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Classifying watersheds prior to regionalization improves streamCow predictions in ungauged basin.
Present study aims to assess the ability of combining watershed classiBcation using dimensionality
reduction techniques with regionalization methods for reliable streamCow prediction using soil and water
assessment tool (SWAT). Isomap and principal component analysis (PCA) are applied to watershed
attributes of 30 watersheds from Godavari river basin in India to classify them. The best classiBcation
technique is determined by calculating similarity index (SI). The results showed that Isomap is better at
classifying hydrologically similar watersheds than PCA with an average SI value of 0.448. The region-
alization methods such as global mean, inverse distance weighted (IDW) and physical similarity were
applied to transfer the parameters from watersheds of best watershed classiBcation group to the pseudo-
ungauged watersheds, using SWAT model. The present study suggests that classifying watersheds with
Isomap and regionalization using physical similarity improves the eDciency of streamCow estimation in
ungauged basins.

Keywords. Ungauged basins; regionalization; watershed classiBcation; Isomap; similarity index; SWAT
model.

1. Introduction

The assessment of water resources in a watershed is
very important for appropriate planning and man-
agement, decision making for policy makers, water
allocation for agricultural, industrial and domestic
sectors, design of bridges, dams, etc., and disaster
management. For this, continuous streamCow
records for the watersheds are essential. Although
hydrologists across the globe have achieved success
to a great extent in modelling the rainfall-runoA
relationship, estimation of streamCow in ungauged
watersheds still remains a crucial problem. The
major problem is unavailability of streamCow series
data for calibration and validation of the rainfall-
runoA models. Estimation of model parameters for

an ungauged watershed from a donor gauged
watershed is called as regionalization (Bl€oschl and
Sivapalan 1995). Regionalization methods are
widely used for the estimation of streamCow in
ungauged basins. The past decade saw a paradigm
shift in regionalization methods under ‘Decade on
Predictions in Ungauged Basins (PUB): 2003–2012’
established by the International Association of
Hydrological Sciences. The advances made in the
Beld of regionalization suggests that performance of
regionalization methods is different in different
regions and there is no universal regionalization
method that is applicable to all the regions (Oudin
et al. 2008; Samuel et al. 2011).
Many of the river basins in the world are either

ungauged or poorly gauged (Sivapalan et al. 2003;
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Young 2006; Bl€oschl et al. 2013). In sub-continen-
tal country like India, the situation is even worse
where limited streamCow data is available for most
of the river basins. In spite of such a diversiBed
hydroclimatic conditions and poorly gauged river
basins, the problem of estimating streamCow in
ungauged basin is less addressed. Singh et al.
(2001) developed regional Cow duration models for
over 1,200 watersheds from 13 states in Himalayan
region, India for planning micro-hydropower pro-
jects. Using these models, Cows of the desired level
of dependability can be estimated. Rees et al.
(2002) developed a regionalized Cow estimation
method to estimate Cow duration curves using
catchment characteristics in snow-fed and rain
zones of Nepal and Himachal Pradesh (India). Rees
et al. (2004) developed a hydrological model for
estimating dry season Cows in ungauged catch-
ments of northern India based on recession curve
behaviour using calibration set of 26 catchments.
The regional models predicted the volume of water
with an average of 8% error during the recession
period. Recently, Swain and Patra (2017) esti-
mated streamCow in 32 Indian catchments using
regional Cow duration curve by applying area –

index, inverse distance weighted (IDW), kriging
and stepwise regression. Kriging and IDW per-
formed better than the remaining two techniques
with average Nash SutcliAe EDciency (NSE) of 0.6.
He et al. (2011) and Razavi and Coulibaly

(2013a) reviewed broad spectrum of regionalization
studies where streamCow is estimated by imple-
menting various regionalization methods, rainfall-
runoA models and for different study areas in the
past decade. The most common regionalization
techniques include spatial proximity, kriging,
inverse distance weighted (IDW), physical simi-
larity, regression methods, global average and
hydrological similarity. StreamCow prediction in
either gauged or ungauged catchments are carried
out using distributed physically-based models
(e.g., BTOPMC [Block wise use of TOPMODEL
with Muskingum–Cunge Cow routing method],
Mike 11 NAM, MIKE-SHE), conceptual and
semi-distributed models (e.g., HBV [Hydrologiska
Byrans Vattenbalansavdelning model], MAC-HBV
[McMaster-Hydrologiska Byrans Vattenbalansav-
delning model], SimHyd, IHACRES [identiBcation
of unit hydrographs and component Cows from
rainfall, evapotranspiration and streamCow], GR4J
[G�enie Rural �a 4 param�etres Journalier], AWBM
[Australian Water Balance Model], SWAT [Soil
and Water Assessment Tool]) and data-driven

models (ANNs [ArtiBcial Neural Networks],
ARMA [Auto Regressive Moving Average], MLR
[Multiple Linear Regression]) (Razavi and Couli-
baly 2013a). Due to high level of uncertainty
associated with the physically distributed models,
conceptual or semi-distributed models are exten-
sively used with combination of regression tech-
niques in most of the studies (Razavi and Coulibaly
2013a). Heuvelmans et al. (2004) evaluated the
transferability of soil and water assessment tool
(SWAT) model parameters on 25 Belgian catch-
ments to predict daily streamCow in ungauged
catchments. The results indicated spatial and
temporal loss when parameters are transferred in
time and space. Gitau and Chaubey (2010) esti-
mated streamCow in seven catchments of Arkansas
using SWAT with global average and regression
methods. Satisfactory range of model evaluation
criteria suggests suitability of SWAT model for
streamCow prediction in ungauged catchments.
Sellami et al. (2014) addressed the issues related to
uncertainty of models for streamCow prediction
using SWAT combined with spatial proximity.
Athira et al. (2016) derived regionalized probabil-
ity distribution parameters for SWAT model. They
proposed a methodology for developing ensemble
hydrological model simulations in ungauged basin.
Several studies examined the potential of clas-

