
Intelligent Service Robotics (2021) 14:535–548
https://doi.org/10.1007/s11370-021-00379-2

ORIG INAL RESEARCH PAPER

Genetic fuzzy-basedmethod for training two independent robots to
perform a cooperative task

Andrew Barth1 · Yufeng Sun1 · Lin Zhang1 ·Ou Ma1

Received: 9 September 2020 / Accepted: 28 July 2021 / Published online: 9 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
When two skilled human workers cooperate on a task, such as moving a sofa through a tight doorway, they often infer
what needs to be done without explicit communication because they have learned cooperation skills from their prior work
or training. This paper extends that concept to a two-robot team. The robots are given the task to carry a large payload
through a narrow doorway while avoiding obstacles within the room. System dynamics and sensor noise were included in
the study. Each robot is independently controlled with the knowledge of the goal location, its own position, and the pose of
the payload. The decentralized control uses a Genetic Fuzzy System for each robot to learn its own decision-making skill
through a training process without a pre-planned motion trajectory. The introduction of a genetic algorithm adds efficiency
to the process of determining the shape of the fuzzy logic membership functions by using an evolutionary search algorithm
to tune each parameter in the fuzzy system simultaneously. The contribution of this paper is to illustrate how genetic training
can tune a simple, decentralized Fuzzy Logic System based on a given scenario and then be used, unaltered, for a scenario
beyond that for which it was trained. The extended scenarios introduce unknown obstacles, new sizes and mass properties
for the robots and payload, and random initial positions. The effectiveness of this approach for a 2D case is determined by
dynamic simulation with results starting at a 95% success rate for the baseline scenario and 84% for the scenario that was
extended furthest from how it was originally trained.

Keywords Collaborative robotics · Cooperative robot team · Decentralized control · Genetic Fuzzy system · Intelligent
robots · Multi-robot system

1 Introduction

Cooperative robotics (also known as collaborative robotics)
is a rapidly growing field of research. Robots that can work
with either humans or with other robots will greatly expand
the field of tasks that can be automated. With cooperation
comes increased complexity because the robots will have to
interact with human or robot teammates. Intelligent control
methods will aid in handling this new complexity. This paper

B Andrew Barth
barthal@mail.uc.edu

Yufeng Sun
sunyf@mail.uc.edu

Lin Zhang
linzhank@gmail.com

Ou Ma
maou@ucmail.uc.edu

1 University of Cincinnati, Cincinnati, USA

investigates the use of intelligent, decentralized control to
perform a two-robot payload carrying task.

A Fuzzy Logic System (FLS) is an intelligent control
technique that mimics human reasoning by replacing simple
binary classification with fuzzy classification which assigns
degrees of membership to each class. Lafta and Hassan [10],
Omrane et al. [17], and Singh and Thongam [22] have imple-
mented an FLS that was used in simulation to guide a mobile
robot around obstacles and to a destination. Each of these
implementations relied on manual tuning of the FLS param-
eters. As the complexity of the task increases, so will the
difficulty in selecting the FLS parameters that define the sys-
tem. A large collection of techniques has been developed
over the years to tune the parameters of traditional Propor-
tional Integral Derivative (PID) and slidingmode controllers,
and now, the same knowledge base must be developed for
tuning intelligent control designs. Faisal et al. [4] have com-
pared four methods of defining an FLS for mobile robot
control usingnaivemanual tuning,GeneticAlgorithms (GA),

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-021-00379-2&domain=pdf
http://orcid.org/0000-0001-8617-4922
http://orcid.org/0000-0003-2727-1997


536 Intelligent Service Robotics (2021) 14:535–548

Particle Swarm Optimization (PSO), and expert manual tun-
ing. The GA, and PSO techniques out-performed the naive
manual tuning method; however, the expert manual tuning
performed best out of the group. This indicates that while
computational techniques based on naturally occurring pro-
cesses have potential for success in defining FLS control
parameters, additional research is needed.

The inspiration for these nature-based techniques has
many sources. Hossain and Ferdous [7] used a Bacterial For-
aging Optimization technique to find the optimal path for
a mobile robot. Pandey and Parhi [18] used a Wind Driven
Optimization algorithm which attempts to mimic the move-
ment of air particles as the wind blows to equalize pressure
throughout the atmosphere. Ant ColonyOptimization (ACO)
algorithms attempt to mimic the collective behavior of ants.
Huang and Juang [8] have used ACO to develop an algorithm
capable of guiding a two-robot team in a wall-following pat-
tern. Castillo et al. [2] performed a comparison of ACO and
PSO to tune the FLS parameters and Juang et al. [9] have
implemented a hybrid ACO and PSO algorithm that seeks
to use the advantages of each to guide a two-robot team in
an object carrying task. Another method was developed by
Machado et al. [14]who used an attractor dynamics approach
to behavior generation to control a two robot team in a similar
object carrying task that included travel around unexpected
obstacles. Reinforcement learning is a computational tech-
nique that uses a reward incentive to train a system to produce
the desired outcome. This has been used by Lin et al. [12]
to train an algorithm based on bee colony behavior to per-
form a two-robot, object-carrying task. Genetic algorithms
utilize random processes and evolutionary selection to pro-
duce more successful results after each generation. A GA
similar in concept to that employed in this work has been
used by Martinez-Soto et al. [16] to tune an FLS used for
control of a single mobile robot.

