function with zero

mean and unit variance (ri � CN ð0; 1Þ). Finally, we

assume that each component of each vector gi, i 2 K is a

complex number generated according to a quasi-static

independent and identically distributed Rayleigh fading

channel. Notice that from the solution of model ðM1Þ, a
power allocation mechanism can be designed by simply

using the power allocation vector obtained from the model.

Similarly, the worst user SINR can be easily obtained from

the value of the objective function since we use a unique

variable for all users in K. This objective function value

will coincide with the user or users having the maximum

worst SINR.

In ðM1Þ, the objective function (5) denotes the worst

user SINR [38, 39]. Whilst the constraints (6) ensure that

each power variable is greater than or equal to Pmin and less

than or equal to Pmax. Notice that by introducing an addi-

tional variable t and defining the parameters aij ¼j gHi gj j2
j gHi gi j�2 [ 0 and bi ¼j r2i jj gHi gi j�2 [ 0 for all i; j 2 K,

we can write ðM1Þ equivalently as

min
fðp;tÞ2RKþ1

þþ g
t�1

ð7Þ

s.t.
X

j2K;ðj 6¼iÞ
aijpjp

�1
i t þ bip

�1
i t� 1; 8i 2 K

Pmin � pi �Pmax; 8i 2 K

ð8Þ

We note that the coefficients aij and bi in (8) for all i; j 2 K,

may not be known precisely. Thus, we suppose that each

one of them is normally distributed and independent of the

other, i.e., aijðnÞ�N ð�aij; r2aijÞ and biðnÞ�N ð �bi; r2biÞ. This
allows replacing the deterministic constraints in (8) with

the following individual chance constraints

Pn

X

j2K;ðj 6¼iÞ
aijðnÞpjp�1

i t þ biðnÞp�1
i t� 1

8
<

:

9
=

;

�ð1� aÞ; 8i 2 K

ð9Þ

According to [34], the constraints (9) can be written in

equivalent deterministic form as

X

j2K;ðj6¼iÞ
�aijpjp

�1
i t þ �bip

�1
i t

þ /�1ð1� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j2K;ðj 6¼iÞ
r2aijp

2
j p

�2
i t2 þ r2bip

�2
i t2

s
8
<

:

9
=

;

� 1; 8i 2 K

ð10Þ

where /�1ð1� aÞ is the quantile of the standard normal

distribution function N ð0; 1Þ. The parameter a can take

values in the interval a 2 ½0; 0:5Þ. Notice that the con-

straints (10) are generalized posynomial constraints. Thus,

they can be transformed into standard GP format. The latter

can be achieved by introducing additional variables hi [ 0

for all i 2 K. This allows imposing an upper bound on each

term inside the root square
X

j2K;ðj 6¼iÞ
r2aijp

2
j p

�2
i t2 þ r2bip

�2
i t2 � h2i ; 8i 2 K ð11Þ

which in turn allows obtaining the equivalent set of

constraints
X

j2K;ðj6¼iÞ
�aijpjp

�1
i t þ �bip

�1
i t þ /�1ð1� aÞhi � 1; 8i 2 K

ð12Þ
X

j2K;ðj6¼iÞ
r2aijp

2
j p

�2
i t2h�2

i þ r2bip
�2
i t2h�2

i � 1; 8i 2 K ð13Þ

Notice that the constraints (12)-(13) prove that the resulting

problem is a GP problem. Consequently, we can obtain the

global optimal solution using individual chance constraints

by solving the following GP model

ðIM1Þ : min
fðp;tÞ2RKþ1

þþ g
t�1

s.t.
X

j2K;ðj 6¼iÞ
�aijpjp

�1
i t þ �bip

�1
i tþ

/�1ð1� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j2K;ðj6¼iÞ
r2aijp

2
j p

�2
i t2 þ r2bip

�2
i t2

s
8
<

:

9
=

;� 1;

8i 2 K

Pmin � pi �Pmax; 8i 2 K

Similarly, we can replace the deterministic constraints (8)

by the following joint probabilistic constraints

Pn

X

j2K;ðj 6¼iÞ
aijðnÞpjp�1

i t þ biðnÞp�1
i t� 1; 8i 2 K

8
<

:

9
=

;

�ð1� aÞ

ð14Þ

As these constraints are equivalent, we have
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Y

i2K
Pn

X

j2K;ðj 6¼iÞ
aijðnÞpjp�1

i t þ biðnÞp�1
i t� 1

0
@

1
A

�ð1� aÞ

ð15Þ

Next, by introducing auxiliary variables yi 2 Rþþ for all

i 2 K, we get the following equivalent deterministic GP

problem using joint chance constraints [11, 34, 35]

