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Abstract Preeclampsia is a hypertensive pregnancy disor-
der characterized by development of hypertension and pro-
teinuria after 20 weeks of gestation that remains a leading
cause of maternal and neonatal morbidity and mortality.
While preeclampsia is believed to result from complex in-
teractions between maternal and placental factors, the prox-
imate pathophysiology of this syndrome remains elusive.
Cell-to-cell communication is a critical signaling mecha-
nism for feto-placental development in normal pregnancies.
One mechanism of cellular communication relates to acti-
vated cell-derived sealed membrane vesicles called extra-
cellular vesicles (EVs). The concentrations and contents of
EVs in biological fluids depend upon their cells of origin
and the stimuli which trigger their production. Research on
EVs in preeclampsia has focused on EVs derived from the
maternal vasculature (endothelium, vascular smooth mus-
cle) and blood (erythrocytes, leukocytes, and platelets), as

well as placental syncytiotrophoblasts. Changes in the con-
centrations and contents of these EVs may contribute to the
pathophysiology of preeclampsia by accentuating the pro-
inflammatory and pro-coagulatory states of pregnancy.
This review focuses on possible interactions among
placental- and maternal-derived EVs and their contents in
the initiation and progression of the pathogenesis of pre-
eclampsia. Understanding the contributions of EVs in the
pathogenesis of preeclampsia may facilitate their use as
diagnostic and prognostic biomarkers.
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Introduction

Preeclampsia is characterized by new-onset hypertension (sys-
tolic blood pressure ≥140 mmHg/diastolic blood pressure
≥90 mmHg), with either proteinuria (≥300 mg/24 h) and/or
organ dysfunction after 20 weeks of gestation [1]. The under-
lying cellular and molecular mechanisms that trigger pre-
eclampsia and facilitate its progression are not well understood.
Consequently, there are no established early diagnostic tests or
effective targeted pharmacological treatments for preeclampsia.
The only treatment option is delivery. With a global prevalence
rate of 2.7–8.2% of pregnancies, preeclampsia remains a major
challenge in patient management for physicians [2–4].

It is recognized increasingly that preeclampsia is a hetero-
geneous disease, caused by several distinct underlying mech-
anisms that may result in different clinical phenotypes [5••].
This is reflected in current clinical practice, as it is common to
divide preeclampsia into early (<34 weeks of gestation) and
late (>34 weeks of gestation) preeclampsia based on the
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timing of the onset of symptoms. Similarly, preeclampsia
may be classified as mild or severe depending on the se-
verity of symptoms, including blood pressure (mild, <160/
110 mmHg; severe, ≥160/110 mmHg), and the presence or
absence of organ dysfunction (kidney failure, liver rup-
ture, stroke, and seizure). Studies investigating the etiolo-
gies of preeclampsia have hypothesized that this syndrome
may have placental and maternal forms [6]. This approach
takes into account the underlying mechanisms. It has been
proposed that defects in remodeling of the maternal spiral
arteries that supply the placenta ultimately lead to placen-
tal ischemia [7••], ischemia reperfusion injury [8], or high
velocity blood flow injury in the intervillous space [9••] in
placental preeclampsia. This triggers the release of one or
more placental factors that cause systemic endothelial dys-
function in the maternal circulation. Alternatively, mater-
nal preeclampsia may arise in the setting of vascular dys-
function, oxidative stress, and metabolic abnormalities,
such as hypertension, obesity, or diabetes that predate or
are exacerbated by pregnancy (in the text that follows, we
will refer to these conditions as preeclampsia risk factors).
Endothelial dysfunction worsens with advancing gestation
as the mother is unable to adapt to the physiological stress
of pregnancy (Fig. 1). Placental preeclampsia is common-
ly viewed as early or severe, while maternal preeclampsia
is sometimes characterized as late or mild. Although the
dichotomous view of preeclampsia is overly simplistic, the
relative contributions of maternal vs. placental factors
likely differ among individual women, ultimately resulting
in a diverse spectrum of clinical presentations. Irrespective
of the predominant underlying mechanism, the interac-
tions among maternal and placental pathophysiological
factors may lead to a vicious cycle of maternal inflamma-
tion, vascular dysfunction, and the activation of pro-

coagulation pathways that ultimately cause the symptoms
and signs of preeclampsia.