sifying watersheds into homogenous regions for
improving the predictions in ungauged basins.
These studies focused on identifying homogenous
groups of watersheds by applying different linear
and non-linear dimensionality reduction tech-
niques on watershed characteristics (e.g., Nathan
and McMahon 1990; Chiang et al. 2002a, b; Di
Prinzio et al. 2011; Kileshye et al. 2012; Razavi and
Coulibaly 2013b). Ganvir and Eldho (2017) inves-
tigated the potential of Isomap, a non-linear
dimensionality reduction technique, for classifying
the watersheds of Mississippi river basin. Iso-
map performed better than PCA in classifying the
watersheds into homogenous groups for
regionalization.
In this study, regionalization methods were

applied to pre-identiBed homogenous regions of
watersheds to access the potential improvement in
estimating streamCow in ungauged basins. Global
average, inverse distance weighted (IDW) and
physical similarity were used to regionalize SWAT
model parameters of some of the watersheds of
a major Indian river basin. The main objective is
to investigate the potential improvements by
applying regionalization methods to groups of
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systematically classiBed watersheds obtained using
dimensionality reduction techniques with SWAT
model and suggest best option.

2. Study area and data

The study area comprises of 30 watersheds of the
Godavari river basin in India (Bgure 1). Godavari
river basin is the second largest river basin in India
after Ganga river basin with an area of 312,812 km2.
Godavari river Cows through the states of Maha-
rashtra, Chhattisgarh, Madhya Pradesh, Odisha,
Karnataka and Telangana and Bnally drains into
Bay of Bengal. The 30 watersheds chosen from the
basin are from the upper reaches of the basin that
do not have inCow from neighbouring watersheds
and have minimal Cow regulations to avoid the
uncertainty caused by the inCow from neighbouring
catchments. The study area lies between
73�240–83�40 east longitudes and 16�190–22�340
north latitudes. India experiences winter season
from January to February, pre-monsoon season
from March to May, southwest monsoon season

from June to September and post-monsoon season
from October to December. Rainfall in India pri-
marily occurs during 4 months of monsoon season.
Mean annual rainfall in the 30 selected watersheds
ranges from 600 to 1700 mm. The temperature is as
high as 45�C during pre-monsoon season and falls
up to 4�C during winter season. Basic description of
the 30 watersheds such as latitude, longitude,
gauging station, mean elevation, mean slope and
mean annual precipitation are listed in table 1.
The National Aeronautics and Space Adminis-

traion (NASA) Shuttle Radar Topographic Mis-
sion (SRTM) 90 m Digital Elevation Model’s
(DEM) with a resolution of 90 m at the equator is
used for the delineation of watersheds (Jarvis et al.
2008). Area of watersheds and mean slope of
watersheds were extracted using ArcMap Geo-
graphical Information System (GIS) software from
the DEM. Land use data for the present study
area is extracted from land use dataset of United
States Geological Survey (USGS) (http://www.
landcover.usgs.gov/) which is 0.5 km Moderate
Resolution Imaging Spectrometer (MODIS)-based
Global Land Cover Climatology. The 17 land use

Figure 1. Godavari River Basin with selected 30 watersheds for study.
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classes in the data were re-classiBed into Bve land
use classes, viz., urban, agriculture, forest, pasture
and water. The aridity index (AI) and potential
evapotranspiration (PET) data were procured
from the Consultative Group on International
Agricultural Research–Consortium for Spatial
Information (http://www.cgiar-csi.org) (Trabucco
and Zomer 2009). The temperature and rainfall
data were extracted from the Worldclim-global
climate data site (http://www.worldclim.org)
(Hijmans et al. 2005). The watershed attributes
listed in table 2 were derived from the various data
sources mentioned above and used for the classiB-
cation of watersheds.
The India Meteorological Department (IMD)

0.5� 9 0.5� resolution gridded data for temperature
and 0.25� 9 0.25� resolution gridded data for
rainfall was collected for the period of 11 years

from 1995 to 2005 for SWAT calibration and val-
idation. Climate data such as relative humidity,
solar radiation and wind data was obtained from

Table 1. General details of the 30 selected watersheds and their watershed numbers used in the study.

Sl.

no.

Watershed

no.

Centroid
Name of

gauging

station

Watershed

area (km2)

Mean

elevation

(m)

Mean

slope (%)

