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Abstract An assembly process plan for a given product

provides the sequence of assembly operations, their times

as well as the required tools and fixtures for each operation.

Much research has been done on automating and opti-

mizing assembly sequence generation as the most impor-

tant part of an assembly process plan. A novel method for

generating the assembly sequence of a given product based

on available assembly sequence data of similar products is

presented. The proposed method uses a binary tree form to

represent the assembly sequences of an existing family of

products. A Genetic Algorithm is employed to find the

consensus tree that represents the set of all assembly

sequence trees with minimum total dissimilarity distance.

This is similar to defining Generic Bill-of-Material. The

generated consensus tree serves as a master assembly

sequence for the product family. The assembly sequence

for a new product variant that falls within, or significantly

overlaps with, the scope of the considered family of pro-

ducts can be directly extracted from the derived master

assembly sequence tree. The developed method is dem-

onstrated using a family of three control valves. This novel

method greatly simplifies and enhances automatic assem-

bly sequence generation and minimizes subsequent modi-

fications, hence, reduces assembly planning cost and

improves productivity.

Keywords Assembly sequence generation �
Consensus trees � Dissimilarity distance � Genetic

algorithm

1 Introduction

The sequence by which assembly operations are carried out

for a given product has a great effect on many aspects of

the assembly process such as the cost of assembly per unit,

level of assembly difficulty, the need for fixtures, the

likelihood of components damage during assembly, the

ability to do in-process testing, and the likelihood of

rework [1].

Finding a good assembly sequence automatically is not a

simple task as the number of feasible assembly sequences

could be very large even for a small number of compo-

nents. The proliferation of product variety and frequent

design changes demands responsive and cost-effective

process planning. Significant research has been done on the

automatic generation of assembly sequences [2–8].

Existing assembly sequence generation algorithms do

not make full use of available legacy assembly sequence

data. A novel method that addresses this problem from a

different non-traditional perspective is proposed. It seeks to

determine the master assembly sequence which facilitates

subsequent variant sequence planning. A master assembly

sequence is a generic assembly sequence for a given set of

products which share a significant number of components

and common product structure. Upon constructing the

master assembly sequence for a given family of products,

any new variant that falls within, or considerably overlaps

with, the scope of the considered family of products could

be directly extracted. Forming a master assembly sequence

from individual assembly sequences is somehow similar to

forming a Generic Bill of Material (GBOM) from a set of

individual Bills-of-Material of a given product family to

improve supply chain and production management [9, 10].

The concept of master assembly sequencing has been

limitedly addressed before using different names [11–13].
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For example, Martinez et al. [11] generated master

assembly sequence, called parent plan, for a hypothetical

product which includes all components of a product family

(called meta-product). However, they employed a tradi-

tional assembly sequence planning approach (reviewed in

Sect. 2) to generate the master assembly sequence for the

meta-product.

In this research, a binary tree is used to represent any

assembly sequence including the master assembly

sequence. The concept by which the master assembly

sequence is constructed is inspired by the well-known

approach used in biology to find the consensus tree for a set

of conflicting evolutionary trees [14, 15]. A new consensus

tree method based on Genetic Algorithm has been devel-

oped to deal with the specific characteristics of assembly

sequences. The method is demonstrated using a case study

of three back-flushing control valves where the master

assembly sequence for the three valve variants is derived

and used to form the assembly sequence of a new valve

variant.

The outline of paper is as follows; Sect. 2 reviews

research related to assembly sequence generation. Sec-

tion 3 defines the research scope and Sect. 4 describes the

proposed method. An illustrative example is detailed in

Sect. 5 and a case study is used for further demonstration

and justification of the method in Sect. 6. Summary and

conclusions are included in Sect. 7.

2 Related literature

Assembly sequencing is a mature research topic [16].

Research on automating or semi-automating assembly

sequence generation goes back to the eighties and earlier

[17]. However, the main principle adopted by most algo-

rithms, with few exceptions (e.g. Reconfigurable Process

Planning (RPP) [18]), is more or less the same.

A traditional assembly sequence generation algorithm

has two phases. First, the set of all feasible or valid

assembly sequences are generated according to a pre-

defined set of feasibility or validity constraints. Geomet-

rical and precedence feasibility of an assembly operation

represent the major feasibility constraints. Second, the set

of feasible sequences generated are searched for the best

sequence according to specified optimization criteria such

as minimum total number of changes of parts orientation

and assembly tools during assembly [17].

