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Many large porphyry Cu-Au deposits are connected to adakitic rocks known to be closely associated with ridge subduction. 
For example, there are several subducting ridges along the east Pacific margin, e.g., in Chile, Peru, and South America, most of 
which are associated with large porphyry Cu-Au deposits. In contrast, there are much fewer ridge subductions on the west Pa-
cific margin and porphyry Cu-Au deposits are much less there, both in terms of tonnage and the number of deposits. Given that 
Cu and Au are moderately incompatible elements, oceanic crust has much higher Cu-Au concentrations than the mantle and 
the continental crust, and thus slab melts with their diagnostic adakitic chemistry have systematically higher Cu and Au, which 
is favorable for mineralization. Considering the geotherm of subducting slabs in the Phanerozoic, ridge subduction is the most 
favorable tectonic setting for this. Therefore, slab melting is the likely link in the spatial association between ridge subduction 
and Cu-Au deposits. Geochemical signatures of slab melting and hence maybe ridge subduction in less eroded regions in east-
ern China, the central Asian orogenic belt etc. may indicate important exploration targets for large porphyry Cu-Au deposits. 
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Porphyry Cu is an important type of deposit, comprising 
>60% of the world’s Cu reserves. The circum-Pacific region 
is the largest porphyry Cu mineralization province [1, 2]. 
For example, Chile on the east Pacific margin hosts more 
than 10 world class porphyry Cu deposits, with a total re-
serve of more than 0.35 billion tones of Cu metal, which 
accounts for >30% of the world’s Cu reserves. These de-
posits are El Teniente, Chuquicamata, Rίo Blanco-Los 

Bronces, La Escondida, Los Pelambres, El Pachón, Rosario, 
Radomiro Tomic, El Salvador and Toki, of which, El 
Teniente is the world’s largest porphyry Cu deposit, with a 
reserve of 90 million tones of Cu metal [2–6]. There are 
also many porphyry Cu-Au deposits in the Philippines, 
southwest Pacific [2, 7]. Most of these deposits are associ-
ated with adakites–the products of slab melting [4–6, 8], 
and are spatially related to the subduction of ocean ridges or 
island chains [2]. 

In contrast to many other places along the circum-Pacific, 
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eastern China is poor in Cu, with a total reserve of ca. 10 
million tones. Plate reconstruction shows that eastern China 
became an active continental margin from the Jurassic [9, 
10]. Similar to the South and North Americas, there are also 
abundant adakite and/or adakitic rocks in eastern China, 
many of which show Cu-Au mineralization, but large de-
posits with more than 10 million tones of Cu metal are not 
yet known. However, Dexing and the Lower Yangtze River 
belt have smaller-scale porphyry and/or skarn Cu (Au) de-
posits [11–17]. 

What are the main controls on the distribution of por-
phyry Cu-Au deposits in the circum-Pacific region and 
elsewhere? What is the connection between ridge subduc-
tion and porphyry Cu deposits? Are there any porphyry Cu 
deposits derived from Pacific subduction in eastern China? 
To answer these questions, we review previous studies on 
circum-Pacific large porphyry Cu-Au deposits, discuss the 
genesis and distribution of these deposits, as well as the 
connection between ridge subduction and porphyry Cu-Au 
deposits from a geochemical perspective. 

1  Ridge subduction and porphyry Cu-Au de-
posits along the circum-Pacific region 

An ocean ridge can be subducted into the mantle when it  

intersects a trench [18], as was first discovered 4 decades 
ago during studies on orogenic processes in the western 
America [19]. It is now known that ridge subduction is a 
common phenomenon along the circum-Pacific subduction 
zones [20–24], and may have occurred several times since 
the late Mesozoic [25–29]. Because of the unique physical 
and thermal structures of ocean ridges, ridge subduction has 
major influence on the subduction angle, the thermal struc-
ture of the subduction zone, as well as the nature of magma-
tism and associated mineralization. Therefore, these proc-
esses have been the focus of wide interest [2, 22, 30–34] 
(Figure 1). 

Many large porphyry Cu-Au deposits are closely associ-
ated with ridge subduction. For example, three of the 
world’s largest porphyry Cu deposits, El Teniente (94 Mt 
Cu), Río Blanco-Los Bronces (57 Mt Cu), Los Pelambres- 
El Pachón (27 Mt Cu), ranking 1, 3, 10 respectively, are 
located close to each other in central Chile, along the east 
Pacific margin. All these deposits are spatially associated 
with the subduction of the Juan Fernández ridge [2, 36]. 
Similarly, the Cerro Colorado large porphyry Cu-Au deposit 
(21 Mt Cu) corresponds to subduction of the Cocos ridge 
(Figure 2) [3]. 