Mean annual

precipitation

(mm)Latitude Longitude

1 1 22.39 79.91 Keolari 3061.53 610.19 4.27 1160.86

2 4 21.72 78.82 Ramakoma 2498.97 694.41 6.48 1179.24

3 5 21.62 80.25 Rajegaon 5424.66 426.18 5.79 1449.40

4 9 21.11 78.13 Bishnur 4939.16 469.74 4.45 949.95

5 10 20.92 79.93 Salebardi 1725.83 291.94 3.76 1459.15

6 12 20.57 78.84 Nandgaon 4335.65 314.35 3.20 1089.75

7 14 20.42 80.08 Wairagarh 1757.48 299.99 5.19 1548.13

8 15 20.32 75.53 Chinchkhed 331.89 709.11 6.97 826.76

9 16 20.20 77.98 Mangrul 2164.59 395.44 2.83 938.90

10 19 20.05 79.71 Rajoli 2669.10 239.03 2.28 1394.79

11 20 20.11 74.11 Niphad 225.34 689.46 3.69 632.28

12 21 20.00 73.81 Nasik 631.82 678.65 6.50 1470.03

13 25 19.98 77.18 Karnergaon 3540.81 562.67 2.11 881.08

14 28 19.94 73.88 Samangaon 1210.24 653.61 9.66 1757.15

15 34 19.65 81.48 Cherribeda 1028.40 649.40 4.76 1509.69

16 36 19.73 75.81 Golapangri 1594.27 577.76 4.07 735.00

17 45 19.55 73.95 Mahaldevi 408.77 810.15 17.80 1418.37

18 48 19.27 82.23 Kosarguda 1683.69 616.94 3.37 1410.82

19 50 19.28 81.80 Ambabal 1970.23 621.61 3.05 1425.74

20 52 19.27 81.88 Sonarpal 1488.30 603.98 3.08 1422.33

21 54 19.31 79.46 Bhatpalli 3128.08 382.12 8.22 1115.71

22 56 19.32 74.17 Ghargaon 604.66 817.51 15.95 984.44

23 57 19.34 75.13 Samangaon M 548.42 565.11 4.37 591.15

24 58 19.20 82.53 Nowrangpur 3640.69 800.47 15.01 1469.66

25 71 19.01 81.24 Tunmnar 1860.39 535.79 8.78 1424.76

26 85 18.66 79.83 Somanpally 13141.65 351.70 2.44 933.35

27 92 18.43 76.67 Bhatkheda 4686.32 675.77 1.67 804.66

28 94 18.18 81.80 Potteru 1161.60 243.02 9.35 1553.67

29 99 18.07 76.93 Aurad (Sh) 3138.54 637.23 1.72 887.51

30 106 17.59 80.80 Sangam 1619.46 187.40 6.27 1067.93

Table 2. Selected watershed attributes for classiBcation of
watersheds.

Catchment attribute Unit

Area km2

Slope %

Area covered with forest km2

Area covered with pasture km2

Area covered with agriculture km2

Urban area km2

Mean temperature Degree celsius

Mean precipitation mm

Mean potential evapotranspiration mm/year

Aridity index –

Drainage density km/km2
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global weather data for SWAT database (https://
globalweather.tamu.edu). The daily streamCow
was obtained from India-Water Resources Infor-
mation System (WRIS) database (http://www.
india-wris.nrsc.gov.in/wris.html). Global soil tex-
ture and gradient data were obtained from the
Food and Agricultural Organization (FAO) website
(http://www.fao.org). SRTM’s DEM mentioned
above was used for delineation of watersheds in
SWAT.

3. Methodology

In this study, linear and non-linear dimensionality
reduction techniques were applied to watershed
attributes of 30 watersheds of Godavari river basin.
The lower dimensionality components were used to
classify the watersheds into different groups. The
watersheds were also classiBed using the stream-
Cow indices which were used as reference classiB-
cation. The classiBcation based on dimensionality
reduction techniques were compared to reference
classiBcation. Best classiBcation technique was
decided based on similarity index. Three regional-
ization techniques were evaluated to transfer
SWAT parameters within the group of best clas-
siBcation technique. A Cow chart depicting the
proposed methodology is presented in Bgure 2 and
is brieCy discussed in the following sections.

3.1 Reference classiBcation

A hydrologically similar group (hydrologically
homogeneous region) is deBned as a group of
drainage basins whose hydrologic responses are
similar. Three of the six streamCow indices sug-
gested by Sawicz et al. (2011), viz., slope of Cow
duration curve, runoA ratio and streamCow elas-
ticity were used to obtain hydrologically homoge-
nous regions (groups). The streamCow indices data
was then normalized to zero mean and unit vari-
ance for each index (Z score normalized) and
classiBed into six groups using K-means clustering
algorithm (MacQueen 1967). Davies Bouldin index
(Davies and Bouldin 1979) was used to determine
the optimum number of clusters. The groups of
reference classiBcation were made homogenous
using the homogeneity and discordance test by
Hosking and Wallis (1997). The homogenous
groups of reference classiBcation were used to
compare the classiBcation results obtained using

the Isomap, PCA and watershed attributes
techniques.

3.2 Isomap

Isomap is a nonlinear dimensionality reduction
technique based on classical multidimensional scal-
ing (CMDS) (Tenenbaum et al. 2000). It has shown
higher eDciency in representing variance of dataset
compared to PCAwith fewer components. It consists
of three steps in which distances between each point
is calculated using the k-nearest neighbours in the
Brst step. In the second step, the geodesic distances
between all pair of points is determined based on the
interpoint distances calculated in theBrst step. In the
Bnal step, CMDS is applied to the geodesic distances
to project the nonlinear structure of dataset into low
dimensional space. In this way, Isomap preserves
geodesic distance using the non-Euclideanmetric and
retains the nonlinear features in the data (Tenen-
baum et al. 2000). The application of Isomap for
watershed classiBcation is explained in details in
Ganvir and Eldho (2017).

3.3 Principal component analysis (PCA)

PCA is a linear dimensionality reduction technique
in which high dimensional data is projected into
lower dimensions called principal components
(PCs) (Jackson 1991). It does this by orthogonally
transforming the data of possibly correlated vari-
ables into linearly uncorrelated variables. All the
PCs are orthogonal to each other and such that
Brst PC is in the direction to capture maximum
variance of data, second PC is orthogonal to Brst
and captures the next maximum variance in
the data, and so on. First few PCs account for
maximum variance of the data.

