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The three-dimensional numerical manifold method (3D-NMM), which is based on the derivation of Galerkin’s variation, is a
powerful calculation tool that uses two cover systems. The 3D-NMM can be used to handle continue-discontinue problems and
extend to THM coupling. In this study, we extended the 3D-NMM to simulate both steady-state and transient heat conduction
problems. The modelling was carried out using the raster methods (RSM). For the system equation, a variational method was
employed to drive the discrete equations, and the crucial boundary conditions were solved using the penalty method. To solve the
boundary integral problem, the face integral of scalar fields and two-dimensional simplex integration were used to accurately
describe the integral on polygonal boundaries. Several numerical examples were used to verify the results of 3D steady-state and
transient heat-conduction problems. The numerical results indicated that the 3D-NMM is effective for handling 3D both steady-
state and transient heat conduction problems with high solution accuracy.
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1 Introduction

With increasing socioeconomic development, various large-
scale engineering projects have been conducted worldwide.
In particular, deep underground geotechnical projects [1,2],
such as nuclear waste storage and geothermal energy de-
velopment, are constructed in complex engineering geolo-
gical environments. These projects are susceptible to the
effects of high temperatures and high in-situ stresses. The
conduction of heat inside a rock mass can lead to changes in
the stress state of the rock mass [3–5], thereby severely af-
fecting the construction and safety stability of underground
projects. Therefore, further research is required to address

problems associated with steady-state heat conduction
(SSHC) problems and transient heat conduction (TRHC)
problems. The findings of the present study can help improve
the stability of rocks at high temperatures.
Most methods for solving differential equations or partial

differential equations under boundary conditions can be ap-
plied to analyse the internal temperature field of a rock mass.
However, deriving analytical solutions for the temperature
distribution in rock mass in practical engineering applica-
tions is challenging because of the complexity of specific
conditions such as boundary conditions and partial differ-
ential equations [6].
Recently matured computer technology and advanced

numerical methods are effective means for heat conduction
analysis. Several researchers have used the finite element
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method (FEM), finite difference method (FDM), boundary
element method (BEM), etc., to derive temperature field
solutions. Using the FEM combined with the weighted re-
sidual method, Brunch and Zyvoloski [7] simulated the
transient heat transfer problem with high stability and con-
vergence accuracy. Reddy and Gartling [8] applied the FEM
to TRHC problems and proposed corresponding solutions
and treatment methods. Improving upon the Douglas and
Rachford method, Brian [9] proposed an FDM for solving
3D TRHC problems to achieve high-order time scale accu-
racy. Wang [10] combined the FDM with the maximum
principle for differential equations to derive the upper and
lower solutions under TRHC conditions. For cylindrical heat
conduction problems, Li et al. [11] developed a unique finite
volume method (FVM) based on local analytical solutions
and compared its results with those of the conventional
second-order FVM. The results indicated that the proposed
method had higher computing efficiency and accuracy. To
verify the computational effectiveness and accuracy, Liu and
Cheng [12] developed a weak variant of the 3D TRHC
problem based on an improved moving least squares method.
Wrobel and Brebbia [13] applied the BEM to SSHC and
TRHC problems and used it to solve complex engineering
heat conduction problems. Furthermore, Gao [14] introduced
a straightforward boundary-domain integral equation to
solve heat conduction problems including those related to
heat production and nonhomogeneous thermal conductivity.
Although the forementioned numerical methods can ef-

fectively solve heat conduction problems, denser grids
should be meshed and remeshed to achieve accuracy in
solving problems related to inclusions, discontinuous de-
formation problems and crack expansion.
Numerical manifold method (NMM) [15,16] is a new

calculation method proposed by Shi [15] in 1991 following
the block theory and discontinuous deformation analysis
(DDA), which innovatively introduces the concept of finite
cover in topological and differential manifolds into numer-
ical calculation, such that the method can naturally handle
issues with both continuous and discontinuous deformation.
After nearly three decades of development, the NMM is
primarily applied to solve problems associated with crack
extension [17–19], P adaptive analysis [20], heat conduction
[1], thermal fracture [21], hydraulic fracturing [22], and soil
rock mixtures [23,24]. In terms of heat conduction, which is
currently constrained to the two-dimensional(2D) domain,
He et al. [25,26] extended the NMM to transient heat transfer
models of granular materials and simulated the heat transfer
between microscopic rock particles by inserting thermally
conductive bonding units between Voronoi polygons. Sub-
sequently, the contact algorithm of the NMM was improved
based on the zero-thickness cohesive element model to si-
mulate the damage process of granular materials under the
action of thermal coupling. Zhang et al. [6,27,28] used the

NMM with a hexagonal mathematical grid and proposed a
solution strategy for the time-varying global equations and a
spatial integration scheme to solve the 2D transient heat
conduction problem, and the thermal stress intensity factor
was calculated by coupling the temperature and force fields.
The Galerkin variational method was used to derive the
TRHC governing equations for materials with functional
gradients, and the accuracy of the procedure was verified
through numerical calculations. Using the traditional
two-point difference method for discretization in the time
domain and the complex variable moving least squares
method for discretization in space, Gao and Wei [29] es-
tablished the governing equations for transient heat transfer
based on the complex variable meshless manifold method.
Zhang et al. [30] used the MLS-based NMM to deal with the
nonlinear transient heat conduction problems, and believed
the proposed method has the advantages of both MLS and
NMM.
Several studies have reported the application of NMM to

