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Abstract

High quality, accessible Digital Elevation Model (DEM) datasets play a major role in monitoring the changes in the Earth’s
surface. This study proposes a novel method to increase the vertical precision of CARTOSAT 10 m DEM by blending it with
publicly available SRTM (Shuttle Radar Topography Mission) DEM using machine learning methods. Machine learning
methods such as Genetic Programming (GP) and Artificial Neural Networks (ANN) are applied to the SRTM-1 DEM and the
CARTOSAT DEM in India to generate DEM of improved vertical accuracy. Quantifiable results show that proposed approach
improve the vertical accuracy, considering the reference as Ground control Points (GCPs) elevation from Differential Global
Positioning System (DGPS) survey data. Significant improvements of 47 and 35% in RMSE are offered by generated DEMs

compared to the SRTM-1 and CARTOSAT respectively.

Keywords DEM blending - Machine learning - SRTM DEM - CARTOSAT DEM

Introduction

Digital Elevation Model (DEM) is a 3-dimensional represen-
tation of the earth’s surface. Its uses are diverse and extensive
which includes flood modeling (Setti et al. 2018; Zheng et al.
2015), land use studies (Sridhar et al. 2019), geomorphologi-
cal studies (Valeriano and Rossetti 2017; Maheswaran et al.
2016), watershed delineation (Freitas et al. 2016; Turcotte
et al. 2001), glaciology (Cook et al. 2012), evaluation of nat-
ural hazards and geological applications. Generally, the
DEMs can be created from i) topographic maps, ii) field data
collected through surveying and iii) satellite images. With the
advent of technology and availability of resources, remote

Communicated by: H. Babaie

P4 Maheswaran Rathinasamy
maheswaran27@yahoo.co.in

Department of Civil Engineering, M.V.G.R College of Engineering,
Vizianagaram 535005, India

Department of Hydrology, Indian Institute of Technology Roorkee,
Roorkee, India

Department of Mechanical Engineering, M.V.G.R College of
Engineering, Vizianagaram 535005, India

sensing satellite based DEMs are preferred over the other
sources as it involves less cost and time (Das and Pardeshi
2018). Multitude of satellite DEMs are available across the
globe with different resolution and accuracy. Some of these
include SRTM DEM (Rajasekhar et al. 2018), ASTER DEM
(Rawat et al. 2019), World View (Sefercik et al. 2013),
CARTOSAT (Rana and Suryanarayana 2019), TerraSAR
(Moreira et al. 2004). Out of these, SRTM DEM is one of
the commonly used DEM owing to its public availability
and vertical accuracy. Das and Pardeshi (2018) have shown
the publicly available SRTM DEM of 30 and 90 m resolution
can be used for various purposes. However, these DEMs are
limited for applications that require finer resolution. Very
recently, the CARTOSAT satellite has gained popularity and
has been used extensively for Indian regions. Many studies
show that the accuracy of CARTOSAT is comparable with the
other DEMs some of these include Rajasekhar et al. (2018)
compared the ASTER DEM, SRTM, and CARTOSAT for
lineament extraction for a region in southern India and found
that the CARTOSAT-DEM are best suited for studying very
small areas. Evaluation of various satellite DEMS was carried
out by Rawat et al. (2019) using ground control points and the
results showed that CARTOSAT-1 DEM showed higher ac-
curacy level when compared to SRTM data sets. Das and
Pardeshi (2018) carried a comparative analysis study of
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extraction of lineaments from SRTM, CARTOSAT and
ASTER DEM and concluded that the CARTOSAT DEM is
best suitable for the lineament extraction in Indian region.
There are also other studies (Patel et al. 2016; Rawat et al.
2013) have compared the different DEMs in terms of vertical
accuracy and reported that the CARTOSAT DEM has a
RMSE on the order of 5-6 m. More recently Venkatesh
et al. (2019) showed that CARTOSAT-2 DEM (10 m resolu-
tion) have vertical accuracy on order of 5-6 m and are superior
in comparison with the SRTM DEM.