Based on the complex nature of the origin of pre-
eclampsia, we hypothesize that placental and maternal
cells cross-talk, mediated by extracellular vesicles (EVs),
contributes to the initiation and progression of preeclamp-
sia in women, both with and without known pre-existing
risk factors (Fig. 1). In women for whom EVs derived
from the placenta are the major contributors, we propose
that the symptoms of preeclampsia may appear earlier in
gestation. If EVs derived from maternal cells are the major
contributors, the symptoms may appear later in gestation.
Two distinct types of EVs (exosomes and microvesicles)
are released by almost all activated cells or cells involved
in pathophysiological processes [10–13]. Exosomes and
microvesicles differ in size and their modes of formation.
Exosomes are smaller than microvesicles (30–120 nm vs.
40–1000 nm) [12], and are formed by the endocytosis of
multivesicular bodies and are released from cells by exo-
cytosis. In contrast, microvesicles (MVs) are membrane-
bound vesicles that are shed from the plasma membrane
[12]. Despite these differences, the size ranges for these
two distinct classes of EVs overlap in some extent, and
there are currently no established methods available to
distinguish them purely on basis of size. Surface-specific
EV markers that can be used to differentiate microvesicles
and exosomes have not yet been identified. We have there-
fore used the term EVs, as previously suggested by the
scientific community [14], to refer to exosomes and
microvesicles in this review.

As the role of EVs in the pathophysiology of preeclampsia
is an emerging field, the literature contains conflicting data.
This review focuses on the most consistent findings, while
providing an overview of areas with disparate findings.

Fig. 1 Role of EVs in
pathogenesis of preeclampsia.
Maternal risk factors and
placental abnormalities cause
systemic maternal cell activation
resulting in release of EVs.
Endothelial-, leukocyte-, and
platelet-derived EVs give rise to
vascular dysfunction, immune
modulation, and increased
thrombotic propensity. These
processes collectively contribute
to progression of pathogenesis of
preeclampsia
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Maternal Cell-Derived EVs Before Pregnancy

Changes in circulating EVs offer a unique opportunity to ex-
amine how preeclampsia risk factors affect the functions of the
parent cells and tissues prior to and during pregnancy. Risk
factors for preeclampsia include obesity, pre-gestational dia-
betes mellitus, hypertension, and systemic lupus erythemato-
sus (Table 1). These risk factors could alter the functioning of
different types of maternal cells prior to pregnancy, as dem-
onstrated by changes in the concentrations and bioactive mo-
lecular contents of the circulating EVs. Studies examining
EVs in non-pregnant women suggest that risk factors for pre-
eclampsia are associated with changes in EVs derived from
vascular endothelial cells, leukocytes, and platelets [17–26]
(Table 2). As shown in Table 2, compared to non-pregnant
women without preeclampsia risk factors, non-pregnant wom-
en with these risk factors are reported to have increased
endothelial-derived EVs [17–19, 22, 24, 25, 27]. Similarly,
non-pregnant women with these risk factors are reported to
have increased platelet-derived EVs [17, 20–22, 26]; however,
they have either increased or decreased concentrations of
leukocyte-derived EVs [20, 23–25].

Studies have shown that the effects of preeclampsia-
associated risk factors are similar to the effects of preeclamp-
sia on endothelial-derived EVs. Women with both
preeclampsia-associated risk factors and preeclampsia are re-
ported to have increased concentrations of endothelial-derived
EVs when compared to either non-pregnant women without
these risk factors and/or normotensive pregnant women, re-
spectively [17–19, 22, 24, 25, 27–29]. However, some studies
report no change in endothelial-derived EV concentrations in
women with preeclampsia compared to normotensive preg-
nant women [30–32]. Concentrations of leukocyte-derived
EV (LEV) in non-pregnant women with preeclampsia-
associated risk factors are reported to be increased, decreased,
or not changed, when compared to non-pregnant womenwith-
out these risk factors [20, 23–25]. Whereas in women with
preeclampsia, LEV concentrations are reported to be

increased compared to normotensive pregnant women [28,
33]. The effects of preeclampsia-associated risk factors are
reported to be opposite to the effects of preeclampsia on
platelet-derived EV (PEV). Increased concentrations of PEV
are present in women with preeclampsia-associated maternal
risk factors compared to non-pregnant women without these
risk factors. However, PEV concentrations are reported to be
decreased in women with preeclampsia compared to normo-
tensive pregnant women [17, 20–22, 26].