2D heat conduction problems; however, few studies have
focused on 3D heat conduction problems. Therefore, we
established a shape function based on the hexahedral finite
cover systems, and a governing equation for the 3D-NMM
was established by the Galerkin variational method. Fur-
thermore, the boundary conditions and variational problems
of the 3D steady-state and transient temperature fields were
derived using the basic differential equations. For the pro-
blem that the exact integration of the boundary was not easy
to handle, the exact integration of the polygonal boundary of
the 3D block was carried out by the face integral of the scalar
field and the 2D simplex integral.

2 A brief introduction to 3D NMM

The NMM contains two cover systems (CSs) which are the
mathematical cover (MC) systems and the physical cover
(PC) systems. Thus, the NMM can easily simulate con-
tinuous and discontinuous problems in a unified framework.
Few studies have focused on 3D-NMM and no pre-proces-
sing tools are readily available. This section discusses the
basic concepts of 3D-NMM and the generation algorithm of
3D manifold elements (MEs) [31].

2.1 Basic concepts of 3D-NMM

Similar to 2D NMM, the MC of 3D-NMM can be freely
chosen by the user, and it can be regular or irregular poly-
hedrons. The ability to cover the entire physical domain is
the only prerequisite for MC [32–35]. For the convenience of
calculation and solution, the regular FE-meshes are usually
used to construct the MC, and all the mathematical patches
(MPs) form a union area which is the MC. Here the MPs are
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the polyhedrons that have a common node. Using the MPs to
cut the physical domain (contains joints, boundaries and
material interfaces, and so on), a series of physical patches
(PPs) can be generated. In addition, the PC is the union of all
PPs. Finally, the overlapping parts of several neighbouring
PPs will form a manifold element (ME) which is the basic
calculated element.
The generation of 3D MEs mainly includes the generation

of MC, PC, and manifold blocks, which involves block
identification, block cutting, and updating of the cover sys-
tem. Figure 1 shows the 3D MEs generation process. In
Figure 1(a), corresponding geometric blocks can be gener-
ated by auxiliary modelling software or input block data, and
through the block identification algorithm to generate the
block system and joint information. In Figure 1(b), there is a
penetrating fracture inserted into the pyramid body, and the
pyramid is divided into two parts. Subsequently, according to
the physical domain, the corresponding mathematical grid
and MC are generated by the raster method (RSM) [31,32].
Here a standard 2.5×2.5×2.5 hexahedral raster is used as the
mathematical meshes, each node in the FE meshes is called a
star and use NMMNode index to number them. Furthermore,
based on the neighbouring mesh, using the Boolean inter-
section algorithm to cut the physical domain will create the
Manifold blocks. Finally, a pointer data structure is used to
relate the manifold blocks to the corresponding MC and PC
information. The MC and PC can be seen in Figure 1(c), the
numbers of hexahedral meshes to build MC1, MC6, MC14
are 1, 2 and 8. Because each MC was divided into two parts
by a joint face, each MC contains two PPs. Finally, the in-
tersection of several PPs forms the MEs, and Figure 1(d)
shows a part of MEs generated for this model.

2.2 Framework of 3D-NMM

While the displacement functions of 3D-NMM are defined
on PC, and the weight function is defined on MPs [36,37].
Here, the MCs are composed of a series of mathematical
patches (MP). On each MP, a weight function w x y z( , , )i is
defined as eq. (1)

w x y z x y z
w x y z x y z

w x y z

0 < ( , , ) 1, ( , , ) ,
( , , ) = 0, ( , , ) ,

( , , ) = 1,

(1)

i i
m

i i
m

i

n

i
=1

p

where i
m is the ith mathematical patches (MP), and n p is the

number of MPs which can partially overlap each other.
w x y z( , , )i is the weight function. In present study, the FE-
mesh is used as the MC, so the shape function of FEM is
equal to w x y z( , , )i . These concepts can be used to build the
3D-NMM approximation function. A cover function

u x y z( , , )i is defined individually as a local approximation on
each PC, which can be a constant, linear, high-order poly-
nomial, or other function with unknowns to be determined.
Then, the global function u x y z( , , ) on each ME is approxi-
mated to

{ }u x y z w x y z u x y z{ ( , , )} = ( , , ) ( , , ) . (2)
i

n

i i
=1

To make computation easier, basic and regular manifold
patterns are recommended in 3D-NMM. In this paper, in
order to form the mathematic cover, we choose the hexahe-
dron mesh which is easy to cover the entire 3D space. For
heat conduction problems the global approximation

x y zT ( , , )e in each ME in eq. (2) could be rewritten as follows:

x y z w x y z T x y zT ( , , ) = ( , , ) ( , , ). (3)
i

i i
e

=1

8

In this paper, the FE-element is used as the MC, w x y z( , , )i

can be inherited from the shape function of FEM. Note that
x y zT ( , , )e can also be expressed as

T NT= , (4)e

where N and T stand for the shape function matrix and nodal
temperature vector which are connected to the ME, respec-
tively, and can be written as follows:

N N N N= [ ], (5)1 2 8

T T T T= [ ] , (6)1 2 8
T

where N x y z( , , )i stands for the 8-node hexahedral element’s
shape function. Additionally, it can be expressed using the
local coordinate system [38].