In the previously cited works performing an object-
carrying task [8,9,12,14], the control architecture was based
on a leader-follower paradigm, where the leader makes the
path planning decisions for the robot team and the follower(s)
rely on the leader for direction. In a decentralized archi-
tecture, each agent in the robot team is independent and
determines its own actions without the need for explicit com-
munication. Cooperation using decentralized control is more
challenging because the agents have the potential to take
conflicting actions; however, it has the advantage of being
modular and scalable [20]. A combination of the leader-
follower strategy and decentralized control was used by
Bechlioulis andKyriakopoulos [1] for an object carrying task
where the leader was given knowledge of the goal and loca-
tion of the obstacles and the follower relied only on implicit
communication, i.e. sensing the motion of the leader. Wang
and Schwager [28] used a similar strategy for a box push-
ing task where the leader could be represented by either an

autonomous robot or a human-controlled robot. The use of
decentralized control for multiple mobile robots has been
explored byLee andChwa [11], Luviano-Cruz et al. [13], and
Tsai et al. [26] where the focus was onmaintaining formation
and obstacle avoidance. In recent years there has been sig-
nificant research effort into decentralized control of multiple
robots performingobjectmanipulation tasks. Petitti et al. [19]
used decentralized force control techniques tomanipulate the
twist of an object being carried, but do not attempt simulta-
neous position control of the robots. Marino [15] developed
a decentralized adaptive control method for transporting an
object using multiple manipulators that addresses both the
kinematic control and the interaction control required for
handling rigid objects. Culbertson and Schwager [3] have
developed an adaptive control strategy that requires no com-
munication or a priori knowledge of the payload but requires
measurement at the center of mass location in order for each
robot to track a reference profile. Franchi et al. [6] have
a method to estimate all parameters required to transport
an unknown load, but their method requires a communi-
cation network between the robots. Sathyan and Ma [21]
developed a Genetic Fuzzy System (GFS) which uses a
genetic algorithm to train the FLS of multiple independent
robots to successfully complete an object manipulation task
using completely decentralized control. As a final example of
decentralized control, Farivarnejad et al. [5] have used slid-
ing mode techniques to implement decentralized control for
a team of robots to perform an object-carrying task.

This paper is an extension of previous work by the authors
using decentralized control and a genetic fuzzy architecture
to cooperatively transport an object out of an empty room
[24]. The contribution of this paper is to introduce unknown
obstacles into the environment and illustrate how the FLS can
be trained on a given scenario and then be used, unaltered,
for a scenario beyond that for which it was trained. The FLS
combines obstacle avoidance and goal seeking behaviors into
one system and does not rely on switching logic to control the
behaviors as was used in previously cited works [9,12]. The
purpose is to explore the feasibility of performing coopera-
tive action using a decentralized control architecture with no
explicit communication between the two robots. If communi-
cation protocols have been previously established, it would
likely enhance performance; however, we are interested in
exploring the more general case where intra-robot commu-
nication is not present which may occur due to hardware
failure, environmental conditions, or incompatible protocols.

The paper is organized as follows. Section 2 defines the
basics of the test scenario and gives a system description.
Section 3 details the control architecture and genetic training
methods. Section 4 presents the simulation results. Section 5
contains conclusions and future work.

123



Intelligent Service Robotics (2021) 14:535–548 537

Fig. 1 The two-robot team moving a rod outside of the room through
an opening

2 Problem definition

Consider a room with an opening of width w and depth d,
shown in Fig. 1. Two robots, with each at one end of the rod,
intend tomove the rod from its initial position inside the room
to a final position outside the room through the opening. The
objective of this problem is to train the two robots so that
they can cooperatively carry the rod through the opening
to the outside with a minimal combined traveling distance
while avoiding contact with obstacles. In this scenario, the
obstacles are represented by the walls of the room as well
as any interior walls that may be present. We have imposed
a requirement for cooperation that excludes communication
between the two robots, namely, each robot does not know
how the other robotwill react. The only information available
to the robot is its ownpositionwithin the environment (room),
the orientation of the rod, and the location of the opening.
By choosing to limit the amount of information available, we
can establish a control architecture that is able to perform in
a more restrictive environment.

Exiting the room is a two-step process, with the first step
being to move the rod to a location directly in front of the
opening. This is accomplished by defining a rectangular tar-
get box; illustrated by the dashed lines in Fig. 1. The target
box serves as the initial goal location for the two robotswhich
will attempt tomaneuver themselves and the payload into this
area. The target box is a virtual creation within each robot’s
software and is not part of the physical environment. The
dimensions of the target box are determined at the start of
the task and are based on the size of the robots and payload
alongwith theminimumangle required for the robots and rod
to pass through the opening. The definition of this minimum

angle (θmin) is given in Eq. 1.

θmin = cos−1
(

w − 2b

L

)
(1)

where w is the opening width; L is the length of the rod;
and b is a buffer added to each side of the opening which is
used to account for the physical size of the robot and prevent
collision with an obstacle in the presence of sensor/actuator
errors and control overshoot.

Once a robot has entered the target box and the rod angle
meets or exceeds θmin, it will determine a new goal location
on the other side of the opening and compute a new com-
mand for it to travel straight through the opening toward the
exit state while maintaining the existing rod angle. Since the
robots are not communicating with each other, each robot
does not know when the other has initiated its exit. In order
to prevent a premature exit command, the robot must rely on
estimating the position of the opposite end of the rod based
on the rod angle (θ ) and the known length of the rod. It can
then evaluate whether the other robot is also in the target box.

2.1 System dynamics

The overall system (consisting of the two robots and the rod)
is represented as a single rigid body constrained to a 2D space
and thus, each robot has three degrees of freedom, two trans-
lational along the x and y axes and one rotational along the
z axis perpendicular to the x–y plane. Further, the following
assumptions are used in the system dynamics formulation:

• Robots are rigidly attached to the rod
• No friction acts on robot motion
• The rod is rigid with no deformation

The robots are modeled as uniform flat disks located at each
end of a uniform thin rod. The robot-rod system is integrated
in the dynamics as a single rigid body, resulting in a dumbbell
configuration. Due to the assumption of a rigid system, the
mass properties relative to a point fixed in the body are static
and can be computed using the relations given in Eqs. 2– 5.
Note that the system inertia is first computed about the geo-
metric center of the rod and then expressed about the system
center of mass location using the parallel axis theorem.

ms = m1 + m2 + mr (2)

ds = m1d1 + m2d2 + mrdr
ms

(3)

Irc = 1

12
mr L

2 + 1

2
m1r

2
1 + 1

2
m2r

2
2

+m1 (‖d1‖)2 + m2 (‖d2‖)2 (4)

Is = Irc + ms‖ds‖2 (5)

123



538 Intelligent Service Robotics (2021) 14:535–548

where m1,m2 are the masses of each robot; mr is the mass
of the rod;ms is the systemmass; d1,d2 are the vectors from
each robot to the center of the rod; dr is the vector from
the mass center of the rod to the geometric center (0 for a
uniform rod); and ds is the location of the system center of
mass relative to the center of the rod. In the inertia calculation,
L is the length of the rod; r1 and r2 represent the radius of
each robot; Irc is the system moment of inertia about the
center of the rod; and Is is the systemmoment of inertia with
respect to its mass center.