Use of low-dose aspirin is recommended for women with
preeclampsia-associated risk factors to decrease the morbidity
and mortality associated with preeclampsia [34]. The benefi-
cial effects of aspirin in those with preeclampsia-associated
risk factors may, at least in part, be explained by the effect
of aspirin on platelet activity. By inhibiting thromboxane A2

synthesis, aspirin decreases platelet activation and, in turn,
likely affects the production of PEV. Understanding the effect
of aspirin on PEV production and content in women with
preeclampsia-associated risk factors may delineate the mech-
anistic pathways by which PEV contribute to the pathogenesis
of preeclampsia.

Placenta-Derived EVs

The placenta plays a critical role in the pathophysiology of
preeclampsia [35]. Placental trophoblasts are involved in spi-
ral artery remodeling and differentiate into extravillous tro-
phoblasts and villous trophoblasts. The villous trophoblasts
fuse to form syncytiotrophoblasts. The extravillous tropho-
blasts invade the distal portions of the spiral arteries,
displacing maternal vascular endothelial and smooth muscle
cells [36, 37]. This process transforms the distal portions of
the spiral arteries from narrow vessels into wide, flaccid con-
duits [38, 39•]. The uterine oxygen gradient in early pregnan-
cy favors extravillous trophoblast invasion of the uterine spiral
arteries and spiral artery remodeling [40]. It is speculated that
placental trophoblast-derived EVs (40–300 nm) [41] may also

Table 1 Preeclampsia-associated
maternal risk factors Pre-pregnancy maternal characteristics Relative risk Reference

Obesity 2.47 Duckitt et al. [15]

Pre-gestational diabetes mellitus 3.56 Duckitt et al. [15]

Hypertension 1.38–2.37 Duckitt et al. [15]

Autoimmune diseases

• Systemic lupus erythematosus –

• Antiphospholipid syndrome 9.72 Duckitt et al. [15]

Sickle cell anemia 2.43 Oteng-Ntim et al. [16]

Nulliparity 2.91 Duckitt et al. [15]

Preeclampsia in prior pregnancy 7.19 Duckitt et al. [15]

Family history of preeclampsia 2.90 Duckitt et al. [15]
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have a role in spiral artery remodeling [42]. Salomon et al.
have shown that oxygen tension regulates the number and
protein content of exosomes released by the placenta, with
greater release of exosomes by placental trophoblasts under
hypoxic conditions in vitro [43, 44]. Placental exosomes are
reported to contain serine proteases and metalloproteases
(MMP), including MMP-12 [44]. It has been hypothesized
that MMP-12 secreted by trophoblasts may facilitate tropho-
blast invasion by contributing to the remodeling of the extra-
cellular matrix in the vascular wall [45].

Abnormal placentation in women with preeclampsia
may increase circulating concentrations of placental-
derived EVs. Studies have shown higher concentrations
of syncytiotrophoblast- derived EVs [28, 46, 47•, 48],
with altered lipid and protein content [49, 50], in women
with early-onset or severe preeclampsia compared to nor-
motensive pregnant women. In addition, studies suggest
that the syncytiotrophoblast apoptosis rate is elevated in
preeclampsia (5–6 %) when compared to normal pregnan-
cy (2–3 %) [51]. In accordance with this finding, higher
circulating concentrations of syncytiotrophoblast-derived
EVs have been reported in preeclamptic women compared
to normotensive pregnant women [41, 46, 47•] .
Furthermore, women with early-onset preeclampsia seem
to have higher syncytiotrophoblast-derived EVs concen-
trations than women with late-onset preeclampsia [28,
48, 52•]. Further studies are needed to identify the exact
cellular or molecular pathways that stimulate production
of placental-derived EVs, which may contribute to the
development of preeclampsia.