Instead of carrying out the assembly sequence genera-

tion in two consecutive phases, the Generative Assembly

Process Planner (GAPP) developed by Laperriere and EI-

Maraghy [5] used an A* algorithm [19] which simulta-

neously applies both feasibility constraints (geometric and

accessibility constraints) and optimization criteria (number

of parts reorientations, concurrent execution of assembly

tasks, grouping of similar tasks and assembly stability). It

finds the optimal assembly sequence without exhaustively

generating all feasible sequences.

Recent algorithms combine the two phases by employ-

ing a fitness function that considers both assembly con-

straints and optimization criteria through a meta-heuristic

optimization algorithm. The assembly sequence generation

algorithm by Wang and Liu [8] follows this trend and is

used next to explain how this type of assembly sequence

generation algorithms works.

Wang and Liu considered an assembly sequence to be

linear when all product components are assembled one at a

time and sub-assemblies are never formed (i.e. it was

assumed that no parallel assembly operations take place)

[17]. A linear assembly sequences is typically represented

by a permutation (sequence) vector the length of which

equals the number of assembly components. The product

design is analyzed and five component-to-component

relational matrices are built. The first three matrices rep-

resent geometrical, local assembly precedence and assem-

bly stability feasibility constraints that should be satisfied

in the final assembly sequence. The remaining two matrices

represent two assembly optimization criteria that may

favour one sequence over another. These are the number of

assembly tool changes and number of assembly connection

changes in a generated assembly sequence. The number of

assembly direction changes is also considered as a third

optimization criterion and is applied through the same

matrix used to represent the geometrical constraint. A

discrete Particle Swarm Optimization (PSO) algorithm is

then used to search for the best assembly sequence using a

weighted fitness function of the mentioned constraints and

optimization criteria. A schematic description for this

assembly sequence generation algorithm [8] is shown in

Fig. 1.

The work of Laperriere and EIMaraghy and Wang and

Liu are just few examples of how assembly sequencing has

been tackled for decades. Many variants of these algo-

rithms exist in literature. Among the major elements that

would distinguish an algorithm is for example the assembly

sequences representation. Other common forms of assem-

bly sequence representation include assembly states [5],

partial assembly trees [20] and And/Or graphs [21]. Many

different optimization techniques/algorithms have been

employed such as Genetic Algorithm (GA) [22], Simulated

Annealing (SA) [23], Ant Colony Optimization (ACO)

[24], and Artificial Neural Networks (ANN) [7]. Recently,

some algorithms used CAD models to automatically gen-

erate and apply assembly constraints which requires

sophisticated geometry handling algorithms [25]. Assem-

bly constraints may also be user-defined interactively by

pre-analyzing the product [8] or using interactive
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questions-and-answers [1]. Interactive methods would be

practical with simpler and less complicated products. The

type and number of assembly constraints and optimization

criteria that an assembly sequencing generation algorithm

considers vary depending on product type, assembly

facility, assembly volume, and other factors. A compre-

hensive survey for dealing with the assembly constraints

and optimization criteria is found in [26].

3 Scope

A non-traditional approach is proposed for assembly

sequence generation. Existing individual assembly

sequences for a given product family or a set of similar

product variants which share a significant number of

components and have a common product structure are

merged together into one generic or master assembly

sequence. The master sequence is then used to extract the

assembly sequence for new product variants belonging to

the same product family.

This research presents a simpler alternative to traditional

assembly sequence generation by benefiting from the

knowledge embedded in available assembly sequences for

existing products/product families. Hence, the problem is

to find the consensus (or generic) assembly sequence that

best represents the set of available individual sequences

even if some conflicts among them exist (e.g. different

assembly sequence exits for the same combination of

components).

More specifically, given a set of N assembly sequences,

for N products with a total of n different components, it is

required to find a single assembly sequence of all the

n components with the minimum conflict with existing

sequences. Measuring conflict will be detailed in Sect. 4.4.

The following assumptions are made:

• Non-linear assembly with parallel operations is

allowed.

• Assembly operations are sequential with one compo-

nent added at a time.

• Assembly sequence data for existing product variants

are available.

• The same name or part number is used for various

versions or variants of the same component.