ðJM1Þ : min
fðp;t;yÞ2R2Kþ1

þþ g
t�1

s.t.
X

j2K;ðj6¼iÞ
�aijpjp

�1
i t þ �bip

�1
i tþ

/�1ðyiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j2K;ðj 6¼iÞ
r2aijp

2
j p

�2
i t2 þ r2bip

�2
i t2

s
8
<

:

9
=

;

� 1;

8i 2 K

ð16Þ
Y

i2K
yi �ð1� aÞ ð17Þ

0� yi � 1; 8i 2 K

Pmin � pi �Pmax; 8i 2 K
ð18Þ

Notice that the quantile function now depends on the

variable yi for all i 2 K. In the next section, we obtain

lower and upper bounds for ðJM1Þ using tangent piece-wise
linear functions as well as a sequential approximation

algorithm [11]. This allows reporting an interval where the

global optimal solution lies.

3.2 Maximizing the total capacity of the wireless
network

The second model we consider maximizes the total

capacity of the network in presence of signal-to-interfer-

ence noise ratio for a MaMIMO system where each

receiver has a perfect channel state information [37]. In this

case, the non-linear optimization problem we consider can

be stated as

ðM2Þ : max
fp2RK

þþg

X

i2K
log2 1þ pi j gHi gi j2P

j 2 K

ðj 6¼ iÞ

pj j gHi gj j2 þ j ri j2

0
BBBB@

1
CCCCA

s.t. Pmin � pi �Pmax; 8i 2 K

ð19Þ

Similarly as for ðM1Þ, we redefine the nonnegative

parameters aij ¼j gHi gj j2 [ 0 and bi ¼j ri j2 [ 0 for all

i; j 2 K.

Claim 1 ðM2Þ can be equivalently written as a signomial

programming problem.

Proof First, notice that

X

i2K
log2 1þ pi j gHi gi j2P

j 2 K

ðj 6¼ iÞ

pj j gHi gj j2 þ j ri j2

0
BBBB@

1
CCCCA

¼ log2

Y

i2K
1þ pi j gHi gi j2P

j 2 K

ðj 6¼ iÞ

pj j gHi gj j2 þ j ri j2

0

BBBB@

1

CCCCA

0

BBBB@

1

CCCCA

Next, we introduce a lower bound variable ti for each i 2 K

in order to obtain an optimal solution for ðM2Þ by solving

the following equivalent problem

max
fðp;tÞ2R2K

þþg

Y

i2K
ti

s.t. ti � 1þ aiipiP
j2K;ðj 6¼iÞ aijpj þ bi

; 8i 2 K

Pmin � pi �Pmax; 8i 2 K

ð20Þ

In particular, we note that the constraints (20) can be

written as
P

j2K;ðj 6¼iÞ aijpjti þ bitiP
j2K;ðj 6¼iÞ aijpj þ bi þ aiipi

� 1; 8i 2 K ð21Þ

or as
X

j2K;ðj 6¼iÞ
aijb

�1
i pjti þ ti �

X

j2K
aijb

�1
i pj � 1 8i 2 K ð22Þ

Notice that the left-hand side of constraint (22) has nega-

tive coefficients which show that ðM2Þ leads to a signomial

programming problem. h

Because of Claim 1, we see that finding a global optimal

solution for ðM2Þ is significantly harder than solving a GP

problem. However, we can still approximate each posyn-

omial function in the denominator of the constraints (21)

with a monomial function to obtain a lower bound for ðM2Þ
[8]. This can be achieved by using the arithmetic–geo-

metric mean inequality. Thus, we have the following

proposition.

Proposition 1 For fixed and nonnegative parameter val-

ues dij and bi for all i; j 2 K such that
P

j2K dij þ bi ¼ 1,

for all i 2 K, the following GP model gives a lower bound

for ðM2Þ
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Qðd; bÞ ¼ max
fðp;tÞ2R2K

þþg

Y

i2K
ti ð23Þ

s.t.
Y

l2K
p�dil
l

X

j2K;ðj6¼iÞ
cijpjti þ diti

0

@

1

A� 1; 8i 2 K

Pmin � pi �Pmax; 8i 2 K

ð24Þ

where

cil ¼ ail
Y

j2K

aij
dij

� ��dij

ðbib�1
i Þ�bi ; 8i; l 2 K; ði 6¼ lÞ

and

di ¼ bi
Y

j2K

aij
dij

� ��dij

ðbib�1
i Þ�bi ; 8i 2 K

Proof Notice that by applying the arithmetic–geometric

mean inequality we have that

X

j2K
aijpj þ bi �

Y

j2K

aijpj
dij

� �dij

bib
�1
i

� �bi ; 8i 2 K ð25Þ

for values of dij � 0, bi � 0 for all i; j 2 K with respect toP
j2K dij þ bi ¼ 1 for all i 2 K. We do also have