The system dynamics are integrated at the system center
of mass. A global reference frame is established with the
origin located at the lower left corner of the room and the
x-axis horizontal, y-axis vertical, and z-axis pointing up out
of plane. A body reference frame is also established with the
origin located at the system center of mass and the x-axis
pointing along the rod toward robot 1, the y-axis in plane
and perpendicular to the rod, and the z direction pointing up
out of plane.

The state vector consists of: the position vector of the
system center ofmass in the global reference frame, the angle
of the body frame relative to the global frame, the velocity
vector of the system center of mass in the global reference
frame, and the angular rate of the body relative to the global
frame [rs, θ, vs, θ̇ ]. The Newton-Euler equations shown in
Eq. 6 and Eq. 7 are used to integrate the state.

r̈s = m−1
s fN (6)

θ̈ = I−1
s τN (7)

Here fN and τN are the net force vector and scalar moment
acting on the system. Each robot produces a force based on
the output of its own control system. The force acts at the
center of each robot and will therefore produce a moment
about the center of mass of the system. The net force and
moment acting on the system are computed in Eqs. 8 and 9.

fN = f1 + f2 (8)

τN = (r1 − rs) × f1 + (r2 − rs) × f2 (9)

where f1 and f2 are the force vectors applied by each robot
and τN will only contain nonzero terms about the z-axis and
therefore can be treated as a scalar.

Once the new state of the system center of mass has been
computed, the position and velocity state of the rod and each
robot can be derived based on the angle θ , angular rate θ̇ ,
and the fixed geometry of the rod. Since the rod geometry is
known in the body reference frame, it must be converted to
the global reference frame using a rotation about θ (GRB).

The position and velocity of the center of the rod in the
global reference frame can be computed as shown in Eq. 10
and Eq. 11 where ds is the position of the center of mass

relative to the center of the rod.

rr = rs −GRB ds (10)

vr = vs − θ̇ ẑ ×GRB ds (11)

Next, the position and velocity of each robot is computed
in the global reference frame using the previously computed
values at the center of the rod. The equations are shown in
Eq. 12 through Eq. 15.

x1 = xr +GRB d1 (12)

v1 = vr + θ̇ ẑ ×GRB d1 (13)

x2 = xr +GRB d2 (14)

v2 = vr + θ̇ ẑ ×GRB d2 (15)

The rotation states θ and θ̇ of the rod and robots are identi-
cal to that of the system due to the rigid body assumption.
We now have the position, velocity, and rotational states of
each element in the system expressed in the global reference
frame.

3 Control design

3.1 Fuzzy logic system

An FLS is a system where unlike Boolean logic, an outcome
is not simply true or false, but rather can have a continuous
level of value from aminimum to amaximum value. In terms
of the FLS that is used for the two-robot team, the control
output is not simply “goal seeking” or “obstacle avoidance”
but aweighted combination of each. TheFLSused for control
in this experiment is a two-input, two-output system.

An FLS functions by performing fuzzification of the input
values. This process entails taking the input and assigning a
value for eachmembership function that has been defined for
a particular input. A general example is shown in Fig. 2where
an input valuemaynot be crisply categorized as low,medium,
or high, but rather will be a fuzzy blend of two or more
categories. The next step in the process is the application of
the fuzzy rulebase to the membership function values. The
rules map the inputs to the outputs and take the general form
of:

IF [Antecedent 1] AND [Antecedent 2] THEN [Con-
sequent 1] AND [Consequent 2]

Each output is assigned a numerical value and the final step
is to defuzzify this result by applying the output membership
function and computing a single result for each output using
a technique such as centroid calculation or mean-of-max.

123



Intelligent Service Robotics (2021) 14:535–548 539

Fig. 2 General membership function example showing overlapping
regions

3.1.1 Fuzzy logic inputs

The two inputs to the FLS are the wall distance (Dw) and the
goal distance (Dg). The wall distance input is computed by
establishing the scalar distance from the robot to each of the
walls in the room (Di ). In this implementation, the computa-
tions are performed analytically; however, in practical cases
the distances can be obtained from range sensor readings.
The input to the fuzzy system is taken as the minimum value
of this set of distances as shown in Eq. 16 where i ranges
from 1 to the number of walls.

Dw = min([D1, D2, · · · , Di ]) (16)

The goal distance input to the fuzzy controller is simply
the scalar distance from the robot to the edge of the target
box.

3.1.2 Fuzzy logic outputs

The two outputs of the FLS are Speed (S) and Correction
Angle (CA). The speed output is used to prioritize themotion
of the robot closest to a wall. When the robot is near a wall,
it will be commanded to move at a higher speed, which will
in turn produce a greater contribution to the net force acting
on the system and “overpower” the force of the other robot
which may be moving toward the goal location unconcerned
with the wall.

Nominally, the robot will move in a straight line direction
toward the target. The correction angle output is designed to
adjust this path when near an obstacle. The correction angle
will take a value from 0 to + 90 degrees with the convention
that a 0 value indicates moving directly toward the goal and
a 90 degree value indicates moving directly away from an
obstacle.

Fig. 3 Geometry of parameters used in the commanded angle compu-
tation

3.1.3 Determining the commanded angle

The correction angle that is output from the FLS is a scalar
measure based on how close the robot or rod is to a wall.
This control output is combined with data from the sensors
to form an angle command that can be issued to the actuator
using the following method:

First, compute the angle thatwouldmove the robot directly
away from the wall (θavoid) as shown in Eq. 17 and illustrated
in Fig. 3. Here, θwall is the angle to the nearest wall that has
been determined by the navigation subsystem which will be
discussed in Sect. 3.3.