If the assembly sequences of available product variants

are not optimal sequences, the proposed method still works

well; however, the resulting master assembly sequence will

be feasible but not necessarily optimal. Non-linear

assembly is the general case of linear assembly which is

also allowable. Assembly sequence for a non-linear

assembly problem could be perfectly represented as an un-

ordered rooted binary tree or what is known in the

assembly planning literature as partial assembly trees [27].

The root of a partial assembly tree represents the final

product (complete assembly) and the leaves represent

individual components. Every other intermediate node

represents the subassembly resulting from adding its two

sub-nodes.

Figure 2 shows the partial assembly tree representing the

assembly sequence of a product consisting of five compo-

nents. According to this plan, components 1 and 3 may be

assembled before, after, or at the same time as components

2 and 4. Component 5 is then added to sub-assembly (1, 3,

2, 4) to obtain the final product (1, 3, 2, 4, 5).

According to this representation, it is required to find the

generic or consensus tree that best represents a given set of

partial assembly trees or cladograms. The terms consensus

and cladograms are both adopted from the biology and

phylogenetics literature where these tools are used. A

Constraint Representation

Interference matrix IM

Local assembly 
precedence PM

Assembly stability 
SM

Assembly tools TM

Assembly 
connections CM

PSO algorithm

Optimization Information

The number of parts 
violating geometrical 

constraints M

The change of assembly 
directions nd

The number of parts 
violating local assembly 

precedence np

The number of 
unstable parts ns

The change of 
assembly tools nt

The change of 
connections nc

Optimization model of 
assembly sequences

The optimal 
sequences

Fig. 1 Assembly sequence planning algorithm [8]

(1, 3, 2, 4, 5)

(1, 3, 2, 4)

node (sub-assembly)

(1, 3)     (2, 4)

leaf (component)

1 3 2 4 5

Fig. 2 An example for a partial assembly tree
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cladogram is a phylogenetic tree which basically has the

same structure and properties as a partial assembly tree and

is used in biological studies to classify species and analyze

their evolutionary histories [28]. It is not unusual in biology

to have different classifications for the same set of species,

where a consensus tree [14] for these classifications is

sought. Existing methods for constructing the consensus

tree deal with trees that have the exact same set of leaves,

which is not always the case in assembly sequences.

4 Finding master assembly sequence using genetic

algorithms

This section presents the Genetic Algorithm-based method

developed for sequential and non-linear assembly applica-

tions to construct the consensus tree for a given set of partial

assembly trees (assembly sequence trees or assembly trees

for short) that do not necessarily have the same number of

components. For a given set of individual assembly

sequence trees, the master assembly sequence tree is

equivalent to their consensus tree. Many algorithms and

methods have been developed in the biology and phyloge-

netics literature to construct consensus tree. However, as

mentioned before, none of them handle trees with different

number of leaves. Thus, a new consensus tree building

method is developed to deal with this general case. MAT-

LAB� programming and numerical computational software

was utilized to implement the proposed method.

4.1 Methodology

Any of the available assembly sequence trees is first

encoded into m x m square matrix form (m is the number of

leaves) that maintains the same information provided by

the trees. For any given matrix, the corresponding tree

could be restored easily.

Consequently, for a given set of N trees and a total of

n different components, there is an unknown n 9 n square

matrix that represents the consensus tree of all the available

N trees. There are different definitions for the consensus

tree depending on the applied consensus method [15] such

as the strict consensus and majority rule consensus. In this

model, the consensus tree is defined as the tree that has the

minimum sum of distances from each of the individual

trees. Such a distance is measured using the commonly

used measure in phylogenetics known as Robinson-Foulds

distance [29]. Besides, the consensus tree must be a binary

tree and has to also include all components of the indi-

vidual trees, where each component is to appear only once.

Hence, a Genetic Algorithm [30] is applied to a set of

initial randomly generated consensus trees (initial popula-

tion) to search for the optimal consensus matrix that has the

minimum sum of Robinson-Foulds distances from each of

the individual matrices. Figure 3 shows an IDEF0 model of

the proposed method illustrating the main activities as well

as inputs, outputs, controls and mechanisms for each

activity.

4.2 Tree encoding scheme

A new tree-to-matrix encoding scheme, based on the one

introduced by ElMaraghy and AlGeddawy [31], is used to

calculate the Robinson-Foulds distance between any two

trees as well as to support Genetic Algorithm implemen-

tation. In encoding a tree of m leaves into a matrix, the

information to be represented by the matrix is the hierarchy

of the m elements which is equivalent to those elements

belonging to the same node. This is carried out through the

encoding scheme as shown in Fig. 4.