P
j2K;ðj6¼iÞ aijpjti þ bitiP

j2K aijpj þ bi
�

P
j2K;ðj 6¼iÞ aijpjti þ biti

Q
j2K

aijpj
dij

� �dij
bib

�1
i

� �bi

� 1; 8i 2 K

ð26Þ

Next, by performing simple algebraic manipulations in the

latter inequalities we obtain

Y

l2K
p�dil
l

X

j2K;ðj6¼iÞ
cijpjti þ diti

0
@

1
A� 1; 8i 2 K; ð27Þ

Finally, a lower bound for ðM2Þ can be obtained by cal-

culating the logarithm of the objective function in (23).

Thus, concluding the proof. h

Notice that the inequalities (25) have zero gaps when all

the involved terms in the sum and the product are equal.

Furthermore, we observe from Proposition 1 that we can

adjust the parameter dij and bi for all i; j 2 K to tighten the

lower bound obtained with Qðd; bÞ. More precisely, we see

that the optimal values for the parameters dij and bi for all

i; j 2 K can be obtained by solving the following opti-

mization problem

Qðd�; b�Þ ¼ max
fðd;bÞ2RK2þK

þ g
Qðd; bÞ ð28Þ

s.t.
X

j2K
dij þ bi ¼ 1; 8i 2 K ð29Þ

Unfortunately, finding the global optimal solution of

problem (28)-(29) is not trivial as it is a non-convex

problem. However, in an attempt to find its global optimal

solution, we can still solve the problem with an iterative

algorithm referred to as the single condensation method in

the literature which is essentially a sequential approxima-

tion method [24]. In general, with this method, we can

obtain a locally optimal solution to the problem. However,

a common strategy may consist of generating different

initial solutions for model (28)-(29) to increase the chances

to obtain the global optimal solution for model ðM2Þ. In the

next section, we explain how we apply this method to

obtain a lower bound for ðM2Þ.
Notice that analogously as for the model ðM1Þ, we can

assume that the input parameters cij and di for all i; j 2 K in

model Qðd; bÞ are random variables normally and inde-

pendently distributed, i.e., cijðnÞ�N ð�cij; r2cijÞ and

diðnÞ�N ð �di; r2diÞ, respectively. This allows writing the

following stochastic version of Qðd; bÞ with individual

chance constraints

ðIM2Þ : max
fðp;tÞ2R2K

þþg

Y

i2K
ti

s.t.
Y

l2K
p�dil
l

X

j2K;ðj 6¼iÞ
�cijpjtiþ �diti

0
@

1
A

þ/�1ð1�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

l2K
p�2dil
l

X

j2K;ðj 6¼iÞ
r2cijp

2
j t

2
i þr2di t

2
i

0
@

1
A

vuuut

8
><

>:

9
>=

>;

�1;

8i2K

Pmin�pi�Pmax; 8i2K

ð30Þ

Observe that model ðIM2Þ is a GP problem and then, it can

be solved optimally. Finally, we can also arrive at the

following stochastic optimization problem with joint

chance constraints
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ðJM2Þ : max
fðp;t;yÞ2R3K

þþg

Y

i2K
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Y

l2K
p�dil
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X
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� 1;

8i 2 K
Y

i2K
yi �ð1� aÞ

0� yi � 1; 8i 2 K

Pmin � pi �Pmax; 8i 2 K

ð31Þ

Similarly as for ðJM1Þ, in the next section, we compute

bounds for ðJM2Þ using piece-wise linearization and

sequential approximation methods.

4 Piece-wise linear and sequential
approximation methods

In this section, we present two GP models using a tangent

piece-wise linear approximation method for computing

lower and upper bounds for ðJM1Þ and ðJM2Þ, respectively.
Then, we present a sequential approximation algorithm to

obtain upper and lower bounds for ðJM1Þ and ðJM2Þ,
respectively. Finally, we present a single condensed

sequential approximation method used to compute lower

bounds for model Qðd; bÞ (See proposition 1). We mention

that in order to solve the models ðIM2Þ and ðJM2Þ, we use

the best parameter values ðd�; b�Þ obtained with the single

condensation method.