3.4 Soil and water assessment tool (SWAT)
model

SWAT model is developed by the United States
Department of Agriculture–Agricultural Research
Service (USDA–ARS) to simulate the eAects of
various land management and climatic scenarios
on hydrologic and water quality response in large
complex watersheds with varying soils, land use
and management practices (Arnold et al. 1998;
Neitsch et al. 2011). It is a semi-distributed model,
which works on daily time step. The model divides
watershed into sub-watersheds and further into
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hydrologic response units (HRUs) based on the
combination of land use, soil type and slope. The
SWAT inputs include data of weather, soils,
groundwater, channel, plant water use, plant
growth, soil chemistry and water quality parame-
ters. SWAT outputs can be simulated at various
spatial scales, i.e., from hydrologic response unit
(HRU) level to watershed (Abbaspour et al. 2007).
The SWAT model uses soil conservation service
(SCS) curve number or the Green-Ampt inBltra-
tion equation to estimate runoA based on the
temporal resolution of input rainfall data. Curve
numbers are recalculated daily, based on soil water
content on that day. Peak runoA rate predictions
are based on a modiBcation of the rational formula.
The driving force of SWAT model is the hydro-

logic cycle and water balance (Arnold et al. 1998)
which is explained below

SWt ¼ SWi

þ
Xt

i¼1

Rday �Qsurf � Ea �Wseep �Qgw

� �
;

ð1Þ

where SWt is Bnal soil water content (mm); SWi is
initial soil water content on day i (mm); Rday is
amount of precipitation on day i (mm); Qsurf is
amount of surface runoA on day i (mm); Ea is
amount of evapotranspiration on day i (mm);Wseep

is amount of water entering the vadose zone from
the soil proBle on day i (mm); Qgw is amount of
return Cow on day i (mm).

3.4.1 Model calibration, validation
and sensitivity analysis

In this study, SWAT-CUP Sequential Uncertainty
Fitting Version 2 (SUFI-2) algorithms are applied
for calibration, validation, sensitivity and un-
certainty analysis of SWAT model parameters.
SUFI-2 uncertainty accounts for all sources of
uncertainties such as uncertainty in driving vari-
ables (e.g., rainfall data, temperature and land
use), conceptual model, parameters, and measured
data (e.g., surface runoA). In SUFI-2 algorithm,
two measures are used for deBning model uncer-
tainty namely P-factor and R-factor. The P-factor,

Figure 2. Flowchart of methodology used for streamCow estimation in ungauged basin.
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the percentage of observed data bracketed by 95%
prediction uncertainty (95PPU), is calculated at
2.5% and 97.5% levels of the cumulative distribu-
tion of output variables through Latin hypercube
sampling method. The R-factor is the average
thickness of the 95PPU band divided by the stan-
dard deviation of the measured data. Theoreti-
cally, a P-factor of 1 and R-factor of 0 indicate that
the simulation exactly corresponds to the measured
data. For streamCow, a value of P-factor[ 0.7 or
0.75 and R-factor around 1 is considered accept-
able. Latin hypercube sampling based on one factor
at a time (LH-OAT) method which is incorporated
within SUFI-2 in SWAT-CUP is used to identify
the important parameters that have significance in
the model simulation.
The sensitivity analysis evaluates the rate of

change in the output of a model with respect to
changes in model input. In this study, sensitivity
analysis in SUFI-2; one-at-a-time sensitivity anal-
ysis and global sensitivity analysis are used for
sensitivity analysis. One-at-a-time sensitivity
shows the sensitivity of a variable to the changes in
a single parameter while other parameters are kept
constant at some value. Global sensitivity analysis
shows the change in the objective function due to
the change in each parameter. Both the sensitivi-
ties are measured using two statistical indicators,
p-stat and t-stat (Abbaspour 2015). The absolute
values of these indicators help to determine the
most sensitive parameters. Lower the absolute
value of p-stat and higher the value of t-stat, more
sensitive is the SWAT model parameter.

3.4.2 Evaluating the performance of SWAT
model

There are different statistical measures available
for evaluating the model performance in SWAT-
CUP. Model performance was evaluated using
three performance evaluation indices, viz., coefB-
cient of determination (R2), Nash–SutcliA eD-
ciency and percentage bias (PBIAS) (Moriasi et al.
2007). CoefBcient of determination (R2) describes
the degree of collinearity between simulated and
measured data. The Nash–SutcliAe eDciency
(NSE) is a normalized statistic that determines
the relative magnitude of the residual variance
(‘noise’) compared to the measured data variance
(‘information’) (Nash and SutcliAe 1970). Percent
bias (PBIAS) measures the average tendency of the
simulated data to be larger or smaller than their

observed counterparts. The equations used for R2,
NSE and PBIAS are given below.

R2 ¼
PN

i¼1 Yi� �Yð Þ Ŷi� �̂Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Yi� �Yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Ŷi� �̂Y
� �2

r

0
BB@

1
CCA

2

; ð2Þ

NSE ¼ 1�
PN

i¼1 Yi�Ŷi

� �2
PN

i¼1 Yi� �Yð Þ2

" #
; ð3Þ

PBIAS ¼
PN

i¼1 Yi� �Yð Þ � 100
PN

i¼1 Yi

" #
; ð4Þ

where Yi andŶi are the ith observed and predicted

streamCow; �Y and
�̂Y are the mean observed and

simulated streamCow, respectively, and N is the
total number of observations.

3.5 Regionalization techniques

In this study, following regionalization techniques
are used.