These studies show that even though the CARTOSAT-
10 m DEM performs better than other publicly available
DEMs, the order of the RMSE and the vertical accuracy can
be improved. In this study, we aim to develop a framework
based on machine learning tools in increasing the vertical
(elevation) accuracy of the 10 m CARTOSAT DEM using
the publicly available DEMs. The main motivation for using
the other DEMs is that these DEMs are derived using different
remote sensing principles and have, therefore the capability to
capture different features. For example, it is a widely accepted
fact that for low relief regions in terms of vertical accuracy,
ASTER DEM data is inferior to the SRTM data (Yue et al.
2017) whereas ASTER DEM has shown better performance
in mountainous regions (Rawat et al. 2019). Similarly,
Mukherjee et al. (2012) report that CARTOSAT has a high
error when compared with the SRTM and ASTER for low
relief area whereas (Rawat et al. 2019) and (Venkatesh et al.
2019) show CARTOSAT has better performance in terms of
vertical accuracy than other counterparts.

One way to improve the performance of the DEM is by
combining/blending the DEMs from different sources and
scales. Some studies in that direction include Wendi et al.
(2016) where the authors attempt to improve the SRTM
DEM using LANDSAT images and artificial neural
networks. Similarly, Yue et al. (2017) proposed a technique
to generate a smooth DEM dataset amalgamation of ASTER
GDEM v2, SRTM-1 and ICES at laser altimetry data using
ANN. Robinson et al. (2014) used the integration of multi-
scale products of DEMs (3-arc GLSDEM, 3-arc SRTM-3 v4.1
and 1-arc ASTER GDEM v2) in the reconstruction of a new
DEM of 90 m resolution. Pham et al. (2018) developed a
linear method for combining SRTM and ASTER DEM:s. In
the past, machine learning tools have gained a lot of attention
is several research areas viz. hydrological forecasting, spatial
interpolation, owing to their ability to capture nonlinear rela-
tionship (Makarynska and Makarynskyy 2008; Ali Ghorbani
et al. 2010; Lima et al. 2013; Guntu et al. 2020, b). In this
study, we propose to develop a framework based on Genetic
Programming (GP) and Artificial Neural Network (ANN) to
generate high quality, DEM by an amalgamation of the
SRTM-30 m, CARTOSAT-30 m DEMs. Using the proposed
approach, it is possible to develop DEMs of higher accuracy
and DEM can be generated in data-scarce regions with the
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help of the trained model from its nearby areas which has high
accurate data set.

The arrangement of this paper is done in the following
manner. Section 2 describes the data used and the Study area.
The methodology developed in this study is shown in
Section 3. Section 4 explains the results and Section 5 pro-
vides the conclusion from the study.

Study area and data used
Study area

The study area is a sub-basin (Fig. 1) of the Champavathi
River Basin located on the east coast of India having an area
of 868 km®. The location of the watershed is lies between the
latitude of 18° 11’ North and longitude of 83° 40" East. The
physiography of the watershed is dominated by plain areas
with occasional small mountain ranges. The altitude ranges
from 26 m to 564 m. A substantial part of the study area is
above 50 m elevation above mean sea level. The major land
cover and land use include agricultural tracts, urban areas, hill
slope, grasslands and water bodies.

Shuttle radar topography Mission (SRTM 30 m)

The Shuttle Radar Topography Mission (SRTM) is an inter-
national project lead by the National Aeronautics and Space
Administration (NASA) and National Geospatial-Intelligence
Agency (NGA) Launched in February 2000 (Zheng et al.
2015; Yue et al. 2017). It is the modified radar system that
flew for an 11-day mission in February 2000 with onboard
Space Shuttle Endeavour. By single pass and using radar in-
terferometry, data procurement can be done by using onboard
via outboard by antenna system and it also generates earth
land elevation datasets in form of Digital Elevation Model
(DEM). This DEM datasets product is derived from
Interferometry Synthetic Aperture Radar (InSAR) sensor con-
sists of X-band and C-band with a wavelength of 5.6 cm and a
frequency of 5.3. The SRTM, Digital Elevation Models
(DEM) datasets product collect earth land elevation data over
80% coverage with World Geodetic System (WGS84) hori-
zontal datum and Earth Gravitational Models (EGM96) verti-
cal datum with a near-global scale from 60°N to56°S where
WGS is the reference system for GPS developed by U. S
Department of Defense while EGM96 is used as the geoid
reference of the World Geodetic System (Farr and Kobrick
2000). SRTM DEM data sets are available in 1 and 3 arc sec
i.e., 30 m resolution DEM and 90 m resolution DEM dataset
product. These DEM data sets products are available in scenes
or tiles in website for free download https://earthexplorer.
usgs.gov/.
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Fig. 1 Geographical location of the study area. The left panel shows the index map of the study area and the right bottom panel show the terrain of the

study area using SRTM DEM-30 m

CARTOSAT -10 and 30 m DEM

The CARTOSAT -1 spacecraft is an Indian Satellite which is
launched in the year 2005 on May 5 by the Indian Space
Research Organization (ISRO). CARTOSAT satellite consists
of a panchromatic camera i.e., after looking (AFT) and
Foreword looking (FORE), which gives along-track of stereo,
with a tilt inflight direction of +5° and +26°. It covers the
minimum and maximum of swath width of 26 x 26 or which
is nearly to 30 km and has a breadth/ height ratio of 0.62.
CARTOSAT spacecraft gives the stereo images which can
be used in wide applications like large scale mapping and
terrain modeling etc.