4.1 GP models obtained using tangent piece-
wise linear functions

According to Theorem 1 in [11], we can compute lower

and upper bounds for ðJM1Þ and ðJM2Þ by solving the

following GP models

ðJM1ÞLb : min
fðp;t;yÞ2R2Kþ1

þþ g
t�1

s.t.
X

j2K;ðj 6¼iÞ
�aijpjp

�1
i t þ �bip

�1
i t

þ e
fs
2y

gs
2

i

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j2K;ðj 6¼iÞ
r2aijp

2
j p

�2
i t2 þ r2bip

�2
i t2

s
8
<

:

9
=

;� 1;

8i 2 K; s 2 S
Y

i2K
yi �ð1� aÞ

0� yi � 1; 8i 2 K

Pmin � pi �Pmax; 8i 2 K

ð32Þ

and

ðJM2ÞUb : max
fðp;t;yÞ2R3K

þþg

Y

i2K
ti

s.t.
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ð33Þ

respectively where the set S ¼ f1; . . .; Sg corresponds to an
index set associated with a set of linear functions. Notice

that to obtain a convex reformulation of the constraints

(16), one can use the standard variable transformations

xi ¼ logðyiÞ, ri ¼ logðtiÞ and hi ¼ logðpiÞ for each i 2 K.

Thus, the constraints (16) can be equivalently written as
X

j2K;ðj 6¼iÞ
ehj�hiþrþlogð �aijÞ þ e�hiþrþlogð �biÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 logð/
�1ðexi ÞÞ

X

j2K;ðj 6¼iÞ
e
2hj�2hiþ2rþlogðr2aij Þ þ e

�2hiþ2rþlogðr2
bi
Þ

0
@

1
A

vuuut � 1;

8i 2 K

ð34Þ
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Notice that we can replace the terms e
fs
2y

gs
2

i

� �
for all s 2 S,

i 2 K in ðJM1ÞLb and ðJM2ÞUb by tangent linear functions.

However, this can be performed once the log transforma-

tions have already been applied to convexify the problem

[8]. This leads to the constraints (34). Thus, we approxi-

mate the function 2 logð/�1ðexiÞÞ�FsðxiÞ ¼ fsxi þ gs for

all s 2 S; i 2 K. For this purpose, one can choose tangent

lines of 2 logð/�1ðexiÞÞ at different points in

½logð1� aÞ; 0Þ, say v1; . . .; vS. Then, for each s 2 S, we

have that

gs ¼
2evsð/�1Þð1ÞðevsÞ

/�1ðevsÞ

and

fs ¼ �gsvs þ 2 logð/�1ðevsÞÞ

This is possible to achieve since the function

2 logð/�1ðexiÞÞ is convex at the required interval. Conse-

quently, we have that the feasible sets of ðJM1Þ and ðJM2Þ
are contained in the feasible sets of ðJM1ÞLb and ðJM2ÞUb,
respectively. Finally, by reversing the log transformations,

one can easily verify that /�1ðyiÞ� e
fs
2y

gs
2

i for all s 2 S, and

i 2 K.

4.2 Sequential approximation methods

Now we explain the sequential approximation method used

to compute upper and lower bounds for ðJM1Þ and ðJM2Þ,
respectively [11]. For the sake of brevity, we only explain

the method when applied to ðJM1Þ. The idea is simple and

consists of fixing the variable y ¼ yn at iteration n while

satisfying the feasibility of the constraints (17)-(18). This

allows solving the GP problem

ðJM1Þ ynð Þ : min
fðp;tÞ2RKþ1

þþ g
t�1

s.t.
X

j2K;ðj 6¼iÞ
�aijpjp
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þ /�1ðyni Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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r2aij p
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j p

�2
i t2 þ r2bip

�2
i t2

s
8
<

:

9
=

;

� 1; 8i 2 K

Pmin � pi �Pmax; 8i 2 K

Let ðpn; tn; hn; vnÞ denote an optimal solution of ðJM1Þ ynð Þ,
an optimal solution of the Lagrangian dual variable h and

the optimal objective function value, respectively [11]. We

then compute the search direction parameters

ui ¼ hni ð/
�1Þ

0
yni
� �
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for each i 2 K and update the y variable by solving the

following GP problem

ðJM1Þðpn; tnÞ : min
fy2RK
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where /ð�Þ denotes the normal cumulative distribution

function. The iterative sequential method is depicted in

Algorithm 1
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Finally, we present a single condensed sequential

approximation method used to compute lower bounds for

Qðd; bÞ according to [24]. This procedure is depicted in

Algorithm 2 as follows. The procedure is simple and starts

by initializing the input parameter values d and b while

ensuring that the conditions (29) are satisfied. Then, we

iterative until the difference between the objective function

values obtained with model Qðd; bÞ in two consecutive

iterations is less than or equal to a small positive value �.