Several large porphyry Cu-Au deposits in the southwest 
of the United States, e.g., Bingham (28 Mt Cu, 1603 t Au), 
Butte (35 Mt Cu), are located close to ongoing ridge sub-  

 

 

Figure 1  Global distribution of large porphyry Cu-Au deposits. Data from refs. [2, 3, 35]. A, B, C are regions dominated by Cu deposits; D, E are regions 
dominated by Au deposits. A, central Chile province (El Teniente, Río Blanco-Los Bronces, Los Pelambres); B, northern Chile province (Chuquicamata, La 
Escondida, Radomiro Tomic, Rosario, El Salvador, El Abra); C, southwest Arizona-Sonora province (Cananea, Lone Star, Morenci-Metcalf, Pima, Ray); D, 
Papua New Guinea-Irian Jaya province (Grasberg, Ok Tedi, Panguna, Frieda River); E, Philippines province (Far South East-Lepanto, Tampakan, Atlas, 
Sipalay). 
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Figure 2  Ridge subduction in the eastern Pacific and large porphyry Cu-Au deposits in South America. The tectonic setting is adapted from ref. [20], and 
the distribution of ore deposits from refs. [2, 3]. 

duction in the Baja California [33]. It is however, not clear 
how closely these deposits are related to the ridge subduc-
tion, because they formed at 38–60 Ma. Chuquicamata in 
central Chile is the second largest porphyry Cu-Au deposit 
in the world with a total of 66 Mt Cu metal and 300 t Au. 
About 5 km to the north Chuquicamata, there is another 
large porphyry deposit, Radomiro Tomic (20 Mt Cu) [2]. 
Both deposits are located above the ongoing subduction of 
the Iquique ridge, and formed at 33.6 Ma [2] and 32.7 Ma 
[37], respectively. In general, ridge subduction is slower 
than normal plate subduction. Assuming an average rate of 
10 cm/yr, about 3000 km may be subducted within 30 Ma. 
Therefore, more work is needed to test whether there is any 

genetic connection between these particular deposits and the 
Iquique ridge subduction, even though most ocean ridges 
are much longer than 3000 km.  

There are several porphyry Cu-Au deposits closely asso-
ciated with subduction of the Scarborough ridge in the 
Philippines, southwest Pacific [2]. These are: Lepanto-Far 
South East (5.48 Mt Cu, 970 t Au) [38], Santo Tomas II (1.2 
Mt Cu, 233 t Au) [1], Guinaoang (2 Mt Cu, 200 t Au) [3]. In 
addition to porphyry Cu-Au deposits, Scarborough ridge 
subduction is also associated with Baguio large low sulfur 
epithermal deposit. All these deposits are younger than 3 
Ma (Figure 3) [39]. In contrast to ridge subductions along 
South America, the Scarborough ridge formed by slab tear-
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ing [40]. In Japan, Kyushu-Palau ridge subduction [23] spa-
tially corresponds to the Hishikari lower sulfur epithermal 
deposit and the Nansatsu high sulfur deposits (Figure 4). 
Both the above mentioned ridge subductions are associated 
with epithermal deposits. There are however, no world class 
porphyry deposits as found in South America. Probably this 
is because deposits connected to ridge subduction in the 
Philippines and Japan are very young, and much less ex-
posed due to limited erosion. If this is correct, there could 
be porphyry deposits at depth (Figures 3, 4). Because there 
are considerably fewer ridge subductions in the west Pacific 
than in the east, this provides a feasible interpretation for 
much more abundant porphyry Cu-Au deposits along the 
east Pacific margin.  

Eastern China is located on the west Pacific margin, but 
is now far away from Pacific subduction zones. The Lower 
Yangtze River belt is the most important Cu, poly-metal 
mineralization belt in eastern China, which was formed at 

138±5 Ma [13, 14, 17]. These Cu-Au deposits are mainly 
related to adakite or adakitic rocks, distributed linearly with 
a roughly east-west trend. More normal calc-alkaline rocks 
flank both sides of the adakite belt. There are also A-type 
granites whose distribution roughly overlaps with the ada-
kites, but they are ca. 10 million years younger, having 
formed mainly at 125 Ma [41–44]. 