The CARTOSAT DEM datasets products are available in 1
Arc Degree second i.e., 30 M resolution. It can be freely
downloaded which is available on Earth Explorer website
https://bhuvan.nrsc.gov.in. Further, CARTOSAT DEM of
higher resolution (10 m) is made available and can be acquired
from the National Remote Sensing Centre (NRSC), India.
Figure 2 shows the geographical locations of DGPS points
used as GCP in this study. For the study area, we have pro-
cured CARTOSAT-10 m resolution data. It is to be noted that
both (CARTOSAT 10 and 30 m DEMs) datasets were

provided with WGS84 ellipsoid as the datum. However, for
comparison with other datasets, it was converted from ellip-
soid to spheriod datum. Figure 2d shows the terrain of the
study area as obtained from the different DEMs.

Ground control points

For calibrating and validating the machine learning models
we have used the ground control points obtained from the
Differential Global Positioning System (DGPS) survey per-
formed in the study area. The survey was conducted by
GEOCON Survey, Visakhapatnam, India as part of their
projects related to canal and road alignment. In this survey,
they followed a kinematic GNSS approach using a R95
receiver which has a 95% confidence level of accuracy
and the horizontal accuracy of the equipment used is up to
0.6 m and a vertical accuracy of 1.7 times the horizontal
accuracy of the equipment. For the present study, we had
used nearly 4000 Ground Control points. However, in order
to develop an effective machine learning model for im-
provement of existing DEMs, the requirement of GCPs is
paramount and these control points should cover at least
40% of the area. Figure 2d shows the location of the GCPs

@ Springer
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Fig. 2 a—c represents the Topography of the study area obtained from
CARTOSAT-10 m, CARTOSAT-30 m and SRTM-30 m, respectively
and d represents the Geographical location of the DGPS points in the

used in the study. These DGPS points can be used as an
exact reference elevation points for comparison of Vertical
accuracy with available DEMs. Further, the GCPs were
used as a reference data set to train and validate our
approach.

@ Springer

study area. The elevations at the location obtained from the DGPS survey
were used for model calibration and for testing the proposed approach

Methods

Before, describing the methodology adopted in this study, a
brief description of the machine learning tools, ANN and GP
are provided.
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understanding the complex nonlinear relationships between
inputs and outputs (Alizadeh et al. 2018). ANN’s inherent
ability to learn based upon the relationship developed predic-
tors and predictands help in solving complex problems that
orthodox models cannot perform. Model functioning and the
results from the model are mainly based on the learning algo-
rithm used to develop the network. The learning algorithm
determines the relationship between predictors and
predictands from the given training data set. During each trial,
the neural network model develops a new relationship be-
tween the variables and the weights assigned by the network
also change for each run of the model until minimum error
criteria are satisfied (Maheswaran et al. 2016). In the past,
ANN’s have been used in the fields of climatology and hy-
drology for different kinds of applications. Some of the exam-
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(2014), Ahmed et al. (2015), Maheswaran and Khosa (2012),
Vu et al. (2016) and Yeditha et al. (2020). For detailed expla-
nation about the readers are referred to (Shanmuganathan
2016). The most widely used neural network is a multi-layer
feed-forward network due to its capability to recognize non-
linear patterns in a system more effectively than singular
models. The architecture of a typical feed-forward multilayer
neural network is shown in Fig. 3. Numerous algorithms have
been proposed for ANN training and amongst these, the
Levenberg—Marquardt (LM) algorithm has found wide accep-
tance by various studies. de Vos and Rientjes (2009) have
shown that the efficiency of the LM algorithm is best in terms
of fast convergence and accuracy of results. The LM algo-
rithm has also been adopted in this study. ANNSs in this study
were trained using supervised training algorithms that sought
to minimize an objective function of Mean Squared Error
(MSE). The ANN models were developed in MATLAB
8.3.0 (R2014a) using the Neural Networks Toolbox.