Notice that at each iteration, the input parameters d and b
are updated according to the monomials approximations

(25). Finally, the best solution obtained for Q� ¼ Qðd�; b�Þ
is returned by the algorithm together with the optimal

values of parameters d� and b�. Recall that to solve models

ðIM2Þ and ðJM2Þ, we use these parameter values. Notice

that Algorithm 2 can be sensitive to the initial values of d
and b. Consequently, to increase the chances of obtaining a

global optimal solution for Q ¼ Qðd; bÞ, an intuitive

approach is to run Algorithm 2 several times by using

different initial values for the parameter d and b. Although
this approach does not guarantee finding the global optimal

solution to the problem, we can still measure the difference

between the stochastic and deterministic models derived

from Qðd�; b�Þ.

5 Numerical experiments

In this section, we conduct substantial numerical experi-

ments to compare all the proposed models and the

sequential approximation algorithms. For this purpose, we

implement python codes using CVXPY version 1.1.12

interfaced with Mosek solver version 9.2.42 [40–42]. The

numerical experiments were carried out on an Intel(R) 64

bits core (TM) with 2.50 GHz and 12GB of RAM under

Windows 10. We present numerical results for all the

proposed models derived for ðM1Þ and ðM2Þ where the

objectives are to maximize the worst user signal-to-inter-

ference noise ratio and the total capacity of the network,

respectively. In particular, for ðM1Þ, we consider instances

dimensions ranging from K ¼ 10 to K ¼ 50 users.

Whereas for ðM2Þ, we generate instances ranging from K ¼
10 to K ¼ 22 users. We notice that the objective functions

of both models ðM1Þ and ðM2Þ deteriorate significantly

when the number of users increases. This is clear since the

more users the network has, the higher the interference

generated. In particular, for ðM2Þ we did not generate

instances with more than K ¼ 22 users because doing this

leads to infeasible solutions. We arbitrarily set the input

parameters values to Pmin ¼ 0:1, Pmax ¼ 0:5 and generate
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the complex vectors gi 2 CT�1, and gHi 2 C1�T for each

i 2 K according to an independent complex Gaussian dis-

tribution function with zero mean and variance equal to

one. Then, we multiply each of these vectors by a factor of

2.5. Finally, the parameter ri for each i 2 K is also gen-

erated according to an independent complex Gaussian

distribution function with zero mean and variance equal to

one. The parameters aij and bi are calculated as explained

in Sect. 3. Without loss of generality, we assume in our

stochastic GP models that �aij ¼ aij and �bi ¼ bi for all i; j 2
K coincide with the means of the random variables. In all

our experiments, we vary the parameter values of

a 2 f0:1; 0:25g, and rbi ; raij 2 f10�3; 10�2; 10�1; 1; 2g for

all i; j 2 K. In order to solve the GP models ðJM1ÞLb and

ðJM2ÞUb, we consider the set S ¼ f5; 10; 20g to reference

the number of tangent linear segments. Finally, the

parameter values in Algorithms 1 and 2 are set to e ¼ 10�4,

MaxIter ¼ 50, s ¼ 0:5, yi ¼ 0:9999999 for all i 2 K as

initial values, and � ¼ 10�6, MaxIt ¼ 1000, respectively.

Notice that the initial values of yi for all i 2 K give a value

of 5.199337582290661 for the inverse of the standard

normal cumulative distribution function. Thus, avoiding

the value of 1 which gives infinite for this function.

Moreover, these values satisfy all the required constraints

of the GP models of Algorithm 1.

5.1 Worst user SINR

In Table 1 of Annex A of the supplementary material, we

present average numerical results for the GP models ðM1Þ,
ðIM1Þ, and ðJM1Þ over 20 samples. More precisely, in

column 1 we present the number of users of each particular

instance. Whilst in columns 2–5, 6–9 and 10–13 we present

the optimal objective function value, the CPU time in

seconds required by Mosek and CVXPY solvers and the

standard deviation obtained with the models ðM1Þ, ðIM1Þ
and ðJM1Þ, respectively. In particular, model ðJM1Þ is

solved with Algorithm 1. Consequently, in column 14, we

present the number of iterations required by Algorithm 1 to

obtain the solution.