Two types of tree information are encoded: sequence of

leaves and topology or tree structure. Sequence of the

leaves is encoded by the diagonal elements of the encoding

matrix, while topology is encoded by the locations of

binary (0–1) elements above the diagonal. Elements of

value 1 above the diagonal signify the group of leaves

belonging to the same node. For example, the four ele-

ments 1, 3, 2 and 4 on the tree shown in Fig. 4, belong to

the same node. Hence, the cell corresponding to the first

column, where leaf 1 (left most leaf of the node) is located

in the matrix; and the second row, where leaf 4 (right most

leaf of the node) is located in the matrix, is given a value of

1. In this way, the hierarchy and grouping relationships

among elements are maintained in the encoded matrix. In

any encoded matrix, the cell (1, 1) will always take the

value 1 (this is the root node to which all leaves belong).

4.3 Generating initial population of master assembly

sequence trees

A Genetic Algorithm starts with an initial set of solutions

known as initial population. This would be in the form of

assembly sequence trees of n leaves or its equivalent

matrices, where n is the total number of different leaves of

all individual trees. Randomly generating an initial feasible

population of assembly sequences; either in tree or matrix

format, is challenging. One approach is to randomly gen-

erate a set of n 9 n matrices with random integers (from 1

to n) in the diagonal cells and a number of n - 1 ones

(equivalent to number of nodes) in different cells above the

diagonal. The main difficulty with this approach is that the

resulting matrices are likely to be infeasible assembly

sequence trees. Controlling the random generation process

so that only valid assembly sequence matrices are gener-

ated or converting infeasible matrices into valid ones is

complicated.
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A much simpler solution and easier to implement is

proposed where valid matrices are randomly generated

directly. To generate an n 9 n matrix, representing a fea-

sible assembly sequence tree of n leaves, a set of n random

coordinates are generated. An agglomerative (bottom up)

hierarchical clustering algorithm, based on Euclidian dis-

tance as a proximity measure and single-linkage (nearest

neighbor) as a clustering method [32], is applied to build

the corresponding binary hierarchical clustering tree, also

known as dendrogram. Dendrogram is an equivalent rep-

resentation to assembly sequence trees used in this method.

The ‘‘Linkage’’ function of the Statistics toolbox of

MATLAB� was used for hierarchical clustering. The

Linkage function output is converted into the proposed

matrix form before proceeding to the Genetic Algorithm

iterations. Figure 5 shows the tree obtained by hierarchical

clustering if the coordinates (0, 0), (1, 1), (6, 6), (7, 7) and

(9, 9) are randomly generated. Equal integer values of

x and y coordinates are used here for simplicity, but in the

actual algorithm implementation real numbers, which are

not necessarily equal, are used to minimize the possibility

of having ties in proximity which occurs when two or more

minimum Euclidian distances between different clusters

have the same value during the agglomerative process. Ties

in proximity could be totally eliminated in single-linkage

clustering by adding/subtracting a small value to/from the

coordinates of leaves resulting in ties.

4.4 Robinson-Foulds distance and fitness function

The Robinson-Foulds distance [29], is the most widely used

metric for comparing phylogenetic trees [33]. Given two

trees T1 and T2, both having m number of leaves, C1 is a set

that includes m - 1 subsets, each represents one of the

m - 1 nodes of T1 and the elements inside each subset are

the elements belonging to the node representing the subset.

Similarly, C2 contains m - 1 subsets representing the

m - 1 nodes of T2. Robinson-Foulds distance (RF) is then

given by Eq. 1, where ‘‘D’’ refers to symmetric difference (a

set theory operation). Eq. 1 could be further detailed as in

Eq. 2, where ‘‘\’’ refers to set difference operation. Hence,

RF is simply a normalized count of the nodes (i.e. clusters

of leaves) that exist in one tree, but not the other.