Genetic programming

Genetic Programming (GP), having roots from the Genetic
Algorithm, is an evolutionary algorithm working on the prin-
ciples of survival of fittest and natural selection. (Sachindra
et al. 2018; Sivapragasam et al. 2008). However, it is slightly
different from the Genetic Algorithm in the way of utilizing
the ‘parse tree’ structure for searching the best solutions. It
uses the bottom-up approach and therefore doesn’t involve a
priori assumption on the structural relationship between the
predictors and predict and rather, GP searches for a suitable
relationship may be in the form of i) mathematical expression,
ii) logical statements or iii) a set of mathematical functions
which are arranged in an unfamiliar pattern (Maheswaran

and Khosa 2011). In general, the GP implementation has
two steps: a) creation of parse trees which involves identifica-
tion of the probable set of basic mathematical functions (such
as cos, sin, tan, sum, subtract, exp., multiply, divide, and pow-
er)), and (b) formation of the terminal set (which includes the
predictand and the predictors). The above steps work iterative-
ly to mimic the underlying process. In this study, the terminal
set includes the NCEP variables and the local precipitation
and the set of functions used were {+, —, exp., /, *, sqrt,
power}. The minimization of the sum of squared error was
used as the objective function to evolve the best model struc-
ture. We have altered the GP parameters such as no.of gener-
ations, initial population, cross over and mutation rate in such
a way to get the best results. Discipulus (https://discipulus.
software.informer.com/) tool is used for developing GP
models (Foster 2001) and a typical functioning of Genetic
programming can be seen in Fig. 4.

Proposed approach

The proposed approach is categorized into three major steps as
illustrated in Fig. 5. These are data preprocessing, model setup
and result post-processing and model application. The model
output is assessed and analyzed for its performance in com-
parison with the original CARTOSAT DEM in terms of its
vertical accuracy.

i Model Input Processing:

Generally, DEM contains voids/gaps (null values) (no ele-
vation value in the cells) (Luedeling et al. 2007) the gaps occur
in regions with the water surface, areas covered with low
reflecting materials, areas with rough slopes. These voids are
required to be removed or corrected. We have corrected the
voids using the methods described in (Rawat et al. 2013;
Reuter et al. 2007). Further, before the analysis, we have
projected all the data set to the same datum (WGS84) and
projection system (UTM-44 N). The GCPs points from the
DGPS survey were also checked for any missing data and
were projected on the same projection system.

ii. Model Setup

In this study for comparison, we have adopted two different
models ANN and GP. For both the models, the input data sets are

Table 1 Vertical accuracy of
Different DEMs in terms of

RMSE

S. No Statistic CARTOSAT-10 m CARTOSAT-30 m SRTM-30 m
Mean elevation (m) 34.08 34.10 34.86
Variance of elevation (m) 69.03 68.89 79.87
RMSE (m) 5.03 5.89 6.11
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Table 2 Model performance

statistics of the ANN and GP S. Model Calibration Validation
Models during calibration and No
validation RMSE Correlation  Bias RMSE Correlation  Bias
(m) (m) (m)
1 Artificial neural 2.15 0.98 -0.11  2.19 0.98 —2.49
network
2 Genetic programming ~ 2.27 0.98 0.45 3.31 0.97 2.27
elevation from CARTOSAT-10 m, CARTOSAT-30 m and N gi i
SRTM-30 m DEM and the model output levation at &, PoorsZout)
- m an € mode Outpu was cicvaton a Bias (%) _ = < x100 (2)
GCP points. Around 60% of the total GCP points were used Y (Zhgns)

for model training, validation was done with 20% and the testing
is carried out with the remaining percentage. The testing data is
unseen by the model and was used at the application stage to
check the applicability of the proposed approach. The model
accuracy was analyzed using different performance measures
such as RMSE, Correlation Coefficient, and Bias.

iii. Post Processing and Application.

After the models were trained and tested the models were
applied to develop the improved DEM using the original
DEM datasets. For this purpose, we have resampled data from
each of the DEM data sets at 100048 randomly generated
points using fishnet. The calibrated model was then used for
estimate values. From these elevation values, DEM was gen-
erated using different interpolation methods. In this study, we
have adopted three commonly used interpolation methods viz.
Inverse distance weighting (IDW), Kriging and Spline based
interpolation (Ajvazi and Czimber 2019).

From the generated DEM, the elevation accuracy was esti-
mated for the validation dataset and reported for comparison.

The accuracy of the DEMs was evaluated using the follow-
ing measures: i) RMSE (Root Mean Square Error and ii) Bias.