From Table 1, first, we observe that the optimal objec-

tive function values obtained with model ðJM1Þ are larger

than those reported for ðIM1Þ. In turn, the objective values

obtained with ðIM1Þ are larger than the ones obtained with

ðM1Þ. Next, we see that these differences increase when

using higher values of r and a. Notice that by using higher

values for the parameters r and a, we can obtain more

conservative solutions to the problem. Next, we observe

that the CPU time required by Mosek solver is significantly

smaller than the one reported for CVXPY. This can be

explained by the parser property of CVXPY solver which is

required to convexify the GP problem [8]. Next, we

observe that the standard deviation values are large and

nearly the same for all the instances. This fact gives an idea

of how sensitive the solutions obtained with the GP models

are depending on the input data. Finally, we observe that

the number of iterations is on average less than 22 which

evidences the effectiveness achieved by the Algorithm 1.

In Tables 2, 3, 4, and 5 (See Annex A), we report

numerical results obtained with model ðJM1Þ using ran-

domly generated instances for different values of a and r.
We solve the same instances in these tables. The main

purpose of these tables is to show how tight the GP models

using tangent piece-wise linear functions are when com-

pared to the sequential approximation Algorithm 1. The

legend of these tables is the same and is as follows. In

column 1, we present the number of users considered in the

network. Next, in columns 2–6 we present the number of

tangent linear segments used in model ðJM1ÞLb and its

number of constraints, its optimal objective function value,

and the CPU times in seconds obtained with Mosek and

CVXPY solvers, respectively. From columns 7 to 10, we

present the optimal objective function value of ðJM1Þ
obtained with Algorithm 1, the CPU times in seconds

required by Mosek and CVXPY solvers, and the number of

iterations required by Algorithm 1 to solve ðJM1Þ. Finally,
in column 11 we respectively report the gaps that we

compute by
vððJM1ÞÞ�vððJM1ÞLbÞ

vððJM1ÞÞ

h i
� 100 where vð�Þ denotes the

optimal objective function value of the respective model.

Notice that we report these gap values for a different

number of tangent linear segments used in model ðJM1ÞLb.
From Tables 2, 3, 4, and 5, we mainly observe that the

objective function values obtained with ðJM1Þ are slightly

higher than those obtained with ðJM1ÞLb. In particular, we

see that the gap values reported in column 11 in each of

these tables become smaller when using more tangent

linear functions in ðJM1ÞLb. Similarly, we observe that the

gap values obtained with r ¼ 0:01 are smaller than those

obtained when using r ¼ 0:1. Next, we also see that the

optimal objective function values reported in Tables 4 and

5 for both models ðJM1ÞLb and ðJM1Þ are larger than in

Tables 2 and 3, respectively. We notice that this is a con-

sequence of using a larger value of parameter a which is

equivalent to imposing a stronger probabilistic constraint in

each model. As a consequence, we obtain more conserva-

tive solutions with each model.

Another relevant observation is that the CPU times

reported in columns 5 and 6, and in columns 8 and 9 for all

the instances in each of these tables are significantly higher

for CVXPY than for the Mosek solver. Recall that the CPU

time of CVXPY includes the CPU time of the Mosek

solver. This shows that CVXPY spends a considerable

amount of time transforming the problem from GP format
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to a convex problem that is solvable by the Mosek solver.

Finally, we observe that the number of iterations required

by Algorithm 1 to solve all the instances remains nearly the

same in Tables 2, 3, 4, and 5.

To give more insights regarding the conservatism level

achieved with the solutions obtained with models ðM1Þ,
ðIM1Þ, ðJM1Þ and ðJM1ÞLb, we report in Figs. 1-4 the

number of violated constraints and amount of constraint

violations for an instance with K ¼ 30 users while using

parameter values of a ¼ 0:25 and r ¼ f0:1; 1g. More

precisely, we save the optimal solutions obtained with the

models ðM1Þ, ðIM1Þ, ðJM1Þ, and ðJM1ÞLb for a particular

instance randomly generated. And then, we randomly

generate another 100 instances (scenarios) and count the

number of violated constraints in (8) and their violated

amounts obtained by replacing the saved solutions.

From Figs. 1 and 2, we mainly observe that the optimal

saved solution obtained with ðIM1Þ is more robust than the

one obtained with ðM1Þ in the sense that it allows obtaining

less violated constraints and a lower amount of violation.

Similarly, we observe that the optimal saved solution

obtained with ðJM1Þ using Algorithm 1 is more conserva-

tive than the one obtained with ðIM1Þ. Finally, we see that

the solution obtained with ðJM1ÞLb is less conservative than
the one obtained with ðJM1Þ using Algorithm 1. In con-

clusion, we see that the solution obtained with the joint

chance-constrained model ðJM1Þ is significantly more

robust than the ones obtained with the other models. In

Figs. 3 and 4, we observe similar trends as in Figs. 1 and 2.