Effect of Maternal EVs on Production
of Placental-Derived EVs

Dynamic interactions between maternal and fetal factors
are constantly occurring at the maternal-fetal interface.
These interactions contribute to the regulation of tropho-
blast phenotype and endovascular invasion. Chemokines
and their receptors (CXCR4, CXCR7, CXCL12) promote
cell survival and proliferation and inhibit apoptosis [53].
Lu et al. [53] have shown decreases in the expressions of
CXCR4, CXCR7, and CXCL12 molecules in trophoblast
cells obtained from the placentas of preeclamptic women.
The causes of these decreases are not known. One possible
mechanism may be that circulating maternal factors down-
regulate chemokine receptors at the post-transcriptional
level. Alternatively, downregulation of molecules or up-
regulation of molecular inhibitors at the transcriptional
level can also occur in trophoblasts, as demonstrated by
Zhou et al. [54]. This study also observed an upregulation
of the angiogenesis inhibitor SEMA3B in trophoblasts ob-
tained from women with preeclampsia. SEMA3B inhibits
trophoblast invasion of vessels by promoting trophoblast
apoptosis. It additionally showed that the increased levels
of SEMA3B from preeclamptic trophoblasts returned to
control levels after 48 h in a culture system. Based on this
finding, the authors proposed that factors in the maternal
milieu cause reversible upregulation of SEMA3B in tro-
phoblasts in preeclampsia [54]. The role of maternal cell-
derived EVs in regulating trophoblast gene expression in
preeclampsia remains to be determined. Holder et al. [55]

Table 2 EVs in non-pregnant
women with preeclampsia-
associated risk factors compared
to non-pregnant women without
preeclampsia-associated risk
factors

Risk factor Extracellular vesicles Results Reference

Obesity Endothelial-derived ↑ Stephanian et al. [17]

Platelet-derived ↑ Stephanian et al. [17]

Diabetes mellitus Endothelium-derived ↑ Sabatier et al. [18]

↑ Tramontano et al. [19]

Leukocyte-derived No difference Zhang et al. [20]

Platelet-derived ↑ Zhang et al. [20]

↑ Strano et al. [21]

Hypertension Endothelium-derived ↑ Preston et al. [22]

Platelet-derived ↑ Preston et al. [22]

Systemic lupus erythematosus Leukocyte-derived ↑ Lacroix et al. [27]

↓ Neilson et al. [24]

Endothelium-derived ↑ Lacroix et al. [27]

No difference Neilson et al. [24]

Platelet-derived ↑ Stephanian et al. [17]

Antiphospholipid syndrome Endothelium-derived ↑ Dignat-George et al. [25]

Leukocyte-derived ↑ Dignat-George et al. [25]

Sickle cell anemia Platelet-derived ↑ Wun et al. [26]
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have shown that placental trophoblasts take up exosomes
from maternal macrophages and alter the placental pro-
duction of inflammatory cytokines. Given this evidence,
we hypothesize that EVs derived from maternal cells have
the potential to alter trophoblast gene expression and func-
tion. These changes may contribute to defective tropho-
blast invasion and increased trophoblast apoptosis.

Placental debris is cleared by macrophages at the
maternal - fe ta l in te r face [56] . I t i s known tha t
syncytiotrophoblast-derived vesicles affect the functions
of maternal cells, including platelets, leukocytes, erythro-
cytes, and endothelial cells [57•, 58–62]. Therefore, it is
possible that EVs produced by syncytiotrophoblasts also
contribute to regulating maternal macrophage activity at
the maternal-fetal interface. Exploring the effects of
syncytiotrophoblast-derived EVs on maternal macro-
phages will elucidate the mechanisms by which macro-
phage activity is regulated at the maternal-fetal interface.
The role of maternal EVs in the regulation of trophoblast
turnover and immune activity at the maternal-fetal inter-
face will provide valuable insight into the factors regulat-
ing the dynamics of the maternal-fetal interface. This, in
turn, will delineate the role that EVs of maternal and
placental origins and their interactions have in the initia-
tion and progression of placental preeclampsia.