N . S,
'Z Z( ZIDGPS_ZIDEM)
RMSE = || =! (1)
N-1

1

Where: Z}DGPS = Elevation obtained using DGPS,

ZL v = Elevation obtained using DEM,

N is the total no of sampling Points.

RMSE represents the amount of error in the output value of
the developed model when compared to the observed value
whereas Bias represents the inclination of the results of the
model towards underestimation or overestimation when com-
pared to the observed system. Lower the values of RMSE and
Bias, the DEM is closer to reality. Positive values of bias
indicate DEM are underestimating the elevation concerning
the actual values and vice versa.

Results and discussions
Comparison of vertical accuracy of the original DEM’s

Assuming that the values obtained from the DGPS survey are
accurate of all the data sources, we have compared these ele-
vations with the ones obtained from DEMs. Using this differ-
ence in elevations, the vertical error analysis was performed
for all the DEMs. The RMSE was calculated using 2000
points and the results statistics are tabulated in Table 1. The
analysis of the results in terms of RMSE shows that the
CARTOSAT 10 m DEM show less deviation from the

Fig. 6 Scatter plot between
elevation values from GCPs and
model estimated elevation values
from top panel- neural networks
during a) calibration and b) vali-
dation, bottom panel - genetic

(a)

40f

Estimated Elevation Data (m)

100 ®)

%
S

O RMSE:2.25
r:0.98
Bias : -1.05

o
S

RMSE : 2.14
r:0.99
Bias : -6.49

Estimated Elevation Data (m)
IS
S

programming during c¢) calibra- 10 20 30
tion d) validation

DGPS Elevation Data (m)

N
5}

60 80 100 120
DGPS Elevation Data (m)

50 60 70 80 90

N
S
IS
S

)
=3

@
S

(c)

60 [

40+

Estimated Elevation Data (m)

O Elevation data
Bias
Linear fit

=)
S

©
S

o
S

RMSE : 3.31
r:0.97
Bias : 2.77

O RMSE:227
r:0.98
Bias : 0.45

IS
S

Estimated Elevation Data (m)

10 20 30

DGPS Elevation Data (m)

N
5}

50 60 70 80 90

N
S
IS
S

60 80 100 120
DGPS Elevation Data (m)

@ Springer



1146

Earth Sci Inform (2020) 13:1139-1150

18°16'30"N

18°0'0"N 18°3'0"N 18°6'0"N 18°9'0"N 18°12'0"N

@ Springer

18°0'0"N 18°3'0"N 18°6'0"N 18°9'0"N 18°12'0"N

83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
=° N
gt (a) {} 1=z
T 5
et [
®
L 1=z
o
[xd
g =
®
| {2
i B
o
- 1o
o
i B
>
- 1o
@
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
F
3
© z
s °
et 3
®
2|
z
o
8t z
& 8
ot e
g
el
o
z[ £
- &
r z
z £
gl e
e e
ot
F
°
©
* 83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
+ 1=
z
4
L 1@
)
L 12
2
(=3
g
s 1o
s
®
B ) z
z
14
L 1@
)
i 1=
°
L 1o
&
®
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E

18°16'30"N

18°0'0"N 18°3'0"N 18°6'0"N 18°9'0"N 18°12'0"N

18°16'30"N

18°0'0"N 18°3'0"N 18°6'0"N 18°9'0"N 18°12'0"N

83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
I z
e
wn
- 2
P
=
- z
=3
g
L =3
2
&
I z
°
- ©o
o
2
I z
e
- el
&
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
83°15'0"E  83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
g
et (e) Oz
& &
el 1=
&
L ]
5
r 12
& 3
2f 12
£ &
s ]
®
i 1 z
z £
2t 12
N &
- 1 =z
z B
e e
ot
g ]
@
T 83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
r 1z
£
(-4
4 i
. 2
®
- 12
£
=3
0
- 1=
®
i | z
B
e
H 1@
®
i 1=z
B
e
- 1o
o
83°15'0"E 83°19'30"E 83°24'0"E 83°28'30"E 83°33'0"E
Legend o 4.25 8.5 Km
P

[ catchment Boundary
Elevation (m)
N 400.1 - 544.1 N 100.1 - 200

[71300.1-400 M 80.01-100
[0 200.1 - 300 WM 60.01 - 80

I 40.01 - 60
[ 20.01 - 40
[10.0001 - 20



Earth Sci Inform (2020) 13:1139-1150

1147

<« Fig.7 Left colum: improved DEM obtained from neural network models
using a) IDW b) KRIGING ¢) SPLINE interpolation methods and right
column shows DEM obtained from GP models using d) IDW e)
KRIGING f) SPLINE interpolation methods

DGPS data whereas the SRTM DEMs show a higher level of
error. The RMSE of the CARTOSAT 10 m data is around
5.0 m which is considerably less when compared to the
SRTM DEMs.