Ultimately, we notice that the higher the value of parameter

r, the higher the level of robustness achieved with the

obtained solutions.

5.2 Maximum capacity

Now, we report numerical results for the second power

allocation problem which is aimed to maximize the total

capacity of the wireless network. In particular, in Table 6

(See annex B in the supplementary material), we report

numerical results for Qðd; bÞ. These results are obtained

with the condensed sequential approximation Algorithm 2.

In this table, we do also report numerical results for the

model ðIM2Þ. Recall that the latter model is solved using

the best values obtained for the parameters d and b when

solving Qðd; bÞ with Algorithm 2. In Table 6, column 1

shows the number of users of each instance. Columns 2 to 6

present the objective function value of Qðd; bÞ, the capacity
achieved which is computed by taking the logarithm of the

objective function value, the CPU time in seconds required

by the Mosek and CVXPY solvers to obtain the solutions

and the number of iterations required by Algorithm 2.

Columns 7–10 report the optimal objective function value

of model ðIM2Þ, its capacity which is again computed by

taking the logarithm of the objective value, and the CPU

times in seconds required by the Mosek and CVXPY sol-

vers, respectively. The instances are randomly generated

and solved for different input values for the parameters a
and r. From Table 6, first, we observe that the capacity

values decrease significantly when the number of users

increases. This is evident since the higher the number of

users, the higher the interference in the network. Next, we

also see that the CPU times required by CVXPY increase

considerably with the number of users. Similarly, the

number of iterations required by Algorithm 2 to converge

also increases with the number of users. Next, we observe

that the optimal objective function values obtained with

ðIM2Þ decrease when the parameter r increases. On the

opposite, these objective values increase with an increase

of parameter a. Finally, we observe that the CPU time

values required by CVXPY are significantly higher than

those required by the Mosek solver.

In Tables 7 and 8 in annex B, we present upper bounds

obtained with model ðJM2ÞUb and lower bounds obtained

with model ðJM2Þ while using the sequential approxima-

tion Algorithm 1 for given and fixed values of d and b. The
values of d and b are obtained by solving Qðd; bÞ with

Algorithm 2 for the instances in Table 6 of annex B. In

Tables 6, 7, and 8, we solve the same instances. In Tables 7

and 8, the legends are the same. In column 1, we present

the number of users of each instance. Next, in columns 2

and 3, we present the number of tangent linear segments

and constraints of model ðJM2ÞUb. Subsequently, in col-

umns 4, 5, and 6, we report the optimal objective function

values of ðJM2ÞUb and the CPU times in seconds required

by the Mosek and CVXPY solvers, respectively. Similarly,

in columns 7–10 we present the optimal objective function

values of model ðJM2Þ, the CPU times in seconds required

by the Mosek and CVXPY solvers, and the number of

Fig. 1 Number of violated constraints for each randomly generated

instance using K ¼ 30, a ¼ 0:25 and r ¼ 0:1
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iterations obtained when solving ðJM2Þ with Algorithm 1,

respectively. Finally, in column 11 we present gap values

which are computed by
v ðJM2ÞUbð Þ�vððJM2ÞÞ

vððJM2ÞÞ

	 

� 100 where

vð�Þ denotes the optimal objective function value of the

respective model. From Tables 7 and 8, we mainly observe

that the optimal objective function values obtained with

ðJM2ÞUb and ðJM2Þ get closer when using a higher number

of piece-wise linear segments (S ¼ 20). We further notice

that these objective values deteriorate when using lower

and higher values of a and r, respectively. Next, we see

that the objective function values decrease when more

users are present in the network. Notice that we do not

consider more than 22 users. Otherwise, we may obtain

infeasible solutions with negative capacity values. We also

observe that the CPU time values obtained with Algo-

rithm 1 are larger than those obtained with ðJM2ÞUb for all
the tested instances using less than S ¼ 20 linear segments.

For the remaining ones, we observe the opposite situation.

Finally, we see that the number of iterations required by

Algorithm 1 to solve all the instances is very stable. To

give more insights concerning the solutions obtained with

the condensed sequential approximation Algorithm 2, we

plot in Figs. 5 and 6, the optimal solutions and the number

of iterations obtained with Qðd; bÞ for K ¼ 10 and K ¼ 14

users while generating different initial input values for the

parameters d and b. The idea is to provide some empirical

evidence indicating that the solutions obtained with Algo-

rithm 2 are near the global optimal ones. In particular, in

Figs. 5 and 6 we randomly generate 100 and 20 initial

sample values for the parameters d and b, respectively. All
these values are generated while satisfying the conditions

imposed in problem (28)-(29). In Fig. 6, we only generate

20 samples for d and b since the CPU times required to

solve Qðd; bÞ with Algorithm 2 become larger for K ¼ 14

users. From Figs. 5 and 6, we see that it is not always

possible to obtain the same optimal solution when using

different initial samples for the parameters d and b. This
confirms that Algorithm 2 does not guarantee finding the

global optimal solution to the problem. It only allows

finding locally optimal solutions to the problem. However,

we also notice that a recurrent maximum value is attained

for many samples which might suggest that it is indeed the

global optimal solution. Regarding the number of itera-

tions, we do not observe a clear pattern as these values

oscillate within a large range of possible values.