θavoid = θwall − π (17)

Next, compute the difference between the wall avoidance
angle and the goal angle (θgoal)which has also been computed
by the navigation subsystem.

Δθ = θavoid − θgoal (18)

Finally, the commanded angle (θc) is obtained by taking
correction angle that was output from the FLS and computing
the ratio to the maximum value of 90 degrees. This ratio is
then combined with the Δθ from Eq. 18 and the goal angle
using the relation shown in Eq. 19. The commanded angle is
then constrained between [−π, π ].

θc = θgoal + Δθ

∣∣∣∣ CAπ/2

∣∣∣∣ (19)

123



540 Intelligent Service Robotics (2021) 14:535–548

Fig. 4 Intelligent control block diagram

3.1.4 Control force

The output of the control system must be represented as a
force vector prior to being passed to the robot. The com-
manded heading angle is combinedwith the speed to produce
a commanded velocity vector (vc). A velocity error (Δvi ) is
then computed by using the current velocity of the robot (vi ).
The robot mass (mi ) is used to compute a delta momentum
vector, which is equal to the desired force (fc).

vc = S

[
cosθc
sinθc

]
(20)

vi = vc − vi (21)

fc = mi ∗ Δvi (22)

3.1.5 Control summary

A block diagram of the intelligent control design is shown
in Fig. 4. The blocks on the left side of the diagram: “Sense
Walls” and “Goal Distance”, are concerned with establish-
ing the current vehicle state. The distance and angle to both
the goal location and the closest wall are computed, thus
answering the question of where the robot is and where it
needs to go. The blocks in the center of the diagram: “Fuzzy
Systems” and “Compute Angle Cmd” were detailed in the
previous discussion and represent the heart of the algorithm
and this research. These algorithms are tasked with making
the decision of what action to take given the current condi-
tions. Specifically, how fast and in what direction the robot
should move in order to balance the objectives of reaching
the goal while avoiding the obstacles. Achieving this balance
between competing objectives iswhere the fundamental prin-
ciples of fuzzy logic arewell suited. Finally, the blocks on the
right side of the diagram: “Velocity Cmd”, “Velocity Error”,
and “ForceCmd”, are concernedwith taking the outputs from
the FLS and establishing how the robot is going to achieve
the desired motion by computing a force command that can
be passed on to the robot’s actuators.

3.2 Genetic training

The control system for each robot was developed using a
GFS which is a system that uses a genetic algorithm to deter-
mine the configuration of the FLS. Due to the compuational
burdens of running a genetic algorithm, it must be executed a
priori using a set of training scenarios. Once the FLS configu-
ration has been determined through genetic training, it is then
transferred to the operational environment for evaluation.

The genetic training operates by attempting to minimize
a cost function through the use of random mutations and
gene crossovers to produce offspring that result in improved
performance from generation to generation. The genetic
algorithm is arranged in a hierarchical structure.At the lowest
level, each tunable parameter in the fuzzy system represents
one gene in the system. All genes needed to fully define the
system are grouped into a chromosome, also referred to as
an individual. In the context of simulating a team of robots
carrying a rod, an individual can be used to perform one
execution of the simulation. Once the simulation is com-
plete, a cost function is evaluated to score the performance
of the individual. The next level consists of a collection of
individuals, called a population. A population of n individu-
als represents n FLS configurations and n executions of the
simulation. The cost function for each member of the pop-
ulation is determined and the genetic algorithm parameters
for mutation, crossover, and elitism are used to determine
which members of the population are used to create the
next generation, where a generation is the highest level of
the hierarchical structure. A genetic algorithm typically is
executed until a fixed number of generations is reached, the
desired performance is achieved, or no significant changes
are seen from generation to generation. The genetic training
algorithm used in this study was chosen due to its simplicity
when compared to other optimization algorithms such as neu-
roevolution. By anchoring the algorithm in the well-studied
concept of passing beneficial genes to future generations, it
matches well with the philosophy of explainability and sim-

123



Intelligent Service Robotics (2021) 14:535–548 541

Fig. 5 Generalized construction of membership functions showing the
four parameters required to define the system

plicity embraced by fuzzy logic [29].More information on
the genetic algorithm used can be found in [25].

3.2.1 Membership function setup

The gains of a traditional control system are tuned for
acceptable performance of the system using a set of general
guidelines and a trial and error process. For the intelligent
control system presented in this paper, a genetic algorithm
is used to set the final parameters for the FLS membership
functions. A set of three increasing parameters is required
to define a triangular membership function. The genetic
algorithm will randomly assign values using mutation and
crossover techniques. This can very easily violate the strictly
increasing rules to define a membership function. To prevent
this occurrence, a strategy must be developed to design the
FLS membership functions such that they can be assigned
by the result of a genetic algorithm. An example of how the
FLS membership functions are tuned is shown in Fig. 5.

With this setup, the entire set of three membership func-
tions can be configured through linear combinations of only
four parameters (a1, a2, a3, a4). Since these parameters are
bounded within the genetic algorithm to positive values, this
will ensure that each set of points for an individual member-
ship function will be strictly increasing.

3.2.2 Rule base setup

The rule base was not included as part of the genetic algo-
rithm training because the application of the rules for this
scenario is rather straightforward and there would be little
benefit in allowing these to vary. The general setup of the
rules is that when a robot is near an obstacle, it will move at
a fast speed with a high correction angle. When at a medium
distance from an obstacle, it will use a medium speed and

Table 1 Variables (genes) in genetic algorithm

Item Number of variables

Wall distance input MF 4

Goal distance input MF 4

Speed output MF 4

Correction angle output MF 4

Speed scale factor 1

Total: 17

medium correction angle. When far from an obstacle, it will
move slowly and at a small correction angle. The speed of a
robot is set higher near an obstacle so it will result in a larger
commanded force to move away from the obstacle and will
contribute more to the net force than the other robot which
is not in danger of a collision.