Calibration of validation of the machine learning
models

For the GP models, we have chosen the population size to be
500, mutation and cross over rate was kept at high value
following Sivapragasam et al. (2008) and Selle and Muttil
(2011). We used mean square error as the model fitness func-
tion. The mathematical function set was chosen in such a way
that a meaningful relationship can be evolved between the
predictand and predictors. In this study, we have developed
separate GP models for each station and season.

With reference to the ANN-based models, Levenberg—
Marquardt (LM) algorithm was used to train the ANN models
because of its reliable, accurate, fast results and as well as its
processing flexibility (Reuter et al. 2007; Ajvazi and Czimber
2019; Selle and Muttil 2011; Adamowski and Karapataki
2010). The optimal hidden neurons for each of the model
was found using trial and error procedure and were varied
from 10 to 20 and the best value was chosen based the RMSE.

The calibration and validation result obtained is shown in
Table 2. RMSE and correlation between the observed eleva-
tion (from GCP) and the modeled elevation values show that
both models perform satisfactorily. Figure 6 shows the scatter
plot between the observed elevation and the model estimate
for both training and validation.

Application of model for DEM generation

For the application of the calibrated models in DEM genera-
tion, we have extracted elevations from each of the original
DEMs at 100048 points, randomly generated using the fishnet
tool (du Toit et al. 2020; Heumann et al. 2020) in ArcGIS.
This creates a feature class containing a net of rectangular
cells. Then using the elevations at the fishnet points, the
ANN and GP was run to generate corrected elevations.

From the simulated elevation values at these points, DEM
was generated using different interpolation methods. Figure 7
shows the DEM generated for the study area using the pro-
posed approach after interpolation. To verify the accuracy of
the generated DEM, we have used the test data GCP points
(which were unused for model calibration and validation).
Figure 8 shows the elevations scatter plot for the 1000 testing
points. Table 3 shows the statistical results obtained from the
different combinations of models and interpolation methods.
From the results, the ANN- IDW method performs better in
terms of RMSE. The RMSE of the resulting DEM is signifi-
cantly improved from 5.03 m of the original CARTOSAT to
3.25 m (i.e., 35% improvement), and performing far better
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Table 3 Statistical results

obtained from the different S. No Model Interpolation method RMSE (m) Bias (m) Correlation
combinations of models and
interpolation methods 1 Artificial Neural Network IDW 3.25 2.79 0.96
Kriging 3.38 371 0.96
Spline 3.34 2.61 0.96
2 Genetic Programming IDW 3.20 1.55 0.97
Kriging 3.31 221 0.97
Spline 3.29 1.48 0.97

than SRTM 30 m. Similar results were obtained from the GP
based DEMs. The RMSE for the GP model results were found
to be varying from 3.2-3.29 m and the bias between 1.48—
2.21 m. It can very clearly have observed that in comparison
with the original DEM, there is a considerable improvement in
the vertical accuracy in all the models. This indicates the effi-
cacy of the proposed approach.

Conclusions

This paper proposed a novel approach for improving the
accuracy of CARTOSAT DEM with the use of machine
learning methods, available GCP points and other public-
ly available DEM. The proposed method is applicable in
regions where there the spatial data is sparse due to cost,
facility and data sharing strategy. The proposed method
makes use of reference elevation data from the area which
is data-rich to help in developing DEM of better accuracy
in data-sparse regions having similar terrain characteris-
tics. The proposed methodology is applied to an area in
the Southeastern part of India. Two different machine
learning approaches —combined with three interpolation
techniques results in six different models. These models
were trained, tested and validated using three different
data sets. The performance of the proposed approach
was an encouraging and significant improvement in
RMSE of the order of 35% when compared to the original
CARTOSAT DEM. Overall, the proposed approach is
shown to be able to improve the CARTOSAT DEM sig-
nificantly in the selected study area in terms of vertical
accuracy and bias. It is important to note that this meth-
odology requires DGPS for areas where improvement is
required. However, these can be replaced with GLAS/
ICES at data sets for training the model or even high-
resolution data can be used if available.
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