3 Heat conduction problem based on 3D-NMM

3.1 Problem statement

A significant advantage of NMM is that it is able to handle
complex boundary problems or fracture rock masses when it
comes to 3D heat conduction problems. Therefore, before
performing 3D thermal coupling studies, 3D heat conduction
should be analysed comprehensively.
Consider heat conduction [39] in an isotropic homo-

geneous domain Ω with the boundary = S S S1 2 3
as

shown in Figure 2. The temperature is unaffected by time in
the 3D SSHC problem. The governing partial differential
equation for the 3D SSHC problem can be written as follows:

k T
x k T

y k T
z Q+ + + = 0. (7)

2

2

2

2

2

2

The primary difference between SSHC and TRHC pro-
blems is that transient problems are related to time. The
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governing partial differential equation for the 3D TRHC
problem can be written as follows:

k T
x k T

y k T
z Q c T

t+ + + = . (8)
2

2

2

2

2

2

Here are the boundary conditions:

T T= , on , (9)S1 1

k T
x n k T

y n k T
z n q+ + = , on , (10)y z Sx 2

k T
x n k T

y n k T
z n h T T+ + = ( ), on . (11)x y z Sa 3

The initial conditions for TRHC are as follows:
T T= , (12)0

where T is the temperature of the domain; t is time; Q is the
density of the heat source; k is the thermal conductivity;
n n n, , x y z are the cosines of the angle between the surface

normal vector and the coordinate axis; c is specific heat; is
the material density; q is heat flux density; T1 is the tem-
perature of the boundary S1

; h is the surface heat release
coefficient; Ta is the temperature of the boundary S3

; T0 is

the initial temperature value in the area, and T
t is the deri-

vative of the temperature with respect to time.

3.2 Derivation of system equations

A Galerkin weighted residual value method was used to
derive the governing equation. Using the corresponding
conversion, boundary conditions can be included in the
functional. The following modified functional are available.
For SSHC problems:

I u
N
x

k T
x

N
y

k T
y

N
z

k T
z

N Q

( ) =

+ + de e e
e

N q s N h T T s+ d + ( )d . (13)e e a
S S2 3

For TRHC problems:

I u
N
x

k T
x

N
y

k T
y

N
z

k T
z

N Q N c T
t

( ) =

+ + + de e e
e e

N q s N h T T s+ d + ( )d . (14)e e a
S S2 3

The extreme values of the variation problem I(u) related to
the boundary problem solution are shown below.
For SSHC problems:Figure 2 Heat conduction in a domain.

Figure 1 Process of generating manifold elements for 3D- NMM.
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For TRHC problems:
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Several methods can be used to deal with the first type of
boundary condition in heat conduction problems, for ex-
ample, the penalty function method. In comparison with
Lagrange multipliers, the penalty function method has the
advantage of being easy and quick to operate. The value of
the penalty has a significant effect on the calculation results.
Theoretically, the larger the penalty value, the more accurate
the calculation result, but too large a penalty value leads to
pathologies in the system of equations and matrices. There-
fore, the penalty value is chosen according to the following
[40]:

( )K i n j n= 10 × max , 1 , 1 , (17)ij
4

where is the penalty value, Kij is the stiffness submatrix,
and n is the total degrees number of freedom for the system
equation.
A modified function for the 3D TRHC problems is as

follows:
F u
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S S S
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1 2 3

1 3

N q s N hT s N T
td + d c d . (18)e e a e
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From weak-form equation, we obtain algebraic system
equations by dividing the solution domain into manifolds,
and by using manifold element shape functions, the solutions
within elements can be determined based on the values of

nodes. When a transient temperature field is considered, its
time derivative is given by the shape function, and its time
domain is discretized by using the backward difference
method, which is expressed as follows:

T T T t T
t= = . (19)n n n n

n
+1

+1

The rate of change in temperature at any position can be
derived using the following formula:

T
t N T

t= . (20)e
e

The temperature field value was calculated by substituting
eq. (14) into the fundamental equation to solve transient heat
conduction.

t t
K H T H T F+ = . (21)

e

e
e

n
n
e

e

n
n
e

e

e
+1

The overall calculation matrix was formed by super-
imposing the calculation matrices of each ME shown above.
The following formula was used

t tK H T F H T+ = + , (22)n n+1

where t is the time step of transient calculation; Tn is the
temperature value obtained in the nth step; Tn+1 is the tem-
perature value calculated in the (n+1)th step. K is the tem-
perature stiffness matrix; F is the temperature load matrix; H
is the heat capacity matrix.
In which,
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i

n
e

i

n
e

i

n
e

=1 =1
1

=1
3

1 3

(23-1)

H H= ,
i

n
e

=1
(23-2)

F F F F F= + + .
i

n
e

i

n
e

i

n
e

i

n
e

=1 =1
1

=1
2

=1
3

1 2 3

(23-3)