3.5.1 Global average

This is a simple spatial proximity technique in
which a parameter value of the ungauged water-
shed is calculated as the mean of all the donor
watersheds in the group (Merz and Bl€oschl 2004;
Parajka et al. 2005; Samuel et al. 2011).

3.5.2 Inverse distance weighted (IDW)

IDW is an interpolation technique based on the
inverse spatial distance between watershed cen-
troids. The spatial distance between the water-
sheds is calculated using the latitude and longitude
of the watersheds’ centroids. The IDW equation
(Shepard 1968) used in this study to estimate
model parameters in ungauged watershed is:

Pj ¼
Xn

i¼1

Wipi; ð5Þ

where n is the number of gauged watersheds; pi is
the model parameter of gauged watersheds, Pj is
the model parameter of an ungauged watershed
and Wi is the weight function of each gauged
watershed and is calculated as follows:
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Wi ¼
d�2
i

� �
Pn

i¼1 d�2
ið Þ ; ð6Þ

where di is distance from the centroid of the
gauged watersheds to the centroid of the
ungauged watershed. In the selection of gauged
watersheds, additional criteria such as the NSE
value can be considered; however, the number
of available gauged watersheds can be a
constraint.

3.5.3 Physical similarity

In physical similarity method, model parameters
from donor watersheds are transferred to the
target catchment if they are physically similar to
each other (McIntyre et al. 2005). Watersheds are
said to be physically similar if the catchment
attributes that have causative linkage with
hydrological behaviour are similar. Physical

similarity between two watersheds can be calcu-
lated as:

dt;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i¼1;I

wi
xt;i � xd;i

rXi

� �2
vuut ; ð7Þ

where xt,i and xd,i are the value of each catchment
descriptor i (i = 1, …, I) for the target and donor
catchment, respectively, wi is the weight associated
with the i catchment descriptor, and rXi is the
standard deviation of the descriptor across the
entire set of catchments under study. The smaller
the distance, dt,i between the target and donor
catchment, the more similar they are. When a
single descriptor is considered, wi for other
descriptors is set to zero. When all descriptors are
considered to be equally important, wi is set to one.
Once similar catchments are identiBed, the entire
set of model parameters calibrated on the donor
catchments can be transferred from the closest
donor to the target catchment. Ranked proximity

Figure 3. ClassiBcation of watersheds based on (a) reference groups, (b) watershed attributes, (c) PCA, and (d) isomap.
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is used if the catchment attributes are many and
have different units. In the present study, all the
attributes (listed in table 2) were given equal
weightages and ranked proximity was calculated
for donor watersheds. The model parameters for
target watershed were estimated from donor
watersheds by giving weightages based on ranked
proximities.

4. Results and discussion

4.1 ClassiBcation

Thirty watersheds of Godavari were classiBed using
(a) streamCow indices, (b) watershed attributes,
(c) applying PCA to watershed attributes and
(d) applying Isomap to watershed attributes
(Bgure 3). ClassiBcations obtained using (b), (c) and
(d)were compared to (a) (reference classiBcation) to
decide the best classiBcation technique. Table 3
shows the number of watersheds in each group of the
classiBcation techniques.

4.1.1 ClassiBcation using streamCow indices

RunoA ratio, slope of Cow duration curve and
streamCow elasticity for the 30 watersheds are

calculated using the daily streamCow data from the
year 1995–2005. Table 4 shows the summary statis-
tics of the runoA signatures. RunoA ratio is negatively
correlated with slope of Cow duration curve and
streamCow elasticity. All the three streamCow indi-
ces show negligible correlation and hence were used
for classiBcation. DaviesBouldin’s indexwas least for
six number of clusters thus the normalized stream-
Cow indices were classiBed into six groups using
K-means clustering algorithm. The three largest
groups contain 22watersheds out of 30 (table 3). The
groups were tested for homogeneity using the dis-
cordancy measure. Only one watershed was found
discordant with one group which was moved to other
groups and discordancy measure was calculated
again for all the groups till all the groups were
homogenous. The classiBcation of watersheds based
on streamCow indices with homogenous groups is
used as reference classiBcation.

4.1.2 ClassiBcation using watershed attributes

Eleven watershed attributes among the spatial,
climatic and physiographic parameters that deBne
the hydrological processes were chosen for classiB-
cation (table 2). The choice was based on earlier
studies and availability of data. The attributes of
30 watersheds were normalized and classiBed into
six groups using K-means clustering algorithm.

4.1.3 ClassiBcation using PCA

PCA was applied to the normalized watershed
attributes of the 30 watersheds to obtain principal
components. Figure 4 shows the percentage of
variance accounted for as a function of the number
of dimensions retained using PCA. It was observed
that Brst six reduced components accounted for
90% of variance of the original data. K-means

Table 3. Number of watersheds in clusters of classiBcation
techniques.

Cluster

StreamCow

indices

Watershed

attributes PCA Isomap

1 10 13 11 9

2 6 11 11 8

3 6 2 4 5

4 5 2 2 5

5 2 1 1 2

6 1 1 1 1

Table 4. Summary statistics of runoA signatures for 30
watersheds of Godavari basin.

RunoA

ratio

Slope of Cow

duration curve

StreamCow

elasticity

Minimum 0.17 1.35 �0.24

1st quartile 0.57 4.98 0.00

Mean 0.86 6.08 0.07

Median 0.73 6.04 0.03

3rd quartile 1.09 7.38 0.11

Maximum 2.79 9.16 0.57

Std. dev. 0.54 1.85 0.13
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clustering was carried out using these six compo-
nents for forming six groups. To visualize the
analysis results, both the principal component
coefBcients (loadings) for each attribute and the
principal component scores for each observation
(watershed) are presented in a single plot in
Bgure 5. The length of vectors for the attributes
shows the weightage given to them in the Brst two
principal components. PET, temperature, urban
land use and agricultural land use have more
weightages in the Brst two principal components.
The direction of the vectors accounts for the
correlation among them. Aridity index and
precipitation are highly correlated.