Many workers have proposed that the Mesozoic adakites 
in eastern China, including the Lower Yangtze River belt, 
were formed by partial melting of thickened or delaminated 
lower continental crust, based mainly on the enriched iso-
topic characteristics [13, 45–51]. If so, the porphyry Cu 
deposits associated with adakites would have no connection 
with plate subduction. In contrast, other workers have pro-
posed that the Cu mainly came from the mantle [11, 52].  

Copper is a moderately incompatible element [53, 54], 
therefore its abundance in the depleted mantle is lower than 
that of the primitive mantle (30 ppm) [55]. Interestingly, Cu 

 

 

Figure 3  Ridge subduction and Cu-Au deposits in the Philippines (modified after ref. [2]). 
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Figure 4  Ridge subduction and Cu-Au deposits in south Japan. The tectonic settings after ref. [23] and the mineral deposit distribution follows ref. [2]. 

abundance in the continental crust is also low (27 ppm) [56]. 
This is mainly because Cu and Au are scavenged into fluids 
at the late stage of magma evolution [53, 54]. Because of 
the characteristics of Cu, solely intracontinental processes 
or direct addition of mantle components do not necessarily 
result in Cu enrichment.  

Alternatively, it has been proposed that the Lower Yang-
tze River mineralization belt can be better explained by 
ridge subduction, whereby associated adakites formed 
through slab melting have been contaminated by the conti-
nental crust and enriched mantle [27]. Between ~125–140 
Ma, the Pacific plate drifted southwestward, whereas the 
Izanagi plate drifted north-northwestward [57], and the 

ocean ridge between these two plates was subducted in what 
is now the Lower Yangtze River region. The ridge subduc-
tion model can well explain the association and distribution 
of adakite, calc-alkaline rocks, Nb enrichment, A-type gran-
ites and associated mineral deposits [27]. Because oceanic 
crust near a ridge is hotter, it is prone to be partially melted 
during ridge subduction, to form adakites. On the other 
hand, when older, colder and wetter oceanic crust distal 
from the ridge is subducted, it undergoes dehydration, 
which triggers flux-melting in the overlying mantle, to pro-
duce more typical calc-alkaline arc magmas. As subduction 
continues, the opening of a slab window along the ridge can 
be filled by upwelling asthenosphere, giving rise to high 
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temperature, anhydrous, A-type granites [33]. A geochemi-
cal character of ridge subduction is the production of 
Nb-enriched igneous rocks [33]. The Nb-enriched nature of 
the Lower Yangtze River belt volcanic rocks thus also sup-
ports the ridge subduction model [27]. 

It is worth mentioning that Cretaceous adakites in the 
Dabie Mountains formed at roughly the same time as those 
in the Lower Yangtze River belt, with high-Mg adakite in 
the southeast margin. These adakites, however, are not 
mineralized. Geochemical characteristics suggest the Cre-
taceous adakite from the Dabie Mountains formed through 
melting of the lower continental crust [49], likely triggered 
by ridge subduction [27]. 

2  Adakites and porphyry Cu deposits 

Adakite was originally proposed to describe a special type 
of rocks found in Adak Island, Aleutian Islands, which has 
components from slab melting [58–60]. The close genetic 
association between porphyry Cu deposits and adakites has 
been proposed for more than a decade [8]. Among all the 43 
deposits or mineralization districts, 38 are connected to 
adakites, and often directly occur in adakites. In places 
where adakites coexist with non-adakitic igneous rocks, 
mineralization is usually associated with the adakites [8]. 
This model has gained wide support, because most of the 
porphyry Cu and epithermal Au deposits are closely related 
to adakites both in terms of age and space [7]. Thus in 
Mongolia, the Erdenet porphyry Cu deposit is associated 
with adakite [61]; whereas many porphyry Cu deposits in 
Chile, e.g., Los Pelambres, Chuquicamata, etc., are also 
connected to adakites [4–6, 62, 63]. In China, the Tongling, 
Shaxi, Dexing porphyry or skarn Cu deposits are all associ-
ated with adakite or adakitic rocks [12, 46, 47, 64–66]. It 
has even been proposed that adakite should be taken as an 
exploration target for Cu deposits [67]. 