Here,

k

h

K B B

K

K

= d ,

= d ,

= d ,

e

e
S

e
S

T

1
T

3
T

e

S

S

1

3

e

e

1

3

(24-1)

cH = d ,e T
e

(24-2)

Q

q

h

F

F T

F

F T

= d ,

= d ,

= d ,

= d ,

e

e
S

e
S

e
S

T

1
T

1

2
T

3
T

e

S

S

S

1

2

3

e

e

e

1

2

3

(24-3)
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where e is the integral region of a ME; Ω is the integral over
the physical domain of the problem; ,  ,  S S S

e e e

1 2 3
are the

different boundaries related to MEs, respectively; n1, n2, n3 is
the number of MEs corresponding to the different boundary
conditions; K K K,  ,  e e e

1 3 are the element temperature stiffness
matrices for different boundary conditions; F F F F,  ,  ,  e e e e

1 2 3

are the temperature load vector matrices for different boun-
daryconditions andH e is the heat capacity matrix of the MEs.
For each ME, taking hexahedron elements as the MCs,

matrix Be is expressed as follows:

W
x

W
x

W
x

W
x

W W
y

W
y

W
y

W
z

W
z

W
z

W
z

B = y , (25)e

e e e e

e e e e

e e e e

0 1 2 7

0 1 2 7

0 1 2 7

W W W W W W W W= [ ], (26)e e e e e e e e0 1 2 3 4 5 6 7

whereWe0–We7 are the weight functions of the MEs, and is
the weight function matrix.

3.3 Simplex integration on the boundary

Tetrahedra are the only shape that can be used for a 3D
simplex integration, while triangles are the only shape that
can be used for a 2D simplex integration. The integral in eq.
(24) is not specific or precise for the polygonal boundary in
3D space in 3D-NMM which involves surface integral and
volume integral. To solve this problem, the 3D polygon is
projected onto a coordinate plane in this section. Therefore,
the integral on a 3D polygon can be computed using a 2D
simplex integration [41,42].
In 3D space, assume there have a plane in which a surface

integral boundary is located and the equation of the plane can
be expressed as

x y z DA B C+ + + = 0. (27)

It is assumed that there are nv vertices on the convex
boundary polygon and [A, B, C] n , n , n= [ ]x y z is the outward
unit normal vector. According to the formula for integration
of surfaces of the first type, a vector can be represented by
two other vectors satisfying the following equation:

z x y
x x n y y n

n z( , ) =
( ) + ( )

+ , (28)x y

z

1 1
1

where the center coordinate of the boundary is x y z( , , )1 1 1 .
Taking the xoy plane as an example, the integral formula
is projected onto the xoy plane and the conversion formula
is

f x y z S

f x y z x y
z x y

x
z x y

y
x y

( , , )d

= ( , , ( , )) 1 +
( , )

+
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d d
2 2
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n f x y z x y x y= 1 + + ( , , ( , ))d d , (29)x
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2 2
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where q n
n

n
n= 1 + +x

z

y

z

2 2

. On the boundary plane, eq.

(24) can be solved using 2D simplex integration [42]. Other
planes can be solved according to this method. Thus, eq. (30)
is subsequently used to integrate polynomials at the bound-
ary. Additionally, the projected points ought to be organized
counterclockwise.
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The coordinates of the ith vertex are x y z( , , )i i i . S 0 re-
presents the area of the boundary polygon, and x y z( , , )c

b
c
b

c
b

represents its centroid.

3.4 Time step setting

The setting of the time step has a notable influence on the
entire calculation process. Therefore, a reasonable time step
should be selected to ensure high calculation accuracy and
solution speed. In this study, the solution time t can be ob-
tained through steady-state calculations, and then Δt can be
dynamically adjusted to obtain the optimal solution accuracy
and calculation time.
For the TRHC problem, the solution of the governing

equation comprised two main parts: the general solution and
the particular solution. The particular solution represented
the time required for the temperature boundary condition to
the stability of the temperature field. It is generally believed
that the temperature field reaches a steady state when the
general solution tends to 0.
The time t required to reach the steady-state can be solved

using eq. (31)

t A( ) = e e . (31)
i

N
t t

=1
1 1 1

1 1

In order to reach a steady state, the equation e 0t1 must
be satisfied. Approximately consider e = 0.01t1 , then

t = 4.61 , that is

t = 4.6. (32)
1

Hence, we need to find the smallest eigenvalue 1. As a
result of solving the eigenvalues of 1, the time can be cal-
culated using eq. (31). Transient analysis is based on time-

step analysis, where t t
N= is a single time-step and N is the

total number of time-steps. In order to avoid unstable results
due to extremely small time increments, the t needs to
satisfy the following equation.

t c
k l6 , (33)2

where l denotes the size of an ME.
The following equation can be used to determine whether

the steady state is reached:

ir< , (34)n n

n

1

where n n 1 and n denote the parameterization of

n n 1 and n, respectively. And ir denotes a small amount
(assumed to be 1%). If the value ir is exceedingly small, the
equation may not be satisfied, and the computation time may
increase exponentially.
Figure 3 illustrates the computational flow of the algorithm

proposed in this paper. According to eqs. (31)–(34), we de-
veloped a time-step cycle based 3D-NMM calculation pro-
gram, which contains a preprocessing module, calculation
module, and GUI display module.