4.1.4 ClassiBcation using Isomap

The interpoint distance matrix between all the
pairs of watershed was calculated based on the
selected attributes (dissimilarity matrix). Using
this distance matrix, a neighbourhood graph was
constructed by selecting neighbors-k from 3 to 12.
Then CMDS was performed on the dissimilarity
matrix obtained using the k neighbours to get the
low dimensional Isomap components. First four
components accounted for 90% variance and were
retained for classiBcation of watersheds (Bgure 6).
The classiBcation of watersheds obtained using
k = 8 showed best results when compared to the
reference classiBcation. Spearman’s rank correla-
tion coefBcient between the dimensions and the
variables was used to visualize the contribution of
attributes in the reduced components of Isomap
(Bgure 7). Aridity index, urban land use and tem-
perature show higher values in Brst, second and
third dimensions, respectively. PET shows lowest
values in Brst and second dimensions and drainage
density in the third dimension for Spearman’s rank
correlation coefBcient.

4.1.5 Evaluation of classiBcation techniques

Similarity index (SI) is calculated by comparing
largest cluster from a classiBcation technique to the
largest cluster of reference classiBcation (Ssegane
et al. 2012). The similarity index obtained in such a
manner would give SI for complete cluster. How-
ever, if the classiBcation contains clusters with
same number of watersheds, it creates ambiguity in
selection of group for comparison. Thus, Ganvir
and Eldho (2017) developed a new method to

Figure 4. Percentage of total variance explained by reduced
components of PCA.

Figure 5. PCA loading plots for the two Brst principal
components.

Figure 6. Percentage of residual variane explained by Isomap
components.
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calculate SI to address this limitation. In this
method, instead of comparing largest groups, SI is
calculated for each watershed by comparing the
group of classiBcation technique and reference
classiBcation in which the watershed lies. This
modiBed method for calculating SI proposed by
Ganvir and Eldho (2017) was used to evaluate
classiBcation techniques.
Similarity index obtained for both the classiB-

cation techniques obtained using PCA and Isomap
shows improvement over classiBcation obtained
using merely watershed attributes. Among the two
dimensionality reduction techniques, Isomap out-
performed PCA in classifying the watersheds into
hydrologically similar watersheds (table 5). The
mean, standard deviation and coefBcient of varia-
tion of SI for Isomap were 0.448, 0.214 and 1.9,
respectively. Although the average SI values for
each of the techniques do not differ much, the rel-
ative frequency distribution of SI values for each
technique suggests that Isomap classiBes greater
number of watersheds accurately and a smaller
number of watersheds inaccurately. Isomap has a

20% likelihood, with SI in the range of 0.7–0.8,
whereas PCA and watershed attributes have a
25–35% likelihood, with SI in the range of 0.6 and
0.7, respectively. Isomap is more likely to classify
the watersheds with higher SI and less likely to
classify those with lower SI (Bgure 8). Isomap has a
50% likelihood of classifying watersheds with SI
more than 0.5. Thus, Isomap accurately classiBed
most of the watersheds than other classiBcation
techniques. Hence, the clusters of Isomap classiB-
cation were used for regionalization of SWAT
parameters for streamCow estimation in Godavari
basin. The following sections describe the results of
calibration, validation, and streamCow estimation
for Isomap clusters.

Figure 7. Spearman coefBcients (q) between the analysed variables and the Brst three Isomap dimensions (AI= aridity index,
P= mean precipitation, ME= mean elevation, DD= drainage density, Agri= agriculture, T= mean temperature, Past= pasture
and PET= potential evapotranspiration).

Table 5. SI distribution for classiBcation techniques.

Sample statistics

Watershed

attributes PCA Isomap

Average 0.38 0.43 0.45

Standard deviation 0.18 0.20 0.21

CoefBcient of variation 0.47 0.45 0.48
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4.2 SWAT calibration, validation
and sensitivity analysis

SWAT-CUP Sequential Uncertainty Fitting Ver-
sion 2 (SUFI-2) was used for calibration, validation
and sensitivity analysis of streamCow data during
the years 1995–2005. First three years, 1995–1997,
were used as warm-up period. SWAT simulation
was done from the year 1998 to 2005. Auto-cali-
bration with narrow sensitive range of parameters
were selected for calibration of discharge at
monthly time scale. Sensitive parameters for
streamCow discharge were identiBed by running
1000 simulations in SWAT-CUP, while calibration
using SUFI-2 by LH procedure. Using global sen-
sitivity in SUFI-2 algorithms, most sensitive
parameters for the streamCow calibration were
chosen. The most sensitive parameter set for
streamCow based on the p-stat and t-stat values
include CN2, SOL˙AWC and ESCO related to
surface runoA; SLSUBBSN, OV˙N, HRU˙SLP

related to HRU characteristics; and GW˙REVAP,
REVAPMN, GWQMN related to baseCow as given
in table 6. As the main objective is to transfer the
model parameters from gauged to ungauged, the
set of selected sensitive parameters was kept
unchanged for all the watersheds.
In the present study, Brst two groups contain