The genetic connection between adakite and porphyry 
deposits has been attributed to the high oxygen fugacity of 
adakitic magmas [68]; with oxygen fugacity taken as a more 
important controlling factor than actual adakites for por-
phyry Cu mineralization [69]. The geochemical behavior of 
Cu is indeed highly influenced by oxygen fugacity [1, 54, 
70], with mineralized porphyry usually having higher oxy-
gen fugacity [71]. Most arc rocks, however, have high oxy-
gen fugacity, amongst which adakite is not the most oxi-
dized variety [72–74]. Therefore, the high oxygen fugacity 
of arc rocks is not controlled mainly by slab melting, but 
more by slab dehydration [75]. Consequently, the close ge-
netic connection between adakites and porphyry deposits 
does not totally depend on high oxygen fugacity. 

Copper is a moderately incompatible element during 
MORB production and flux melting arc magmatism, with a 
partition coefficient similar to the heavy rare earth elements 
[53, 54]. Copper concentrations in oceanic crust range from 

60–125 ppm [76], with an estimated average of 74 ppm [77], 
much higher than the average abundance of primitive man-
tle (30 ppm) [55] and the continental crust (27 ppm) [56]. 
Therefore, partial melts of oceanic slab should have much 
higher initial Cu concentrations than melts derived directly 
from the mantle or from within the continental crust [78, 
79]. Thus the genetic connection between porphyry Cu de-
posits and adakites links to slab melting, with its elevated 
Cu abundance [79]. 

The geochemical behaviors of Cu and Au during mag-
matism are very similar to each other [53, 54]. Therefore, 
fundamentally Au mineralization may be connected to ridge 
subduction in a way similar to that of Cu. But in contrast, 
Cu and Au behave quite differently in fluids, resulting in 
diverse types of deposits and spatial distribution for these 
metals. 

3  Discussion  

3.1  Adakite and ridge subduction 

Slab melting is believed to be a major process in the early 
history of the Earth, which in those times was responsible 
for the formation of the continental crust [80–83]. In con-
trast, the thermal structure of modern subducting slab sug-
gests very limited slab melting [60, 84], with it occurring 
mainly during subduction of young, hot oceanic crust [60, 
85]. 

Because of the unique thermal structure of ocean ridges, 
it is then safe to say that ridge subduction is the most fa-
vorable geological process for slab melting in the Phanero-
zoic. This gives the essential link between the coincidence 
of ridge subduction and world class porphyry Cu deposits. 

3.2  Slab melts and porphyry Cu deposits 

Although the genetic connection between adakite and por-
phyry Cu-Au deposits has been supported by increasing 
number of studies [4–6, 62, 63], there are still a group of 
scholars who argue strongly against the adakite mineraliza-
tion model [86–88]. The argument is that the geochemical 
characteristics of adakite do not necessarily need slab melt-
ing, but can be produced through fractional crystallization 
of normal arc magmas [88–91]. Therefore, magma evolu-
tion at crustal levels was taken as a more important factor 
that controls Cu mineralization [88]. This actually argues 
against the genetic relation between slab melting and por-
phyry Cu deposits. According to such model, all types of 
arc rocks are potential candidates to host porphyry Cu de-
posits. In our opinion, this contradicts with observations so 
far available. As pointed out in section 2, the Cu concentra-
tion in oceanic crust is 2–4 times as high as the Cu abun-
dances in the mantle and the continental crust. Therefore, 
slab melts are more favorable for spawning mineralization 
[78, 79]. 
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It is true that not all the adakites are associated with por-
phyry Cu deposits [49, 92]. For example, there are abundant 
Mesozoic adakites in eastern China, but large porphyry Cu 
deposits are only found in Dexing and the Lower Yangtze 
River belt. However, many of the non-mineralized adakites 
are considered to have formed by partial melting of conti-
nental crust [49]. In this context, it is important to note that 
porphyry Cu deposits are formed at shallow depths (usually 
<3 km). Therefore, less eroded places in supra paleo-   
subduction zone settings, dominated by volcanic/hypabyssal 
suites rather than deep-seated plutonic complexes are the 
more promising sites for porphyry Cu exploration. However, 
although adakite is the most favorable host for porphyry 
Cu-Au mineralization, normal calc-alkaline arc andesites 
may also be the setting for deposits [69]. Adding further to 
the complexity of using adakite as an exploration tool, these 
magmas may lose their adakitic trace element signatures 
(e.g. high Sr/Y) during assimilation and, particularly pla-
gioclase crystallization. In the case of plagioclase crystalli-
zation, Sr in evolving melt is lowered quickly, coupled with 
moderate increase in Y, resulting in dramatic decreases in 
Sr/Y. In this case, fractionated adakite can easily lose its 
distinctive geochemical character. Therefore, it is important 
to identify and characterize the composition of primitive 
magmas devoid of intra-crustal fractionation and assimila-
tion. Despite these complications, ridge subduction sites 
have the best exploration potential for large porphyry Cu 
deposits. 