Finally, to report some empirical evidence that we

observed when solving our instances regarding the slow

convergence of Algorithm 2, in Fig. 7 we plot 10 curves

with the optimal solutions obtained in each iteration during

10 runs of Algorithm 2 while using different initial values

for the parameters d and b. From Fig. 7, we mainly observe

that only after 100 iterations do we start finding better

objective function values for the problem. Also, we notice

that only for 3 out of 10 runs do we obtain the larger

Fig. 2 The total amount of constraint violation for each randomly

generated instance using K ¼ 30, a ¼ 0:25 and r ¼ 0:1

Fig. 3 Number of violated constraints for each randomly generated

instance using K ¼ 30, a ¼ 0:25 and r ¼ 1

Fig. 4 The total amount of constraint violation for each randomly

generated instance using K ¼ 30, a ¼ 0:25 and r ¼ 1
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objective function values which are above the value of 10.

Most of the remaining runs converge in less than 250

iterations and with a lower objective function value. This

explains the CPU time values reported in Table 6 for

Algorithm 2. To conclude, we cannot ensure that global

optimal solutions are obtained with Algorithm 2. However,

for a few small-size instances, we provide some empirical

evidence indicating that the solutions obtained are near-

optimal ones.

6 Conclusions

In this paper, we consider the problem of power allocation

for 5 G wireless networks using massive multiple input

multiple output technologies. We propose two non-linear

optimization models where the aims are to maximize the

worst user signal-to-interference noise ratio and the total

capacity of the network subject to power constraints. In

particular, our first model is transformed into an equivalent

geometric programming problem. Whereas the second one

is formulated as an equivalent signomial programming

problem. Since the latter problem is non-convex, we pro-

pose an approximated geometric model to compute lower

bounds. This is achieved by using the arithmetic–geometric

mean inequality. Subsequently, we derive stochastic for-

mulations for each geometric programming model to deal

with the uncertainty of wireless channels. More precisely,

we include individual and joint probabilistic constraints on

each GP model. Finally, we compute lower and upper

bounds by using sequential convex and piece-wise linear

methods. Substantial numerical experiments are conducted

to compare all the proposed models and algorithms. Our

numerical experiments indicate the following relevant

conclusions.

1. First, we conclude that the use of joint chance

constraints allows obtaining more conservative solu-

tions for the power allocation problems than using

individual chance constraints or using directly the

deterministic models.

2. Next, we observe that the sequential approximation

Algorithm 1 together with the piece-wise GP models

allows obtaining tight bounds while using joint chance

constraints. The latter is a crucial fact as it shows that

we can approximate the globally optimal solutions to

the problems in an efficient manner. Moreover, we

observe that this sequential method requires only a few

iterations to converge for most of the tested instances.

3. For the signomial problem, we mainly observe that the

condensed sequential approximation method requires a

significantly larger number of iterations to converge

than the other sequential method. Although, as shown

Fig. 5 Optimal solutions and the number of iterations obtained with

Algorithm 2 for 100 initial samples of parameters d and b using

K ¼ 10

Fig. 6 Optimal solutions and the number of iterations obtained with

Algorithm 2 for 20 initial samples of parameters d and b using

K ¼ 14

Fig. 7 Slow convergence of the condensed sequential approximation

method reporting optimal solutions and the number of iterations

obtained for an instance of K ¼ 16 users while using different initial

values of parameters d and b
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in the numerical results section, we can still use it with

different initial values for the required parameters to

improve the solutions obtained with the deterministic

model.

4. We observe that independently of the parameter values

obtained when solving the deterministic signomial

problem, we can still obtain tight bounds for the

stochastic models derived from it.

5. Finally, as part of future research, we remark that all

the modeling approaches and solution methods studied

in this paper can be further investigated and applied to

many other relevant problems related to resource

allocation in wireless networks. Ultimately, we believe

that novel algorithmic approaches including meta-

heuristics should also be part of future research,

especially for solving the signomial and stochastic

programming models.
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