RF T1; T2ð Þ ¼ 1=2 C1 D C2j j ð1Þ
RF T1; T2ð Þ ¼ 1=2 C1 nC2j j þ jC2 nC1jð Þ ð2Þ

For instance, the two trees T1 and T2 shown in Fig. 6

each has five leaves and four nodes. For T1, C1 = {{1, 3,

2, 4, 5}, {1, 3, 2, 4}, {1, 3}, {2, 4}} and for T2, C2 = {{1,

2, 3, 4, 5}, {1, 2, 3, 4}, {1, 2}, {3, 4}}. The order of sets

1

Encode 
Assembly 

Sequence Trees

2

Generate 
Initial 

Population

3

Run Genetic 
Algorithm

4

Decode Final 
Solution

Available 
assembly 
sequence 
trees

Proposed 
encoding 
scheme

Total no. of 
assembly 
components

Population 
Size

Hierarchical 
clustering

GA Operators:
crossover and 
mutation

RF distance 
calculation 
algorithm

GA parameters: 
crossover and 
mutation rates

Master Assembly 
Sequence Tree

Fig. 3 IDEF0 model for GA-

based search for consensus trees

(1, 3, 2, 4, 5)

(1, 3, 2, 4)

(1, 3)     (2, 4)

1 0 0 0 5
1 0 1 4 0

2 0 0
0 0 0

0 0
1 3
1 0 0 0 0

1 3 2 4 5

Fig. 4 Proposed tree-to-matrix encoding scheme

1 2 3 4 5

Coordinates: (0, 0) (1, 1) (6, 6) (7, 7) (9, 9)

Fig. 5 Tree of 5 leaves generated by hierarchical clustering
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within C1 and C2 or order of elements within any of their

subsets has no significance. By substituting in Eq. 2, we get

RF (T1, T2) = � (2 ? 2) = 2.

Many algorithms have been developed for calculating

the Robinson-Foulds distance with different computational

efficiency in finding and storing the C sets). Some of these

algorithms are exact [34] and others are approximate [33].

The most recognized algorithm for calculating the Robin-

son-Foulds distance is Day’s algorithm [35]. In this

research, an algorithm based on the proposed matrix rep-

resentation has been developed. Obtaining the C set for any

given tree becomes rather straightforward given the used

matrix encoding scheme. With reference to Fig. 7, the

subset of the C set that represents node D of the shown tree

simply includes the group of consecutive diagonal ele-

ments {1, 3, 2, 4}, identified by the position of the cell

representing D in the corresponding matrix.

Throughout the proposed GA iterations, a fitness func-

tion is used to assess the fitness of any candidate solution

(master assembly sequence tree). For a given set of avail-

able assembly sequence trees N, with a total of n different

components, and a candidate master tree MT, the fitness

function is the average of the Robinson-Foulds distances

between the candidate master tree MT and every individual

tree T out of the N available trees (Eq. 3).

Fitness ¼
Pi¼N

i¼1 RF MT;Tið Þ
N

ð3Þ

In most cases, MT has more components than T. Thus,

during calculating Robinson-Foulds distance between a

given master tree MT and any individual tree T, all

elements that exist in MT but not in T are ignored and

temporarily removed from the C set of MT.

4.5 Genetic algorithm operators

Genetic Algorithm (GA) is an evolutionary optimization

meta-heuristic originally introduced by Holland [30],

inspired by the process of natural selection. In a typical

Genetic Algorithm, crossover and mutation are the main

operators by which a new generation of solutions evolves

from the current population. An effective GA needs well-

designed crossover and mutation operators as well as

proper adjustments of their rates. Furthermore, employing

a local search routine within a meta-heuristic significantly

improves its performance.

4.5.1 Crossover

Crossover is the main GA operator and it is the mechanism

by which a new solution (offspring) is generated from the

combination (mating) of two randomly selected solutions

(parents). A specially designed crossover operation is

developed to allow proper information exchange between

any two combined trees which guarantees the feasibility of

the new tree. According to the proposed crossover opera-

tion, for two given randomly selected matrices, a new

matrix is generated by obtaining (inheriting) the topology

part of one matrix (elements above the diagonal) and the

leaves sequence part of the other matrix (diagonal ele-

ments). Hence, there is no chance of generating matrices

that are not equivalent to valid assembly sequence trees.

Figure 8a, b illustrate the proposed crossover operator

mechanism in both tree and matrix forms. The tree form is

shown for clarification.

4.5.2 Mutation

Mutation is an essential GA operator to help evolve new

solutions that would not be obtained by crossover alone.