nearly 60% of the watersheds while number of
watersheds in remaining four groups were very few.
Thus, only Brst two groups were considered for
regionalization. All the watersheds from Brst two
groups were calibrated for the complete period of
1998–2005. Within a group, one watershed was
treated as pseudo-ungauged in turn and the
remaining watersheds in the group were treated as
donor watersheds. However, during calibration
some of the watersheds showed poor model per-
formance (table 7). Probably it was due to reser-
voirs present in those watersheds or the data
quality. Such watersheds were excluded from the
procedure of regionalization and remaining water-
sheds were used for the regionalization procedure.
Watershed numbers 9, 57 and 92 from Brst group
and watershed number 94 from the second group
were excluded. The R2, NSE and PBIAS values
during the calibration procedure are shown in
Bgure 9 using box and whisker plot. The ends of
whisker represent maximum and minimum values,
the ends of box represent 25th and 75th quartile
and the median value is represented by the line
inside the box.
R2 describes the proportion of the variance in

measured data explained by the model. R2 ranges
from 0 to 1, with higher values indicating less error
variance and typically values[ 0.5 are considered
acceptable. Henriksen et al. (2003) suggest that an

Figure 8. Relative frequency of numbers of watersheds (y-
axis) with similarity index (x-axis) for Isomap, PCA and
watershed attributes classiBcation.

Table 6. SWAT parameters used for calibration and regionalization.

Parameters Description Process

*r˙CN2 Initial SCS CN II value RunoA

r˙SOL˙AWC Available water capacity of the soil layer Soil

r˙ESCO Soil evaporation compensation factors Evaporation

*v˙SLSUBBSN Average slope length HRU

v˙OV˙N Manning’s ‘n’ value for overland Cow HRU

r˙HRU˙SLP Average slope steepness HRU

r˙GW˙REVAP Groundwater ‘revap’ coefBcient Groundwater

r˙GWQMN Threshold depth of water in the shallow aquifer

required for return Cow to occur (mm)

Groundwater

v˙REVAPMN Threshold depth of water in the shallow aquifer

for revap to occur (mm H2O)

Groundwater

*v˙ means the existing parameter value is to be replaced by a given value, *a˙ stands for a given
value is added to the existing parameter value, *r˙ represents an existing parameter value is
multiplied by (1+ the given value).
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Table 7. Performance of SWAT model for watersheds selected for regionalization during
calibration.

Basin

no.

Stream gauging

station Group

Calibrated

R2 NS PBIAS

10 Salebardi 1 0.72 0.71 �2.5

14 Wairagarh 1 0.76 0.73 �26.5

19 Rajoli 1 0.83 0.77 �8

34 Cherribeda 1 0.8 0.8 �3

48 Kosarguda 1 0.88 0.75 �34.7

50 Ambabal 1 0.84 0.76 �26.8

52 Sonarpal 1 0.77 0.63 �24.3

94 Potteru 1 0.32 0.21 �106.32

9 Bishnur 2 0.45 0.41 62.31

12 Nandgaon 2 0.77 0.66 2.5

16 Mangrul 2 0.82 0.82 8

25 Karnergaon 2 0.84 0.83 5.5

54 Bhatpalli 2 0.82 0.81 15.7

57 Samangaon M 2 0.38 0.32 49.26

85 Somanpally 2 0.62 0.6 22.8

92 Bhatkheda 2 0.42 0.39 70.33

99 Aurad (Sh) 2 0.72 0.72 �7.7

Table 8. Overall performance of global mean (GM), Inverse distance weighted (IDW) and physical similarity (PS) based on
SWAT model performance.

R2 NSE PBIAS

Statistical measures GM IDW PS GM IDW PS GM IDW PS

Mean 0.74 0.75 0.75 0.50 0.47 0.56 �33.58 �26.15 �28.22

Median 0.75 0.74 0.72 0.60 0.64 0.60 �36.30 �34.00 �40.00

Standard deviation 0.09 0.07 0.07 0.39 0.50 0.21 39.11 43.50 30.80

CoefBcient of variation 0.12 0.09 0.10 0.78 1.05 0.38 �1.16 �1.66 �1.09

Maximum 0.88 0.88 0.88 0.79 0.79 0.79 27.20 33.90 24.70

Minimum 0.59 0.66 0.66 �0.54 �1.10 0.02 �104.00 �113.80 �69.20

Figure 9. R2, NSE and PBIAS values for group 1 and 2 of Isomap classiBcation during calibration.
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R2 value [ 0.85 is excellent for a hydrological
model, values between 0.65 and 0.85 are very good,
0.5–0.65 are good, 0.20–0.50 are poor and\0.20 are
very poor. R2 values of group 1 and group 2 are
between 0.72–0.88 and 0.62–0.84, respectively,
which are in good to very good range.
NSE ranges between �1 and 1.0 (1 inclusive),

with NSE = 1 being the optimal value. Values
between 0.0 and 1.0 are generally viewed as
acceptable levels of performance, whereas values
\0.0 indicate that the mean observed value is a
better predictor than the simulated value, which
indicates unacceptable performance (Moriasi et al.
2007). NSE values of group 1 and group 2 are
between 0.63–0.8 and 0.6–0.83, respectively, which
are in acceptable range.
The optimal value of PBIAS is 0.0, with low-

magnitude values indicating accurate model sim-
ulation. Positive values indicate model underesti-
mation bias and negative values indicate model

overestimation bias (Gupta et al. 1999). PBIAS
values of group 1 are between �34.7 and �2.5.
Negative values of PBIAS for group 1 suggests
that most of the model simulated streamCow is
overestimated. PBIAS values for group 2 is
between � 7.7 and 22.8, all are positive values
except for watershed number 99 which suggests
model simulated streamCow for group 2 is
underestimated.