3.2.3 Genetic algorithm configuration

TheMATLAB “ga” function was used to perform the genetic
algorithm optimization. The variable list consisted of 17
items shown in Table 1.

Once the variables have been set for the given trial, the FLS
for each robot is generated and loaded into the simulation.
The final parameter, speed scale factor, is not part of the FLS
and is used to control how quickly the robots are permitted
to travel.

The population size for the genetic algorithmwas set to 85.
Given the 17 variables, this population size is in the suggested
range between 5 and 10 times the number of variables from
Storn and Price [23]. The number of generations was set to
25. Thiswas arbitrarily selected initially and itwas confirmed
to be a reasonable value once the test results were obtained.

3.2.4 Training scenarios

A set of seven scenarios was defined to train each individ-
ual. The initial conditions for each scenario were chosen for
spatial diversity within the room and cases where it is diffi-
cult to maneuver the rod without impacting an obstacle. The
locations of these Initial Conditions (IC) are shown in Fig. 6.

The set of seven scenarios adds an extra dimension to the
number of cases that must be executed in the training set.
With 7 cases per individual, a population size of 85, and 25
generations, a total of 14,875 executions of the simulation
occurs during training. Using a basic desktop computer, the
training was completed in less than 12 hours.

123



542 Intelligent Service Robotics (2021) 14:535–548

Fig. 6 Initial position of the rod for the seven scenarios used in genetic
training

3.2.5 Cost function

The cost function value is defined as the combined distance
traveled by both robots (t D), summed across all seven train-
ing scenarios. A steep penalty is added to the cost function
for each scenario that collides with an obstacle (cP) or fails
to exit the goal with a pre-defined maximum simulation
time (t P). The cost function is shown in Eq. 23 through
Eq. 25.

Cost =
7∑

n=1

(t D + cP + t P)n (23)

cP =
{
0 if: no collision

40 else: collision occured
(24)

t P =
{
0 if: goal achieved

40 else: max time exceeded
(25)

3.2.6 Training results

Themean and best value of the cost function for each genera-
tion is shown in Fig. 7. The specific numerical values are not
important to the solution as they can vary based on the room
size or the chosen penalty values. The important feature of
Fig. 7 is that the mean and best values converge to a steady
state value indicating that further training will not signifi-
cantly improve the result. This occurs after approximately 10
generations.

Inspection of the trained FLS membership functions indi-
cated that the changes to the default values were not drastic

Fig. 7 Fitness values for eachgenerationduringgenetic algorithm train-
ing

Fig. 8 Membership functions after genetic training completed. Exam-
ple variable shown: correction angle output

and the general layout remained similar to the symmetri-
cal layout shown previously in Fig. 5. The value with the
most change was the correction angle output shown in Fig. 8.
The “Center” membership function, where the robot moves
directly toward the goal, has been compressed to the left and
now only covers a range from 0 to 9.5 degrees.

For the training scenario, the two robots were configured
with identical size and mass properties; therefore, the FLS
that was developed was applied identically to each robot;
however, the controller architecture can support the use of a
unique FLS if required. The settings for the FLS based on
the genetic training results were stored and used in all results
documented herein.

123



Intelligent Service Robotics (2021) 14:535–548 543

3.3 Simulation

Simulation of the dual-robot rod-carrying task is performed
using a combination of Simulinkmodels and IntegratedMat-
lab functions. The block diagram for the on-board software
for each robot shown in Fig. 9. It consists of sensor, executive,
navigation, and control routines. The software structure is the
same for each robot; however, the implementation for each
is instantiated separately and can be adjusted independently
through parameter settings.

Modeling of sensor hardware was not included in this
work; however in its place, the Sensor block in Fig. 9 applies
white noise to the true robot position vector and angle. The
white noise was configured with a zero mean (no bias) and
a variance of 10−6, resulting in an additive noise value with
amplitude on the order of 3 mm and 0.17 degrees. It then
uses this noisy data to compute the distance and angle from
the robot to each wall. The Navigation routine is responsible
for determining the closest wall, computing the distance to
the goal, and forming the inputs for the FLS. The Executive
block is responsible for determining when the robot reaches
the target box (position and angle) and once this occurs, it
updates the goal location to allow the rod to pass through the
doorway. Finally, the Control block executes the controller
discussed in Sect. 3.1.

The algorithms are data-driven so each robot can have
unique control gains. The integration routine is a fixed-step
solver. The step size for the simulation is set to 0.01 s and all
blocks within the model are executed at this rate.

4 Results

Verification testing was performed with six different test
scenarios to ensure that the control algorithms performed
correctly under a variety of conditions.

Test Scenarios

1. Execute training cases and evaluate performance.
2. Randomize initial conditions using the same room layout

as training scenarios.
3. Simulate an empty room with no interior obstacles.
4. Alter the room layout with obstacle placement and a goal

location not seen in the training scenarios.
5. Alter the size and mass of one of the robots and change

the length of the rod.
6. Alter the shape andmass of the rodmaking it significantly

larger than the robots carrying it.

Each scenario builds upon the previous test and is intended
to evaluate the ability of the FLS control system to perform
in situations of accumulated separation from the scenario on
which it was trained.

Table 2 Numerical results from the seven training cases

Case Total distance (m) Total time (s)

1 3.7 68

2 2.9 213

3 5.1 136

4 4.0 54

5 2.4 28

6 3.9 67

7 3.8 95

4.1 Training cases

Each of the seven training cases was executed using the final
FLS parameters in order to evaluate the performance of the
system. As expected, all seven cases were successful. The
results are presented in Table 2 where the total distance is the
sum of both robots’ traveled distances.