3.3  Ridge subduction and porphyry Cu deposits 

Although ridge subduction is favorable for slab melting, 
there are many other processes that can result in slab melt-
ing; flat subduction, subduction of newly formed oceanic 
crust, subduction of torn slab as well as the edge of sub-
ducting slabs. Consequently these settings are favorable Cu 
enrichment in primitive magmas and thereby for porphyry 
Cu deposits. For example, the porphyry Cu deposit Minas 
Conga, and the porphyry Cu, Mo deposit La Granja in Pure 
are several hundred kilometers away from the Nazca ridge 
subduction (Figure 2). These deposits are attributed to the 
subduction of the Inca plateau together with the Nazca ridge 
[2]. 

On the other hand, not all ridge subduction forms por-
phyry Cu-Au deposits. For example, no large porphyry de-
posits are associated with the Carnegie ridge subduction in 
Ecuador. One likely reason is that the Carnegie ridge sub-
duction has just started, such that there is no major slab 
melting yet. This is supported by the steep subduction angle 
and limited deformation of the overriding continental crust 
(Figure 2(a)). By contrast, the Juan Fernández ridge sub-
duction has a very small subduction angle with major 
crustal deformation, and is the largest porphyry Cu-Au 
mineralization region (Figure 2(d)). 

For ancient ridge subduction, where the ridge itself has 

disappeared, traces of ridge subduction can only be found in 
the magmatic products preserved in the supra-subduction 
zone environment. Important for identifying ancient ridge 
subduction are the combination of adakite, high-Mg ande-
site and Nb-enriched basalts [93–95]. For locations with 
thick overlying continental crust, there might be Nb-   
enriched andesitic rocks. Also, whereas typical arc-type 
calc-alkalic rocks are rare due to limited dehydration near 
the ridge, instead A-type granites and alkalic rocks are more 
prevalent as a result of slab window opening [27, 33]. In 
terms of tectonic evolution, ridge subduction is usually ac-
companied by shearing, faulting, uplifting and extension [18, 
23]. Furthermore, when the subducting ocean ridge is not 
perpendicular to the subduction zone, magmatic zone moves 
laterally with time [96, 97]. 

There are several orogenic belts of different ages in 
China, e.g., the Central Asian orogenic belt, Qinling-Dabie 
orogenic belt, etc. Traces of ridge subduction in these oro-
genic belts are useful clues for the exploration of porphyry 
Cu and other related deposits. In eastern China, the Lower 
Yangtze River belt aside, Shandong and the north margin of 
the North China craton may also have experienced ridge 
subduction, and thus potentially are favorable places for Cu 
and Au mineralization. In the Central Asian orogenic belt, 
exploration should focus on locations with rock assem-
blages of adakite, Nb-enriched basalt, high-Mg andesite and 
A-type granites, e.g., Fuyun county in north Xinjiang [98, 
99]. The Cu-Au mineralization in Baogutu, west Junggar 
has been attributed to Carboniferous ridge subduction [100], 
which needs further attention. In fact, the rock assemblage 
of adakite, Nb-enriched basalt and high-Mg andesite is 
found close to many Cu-Au deposits, e.g., Lamasu, Axi, 
Tuwu-Yandong, Chihu etc. [101], implying ridge subduc-
tion in these locations, and thus are worthy of intense ex-
ploration. 

4  Conclusions 

Ridge subduction is favorable for slab melting and thus is 
promising for Cu-Au mineralization. Many large porphyry 
Cu-Au deposits along the circum-Pacific region are spa-
tially associated with ridge subduction. Slab melting is the 
link between ridge subduction and porphyry Cu mineraliza-
tion. Ridge subduction is much more common in the East 
Pacific margin than in the West Pacific margin, resulting in 
an uneven distribution of large porphyry Cu deposits along 
the Pacific rim. In the Mesozoic, the ocean ridge between 
the Pacific and Izanagi plates was subducted underneath 
eastern Asian continent, which may have controlled the 
Lower Yangtze River Cu, poly-metal belt. Traces of ridge 
subduction in less eroded regions in eastern China, the Cen-
tral Asia orogenic belt, the Qinling-Dabie orogenic belt, etc. 
are useful clues for future exploration of porphyry Cu and 
other related deposits.  
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