Maternal Cell-Derived EVs and Their Interactions

Platelet-Derived EVs Platelets are the largest source of EVs
in blood in healthy non-pregnant women [63]. When com-
pared to non-pregnant women, most studies report lower
platelet-derived EV(PEV) concentrations in normotensive
pregnant women [28, 64]. While most studies have observed
further reductions in PEV in women with preeclampsia [28,
31, 32, 65], a few studies have shown higher concentrations of
PEV, or no change [66, 67] (Table 3). It is plausible that dif-
ferences in the reported concentrations of PEV among the
studies are reflective of different preeclampsia subtypes and
their underlying mechanisms. Three different theories have
been proposed to explain the lower concentrations of PEV
with preeclampsia. (1) Lower platelet counts in preeclampsia
may contribute to lower concentrations of PEV [65]. (2) Some
studies have hypothesized that the lower concentrations of
PEV may partly be due to increased trapping or participation
of PEVs in thrombin generation and fibrin clot formation [28,
64, 67, 72]. (3) It is postulated that lower PEVs may be due to
their association or binding with leukocytes [65].

Leukocyte-Derived EV Studies have shown that leukocyte
counts and concentrations of leukocyte-derived EV (LEV) are
higher in normotensive pregnant women compared to non-

Table 3 Comparison of EVs between preeclampsia and normotensive pregnancy

Parameter Preeclampsia Normotensive
pregnancy

Reference

Total EVs Increased/no
change/decreased

Present Tesse et al. [68]; Marques et al. [28];
Mikhailova et al. [33]; VanWijk et al. [69];
Holthe et al. [70]; Bretelle et al. [32];
Lok et al. [31]

Syncytiotrophoblast-derived
EVs (early-onset PE)

Increased/no
significant change

Present Knight et al. [46]; Germain et al. [47•];
Goswami et al. [48]; Lok et al. [31]

Syncytiotrophoblast-derived
EVs (late-onset PE)/severe

No change/no change Present Goswami et al. [48]; [28]

Endothelial cell-derived EVs Increased/no change Present Marques et al. [28]; Gonzalez et al. [29];
VanWijk et al. [69]; Bretelle et al. [32];
Lok et al. [31]

Platelet-derived EVs Decreased Present Marques et al. [28]; Bretelle et al.[32];
Lok et al.[28, 31]; Lok et al. [65]

Leukocyte-derived EVs Increased Present Mikhailova et al. [33]; Marques et al. [28]

• Granulocyte-derived EVs Increased Present Lok et al. [71]; vanWijk et al. [69];
Marques et al. [28]

• Monocyte-derived EVs Increased Present Lok et al. [31, 71]; Marques et al.[28]

• Lymphocyte-derived EVs Decreased Present Lok et al. [71]; Marques et al.[28]

• T cell-derived EVs Increased Negligible vanWijk et al.[69]

• T helper cell-derived EVs Increased Negligible Lok et al. [31]

Erythrocyte-derived EVs Increased Present Lok et al. [31]; Marques et al. [28];
Dragovic et al. [64]
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pregnant women [28, 33, 64, 69, 71, 73]. The inflamma-
tory state of normotensive pregnancy is further exacerbat-
ed in preeclampsia, as preeclamptic women have even
higher leukocyte counts and concentrations of LEV [64,
71] (Table 3). The upregulation of granulocytes (neutro-
phils)-and monocyte- and granulocyte-derived EVs-has
been suggested [28, 33, 71] to aid in the removal and
regulation of syncytiotrophoblast-derived vesicles and
placental debris that are released into the maternal circu-
lation. Pro-inflammatory EVs can be produced by endo-
thelial cells in response to inflammatory stimuli [74].
Therefore, we speculate that the pro-inflammatory state
in preeclampsia may increase circulating concentrations
of endothelial-derived pro-inflammatory EVs. These pro-
inflammatory EVs may contribute to the increases in the
peripheral blood neutrophils and monocytes in preeclamp-
sia, facilitating the immunomodulation and upregulation
of phagocytosis.

The role of EVs in leukocyte activation has also been ex-
plored. Studies have shown that syncytiotrophoblast-derived
vesicles from normal pregnancy and preeclampsia cause leu-
kocyte activation in vitro [47•, 75] that is mediated by toll-like
receptors and nuclear factor (NF-Kβ) [76]. Peripheral blood
EVs have also been shown to alter monocyte phenotype
in vitro [60]. Furthermore, it has been shown that activated
leukocytes produce inflammatory cytokines (IL-1, IL-8) and
nuclear factor (NF-Kβ) that can stimulate EV production [77].
The circulating EVs of maternal and placental origins most
likely propagate inflammation in preeclampsia [37].