The room size for these scenarios is 2 × 2 m. If the room
were empty without obstacles and the robots followed an
optimal path, the maximum distance needed to exit the room
would be on the order of 3.4 m. Five of the seven cases
exceeded the maximum distance indicating that the robots
often have to take a non-optimal route to avoid the obstacles.
The time needed to exit the room was not part of the cost
function and therefore was not optimized, but it was tracked
in order to find outliers where the robots became “stuck”
trying to avoid the obstacles. This situation occurred in case
2 which needed 213 s to exit the goal. Figure 10 shows an
overlap of dark lines where the rod was nearly stationary
for 120 s. The robot/rod system was straddling the target box
with robot 1 attempting tomove left and robot 2 attempting to
move right,while eachwas equidistant froman obstacle. This
example illustrates a limitation of robots acting as indepen-
dent agents without a central path planning algorithm. One
common practice in machine learning is to add an element of
randomness to the algorithm. This scenario introduces ran-
domness through the simulated sensor noise in the position
measurements. The slight variation in distance and direction
to the walls allows the robots to eventually work free of this
stalemate (Fig. 10). Example trajectories for several of the
training cases are shown in Fig. 11 through Fig. 12.

4.2 Randomized inputs

A set of 1000 monte-carlo cases was run with a randomized
input location for each case. The rod (x,y) position and angle
were randomized independently using a uniformdistribution.
Varying these parameters independently can produce config-
urations where one or both robots begin outside an exterior
wall or on top of an obstacle. To avoid this, the configuration

123



544 Intelligent Service Robotics (2021) 14:535–548

Fig. 9 Block diagram of Robot’s on-board software

Fig. 10 Path travelled for training Case 2

Fig. 11 Path travelled for training case 3

Fig. 12 Path travelled for training case 6

was first checked for validity and a new sample was drawn
if it was found to be invalid. A seed value was used for the
random number generator so the same set of conditions can
be regenerated. The plot of all the 1000 starting positions is
shown in Fig. 13. This plot indicates that the monte-carlo
technique produced good coverage of the entire room with
the exception of the upper left and upper right corners. These
cases were covered in the training scenarios so we know that
they can be successfully executed.

4.3 Empty room

A test was performed where all interior obstacles were
removed. While this scenario differs from the training data,
the lack of obstacles is expected to be easier to navigate and
produce improved results. A set of 1000 randomized inputs
was generated and executed.

123



Intelligent Service Robotics (2021) 14:535–548 545

Fig. 13 Initial conditions for the 1000 case Monte-Carlo test set

Fig. 14 New room layout with 3 added obstacles

4.4 New room layout

The next round of testing was conducted using a new room
layout. The size of the room was kept the same; however,
the goal location was moved and the interior obstacles were
rearranged. The new room layout is shown in Fig. 14. In
contrast to the training room, the new layout contains interior
walls that are not perpendicular or parallel to the room and
a goal location that is offset from center. The robot and rod
configuration was identical to that of the training scenarios
(Configuration A).

A set of 1000 randomized inputs was generated and exe-
cuted for this scenario. The initial conditions will not be
exactly the same as those from Sect. 4.2 because some of
those cases would be in contact with the new obstacle loca-

Table 3 Summary of 1000 case Monte-Carlo results

Case Success Dist. (m) Time (s)
% μ σ μ σ

Training room 95 2.8 0.9 57 46

Empty room 100 2.9 0.5 56 17

New room 93 3.0 1.0 65 65

Config B new room 86 3.1 1.0 61 62

Config C new room 84 3.9 1.4 125 75

tions and some of the cases previously discarded will now be
valid in the new room.

4.5 Configuration B, new room

The mass value and radius of one robot was increased by
100% from the training configuration. For all previous trials,
the system center of mass was located at the geometric cen-
ter of the rod. This new configuration will offset the system
center of mass along the axis of the rod. An additional mod-
ification was made to increase the length of the rod by 20%.
This test was run using the new room layout from Sect. 4.4
Again, a set of 1000 randomized initial conditions was gen-
erated and executed.

4.6 Configuration C, new room

This test scenario examines a different shape for the rod. Pre-
vious cases treated the rod width as negligible as compared
with the robot size. For this case, the rod width was set to be
50% larger than the diameter of the robot. In addition, the rod
length was increased by 20% and the rod mass was increased
by 200% over the training scenario. The new scenario rep-
resents a situation where two small robots are required to
carry a payload that is larger and more massive than their
own size. This test was run using the new room layout from
Sect. 4.4. Again, a set of 1000 randomized initial conditions
was generated and executed.

4.7 Summary of results

A summary of the results for each of the monte-carlo sets is
given in Table 3 where the mean (μ) and standard deviation
(σ ) are given for the total distance and time.

Using randomized initial conditions in the same room
as the training scenario produced excellent results with a
95% success rate for exiting the room. This indicates that
the genetic training was successful in producing a controller
capable of exiting from nearly any point in the room. Anal-
ysis of the failure cases showed that most failures occurred
from cases that were initialized in the lower left portion in
the room and were required to navigate through the small

123



546 Intelligent Service Robotics (2021) 14:535–548

Fig. 15 Initial conditions for the cases that failed when using the new
room layout

corner opening between the two obstacles on the left side of
the room.

The results of the empty room scenario showed a 100%
success rate, which is expected due to the simplicity of the
task with no obstacles present. The standard deviations of
the total distance and time were smaller for the empty room
indicating that the robots were able to use a direct route to
exit the room and did not have to spend distance and time
avoiding obstacles.

The 93% success rate for the new room layout indicates
that the genetic training of the system produced a result that
can be applied to scenarios outside of the training set with
only a small decrease in performance. Analysis of the failure
cases for this scenario showed that the majority of failures
occurred for initial conditions placing the robots in the lower
left corner behind the angled obstacle. A plot of the failure
cases is shown in Fig. 15 and a plot of the success cases is
shown in Fig. 16. It is clear from the second plot that there
is a distinct empty region where no cases were successful.