4 Numerical modelling

4.1 Long-rod heat conduction

To verify the accuracy of 3D-NMM in solving SSHC pro-
blems and TRHC problems, a long rod of length 5 m and
width and height 0.5 m, respectively, is used as the calcula-
tion model. In this model, assuming that the long rod is
uniform and isotropic, with k=2.7 W/(m °C), c=0.92 kJ/(kg °C)
and = 2.7g/cm3. The initial temperature of the long rod is
uniform (T x y z T( , , ) = 1). Here, T = 0°C1 . The boundary con-
ditions are as follows: T = 100°Ca , and T = 0°Cb ; the other
boundaries are adiabatic. In addition, the model does not
contain a heat source. Figure 4(a) and (b) displays the geo-
metric model and the numerical model, respectively. The
mesh density is 0.25 m, and a total of 80 meshes are divided
to generate 80 MEs. In this manuscript, we use the regular
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hexahedron as the mathematical mesh. When use the mesh
density of 0.25 m (ME-0.25 m) it means the edge length of
the cubic element is 0.25 m. In order to verify the reliability
of the calculation results, we also use FEM program for finite
element analysis, the calculation element is DC3D8, and the
calculation time step is same as the 3D-NMM. The following
examples are the same and will not be explained later.
The temperature in the x-direction in the model is analy-

tically calculated as follows:

T x T T
l x T( ) = 10 + . (35)b

a b

The analytical and numerical solutions to the SSHC pro-
blems for the long rod were obtained with the central axis of
the long-rod as the monitoring profile, as illustrated in Figure
5. The calculated results of 3D NMM and FEM are con-
sistent with the analytical solution, indicating that 3D NMM
can be used to effectively solve SSHC problems.
Figure 6 shows the error rate with different penalty value.

As can be seen from the figure, the error rate gradually de-
creases as the penalty value increases. When the penalty
value was taken as 1×105, its maximum error rate does not
exceed 1.6%. In addition, when the penalty value was taken
as 1×107, its maximum error rate does not exceed 0.0162%,
which can be considered as the ideal calculation result. As
can be seen from the figure, the larger the penalty value the
higher the accuracy of its calculation. However, due to the
problem of penalty method itself, its penalty value cannot be
too large, otherwise it will easily lead to the pathology of
matrix. Thus, the initial penalty value can be selected ac-
cording to eq. (16) and subsequently adjusted flexibly ac-
cording to the calculation result.
In order to discuss the mesh density and the convergence

of 3D-NMM, a penalty value of 1×107 was chosen for the
calculation. Figure 7 shows the error rate with different mesh

Figure 3 Flow of the solution of calculating 3D TRHC problems.

Figure 4 Model for the calculation of one-dimensional long-rod. (a)
Geometric model; (b) numerical model.
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density. It can be concluded from Figure 7 that the calcula-
tion results of 3D-NMM are less affected by the mesh den-
sity, and the error rate does not change so much when the

mesh density increases by a factor of 10. Therefore, the 3D-
NMM has better computational accuracy and convergence.
Figure 8(a) and (b) illustrate the numerical calculation

results of 3D NMM and FEM. The temperature field dis-
tributions in the temperature contour plots obtained through
3D NMM and FEM were similar. The accuracy of the tem-
perature contour plot was also verified using the monitoring
data displayed in Figure 5. The results indicated that the
proposed 3D NMM algorithm is feasible, accurate, and ef-
fective for solving 3D heat conduction problems.
The time domain was discretized for the SSHC problem to

verify the accuracy of the 3D NMM for solving TRHC
problems. According to the time step setting process de-
scribed in Section 3.4, the time step was fixed at 5×105 s for a
total of 20 steps. A steady state was reached at 7.5×106 s.
The SSHC problem can be considered as the final result of

the transient calculation. Figure 9 displays the curve of
monitoring points changes in temperature with time under
the 3D transient heat conduction. The obtained 3D-NMM

Figure 5 Comparison of analytical and numerical results of SSHC pro-
blems.

Figure 6 The error rate with different penalty value.

Figure 7 The error rate with different mesh density.

Figure 8 Comparison of 3D-NMM and FEM steady-state temperature
contours. (a) 3D-NMM; (b) FEM.

Figure 9 Transient temperature variation curve of monitoring points
obtained using 3D-NMM and FEM.
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calculation results are compared with the FEM calculation
results. The curves obtained using 3D-NMM and FEM are in
good agreement, indicating it is feasible to extend 3D-NMM
to the TRHC problem and can help derive solutions to
thermal fracture problems.