Without a proper mutation operator, a premature

1 3 2 4 5 1 2 3 4 5

Fig. 6 Two Trees T1 and T2 with RF (T1, T2) = 2

1 0 0 0 5

D 1 0 1 4 0

0 0 2 0 0

1 3 0 0 0

1 0 0 0 0

1 3 2 4 5

Fig. 7 Obtaining the subsets of the C set for a given tree

Tree form

Matrix form

1 3 2 4 5 1 2 3 4 5 1 2 3 4 5

1 0 0 0 5 1 0 0 1 5 1 0 0 0 5

1 0 1 4 0 0 0 0 4 0 1 0 1 4 0

0 0 2 0 0 1 1 3 0 0 0 0 3 0 0

1 3 0 0 0 0 2 0 0 0 1 2 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

(a)

(b)

Fig. 8 Proposed crossover operator
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convergence towards a local optimum solution could easily

occur. Three mutation operators where developed; two of

them involve mutating sequences of leaves (diagonal ele-

ments of the matrix form) and the third mutates topologies

(elements above the diagonal in the matrix form).

The first mutation operator reverses the sequence of

leaves of a randomly selected tree. The second swaps two

randomly selected leaves. The third randomly alters the

topology of a randomly selected tree. As mentioned in

Sect. 4.3, the initial population is produced by random

generation of coordinates that are then clustered into trees

through agglomerative hierarchical clustering. Hence,

performing the topology mutation task without generating

invalid trees could be simply done by assigning a new

random coordinate to a randomly selected leaf of a ran-

domly selected tree then rebuilding the tree. Figure 9

shows how the tree in Fig. 5 would look like if the coor-

dinate of the second leaf from the left (leaf 2) was changed

from (1, 1) to (10, 10) without changing the sequence of the

leaves. According to that perturbation, node D in the ori-

ginal tree disappears and new node K is formed instead in

the mutated tree.

4.5.3 Local search

The last constituent of the implemented Genetic Algorithm

is a local search routine applied, during each GA iteration,

to the current global best solution in order to find better

ones locally. Similar to the third mutation operator, three

local search operations are carried out to examine minor

altered solutions from the global best one so far. The first

operation is to swap two randomly selected coordinates.

The second is to alter the value of a randomly selected

coordinate by adding or subtracting a randomly generated

value within pre-defined limits. The third operation is to

insert randomly selected coordinates in a randomly selec-

ted position. After each local search operation a new tree

(topology and sequence) is built and assessed and the

global best solution is updated accordingly.

Each time any of these local search operations is applied

it is kept iterating for a predefined number of iterations

(e.g. 20 iterations for each local search operation). Fur-

thermore, the global best solution is always kept in any

newly generated population.

5 Illustrative example

A hypothetical example is presented to illustrate the pro-

posed method. Consider five assembly sequences for five

variants in a given product family, involving a total of eight

different components. It is required to find the master

assembly sequence tree of that product family, and then

extract the assembly sequence of a new variant which has a

new combination of those components. The trees repre-

senting the assembly sequences for this product family are

shown in Fig. 10. The results of the test runs have favored

the following values of the GA parameters: 0.7 for cross-

over, 0.1 for each mutation operator, 25 for no. of local

search iterations and 100 for population size.

Upon running the GA using these parameters values, the

optimal consensus tree (Fig. 11a) with zero Robinson-

Foulds distance from any of the five trees was obtained in

27 s on a PC of Intel Core2 Quad 2.83 GHZ processor and

4 GB Ram. This consensus tree is the master assembly

sequence tree for the considered product family. The

assembly sequence tree for a new product variant that has

the components 1, 3, 4, 6, and 7 could then be extracted

from the tree in Fig. 11a by ignoring any component that is

not present in the new product components. Accordingly,

the assembly sequence tree for the new product variant is

shown in Fig. 11b.

  D K

1 2 3 4 5 1 2 3 4 5
Coordinates: (0, 0) (1, 1) (6, 6) (7, 7) (9, 9) (0, 0) (6, 6) (7, 7) (9, 9) (10, 10)

Fig. 9 Proposed topology mutation operator

T3
T1 T2

1 2 3 4 1 5 3 4 1 2 6 8 4
T4 T5

1 7 3 6 4 1 7 3 8 4

Fig. 10 Assembly sequence trees for family of five variants

(a) (b)
6 8 4 1 2 7 5 3 6 4 1 7 3

Fig. 11 a Master assembly sequence tree and b Extracted tree for a

new family variant
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6 Case study

The proposed method is further demonstrated using a real

case study involving three different variants of a back-

flushing control valve adopted from Dorot� product cata-

logue [36]. Back-flushing is a water filtration solution that

discharges the water flow which carries dirt and particles

out of the system. Those three back-flushing valve variants

are considered existing/legacy designs by the manufacturer

with known and consistently developed assembly sequence

plans. The three variants are schematically shown in

Fig. 12 where both the first and third variants have 9

components, while the second variant has 8 components.