Further analysis of these cases shows that of the 74 fail-
ure cases, only 8 failed due to hitting an obstacle. Most of
the failures were due the robots getting “stuck”as discussed
previously for training case # 2. Cases with starting points in
this region need to travel toward the right past the goal and
then move up and back toward the left to reach the target box
increasing the likelihood of encountering a situation where
the robots are equidistant from one or more obstacles. This
situation emphasizes one of the major challenges of using
independently controlled agents,with each robot issuing con-
flicting commands. The simple FLS controller implemented
here does not have the sophisticated path planning capability
to escape this situation and here the randomness of the sensor

Fig. 16 Initial conditions for the cases that succeeded when using the
new room layout

noise was not always sufficient to end the stalemate within
the allotted time as occurred in the second training scenario.

Changing the mass and size of one robot and increasing
the length of the rod for configuration B lowered the success
rate to 86% and changing the shape and mass of the rod
for configuration C lowered the success rate to 84%. The
time spent for configuration C also increased significantly
over the previous scenarios, indicating that more cases are
encountering the “stuck” conditions and reaching the time
limit. Overall, these results are still quite good considering
no additional training or controller modifications were made
and both of these scenarios also utilized the new room layout.
This result indicates that the GFS control strategy developed
here has excellent potential to be applied to a variety of robot
and payload types.

Examination of the failure cases has shown that the most
common cause is when the robots encounter a condition
where they are between obstacles located on opposite ends
of the rod. Each robot attempts to move in opposing direc-
tions with equal force. As discussed with training case #2,
they can sometimes work their way out of this condition due
to sensor errors, but this is not always the case. If we were
to allow for communication between the robots, they could
enact a leader-follower relationship and likely overcome the
obstacle; however, since we have prohibited this communi-
cation, the robots must independently recognize the “stuck”
condition. An adaptive algorithm could be useful in this sce-
nario. If a given time has elapsed with no significant progress
toward the goal, the robot could temporarily reduce the safety
buffer being used for obstacle avoidance. This may provide
the clearance needed to escape, at the expense of higher risk
of collision. Another, though more risky, option would be for
one robot to temporarily cease its force command and hope

123



Intelligent Service Robotics (2021) 14:535–548 547

that the other robot would push it clear without unknowingly
pushing it into the obstacle.

5 Conclusion and future work

5.1 Future work

One area for future work on this project is to add complexity
to the task by adding additional robots and replacing the two
dimensional rodwith a three dimensional, asymmetric object
as the payload. Second, a comparison should be performed
with alternate control methods. A neural network-based con-
trol policy trained using a reinforcement learning technique
would be a suitable approach since a reward function similar
to that shown inEq. 23 could be used. Finally, themost signif-
icant future work is to move from the simulated environment
to the real world. A mechanism, or arm, to hold the rod in
place and simulate the constraint forces present at the attach
points will be required. For the system to be controllable
and stable, the mechanism must have some degree of com-
pliance where the rod attaches to the robot similar to how a
human makes small corrective motions with their arms when
cooperatively carrying an object. Tsiamis et al. [27] presents
dynamic modeling for a compliant mechanism andMachado
et al. [14] have developed a two degree of freedom payload
support base that can sense the displacement of the payload
relative to the robot center. Each of theseworks can be used as
a model for future development. A navigation sensor, either
camera or lidar based, will add the ability to acquire the loca-
tions of the obstacles in real-time. Testing with a real robot
will identify the off-nominal performance of the steering and
drive mechanisms.With the improved knowledge from hard-
ware testing, additional factors affecting control performance
can be investigated including effects of the true sensor noise,
biases in the hardware output, and transmission or process-
ing delays in delivering the data between the hardware and
the control software. Also, the true performance limits of the
robot in terms ofminimumandmaximumspeed can be estab-
lished and it may be beneficial to include the time required to
exit the room directly as part of the cost function and retrain
the GFS for a more efficient exit.

5.2 Conclusion

The task of carrying a rod through an opening of a room
by two mobile robots using a GFS approach was investi-
gated. System dynamics and sensor noise were included in
the study. The two robots operated independently with no
explicit communication and the environment was populated
with arbitrarily set obstacles. The robots were able to exit the
room with 95% success for the nominal scenario. The GFS
design and training was shown to be generalizable to new

scenarios not part of the training set with a 93% success rate
for an altered room configuration, an 86% success rate for
an altered robot and rod size in addition to the new room,
and an 84% success rate for an altered rod shape and mass
in addition to the new room.

The GFS control formulation presented in this work is
readily extensible to a real-world scenario. All required
inputs to the control system, i.e., goal location and distance to
the nearest obstacle, can be obtained by sensormeasurements
in real time. No trajectory pre-planning, beyond declaration
of a goal location, is necessary. The simplicity of the control
algorithm and promising results for generalization to new
scenarios will permit this GFS control strategy to be rapidly
applied to future cooperative tasks among mobile robots.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Bechlioulis CP, Kyriakopoulos KJ (2018) Collaborative multi-
robot transportation in obstacle-cluttered environments via implicit
communication. Front Robot AI 5:90

2. Castillo O, Martinez-Marroquin R, Melin P, Valdez F, Soria J
(2012) Comparative study of bio-inspired algorithms applied to
the optimization of type-1 and type-2 fuzzy controllers for an
autonomous mobile robot. Inf Sci 192:19–38

3. Culbertson P, Schwager M (2018) Decentralized adaptive control
for collaborative manipulation. In: 2018 IEEE international con-
ference on robotics and automation (ICRA), pp. 278–285. IEEE

4. Faisal M, Algabri M, Abdelkader BM, Dhahri H, Al Rahhal MM
(2017) Human expertise in mobile robot navigation. IEEE Access
6:1694–1705

5. Farivarnejad H, Wilson S, Berman S (2016) Decentralized sliding
mode control for autonomous collective transport by multi-robot
systems. In: 2016 IEEE 55th conference on decision and control
(CDC), pp. 1826–1833. IEEE

6. Franchi A, Petitti A, Rizzo A (2018) Distributed estimation of state
and parameters in multiagent cooperative load manipulation. IEEE
Trans Control Network Syst 6(2):690–701