4.2 Rectangular rock specimen

As illustrated in Figure 10, the length, width, and height of a
granite rock body which was assumed to be an isotropic
material were a, b, and c, respectively. The thermodynamic
parameters of the granite body were as follows: k=2.7W/(m °C),
c=0.92 kJ/(kg °C), and = 2.7 g/cm3. In addition, the upper
and lower fixed-temperature boundary conditions were as
follows: T = 100°Ca , and T = 0°Cb . The granite rock did not
contain any heat source, and the temperatures at the left and
right boundaries were 0°C. The specific geometric model
and numerical model are displayed in Figure 8.
According to ref. [43], the analytical solution was obtained

using the following expression:

T x y T
n

y
b x n

a( , ) = 2 [ ( 1) + 1] sin
sin sin , = .

n

n
n

n
n n

a

=1

(36)

The model was constructed in the Cartesian coordinate
system with the following dimensions: a = 2 m, b = 4 m, and
c = 2 m. To examine the computational effectiveness and
accuracy of the software, different mesh densities were
employed for computations, and the results were compared
with the analytical solution. The mesh density were 0.5 m
(ME-0.5 m), 0.25 m (ME-0.25 m), and 0.1 m (ME-0.1 m),
and the numbers of MEs were 2251024, and 18081, re-
spectively. The steady state was reached at 1.5×107 s, as
mentioned in Section 3.4. The discretized numerical com-
putational model is displayed in Figure 11.
The middle plane of the model was chosen as the mon-

itoring plane, and the contour plot represented the tempera-
ture variation inside the rectangular rock. As shown in Figure
12, it is the steady-state temperature contour plot calculated
by 3D-NMM (MEs-0.25m) and the steady-state temperature
contour plot of FEM at a grid density of 0.1 m. The two
contour plots were consistent, indicating that 3D-NMM can
achieve the same calculation effect as FEM at a lower grid
density and the results were consistent with the heat con-
duction law, which indicates that 3D-NMM is accurate and
feasible in calculating such problems.
Three points (1, 1, 1) (1, 2, 1), and (1, 3, 1) on the mid-

plane were used as monitoring points to analyze the tem-
perature variations in transient and steady-state cases. Figure
13 displays the variations in temperature and different mesh
densities at different monitoring points calculated using 3D-
NMM for the temperature field problem. For various grid

densities, the 3D-NMM simulation results were consistent
with the analytical solution. Furthermore, with the increase
in grid density, the numerical solution becomes closer to the
analytical solution. For ME-0.25 m, the error between the
temperature values at each monitoring point and the analy-
tical solution did not exceed 0.2°C.
Figure 14 displays the Error rate of steady-state tempera-

ture with different mesh densities. It can be seen from the
figure that the accuracy of the 3D-NMM calculation results

Figure 10 Model for the rectangular rock specimen. (a) Geometric
model; (b) numerical model (MEs-0.25 m).

Figure 11 3D-NMM computational model with different grid densities.
(a) MEs-0.25 m; (b) MEs-0.1 m.

Figure 12 Comparison of 3D-NMM and FEM steady-state temperature
clouds. (a) 3D-NMM; (b) FEM.
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is higher with the increase of the mesh density. When the
mesh density is 0.1 m its error does not exceed 0.36%.
As displayed in Figure 15, the model reached the steady

state at 1.5×107 s, thereafter, the temperature field unaffected
by time. In addition, the calculation results were consistent
with the finite element calculation results in the time domain,
indicating 3D-NMM can be used to solve 3D transient heat
conduction problems with high accuracy.

4.3 High-temperature tunnel

A large secondary project located in the Gaizi River Basin on
the Pamir Plateau in Xinjiang, China, is the only water
conservancy control hub for the gradient development of the
Gaizi River Basin. During the excavation, the maximum
ambient temperature at the palm face reached 67°C, the
maximum temperature inside the cave exceeded 105°C,
while the overwater temperature during the operation period
was as low as 0‒5°C [44]. The surrounding rock was a Class

III rock composed of mica-quartz schist interspersed with
graphite schist. According to the literature, the ground tem-
perature in the project increased because of uneven heat
conduction due to the large difference in the burial depth of
each section. To analyze the temperature conduction process
in high-temperature tunnels, a 3D-NMM calculation model
was established using the FDEM [45,46] calculation method.
The thermodynamic parameters were as follows: k=
2.2 W/(m °C), c=1.2 kJ/(kg °C) and ρ=2.6 g/cm3.
The calculation model is displayed in Figure 16(a). The

dimensions of the surrounding rock in the model were 120 m
× 120 m × 10 m. The radius of tunnel was R0 = 4.3 m. The
vertical axis, where the point (0, 4.3, 5) was located on the
tunnel was selected as the monitoring line. Figure 16(b) il-
lustrates the numerical model after discretization using the
preprocessing tool of 3D-NMM with a mathematical mesh
density of 2 m, generating a total of 17980 MEs. The tunnel
was fixed as a low-temperature boundary, and the sur-
rounding rock was fixed as an initial high-temperature
boundary. To analyse the distribution of the temperature
field, the low-temperature boundary was fixed at 5°C, 10°C,
20°C, and 30°C and the high-temperature boundary was
fixed at 60°C, 70°C, 80°C, and 90°C. To verify the accuracy
of 3D-NMM, the low-temperature boundary was fixed at
30°C and the high-temperature boundary was fixed at 80°C.
Figure 17 displays the curves of temperature variations of

3D-NMM and FDEM at different positions. The calculated
temperature of the surrounding rock increased nonlinearly
with the increase in the radius of the surrounding rock. The
farther away the surrounding rock is from the centre of the
tunnel circle, the higher the temperature of the surrounding
rock. The closer the surrounding rock is to the centre of the
tunnel, the lower the temperature of the surrounding rock. In
addition, the results obtained using the proposed numerical
algorithm proposed in this paper agree well with the FDEM

Figure 13 Simulation results of steady-state temperature with different
mesh densities.