Red Blood Cells (Erythrocytes)-Derived EV While most
studies show an increase in the concentrations of red blood
cells (erythrocytes)-derived EV (REV) in normotensive preg-
nant women and preeclamptic women compared to non-
pregnant women [28, 31, 64], one study showed no difference
[64]. Increased REV concentrations in pregnancy suggest
erythrocyte activation, which may be due to increased oxygen
demand in pregnancy or stimulation by circulating EVs.
Alternatively, increased REV concentrations in preeclampsia
may be due to erythrocyte disruption and hemolysis [78],
which may be associated with widespread thrombosis [28].
Ten to twenty percent of women with preeclampsia develop
hemolysis, elevated liver enzymes, and low platelets (HELLP)
syndrome, which is characterized by erythrocyte disruption
[79]. Hemolysis, in addition, may result from an autoimmune
reaction to trophoblast-derived vesicles deposition on erythro-
cytes that may explain the increased concentrations of REV in
preeclampsia. Determination of REV concentrations and com-
position in pregnant women with and without preeclampsia
and with HELLP syndrome may help to elucidate the mech-
anisms by which preeclampsia progresses to HELLP
syndrome.

Vascular Endothelium and Smooth Muscle Cell-Derived
EVs The concentrations of endothelial-derived EV (EEV)
are lower in normotensive pregnant women compared to
non-pregnant women, reflecting either decreased produc-
tion of EEV in normotensive pregnancy or EEV binding
to circulating blood cells (platelets and leukocytes).
Decreased EEV production is associated with decreased
peripheral vascular resistance in normotensive pregnancy
[80, 81]. Estrogen and maternal fluid dynamics [82] have
been postulated to decrease EEV production in normal
pregnancy. As syncytiotrophoblast-derived vesicles carry
bioactive molecules (e.g., mRNA or miRNA), it may be
possible that they regulate the endothelial functions asso-
ciated with decreased peripheral vascular resistance.
Petrozella et al. [83] and VanWijk et al. [69] have shown
that circulating EEV concentrations were higher in pre-
eclamptic women compared to normotensive pregnant
women (Table 3). This indicates activation of endothelial
cells in preeclampsia and an association between in-
creased concentrations of EEV and vascular dysfunction.
It has been demonstrated that EEV have differing charac-
teristics depending on signaling stimulus and associated
thrombotic and inflammatory processes or conditions
[84]. In addition to negatively charged phospholipids,
the surface of EEV display receptors (E-selectin, intercel-
lular adhesion molecule-1, and vascular cellular adhesion
molecule-1) and markers expressed by endothelial cells.
Determining the composition and surface expressions of
EEV in normotensive pregnant and preeclamptic women
may elucidate the interactions that result in the exacerba-
tion of inflammation and coagulation activation in pre-
eclampsia. EEVs are implicated in the progression of in-
flammatory vascular diseases [85]. EEV-mediated com-
munication between endothelial cells and the target cells
(leukocytes, platelets) is vital to the understanding of the
exaggerated pro-inflammatory and pro-coagulation states
underlying preeclampsia. Vascular smooth muscle cell-
derived EVs (SMCEVs) have also been implicated in
pathological processes resulting in vascular disease pro-
gression [86]. The contributions of SMCEVs in the path-
ophysiology of preeclampsia have not been investigated.
Studies exploring the role of SMCEVs may delineate ad-
ditional mechanistic vascular pathways contributing to the
initiation and progression of preeclampsia.