7. HossainMA, Ferdous I (2015) Autonomous robot path planning in
dynamic environment using a new optimization technique inspired
by bacterial foraging technique. Robot Auton Syst 64:137–141

8. Huang CA, Juang CF (2017) Evolutionary fuzzy control of two
cooperative object-carrying wheeled robots for wall following
through multiobjective continuous aco. In: 2017 Joint 17th world
congress of international fuzzy systems association and 9th inter-
national conference on soft computing and intelligent systems
(IFSA-SCIS), pp. 1–3. IEEE

9. Juang CF, Lai MG, Zeng WT (2014) Evolutionary fuzzy control
and navigation for two wheeled robots cooperatively carrying an
object in unknown environments. IEEE Trans Cybern 45(9):1731–
1743

10. Lafta HA, Hassan ZF (2015) Mobile robot control using fuzzy
logic. J Univ Babylon 23:524–532

123



548 Intelligent Service Robotics (2021) 14:535–548

11. Lee G, Chwa D (2018) Decentralized behavior-based formation
control of multiple robots considering obstacle avoidance. Intell
Serv Robot 11(1):127–138

12. Lin CH, Wang SH, Lin CJ (2018) Interval type-2 neural fuzzy
controller-based navigation of cooperative load-carrying mobile
robots in unknown environments. Sensors 18(12):4181

13. Luviano-Cruz D, Garcia-Luna F, Pérez-Domínguez L, Gadi SK
(2018) Multi-agent reinforcement learning using linear fuzzy
model applied to cooperative mobile robots. Symmetry 10(10):461

14. Machado T, Malheiro T, Monteiro S, Erlhagen W, Bicho E
(2016) Multi-constrained joint transportation tasks by teams of
autonomous mobile robots using a dynamical systems approach.
In: 2016 IEEE international conference on robotics and automation
(ICRA), pp. 3111–3117. IEEE

15. Marino A (2017) Distributed adaptive control of networked coop-
erative mobile manipulators. IEEE Trans Control Syst Technol
26(5):1646–1660

16. Martínez-Soto R, Castillo O, Castro JR (2014) Genetic algo-
rithmoptimization for type-2 non-singleton fuzzy logic controllers.
Recent Adv Hybrid Approaches Des Intell Syst. https://doi.org/10.
1007/978-3-319-05170-3_1

17. OmraneH,MasmoudiMS,MasmoudiM (2016) Fuzzy logic based
control for autonomous mobile robot navigation. Comput Intell
Neurosci. https://doi.org/10.1155/2016/9548482

18. Pandey A, Parhi DR (2017) Optimum path planning mobile robot
in unknown static and dynamic environments using fuzzy-wind
driven optimization algorithm. Def Technol 13:47–58

19. Petitti A, Franchi A, Di Paola D, Rizzo A (2016) Decentral-
ized motion control for cooperative manipulation with a team of
networked mobile manipulators. In: 2016 IEEE international con-
ference on robotics and automation (ICRA), pp. 441–446. IEEE

20. Ren W, Cao Y (2010) Distributed coordination of multi-agent net-
works: emergent problems, models, and issues. Springer, Berlin

21. Sathyan A, Ma O (2019) Collaborative control of multiple robots
using genetic fuzzy systems. Robotica 37(11):1922–1936

22. Singh NH, Thongam K (2017) Fuzzy logic-genetic algorithm-
neural network for mobile robot navigation: a survey. Int Res J
Eng Technol 4(8):24–45

23. Storn R, Price K (1997) Differential evolution: a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11:341–359

24. Sun Y, Barth A, Ma O (2020) An intelligent approach for a two-
robot team to perform a cooperative task. In: AIAA Scitech 2020
Forum. p. 1116

25. TheMathworks Inc. (R2019b)Matlab genetic algorithm and global
optimaztion toolbox. https://www.mathworks.com/help/gads/ga.
html

26. Tsai CC, Wu HL, Tai FC, Chen,YS (2016) Decentralized cooper-
ative transportation with obstacle avoidance using fuzzy wavelet
neural networks for uncertain networked omnidirectional multi-
robots. In: 2016 12th IEEE international conference on control and
automation (ICCA), pp. 978–983. IEEE

27. Tsiamis A, Bechlioulis CP, Karras GC, Kyriakopoulos KJ (2015)
Decentralized object transportation by two nonholonomic mobile
robots exploiting onlyh implicit communication. In: 2015 IEEE
international conference on robotics and automation. pp. 171–176

28. Wang Z, Schwager M (2016) Kinematic multi-robot manipula-
tion with no communication using force feedback. In: 2016 IEEE
international conference on robotics and automation (ICRA), pp.
427–432. IEEE

29. Zadeh LA, Klir GJ, Yuan B (1996) Fuzzy sets, fuzzy logic, and
fuzzy systems: selected papers. World Scientific, Singapore

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-05170-3_1
https://doi.org/10.1007/978-3-319-05170-3_1
https://doi.org/10.1155/2016/9548482
https://www.mathworks.com/help/gads/ga.html
https://www.mathworks.com/help/gads/ga.html

	Genetic fuzzy-based method for training two independent robots to perform a cooperative task
	Abstract
	1 Introduction
	2 Problem definition
	2.1 System dynamics

	3 Control design
	3.1 Fuzzy logic system
	3.1.1 Fuzzy logic inputs
	3.1.2 Fuzzy logic outputs
	3.1.3 Determining the commanded angle
	3.1.4 Control force
	3.1.5 Control summary

	3.2 Genetic training
	3.2.1 Membership function setup
	3.2.2 Rule base setup
	3.2.3 Genetic algorithm configuration
	3.2.4 Training scenarios
	3.2.5 Cost function
	3.2.6 Training results

	3.3 Simulation

	4 Results
	4.1 Training cases
	4.2 Randomized inputs
	4.3 Empty room
	4.4 New room layout
	4.5 Configuration B, new room
	4.6 Configuration C, new room
	4.7 Summary of results

	5 Conclusion and future work
	5.1 Future work
	5.2 Conclusion

	References