4.3 Regionalization

The overall summary statistics for the performance
of the regionalization methods is shown in table 8.
All the three regionalization methods maintain the
collinearity between the observed and estimated
streamCow data with mean R2 values of 0.74, 0.75
and 0.75 for global mean, IDW and physical simi-
larity, respectively. Physical similarity performs
better than global mean and IDW methods in

Figure 10. Distribution of watershed attributes for Brst two largest groups of Isomap classiBcation. Whisker plots show 10th,
25th, 50th (median), 75th and 90th percentile.
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terms of NSE with a value of 0.56 and 0.38 for
mean and coefBcient of variation. PBIAS values
suggest that model is overpredicting the stream-
Cow in most of the watersheds in case of all the
regionalization methods. All the three methods
show poor values of NSE for basin number 12 and
85 (these watersheds showed poor values of NSE
during calibration also), both the watersheds are
grouped in same group by Isomap. Group 2 con-
sists of watersheds with larger areas than water-
sheds of group 1. Upon further analysis (see
Bgure 10), it was observed that these two water-
sheds have larger areas than other watersheds
considered in the study (4,335 and 13,141 km2 for
watershed number 12 and 85, respectively). These
two watersheds also have the lowest streamCow
elasticity values among all the watersheds. These
results suggest that these regionalization methods
are not suitable to estimate streamCow in water-
sheds with larger areas and which are least sensi-
tive to change in streamCow with change in
precipitation. However, among the three methods,
physical similarity showed comparatively good
results for these two watersheds. The reason that
physical similarity is performing better in these
two watersheds is that, the regionalized model
parameters for these watersheds were weighted

based on physical similarity. As these watersheds
are larger in terms of area, more weightage was
given to the parameters of larger watersheds while
regionalization. However, global mean simply
averaged the parameter values and IDW gave
weightages based on inverse distance thereby
completely neglecting the attribute, ‘area’.
Figure 10 also shows that the Isomap very well
captures the data of watershed attributes to clas-
sify them into different groups.
Group-wise results for SWAT model perfor-

mance for Isomap classiBcation are shown in
Bgure 11. In group 1, the mean values of R2 for
global mean, IDW and physical similarity are 0.75,
0.79 and 0.79, respectively, which suggest that all
the three regionalization methods captured the
collinearity between the estimated and observed
Cows. Mean NSE value for IDW is 0.64 which is
higher than other two methods which shows that
IDW is better at estimating the streamCow in
group 1. Most of the PBIAS values of all the three
methods are negative, which shows that the
streamCow values are over-predicted by all the
three methods. However, Bgure 11 shows higher
range as well as interquartile range of NSE for
global mean values than other two methods which
means that global mean has higher variability in

Figure 11. R2, NSE and PBIAS values for group 1 and 2 for regionalization methods.
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terms of estimating streamCow while IDW and
physical similarity shows less variability in terms
of streamCow estimation.
Even in group 2, all the three methods maintained

the collinearity between the observed and estimated
streamCow data. Median value for NSE is nearly
same for all the three methods. However, IDW and
physical similarity show lesser variability in terms of
NSE. PBIAS values range from 20 to�104 for global
mean, 29 to �119 for IDW and 24.7 to �69.2 for
physical similarity. Most of the values for PBIAS are
negative which indicates model is overpredicting the
streamCow values for the regionalization methods.
The results of streamCow estimation for watershed
number 16 (Mangrul), for all the regionalization
techniques is shown on representative basis out of 30
watersheds used in the study inBgure 12. It is evident
that regionalization techniques capture the overall
streamCow except peak Cows.

5. Conclusions

This study proposes a framework for reliable
estimation of streamCow in ungauged basins by
combining watershed classiBcation techniques with
regionalization methods. The developed framework
is applied in ungauged watersheds of Godavari river
basin in India. Thirty watersheds of Godavari river
were Brst classiBed by applying Isomap and PCA
over the watershed attributes. Further global mean,

IDW and physical similarity were used to regional-
ize the SWAT parameters. R2, NSE and PBIAS
were used to evaluate the regionalization methods
based on the predicted streamCow in SWAT.
The results of the present study classify water-

sheds and allocate watersheds into different groups
based on noteworthy watershed attributes. If these
properties deBne the hydrologic response of a
watershed, then classiBcation techniques tend to
group similar watershed in one group. Isomap
outperforms PCA and watershed attributes in
these terms. Moreover, classiBcation helps to
reduce the glitch of transferring parameters from
dissimilar watershed to the targeted watershed.
Among the regionalization techniques, physical
similarity performs better than global mean and
IDW. Global mean simply averages the model
parameter values of donor watersheds and IDW
gives weightages to the model parameters of donor
watersheds based on the distance from the target
watersheds in the group. However, if the attributes
used for classiBcation have wide range, these
techniques seem to be very crude for estimating
model parameters of the target watershed. On the
other hand, physical similarity overcomes these
drawbacks by giving more weightage to the model
parameters of the donor watershed which is more
similar to the target watershed.
Overall classifying the watershed based on

Isomap prior to regionalization using physical
similarity for estimating streamCow in SWAT

Figure 12. StreamCow estimation for Watershed no. 16 (Mangrul) using regionalization techniques.
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improves the eDciency of estimating streamCow in
comparison to other regionalization techniques
used in the study. Further, the application of pre-
sent methodology to a study area that includes
more number of watersheds with vide variability in
the watershed attributes may improve the relia-
bility of the present methodology. Besides, present
study considers stationary scenario for land use
land cover (LULC) and climate. Further applica-
tion of the present methodology for non-stationary
scenarios of LULC and climate can be investigated,
to understand its eAects.
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