EVs and Coagulation in Preeclampsia

The pro-coagulation state of normotensive pregnancy is asso-
ciated with a decrease in fibrinolytic activity caused by in-
creased pro-coagulant factors and fibrinolytic inhibitors
(e.g., plasminogen activator inhibitor-1, [PAI-1]). In addition,
the phosphatidylserine present on the surfaces of placental and
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maternal cell-derived EVs contributes to the hypercoagu-
lable state. Thrombin generation and prothrombin frag-
ments increase in normotensive pregnancy [87]. This hy-
percoagulable state is exaggerated in preeclampsia,
resulting in widespread blood clot formation [88], with
fibrin deposition in the maternal vasculature, organs, and
the placenta [89]. This may be due to the increased total
concentrations of pro-coagulant surface positive EVs;
however, certain studies have shown no change or even
decreases in total counts of MVs in preeclampsia.
Alternatively, changes in the phenotype of EVs could also
cause increased coagulation. Certain pro-coagulatory mol-
ecules (e.g., PAI-1) also have important roles in EEV
generation [90, 91]. Studies exploring the link between
pro-coagulant factors and EV generation in preeclampsia
may elucidate the mechanism that links endothelial dys-
function with widespread coagulation. Depending upon
the severity of preeclampsia, widespread coagulation ac-
tivation and clot formation results in ischemic damage in
end organs, as well as widespread disseminated intravas-
cular coagulation.

Tissue factor is a ubiquitous 47 kDa transmembrane protein
that initiates the inflammatory coagulation pathway. It is pres-
ent on cells, as well as on cell-derived EVs. It is constitutively
expressed in some cells (perivascular fibroblasts) and condi-
tionally expressed in other cells in response to a variety of
stimuli, including activated monocytes, macrophages, and
the vascular endothelium [92]. The EVs released from activat-
ed leukocytes and endothelial cells also express tissue factor
[63]. Previous studies have demonstrated that tissue factor is
present on the surface of syncytiotrophoblast-derived vesicles
[93, 94]. Upregulation of tissue factor on syncytiotrophoblasts
occurs in preeclampsia [95], which is associated with the in-
creased activity of tissue factor in preeclampsia [96]. Gardiner
et al. [96] have demonstrated higher tissue factor activity and
thrombin generation associated with syncytiotrophoblast-
derived vesicles from preeclamptic women compared to nor-
motensive pregnant women. Preclinical studies have revealed
improved clinical outcomes following anticoagulant therapies
in animal models of preeclampsia [97]. Human studies that
explore the use of anticoagulants suitable for preeclamptic
women are needed. Based on animal studies, anticoagulant
therapy has the potential to improve maternal and fetal out-
comes in preeclamptic pregnancies.

Conclusions

EVs have a dynamic role in the communication among
maternal vascular cells (the vascular endothelium, circu-
lating leukocytes, and platelets) and the placenta, thus
contributing to the progression of normal pregnancy.
Depending on pre-existing maternal conditions, any of

these vascular components during pregnancy may be ca-
pable of initiating the cascade of events that result in
preeclampsia. In maternal conditions associated with the
activation of vascular endothelial cells and immune sys-
tem modulation, EEVs can augment inflammation, coag-
ulation, and endothelial dysfunction. Pre-pregnancy ma-
ternal platelet activation can augment endothelial dysfunc-
tion and inflammation via PEVs, facilitating the progres-
sion to preeclampsia. In women without maternal risk
factors associated with preeclampsia, it is possible that
placental trophoblast-derived EVs may contribute to the
maternal milieu that favors progression to preeclampsia.

Future Directions The complex interactions of maternal
cell-derived EVs and placental-derived EVs need to be
explored further to elucidate the mechanisms of initiation
and progression of preeclampsia, with and without known
maternal risk factors. In addition to quantitative alter-
ations in EVs, characterizing the bioactive molecular con-
tents (mRNA, miRNA, proteins, lipids, and metabolites)
of these EVs based on their cellular origins and their in-
teractions with target cells in the blood and vascular com-
partments may help to identify underlying mechanisms
that contribute to the pathophysiology of preeclampsia.
Furthermore, understanding the roles of the specific types
of EVs in the pathogenesis of preeclampsia may enable
the development of a panel of biomarkers that will help to
identify pregnant women at risk for developing pre-
eclampsia. In addition, as maternal vascular, immune,
and coagulation systems may have EV-mediated bidirec-
tional communication, it may be possible to therapeutical-
ly target one component of the maternal system, which
may facilitate the other two systems to return to normalcy
in preeclampsia. As most EVs in the healthy pregnant
state are derived from platelets, therapeutic interventions
aimed at stabilizing platelets can correct the exaggerated
pro-inflammatory and hypercoagulable state in pre-
eclampsia that may also help to mitigate the vascular dys-
function and immune flare.
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