Figure 14 Error rate of steady-state temperature with different mesh
densities.

Figure 15 Comparison of the transient temperature values calculated
using 3D-NMM with FEM results.
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calculation results, which again verifie that the algorithm
achieves good computational results for both problems with
and without analytic solutions. Thus, this method is feasible
for solve the heat conduction problems with high accuracy.
Figure 18 displays a contour plot of the temperature dis-

tribution in the high-temperature tunnel surrounding rock.
After excavation, the high-temperature tunnel was in contact
with the external environment, thereby causing the air-con-
tact part of the tunnel to gradually cool down to normal
temperature, while the temperature of the distal surrounding
rock still maintained the high temperature. Therefore, the
temperature in the surrounding rock in space had a gradient
distribution
Figure 19 illustrates the relationship between the tem-

perature of the surrounding rock and the ambient tempera-
ture of the tunnel under fixed external boundary conditions
of 80°C, so that the ambient temperatures of the tunnel are
5°C, 10°C, 20°C, and 30°C, respectively. With the gradual
increase in the ambient temperature of the tunnel, the tem-
perature of the surrounding rock at the same distance from
the centre of the tunnel circle increased. The temperature
distribution increased nonlinearly from the part of the tunnel

in contact with air to the far side of the surrounding rock; the
lower the ambient temperature, the steeper the curve, and the
higher the ambient temperature of the tunnel, the flatter the
curve, indicating that the heat transfer was influenced by the
temperature gradient.
Figure 20 displays the variation curves of heat transfer in

the surrounding rock at different temperature boundaries for
a fixed tunnel ambient temperature of 30°C and external
boundary conditions of 60°C, 70°C, 80°C, and 90°C. The
higher the temperature of the surrounding rock, the steeper
the curve, indicating that the temperature of the surrounding
rock had a more notable influence on heat transfer. Thus, a
reasonable cave temperature should be selected to ensure the
stability of the surrounding rock. The temperature distribu-
tion in the surrounding rock in a homogeneous high-tem-
perature tunnel was closely related to the temperature inside
the tunnel, the initial temperature of the surrounding rock,
and other factors. In actual projects, the initial temperature of
the tunnel should be controlled to prevent the redistribution
of stress caused by the redistribution of the temperature field.

Figure 16 Calculation model of the high-temperature tunnel. (a) Geo-
metric model; (b) numerical model (MEs-2 m).

Figure 17 Curves displaying temperature variations at different locations
calculated using 3D NMM and FDEM.

Figure 18 Temperature distribution contour plot of a high-temperature
tunnel.

Figure 19 Variations in the ambient temperature at a fixed surrounding
rock temperature.
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This can affect the quality of the project and the safety of
people’s lives and properties.

4.4 Nuclear waste storage example

In this study, we examined a nuclear waste storage facility
which was 4 m in length and 4 m in width, with a central
storage hole having a length of 0.4 m and a width of 0.4 m.
This calculation assumes an isotropic material and uses
granite as the study medium. The thermodynamic parameters
of granite were as follows: k=2.7 W/(m °C), c=0.92 kJ/(kg °C),
and = 2.7g/cm3. For the calculations, the mid-plane of the
storage cavern with the nuclear waste stack was selected as
the calculation profile, and the length of the longitudinal
extension was fixed at 0.4 m to calculate the changes in
temperature change in the surrounding rock under the action
of the nuclear waste stack. The inner and outer surface
temperatures, T = 200°Ca and T = 20°Cb , respectively, and
the initial temperature of the model was T = 20°C0 .
In the proposed model, the mesh densities of ME-0.1 and

ME-0.05 were selected to generate 6336 and 50688 MEs,
respectively. The temperature distribution in this model was
selected using a 3D-NMM, and compared with the FEM
calculation results. Five monitoring points were selected to
analyse the variations in temperature with time, the co-
ordinates of the points were (2, 1.7, 0.2), (2, 1.5, 0.2), (2, 1,
0.2), (2, 0.5, 0.2), and (2, 0.2, 0.2). Figure 21 displays the
model for the calculation of nuclear waste storage.
Figure 22 shows the comparison curves of the calculation

results using 3D-NMM and FEM, which uses the numerical
solution with a grid density of 0.01 m as the reference so-
lution. According to the time step setting process described
in Section 3.4, the time step was fixed at 5×106 s for a total of
20 steps. A steady state was reached at 7.5×107 s, and the
calculation results show that the 3D-NMM has good com-
putational results in calculating this model and has a high

agreement with the corresponding other numerical methods.
As illustrated in Figure 23, the curves plotted according to

the 3D NMM transient calculation results compared with
those obtained using the FEM. The curve gradually ap-
proached the steady-state value with the progression of time
steps. In addition, the transient calculation results obtained
using the 3D NMM were consistent with those obtained
using the FEM, indicating that the 3D NMM can be used to
accurately solve the transient problem.
Figure 24 illustrates the steady-state temperature plot of

the 3D NMM and the FEM. The results of the 3D NMM
were consistent with those of the FEM. In addition, the heat

Figure 20 Variation of the surrounding rock temperature under a define
ambient temperature.