The total number of different components is 13. Each

component in the figure is labeled with a name and a

number.

Figure 13 shows the assembly sequence trees extracted

for each valve variant from the exploded views provided in

the manufacturer catalogue. The objective is to construct

the master assembly sequence of this family of valves and

to use it to extract the assembly sequence of a new valve

variant. The master assembly sequence tree (consensus

tree) obtained using the proposed method is shown in

Fig. 14. The tree was obtained in \3 min on the same PC

used in the illustrative example using the same values of

the algorithm parameters.

The objective function of the obtained consensus tree

is non-zero, which means that there exists a Robinson-

Foulds distance between the master tree and some of the

three trees. Particularly, the master tree has a distance of

2 from tree T1 while it has a zero distance from the other

two trees T2 and T3. This is actually attributed to the

different order for assembling the spring (component 2) in

the assembly trees of the first and third variants. A perfect

consensus tree (with a zero objective function) does not

always exist, hence, the algorithm is designed to termi-

nate when it exceeds a pre-defined number of iterations

(100 in this example) without improving the objective

function.

A new back flushing valve (back-flushing control

valve—62) has the following eight components: bonnet

(1), diaphragm (3), chamber (14), spring (2), shaft (4),

body (6), seat (10), and adapter (12). Its assembly

sequence tree shown in Fig. 15 was extracted from the

master tree by considering only those eight components

out of the 13 components in the tree. The obtained master
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Fig. 12 Exploded views for the family of control valves extracted from the manufacturer catalogue [36]
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plan is not a perfect one (it has a non-zero objective

function), thus any component with conflicting assembly

sequence data, which is the spring in this example

(component 2), should be checked by the planner. The

new variant also has a new component, chamber (14),

which is not in the three existing variants. The position of

that component within the extracted assembly sequence

should be then decided by the planner. This greatly

reduces the assembly sequence planning effort for the

new variant.

The advantage of the proposed method is best demon-

strated by its ability to generate the assembly sequence of

groups of components that has never existed together in

any of the studied variants such as the shaft (4) and the seat

(10) as well as the shaft (4) and the adapter (14). Such an

advantage cannot be directly achieved using individual

process plans retrieval methods.

7 Summary and conclusions

A novel method has been developed for generating a

master assembly sequence for sequential non-linear prod-

uct assembly applications. Given assembly sequence trees

for a set of variants of a certain product family, a master

assembly sequence tree is derived. Individual assembly

sequence trees can be extracted for new variants that fall

within, or significantly overlap with, the scope of the

studied family of products. The method is capable of

generating assembly sequences for groups of components

that did not exist in any of the considered individual

variants. This is an advantage over existing individual

process plan retrieval methods. Partial assembly trees,

Robinson-Foulds distance, consensus trees, hierarchical

clustering and Genetic Algorithms were employed in the

proposed method.

For cases involving conflicting sequences (i.e. having

multiple different assembly sequences for the same com-

bination of components), the proposed method generates

the master assembly sequence with the most probable

position for those conflicting components. When extracting

the assembly sequence for a new variant, the planner

should revise the assembly sequence of such conflicting

components. The proposed method is being extended in

order to allow automatic identification of conflicting

components.

  T1

  T2

  T3

4 2 1

6 10 8 7 12 3 1

6 7 8 9 5 3

13 3 1

11

6 10 8 7 2 12

Fig. 13 Assembly sequence trees for a family of three back-flushing

control valves

8 9 12 1310 11 73 5 4 1 2 6

Fig. 14 Obtained master assembly sequence tree for a family of three

back-flushing valves

3 4 1 2 6 10 12

Fig. 15 Assembly sequence tree for a new valve extracted from the

master tree
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The quality and scope of the obtained master assembly

sequence and subsequently extractable sequences for new

variants depend on the quality and scope of the used

assembly sequence data.
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