Figure 21 Model for the calculation of nuclear waste storage. (a) Geo-
metric Model; (b) numerical model.

Figure 22 Comparison of the curves plotted according to the results of
3D-NMM and FEM (t=7.5×107 s).

1019Tong D F, et al. Sci China Tech Sci April (2024) Vol.67 No.4



conduction effect of the nuclear waste storage was observed
roughly within a 4 m × 4 m × 4 m space, and the conduction
was gradual from the centre along the surrounding boundary
with a centrosymmetric distribution. Therefore, the heat ra-
diated outward from the nuclear waste storage chamber of
the deep rock mass was mainly concentrated in a space with a
side length of 4 m and had a limited range of influence.
Moreover, no large-scale heat transfer was observed in the
deep rock mass.

4.5 Cuboid plate with two cracks

In this example, a cuboid plate with a circular hole in the

middle and two predetermined cracks was examined. Figure
25 shows the geometric model and numerical model of cu-
boid plate with two cracks. In order to better compare with
the existing literature, the corresponding boundary condi-
tions in the case of ref. [28] are selected for analysis, which
can be considered to consistent with the two-dimensional
heat conduction mode. In the calculation, the length, width,
and height of the rectangular cuboid plate are
2 m×2 m×0.5 m, the crack length is a=0.3 m, and the radius
of the circular hole is R=0.2 m. The initial conditions were as
follows: the upper and lower boundaries of the model had
fixed temperatures: T = 100°Ca , and T = 0°Cb ; the left and
right boundaries were adiabatic; no heat source was present
inside or outside the square plate.
The contour plot of the steady state calculation is displayed

in Figure 26, and is consistent with the contour plot obtained
by Zhang et al. [28]. The cracks effectively impeded heat
movement inside the rock mass, indicating that the method
proposed in this study is suitable for accurately simulating
heat conduction problems with fractures. The model can be
used as an initial model for thermal fractures and can thus

Figure 23 Comparison of the curves plotted using the transient calcula-
tion results of 3D NMM and FEM.

Figure 24 Steady-state temperature contour plot for nuclear waste sto-
rage. (a) 3D-NMM; (b) FEM.

Figure 25 Model for the calculation of square plate with two cracks. (a)
Geometric model; (b) numerical model (MEs-0.1 m).
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provide a basis for subsequent research.
Figure 27 shows the contour plot of the effect of different

crack lengths on heat conduction. From the contour plot, it
can see that as the crack length increases, the heat conduction
is blocked to a larger area. The heat conduction shows an
obvious jump on both sides of the crack, and the longer the
crack, the greater the temperature gap between the two sides
of the crack. As a result, cracks can lead to an increase in
temperature gradients during heat conduction, which can
lead to the accumulation of thermal stresses and have an
impact on engineering stability. The example shown in this

paper is a preliminary exploration of the three-dimensional
thermal fracture problem, which will be investigated in depth
subsequently.

5 Conclusions

NMM has attracted considerable attention from researchers
in the last three decades. With advantages of such as low grid
dependence, high computational accuracy, high solution
speed, and wide applicability, the NMM is used in geo-
technical, mining, and physical exploration fields. In this
study, based on the research of 3D-NMM, we extended 3D-
NMM to simulate steady-state and transient heat conduction
problems, and the system equations are constructed by Ga-
lerkin variational method, and the boundary conditions are
imposed by the penalty function method. The key conclusion
can be summarized as follows.
(1) An algorithm for the generation of 3D manifold ele-

ments (MEs) was established, and a Galerkin weighted re-
sidual value method was used to derive the governing
equation. In addition, the boundary conditions and varia-
tional problems of the three-dimensional steady-state and
transient temperature fields were derived from the basic
differential equations.
(2) For the surface integral problem in three-dimensional

space, we obtained exact boundary integral for the heat
conduction problem by projecting a polygon in three-di-
mensional space onto the coordinate plane and by subse-
quently using a two-dimensional simplex integral to perform
the calculation.
(3) Unlike the SSHC problem, the TRHC problem was

solved by adding a time derivative factor to derive the overall
equation. Furthermore, the time step setting in the calcula-
tion module was updated to illustrate the effectiveness and
high accuracy of 3D-NMM in solving transient heat con-
duction problems through transient and steady-state ana-
lyses.
(4) Using the hexahedral FE-mesh as the mathematical

mesh notably simplified the pre-processing and shape
function construction problems. As an advanced numerical
computation method, the NMM with two sets of meshes has
an irreplaceable advantage in dealing with the fracture so-
lution process. The method proposed in this study can be
used to accurately solve heat conduction problems and the
results obtained are consistent with the analytical solution
and FEM, which can provide a basis for the subsequent de-
velopment of thermal coupling problems.
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Figure 26 Steady-state temperature cloud plot for the square plate with
two cracks (R=0.2 m, a=0.3 m).

Figure 27 The contour plot of the effect of different crack lengths on heat
conduction. (a) R=0.2 m, a=0.2 m; (b) R=0.2 m, a=0.4 m.
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